
Chellappan Seethala 

Berichte zur Erdsystemforschung

Reports on Earth System Science

  110
2012

Evaluating the state-of-the-art of and Errors in
1D Satellite Cloud Liquid Water Path Retrievals

with Large Eddy Simulations
and Realistic Radiative Transfer Models





Chellappan Seethala

Reports on Earth System Science

 Berichte zur Erdsystemforschung 110
2012

110 
2012

ISSN 1614-1199

Hamburg 2012

aus Indien

Evaluating the state-of-the-art of and Errors in
1D Satellite Cloud Liquid Water Path Retrievals

with Large Eddy Simulations
and Realistic Radiative Transfer Models



ISSN 1614-1199

Als Dissertation angenommen 
vom Department Geowissenschaften der Universität Hamburg

auf Grund der Gutachten von 
Prof. Dr. Hartmut Graßl
und
Ákos Horváth, PhD

Hamburg, den 30. Januar 2012
Prof. Dr. Jürgen Oßenbrügge
Leiter des Departments für Geowissenschaften

Chellappan Seethala
Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg 



Hamburg 2012

Chellappan Seethala 

Evaluating the state-of-the-art of and Errors in
1D Satellite Cloud Liquid Water Path Retrievals

with Large Eddy Simulations
and Realistic Radiative Transfer Models





 

 

 

i

Acknowledgements 

I would like to pay my profound gratitude to my supervisor Dr. Ákos Horváth for his 

continuous guidance and for the invaluable discussions during the course. I was fascinated to 

his decisions which always placed me in a step forward. I thank you very much for 

understanding me and kindly helping me in all the situations.  

My PhD advisory panel chair Prof. Hartmut Graßl and panel member Dr. Stefan Kinne were 

greatly acknowledged for their continuous monitoring and suggestions throughout the course. 

The person whom I admire most is Prof. Johannes Quaas for his kindness, help and 

discussions. I also acknowledge for the important discussions with Dr. Robert Pincus from 

University of Colorado and Dr. Ralf Bennartz from University of Wisconsin.   

My PhD is funded by Marie Curie Reintegration project and partially by EUMETSAT CM-

SAF Visiting Scientist project, and hereby I would like to acknowledge for both projects.   

Dr. Jan Fokke Meirink from the Royal Netherlands Meteorological Institute, Dr. Rob 

Roebeling from EUMETSAT, and Dr. Abhay Devasthale from the Swedish Meteorological 

and Hydrographical Institute were greatly acknowledged for their countless effort and 

support to undertake the six months Visiting Scientist Project at KNMI.  

I would like to acknowledge Dr. Antje Weitz and Cornelia Kampmann for their kindness and 

support they offered to me on behalf of International Max Planck Research School and 

beyond. I would also like to use this opportunity to thank Prof. Bjorn Stevens for his valuable 

discussions and Angela Gruber for her kind support. In sum, I would like to express my 

thanks to the Max Planck Institute for Meteorology and International Max Planck Research 

School for providing me excellent venue and computational facility to perform this research.    

The data I used in my dissertation is acknowledged here. The Aqua/Terra MODIS Level-2 

data were obtained from http://ladsweb.nascom.nasa.gov/. AMSR-E and TMI data are 

available at http://www.remss.com/. OMI data is from http://mirador.gsfc.nasa.gov/. The 

KNMI CPP retrievals were provided by Dr. Jan Fokke Meirink. I thank Dr. Frank Evans for 

the radiative transfer code SHDOM and for making it available to public; the code is 

available in http://nit.colorado.edu/shdom/. The Large Eddy Simulations outputs were 

obtained from Thijs Heus, Irina Sandu, and Malte Reick.  



ii 

 

I would like to thank Cathy Hohenegger, Thijs Heus, Juan Pedro Mellado, and Manu Anna 

Thomas for reading my dissertation chapters and providing me valuable comments. I thank 

Louise Nuijens and Katrin Lonitz for their discussions and helps during the course. I also 

would like to thank all my colleagues Verena Grützun, Karsten Peters, Suvarchal Kumar 

Cheedale, Daniel Klocke, Ritthik Bhattacharya, Malte Rieck, Adrial Valentine, Vera 

Schemann, etc., my officemates Stergios Misios, Jade Garcia, Anna Jaruga, and friends 

Natasha Sudarchikova, Armelle Reca Remedio, Harshi Weerasinghe, Swati Gehlot, and 

Pankaj Kumar Srivastava for giving me a lively environment to work and for their great 

friendship during the course. A hearty thanks to Elke Ludewig who was almost with me in all 

the occasions. The time we spend together was really wonderful and I will really miss you a 

lot.  

I pay my thankfulness to Suraj Polade who always stood for me whenever I need his support. 

Without his care and moral support it could have been impossible for me to reach where I am 

today. I also send special thanks to my beloved brothers and sisters, especially to Dr. 

Gnanaseelan for paying their attention and motivating me in all my footsteps. I personally 

believe that my dissertation is purely an outcome of my parents’ blessings and prayers, and 

hereby I dedicate this dissertation to them.  

 

 

 

 

 

 

Hamburg, 17.11.2011        C. Seethala 

 

 
 
 
 



iii 

 

Abstract 

 

Liquid water path (LWP) is a crucial cloud parameter playing an important role in both 

atmospheric radiation and hydrology. Comparisons of observations and simulations found 

large and potentially systematic errors in both the global distribution and diurnal cycle of 

LWP. Unfortunately, the various observational datasets (microwave and visible/near-

infrared) also showed considerable and as yet not fully explained discrepancies in this 

quantity. Operational visible/near-infrared (VNIR) retrieval algorithms have to reduce natural 

complexity by treating clouds as plane-parallel, homogeneous layers in order to be practical. 

The simultaneous presence of cloud liquid and rain poses a fundamental challenge to all 

microwave measurements, because the component signals cannot be separated from 

brightness temperatures alone. In addition, both methods suffer from unresolved sub-pixel-

scale variability. My research aims at better constraining this quantity by systematically 

investigating inconsistencies between microwave and VNIR cloud liquid water path estimates 

and by estimating the observed retrieval differences. First, we have identified differences 

between AMSR-E and MODIS cloud liquid water retrievals as a function of geographic 

location, cloud fraction, effective radius profile, cloud heterogeneity, solar/view geometry, 

and rain rate. In broken scenes AMSR-E increasingly overestimated MODIS, and retrievals 

became uncorrelated as cloud fraction decreased, while in overcast scenes the techniques 

showed generally better agreement but with a MODIS overestimation. We found AMSR-E 

and MODIS retrievals being most consistent in extensive marine Sc clouds. Evaluating the 

diurnal cycle of South Atlantic low-level cloud properties (LWP) from TMI and SEVIRI 

retrievals also exhibited qualitatively similar results. Best agreement is observed over the Sc 

regimes and worse agreement is seen over the trade wind Cu regimes. Finally, we estimate 

these observed uncertainties in plane-parallel VNIR cloud retrievals, by combining large 

eddy simulated cloud fields and SHDOM 3D radiative transfer model. Our ultimate goal is to 

make a significant step toward creation of a consensus satellite cloud liquid water 

climatology that might be more useful in constraining global climate models than existing 

datasets.  
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Zusammenfassung 

 

Der Flüssigwasserweg, das über die Säule integrierte Wolkenwasser, ist ein wichtiger 

Wolkenparameter, der sowohl bei der Atmosphärischen Strahlung als auch für den 

hydrologischen Kreislauf eine bedeutende Rolle spielt. Vergleiche von Beobachtungen und 

Simulationen wiesen große und teilweise systematische Fehler in der globalen Verteilung und 

im Tagesgang des Flüssigwasserwegs auf. Bedauerlicherweise zeigen auch die verschiedenen 

auf Beobachtungen basierenden Datensätze (Fernerkundung durch Mikrowellen und 

sichtbares/nah-infrarotes Licht/VNIR) eine deutliche und bis jetzt noch nicht erklärbare 

Diskrepanz. Für eine bessere Handhabung muss bei den operationellen VNIR-

Fernerkundungs-Algorithmen die natürliche Komplexität der Wolken reduziert werden, 

indem Wolken als plan-parallele homogene Schichten  behandelt werden. Das simultane 

Vorhandensein von Flüssigwasserwolken und Regen stellt ein fundamentales  Problem für die 

Fernerkundung im Mikrowellenbereich dar, weil das Einkomponentensignal nicht von der 

Strahlungstemperatur getrennt werden kann. Zusätzlich weisen beide Methoden aufgrund der 

unaufgelösten sub-skaligen Variabilität Einschränkungen auf. Meine Forschung zielt darauf 

hin, eine bessere quantitative Charakterisierung des Flüssigwasserwegs aus 

Fernerkundungsbeobachtungen durch systematisches Erfassen von Inkonsistenzen zwischen 

Abschätzungen des Flüssigwasserwegs aus Mikrowellen- und VNIR-Beobachtungen zu 

erlangen. Zuerst identifizierten wir Unterschiede zwischen gemessenem Wolkenwasser des 

Mikrowellen-Instruments AMSR-E und des VNIR-Instruments MODIS als Funktion des 

geographischen Ortes, des Wolkenbedeckungsgrads, der Profiln von effektiven Radien, der 

Wolkenheterogenität, der Solargeometrie, der Sensorgeometrie und der Regenrate. In 

durchbrochenen Wolkenszenen sind die Flüssigwasserweg-Abschätzungen von  AMSR-E 

systematische größer als die von MODIS, und die Retrievals werden unkorreliert, wenn der 

Wolkenbedeckungsgrad abnimmt, während in vollständig bedeckten Situationen die 

Techniken generell in besserer Übereinstimmung sind, teilsweise mit höheren Werfen von 

MODIS . Weiterhin fanden wir heraus, dass AMSR-E und MODIS Fernerkundungen 

hauptsächlich in Gebieten mit extensiver mariner Stratocumulusbewölkung übereinstimmen. 

Eine Evaluierung des Tageszyklus des Flüssigwasserwegs von niedrigen Wolken über dem 

Südatlantik, gemessen durch das Mikrowellen-Instrument TMI und das VNIR-Instrument 

SEVIRI, deuten auf ebenfalls qualitativ ähnliche Ergebnisse. Die beste Übereinstimmung 

kann in Stratocumulus-Regimen beobachtet werden, die schlechteste in PassatwindCumulus 
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Regimen. Schließlich schätzten wir einige dieser beobachteten Ungewissheiten in  

plan-parallelen VNIR-Wolkenretrieval ab, indem wir Wolkenfelder von 

Grobstrukturauflösenden Simulationen (LES) mit 3D-Strahlungstransfer-Modellen 

kombinierten. 

Diese Studien trugen zu einer verbesserten Interpretation der Satelliten-Fernerkundung des 

Wolkenwassergehalts bei, und erlauben damit eine genauere Evaluierung von Klimamodellen 

als bisher möglich. 
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Chapter 1 

Introduction 

 

Clouds strongly affect the earth’s climate by altering the radiative fluxes. The low-

level marine clouds are particularly important because they constitute a main source of 

uncertainty in simulated cloud feedbacks [Bony and Dufresne, 2005]. Globally, boundary-

layer clouds act to decrease the net radiative forcing by 15 Wm-2 due to their large reflectivity 

[Hartmann et al., 1992]. This reflectivity varies with cloud parameters such as cloud fraction, 

column integrated liquid water or liquid water path, and the droplet effective radius. Cess et 

al., [1989] indicated that different GCMs (general circulation models) disagree on the 

magnitude and also, on the sign of the cloud feedback. Recent studies reported that the 

general circulation models [Ma et al., 1996; Jacob, 1999; Li et al., 2008; Medeiros and 

Stevens, 2011] and the so-called single column models [Duynkerke et al., 2004] under-

predicted the cloud cover and liquid water path of subtropical marine stratiform clouds. 

Williams and Tselioudis [2007] analysed the output from several GCMs and found that much 

of the disparity in GCMs climate sensitivity arises from the inability of the models to 

represent the state of the present‐day cloud radiative effect. Moreover, in the Fourth 

Assessment Report of Intergovernmental Panel on Climate Change (IPCC-AR4), Forster et 

al. [2007] highlights the diurnal cycle of thin, stratiform clouds as one of the major 

uncertainties in current estimates of cloud radiative forcing. Wilson and Mitchell [1986] and 

Rozendaal et al. [1995] showed that, changing the resolution of the diurnal cycle of cloud and 

radiative fluxes in GCMs can affect the cloud forcing and hence, the simulated climate. 

Comparisons of the observed diurnal cycle of clouds with that simulated by models also 

show large and potentially systematic errors in the modelled diurnal cycle [O'Dell et 

al., 2008; Roebeling and van Meijgaard, 2009], and also in the global distribution [Borg and 

Bennartz, 2007; Wilcox et al., 2009]. Thus, knowledge of the temporal and spatial variability 

of these cloud parameters is a prerequisite for understanding feedbacks between boundary 

layer cloud properties and climate change [Williams and Tselioudis, 2007].  

        Given the scarcity of global measurements of the vertical distribution of cloud 

macrophysical and microphysical properties, it is not surprising that uncertainties associated 

with cloud feedbacks remain the largest contributors to differences in 

model (/simulated) projections of climate warming [Dufresne and Bony, 2008]. With the 

exception of a few field studies, observationally, the global cloud properties can be estimated 
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by only satellite-based instruments, the diurnal variation of cloud properties are far more 

limited. Retrieval of cloud properties has been made using a variety of methods and satellite 

instruments [Minnis, 1989; Nakajima and King, 1990; Wentz, 1997; Ackerman et al., 1998; 

Rossow and Schiffer, 1999; Wylie and Menzel, 1999; Platnick et al., 2003; Heidinger, 2003; 

Frey et al., 2008; Hilburn and Wentz, 2008]. The more fundamental differences leading to 

discrepancies in the comparisons include instrument capabilities (spectral coverage, spatial 

resolution, and swath), retrieval algorithms (microwave and visible/near-infrared), and the 

spatio-temporal sampling available from the satellite orbit. The main source of error is the 

cloud-rain separation in microwave techniques. The basic microwave observable is total 

liquid water; the simultaneous presence of cloud liquid and rain poses a fundamental 

challenge to all microwave methods, because the component signals cannot be separated 

from brightness temperatures alone. Moreover, a positive bias of passive-microwave derived 

LWP in cloud-free situations is in the order of 10-15 g m-2 [Greenwald 2009; Greenwald et 

al. 2007], in addition to the unresolved sub-pixel-scale variability. On the other hand, 

operational visible/near-infrared (VNIR) retrieval algorithms have to reduce natural 

complexity by treating clouds as plane-parallel, homogeneous layers in order to be practical. 

These simplifications might work well for extensive Sc sheets but are less suitable for 

broken, heterogeneous cloud fields. Due to the complex 3D structure of clouds, 1D retrievals 

can significantly underestimate or overestimate the true LWP at certain view geometries 

(e.g., shadowed vs. illuminated cloud sides). These 3D effects are generally larger in broken 

clouds and at oblique solar and view angles. In addition, the relationship between cloud 

optical thickness and reflectance is non-linear; therefore, sub-pixel-scale variability can also 

introduce large errors in retrieved cloud properties (plane-parallel bias). The retrieval artifacts 

in 1D VNIR retrievals due to the cloud 3D structure have been assessed in Loeb and 

Davies [1996], Zhao and Di Girolamo [2004], Horváth and Davies [2004], Kato et al. [2006, 

2009], Várnai and Marshak [2007]. Cahalan et al., [1994] claimed that albedo biases of 10% 

or greater would be introduced into large regions of current climate models if clouds were 

given their observed liquid water amounts because of the treatment of clouds as plane 

parallel, moreover, an increase in the planetary albedo of the earth-atmosphere system by 

only 10% can decrease the equilibrium surface temperature to that of the last ice age. Using 

Multiangle Imaging SpectroRadiometer (MISR) data Girolamo et al. [2010] showed that the 

view‐angular distribution of the retrieved cloud optical thickness measured at 1 km resolution 

are indistinguishable from plane‐parallel clouds 79% of the time, for the oceanic stratiform 

clouds when solar zenith angle is below 60o and for all other cloud types and Sun angles, the 
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frequency in which clouds are indistinguishable from plane‐parallel drops sharply to as low 

as a few percent. Unfortunately, neither satellite technique has been comprehensively 

validated. An alternative to episodic validation campaigns is evaluation of the two fully 

independent satellite methods (microwave and visible/near-infrared) against each other using 

a large set of coincident retrievals. Recently, a large number of papers have studied the 

differences in liquid water path retrieval based on passive microwave and visible/near-

infrared satellite observations [Wilcox et al., 2009; Greenwald, 2009; Bennartz, 2007; Borg 

and Bennartz, 2007; Horvath and Davies, 2007]. Differences between the two methods have 

been shown to be correlated with various factors, including cloud fraction, observation 

geometry, retrieval assumptions, aerosol above clouds, and others. In broken cloud fields the 

Wentz algorithm has been found to increasingly overestimate MODIS with decreasing cloud 

fraction, and the techniques have been found considerably better correlated in overcast 

scenes, but with the opposite tendency of MODIS overestimations [Bennartz, 2007; Horváth 

and Davies, 2007; Greenwald et al., 2007; Horváth and Gentemann, 2007, Borg and 

Bennartz, 2007]. These are important results, but more robust comparisons are needed 

because all previous studies had serious temporal or regional limitations. 

Therefore, understanding and interpreting satellite data records is a significant step 

forward in representing climate variability. My research aims at better constraining this 

quantity by systematically investigating inconsistencies between microwave and optical 

cloud liquid water path estimates and quantifying the observed retrieval differences. Thus, in 

Chapter 3, we performed a systematic global comparison of AMSR-E and MODIS LWP 

estimates from one year of data, and identified differences between microwave and VNIR 

cloud liquid water retrievals as a function of geographic location, cloud fraction, effective 

radius profile, cloud heterogeneity, solar/view geometry, and rain rate. In Chapter 4 we have 

evaluated the diurnal cycle of South Atlantic marine boundary layer clouds using one year of 

SEVIRI and TMI measurements. SEVIRI is the first space-borne instrument with the 

necessary temporal, spatial, and spectral resolution to resolve the diurnal cycle of clouds, and 

the non sun-synchronous orbit of TRMM Microwave Imager (TMI) allows for a comparison 

of observations at different local times. Once we identified the various error sources from 

microwave and VNIR measurements, it is ideal to estimate these errors quantitatively by 

combining simulated cloud fields and both microwave and VNIR radiative transfer models. 

However, due to the limited time and resources, in this study we decided to quantify only the 

retrieval errors of VNIR technique. Thus, the quantification of the uncertainties in the 1D 

VNIR satellite cloud retrievals from large-eddy simulated cloud fields and Spherical 
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Harmonic Discrete Ordinate Method (SHDOM) 3D radiative transfer model is presented in 

Chapter 5. This will be helpful to identify and modify future satellite measurements, and 

ultimately the climate-modeling efforts would greatly benefit from accurate cloud LWP 

measurements with well-established error characteristics.  

 



 

 

 

5

Chapter 2 

An Overview of Data and Methodology 

 

This chapter briefly summarizes the data and methodology utilized for this study, 

although a detailed discussion is provided in the respective result chapters. In Chapter 3, we 

assess one year of global cloud liquid water path from AMSR-E (Advanced Microwave 

Scanning Radiometer for Earth Observing System) version 5 and MODIS (Moderate 

Resolution Imaging SpectroRadiometer) level 2 database. AMSR-E and MODIS aboard polar 

orbiting Aqua satellite of A-Train constellations, with the equatorial crossing time of 13:30 

UTC. Thus, the global comparison of clouds is performed for simultaneous, collocated, 

coincidence measurements, however, the analysis is restricted to non-raining warm clouds, as 

ice pixels introduce complexity in the VNIR retrievals and rain poses problems in the 

microwave retrievals. In Chapter 4 we evaluate the diurnal cycle of South Atlantic 

stratocumulus and trade wind Cu clouds using SEVIRI (Spinning Enhanced Visible Infrared 

Measurements) and TMI (Tropical Rainfall Measuring Mission – Microwave Imager). 

SEVIRI aboard METEOSAT-9 in geostationary orbit and measures the cloud properties each 

15 minutes at 3 km resolution, and therefore provides excellent database for the study of 

diurnal variation of the cloud properties. On the otherhand TMI aboard TRMM in equatorial 

orbit samples the globe at different local times and collecting a month of data would ideally 

sufficient to study the diurnal variability in LWP. Moreover, we use ultra-violet aerosol index 

data from OMI (Ozone Monitoring Instrument) aboard Aura satellite, to study the influence 

of absorbing aerosols above South Atlantic stratocumulus clouds. In Chapter 5 we have 

quantified the uncertainties in 1D VNIR cloud retrievals by combining hundreds of LES 

(Large Eddy Simulation) cloud fields with SHDOM (the Spherical Harmonic Discrete 

Ordinate Method) 3D Radiative Transfer model. We implement a 2-channel retrieval 

technique similar to the operational MODIS algorithm to estimate cloud optical thickness and 

droplet effective radius from 0.86 µm and 2.13 µm radiances. The 3D SHDOM radiative 

transfer model was used to calculate accurate radiances for LES cloud fields. These radiances 

were then inverted for optical thickness and effective radius with the help of 1D look-up 

tables generated by the plane-parallel SHDOMPP. The retrieved cloud properties are 

compared back to the true LES cloud properties and the error is determined in different Sun-

view geometry. 
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Chapter 3 

Global Assessment of AMSR-E and MODIS Cloud Liquid Water Path 

Retrievals in Warm Oceanic Clouds 

 

We compared one year of AMSR-E Wentz and MODIS cloud liquid water path 

estimates in warm marine clouds. In broken scenes AMSR-E increasingly overestimated 

MODIS, and retrievals became uncorrelated as cloud fraction decreased, while in overcast 

scenes the techniques showed generally better agreement but with a MODIS overestimation. 

We found microwave and visible/near-infrared retrievals being most consistent in extensive 

marine Sc clouds with correlations up to 0.95 and typical rms differences of 15 g m-2. The 

overall MODIS high bias in overcast domains could be removed, in a global mean sense, by 

adiabatic correction; however large regional differences remained. Most notably, MODIS 

showed strong overestimations at high latitudes, which we traced to 3D effects in plane-

parallel visible/near-infrared retrievals over heterogeneous clouds at low Sun. In the 

tropics/subtropics, AMSR-E – MODIS differences also depended on cloud type, with 

MODIS overestimating in stratiform and underestimating in cumuliform clouds, resulting in 

large-scale coherent bias patterns where marine Sc transitioned into trade wind Cu. We noted 

similar geographic variations in Wentz cloud temperature errors and MODIS 1.6-3.7 m 

droplet effective radius differences, suggesting that microwave retrieval errors due to cloud 

absorption uncertainties, and visible/near-infrared retrieval errors due to cloud vertical 

stratification might have contributed to the observed liquid water path bias patterns. Finally, 

cloud-rain partitioning was found to introduce a systematic low bias in Wentz retrievals 

above 180 g m-2 as the microwave algorithm erroneously assigned an increasing portion of 

the liquid water content of thicker non-precipitating clouds to rain. 

 

3.1. Introduction 

  The weakest link in climate simulations is the poor representation of clouds, 

particularly of marine boundary layer clouds, which constitute the main source of uncertainty 

in modeled cloud feedbacks [Bony and Dufresne, 2005]. The dominant part of predicted 

global cloud forcing change is produced by these ubiquitous warm clouds, the radiative 
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fluxes of which are very sensitive to their vertically integrated liquid water content or liquid 

water path (LWP) [Turner et al., 2007]. Therefore, climate-modeling efforts would greatly 

benefit from accurate cloud LWP measurements with well-established error characteristics. 

 The longest global climatologies of cloud LWP have been derived from space-borne 

passive microwave and visible/near-infrared (VNIR) observations. The microwave record 

now spans 20+ years and comprises Special Sensor Microwave/Imager (SSM/I), Tropical 

Rainfall Measurement Mission Microwave Imager (TMI), and Advanced Microwave 

Scanning Radiometer for Earth Observing System (AMSR-E) measurements. High quality 

VNIR LWP estimates, however, have only been available since the launch of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) a decade ago. 

 The de facto microwave retrieval standard is the Wentz algorithm developed by 

Remote Sensing Systems (RSS) [Wentz, 1997; Wentz and Spencer, 1998; Wentz and 

Meissner, 2000; Hilburn and Wentz, 2008]. RSS derives cloud liquid water path directly from 

brightness temperatures using essentially the same multi-channel algorithm for SSM/I, TMI, 

and AMSR-E. VNIR LWPs, on the other hand, represent indirect estimates being 

parameterized from cloud optical thickness and droplet effective radius, which are retrieved 

from solar reflectances. The current state-of-the-art MODIS algorithm [Platnick et al., 2003] 

is an updated version of the classic Nakajima and King [1990] bi-spectral method. 

 Unfortunately, neither satellite technique has been comprehensively validated. 

Comparisons with in situ and ground-based measurements, although useful in case studies, 

suffer from representativeness and sample size issues as well as from significant biases in 

surface microwave retrievals [Turner et al., 2007]. An alternative to episodic validation 

campaigns is evaluation of the two fully independent satellite methods against each other 

using a large set of coincident retrievals. Several such studies have assessed Wentz and 

MODIS LWPs recently. 

 In broken cloud fields the Wentz algorithm has been found to increasingly 

overestimate MODIS with decreasing cloud fraction [Bennartz, 2007; Horváth and Davies, 

2007]. Analysis of cloud-free scenes has also indicated a Wentz overestimation, the 

magnitude of which decreases with surface wind speed and increases with column water 

vapor [Greenwald et al., 2007; Horváth and Gentemann, 2007]. Taken together, these 

findings have strongly suggested potential beamfilling, surface emission, and gaseous 

absorption errors in the Wentz algorithm, although significant heterogeneity errors in MODIS 

retrievals could not be ruled out either. 
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 The techniques have been found considerably better correlated in overcast scenes, but 

with the opposite tendency of MODIS overestimations. Borg and Bennartz [2007] have 

shown that this positive MODIS bias could be eliminated, at least in a global mean sense, by 

replacing the operational vertically homogeneous cloud model with an adiabatically stratified 

one. However, even after adiabatic corrections systematic differences remain with AMSR-E 

increasingly underestimating MODIS for cloud optical thicknesses above ~20 [Wilcox et al., 

2009]. Some of these discrepancies might be due to assumptions about the partitioning of 

cloud water and rainwater in the Wentz algorithm, as pointed out by Horváth and Davies 

[2007], and O’Dell et al. [2008].  

 These are important results, but more robust comparisons are needed because all 

previous studies had serious temporal or regional limitations. In this work, we performed a 

systematic global comparison of AMSR-E and MODIS LWP estimates from one year of data. 

Section 2 describes our satellite datasets and analysis methodology. Section 3 gives a detailed 

account of microwave-VNIR differences. Section 4 then discusses potential first-order error 

sources that might explain the observed biases. Finally, Section 5 summarizes our findings. 

 

3.2. Data and Methodology 

 Our dataset comprised cloud retrievals from AMSR-E and MODIS on the Aqua 

satellite, and near-simultaneous aerosol observations from Ozone Monitoring Instrument 

(OMI) aboard the Aura platform, covering the period December 2006 to November 2007. 

Only high quality retrievals were used from the latest available products: version 5 for 

AMSR-E, collection 5 for MODIS, and version 3 for OMI. Below, we summarize the 

relevant aspects of each algorithm. 

 

3.2.1. AMSR-E Wentz Cloud Liquid Water Path 

 The Wentz algorithm is an absorption-emission based method sequentially retrieving 

sea surface temperature (SST), surface wind speed (W), water vapor path (V), liquid water 

path (LWP), and rain rate (R), both day and night but only over ocean. Our primary interest, 

LWP, is derived from 37 GHz observations at a resolution of 13 km, but here we used the 

0.25° gridded daytime product. These microwave LWPs can be interpreted as gridbox means 

(averages over clear sky and cloud), because the relationship between 37 GHz retrievals and 

sub-field-of-view cloud amount is nearly linear [Greenwald et al., 1997; Lafont and 

Guillemet, 2004]. First, a preliminary value is computed assuming the atmospheric column 

contains only cloud liquid but no rain. Then, rain retrieval is performed for preliminary LWPs 
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above a fixed rain-threshold of 180 g m-2. Although this step concerns only ~5% of all data, it 

is a source of systematic error due to its built-in assumptions; therefore, it warrants a more 

detailed discussion. 

 The simultaneous presence of cloud liquid and rain poses a fundamental challenge to 

all microwave methods and not only to the Wentz algorithm, because the component signals 

cannot be separated from brightness temperatures alone. The basic microwave observable is 

total liquid water columnar attenuation AL37. In the first pass through data, no rain is assumed 

and a preliminary LWP proportional to AL37 is retrieved. For a preliminary LWP >180  g m-2, 

however, precipitation is diagnosed and the governing equation becomes [Hilburn and Wentz, 

2008]: 

AL37  a37 1 b37T LWPR 103  c37 1 d37T HRe37   (1a) 

T  TL  283K.     (1b) 

Here, a37, b37, c37, d37, and e37 are coefficients derived using the Marshall-Palmer raindrop 

size distribution, TL is liquid cloud temperature in K, H is rain column height in km, R is 

column-average rain rate in mm/hr, and LWPR is the rain-adjusted cloud liquid water path in 

mm. Cloud temperature is parameterized from SST and water vapor, while rain column 

height is fitted to freezing level heights from reanalysis data and varies linearly with SST 

from 0.46 km at 0°C to 5.26 km at 30°C. In order to solve (1) with two unknowns, LWPR and 

R, the Wentz algorithm further assumes that cloud liquid water scales as the square root of 

rain rate [Hilburn and Wentz, 2008]: 

LWPR  1 HR ,     (2) 

where  180 g m-2 is the rain threshold LWP. With (2) and the above parameterizations (1) 

can now be solved for R. The resulting rain rate is then substituted back in (2) in order to 

obtain the final rain-adjusted cloud liquid water path replacing the preliminary rain-free 

value. 

 This specific cloud-rain partitioning was derived from a study of northeast Pacific 

extratropical cyclones. Changing (2) or even the assumed raindrop size distribution would 

result in a different cloud-rain partitioning. The value of   180  g m-2 was chosen because it 

yields good agreement between Wentz and other rain climatologies [Hilburn and Wentz, 

2008]. From the perspective of LWP retrievals, however, use of a relatively low and globally 

fixed cloud-rain threshold entails underestimations whenever non-raining clouds with LWPs 

exceeding the threshold are encountered, because some of the cloud water is erroneously 
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assigned to precipitation. As we show in section 4.5, this negative bias explains some of the 

observed discrepancies between Wentz and MODIS LWPs. 

 

3.2.2. MODIS Cloud Liquid Water Path 

 Here, cloud LWP is indirectly estimated from cloud optical thickness () and droplet 

effective radius (re), themselves inferred from bi-spectral solar reflectances at 1-km resolution 

(MYD06 product). Over ocean, MODIS uses the 0.86-m visible band containing optical 

thickness information, in conjunction with one of three water-absorbing near-infrared bands 

located at 1.6, 2.2, and 3.7 m, which are sensitive to droplet effective radius. Although all 

three near-infrared channels generally observe the upper portion of clouds, vertical sampling 

of droplets becomes progressively deeper from 3.7 to 1.6 m due to decreasing absorption 

[Platnick, 2000]. The operational LWP parameterization relies on the 2.2 m band and 

assumes no vertical variation in cloud droplet size, leading to 

LWP 
4w

3Qe

 re,2.2,     (3) 

where Qe  2 is the extinction efficiency at visible wavelengths, and w 1 g cm-3 is water 

density. (Note that LWP is only estimated when both  and re retrievals are successful; the 

latter often fail in thin clouds leading to fewer LWP retrievals than cloudy pixels.) Presumed 

vertical homogeneity in combination with cloud-top effective radius retrievals can lead to 

LWP biases of both signs depending on the actual droplet profile. For example, in the 

absence of  and re retrieval errors, (3) would be an overestimate in marine Sc clouds, where 

effective radius often increases linearly from cloud base to top. For such boundary layer 

clouds an adiabatic model has been proposed, based on cloud-top effective radius re,top [Wood 

and Hartmann, 2006]: 

LWP 
10w

9Qe

 re,top .     (4) 

Theoretically, re,3.7 is closest to re,top; however, re,3.7 has an unexplained low bias (see section 

4.3). In practice, therefore, re,2.2 is used in (4) as well, which reduces (3) by a factor of 5/6 or 

17%. Because this model does not consider entrainment mixing, it represents only a first-

order LWP correction in mostly subadiabatic marine Sc. In addition, when re decreases with 

height, which might occur in drizzling or raining clouds, (4) could even exacerbate the 

underestimation of (3). At least in theory, a better approach would be to estimate droplet size 

profile on a case-by-case basis from the three effective radii. Unfortunately, vertical 
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weighting functions of the three MODIS near-infrared channels are quite similar and 

correlated, rendering droplet profile inversion questionable [Platnick, 2000]. Nevertheless, 

we show in section 4.3 that in certain geographic regions large-scale variations of 

microwave-VNIR LWP bias appear correlated with 1.6-3.7 m effective radius difference. 

 Another significant error source in MODIS LWP estimates is the potential breakdown 

of 1D plane-parallel radiative transfer used in the calculations [Horváth and Davies, 2004]. 

The impact of heterogeneity (3D) effects on 1D cloud optical thickness has been extensively 

studied, but that on 1D droplet effective radius has only been recently considered and is still 

rather uncertain [Marshak et al., 2006]. Possible 3D errors in VNIR LWP are also poorly 

known; we investigate such errors in section 4.1 by analyzing AMSR-E – MODIS retrieval 

differences as a function of horizontal cloud heterogeneity. 

 

3.2.3. OMI Aerosol Index 

Because absorbing aerosols can apparently reduce MODIS LWP [Haywood et al., 

2004], we used OMI ultraviolet Aerosol Index (AI) to identify areas affected by biomass 

smoke or desert dust, and estimated the resulting LWP retrieval bias in section 4.4. OMI AI 

represents the deviation of measured 354-nm radiance from model calculations in a purely 

molecular atmosphere bounded by a Lambertian surface, and has the unique ability to detect 

aerosols above clouds [Torres et al., 2007]. Specifically, we used the daily Level-2 gridded 

product (OMAERUVG) with values above 1 indicating substantial amounts of absorbing 

particles. 

 

3.2.4. Comparison Methodology 

 In this study, all higher resolution retrievals were averaged down to the 0.25° scale of 

the regular AMSR-E grid. Performing the analysis on microwave footprint-level as done by 

Greenwald et al. [2007] would have offered slightly more detailed error information; 

however, at the cost of greatly increased computational burden and reduced data volume. Our 

choice was further motivated by climate model diagnostics strongly favoring the gridded 

Wentz product. 

Because microwave LWPs represented gridbox means but MODIS LWPs were in-

cloud retrievals, the latter were multiplied by the gridbox-mean fraction of successful 

MODIS retrievals, henceforth referred to as ‘cloud fraction’. The presence of cloud-top ice 

generally makes comparisons ambiguous due to different instrument sensitivities [Horváth 
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and Davies, 2007]; therefore, we restricted our analysis to ice-free gridboxes as identified by 

the MODIS cloud phase product. In addition, we only considered non-precipitating clouds 

with zero AMSR-E rain rates; the sole exception was section 4.5 discussing cloud-rain 

partitioning issues. 

 

3.3. Bias Analysis 

3.3.1. Clear-Sky Wentz Bias 

 Before analyzing cloudy scenes we evaluated Wentz LWP retrievals in clear-sky 

conditions in order to gain some measure of their uncertainties. We only considered domains 

where all MODIS pixels were classified as confident clear, still obtaining more than three 

million samples. The global annual mean clear-sky LWP bias was ~12 g m-2 in good 

agreement with the 12-15 g m-2 found by Horváth and Gentemann [2007] and Bennartz 

[2007], but higher than either the 7 g m-2 obtained by Greenwald et al. [2007] or the 5 g m-2 

estimated by Wentz [1997]. Seasonal and hemispheric variations were small (1-2 g m-2), 

which was in contrast to Greenwald et al. [2007] whose results exhibited considerably larger 

hemispheric differences of 12 g m-2 for the north and 4 g m-2 for the south; however, they 

only analyzed a 3-week period in July 2002, which might explain these discrepancies.  

 

 

Figure 3.1. Geographic distribution of annual mean AMSR-E clear-sky LWP bias. In this 

and subsequent maps black indicates no data. 
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Geographic variations were far more significant in our dataset, as shown in Figure 3.1 

for annual means. (Seasonal bias patterns were very similar.) We found the smallest clear-sky 

biases below 7 g m-2 in extensive marine Sc regions as well as in the Mediterranean, Black 

Sea, Red Sea, and Persian Gulf. Warmer tropical/subtropical oceanic areas, on the other hand, 

exhibited the largest biases up to 20 g m-2. These clear-sky biases most likely corresponded to 

uncertainties in the sea surface emissivity, and water vapor and oxygen absorption models; 

however, cloud detection errors could not be ruled out. The global performance of the 

MODIS cloud mask is unknown, but in trade wind cumuli it has been shown to agree with a 

15-m-resolution cloud mask only 62% of the time [Zhao and Di Girolamo, 2006]. Thus, 

cloud contamination might partly explain larger “clear-sky” LWPs in regions with frequent 

popcorn Cu.  
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Figure 3.2. Annual mean AMSR-E clear-sky LWP bias binned according to (a) surface 

wind and column water vapor, and (b) surface wind and SST. Solid black lines are LWP 

bias contours at 1 g m-2
 intervals, while dashed white lines indicate data frequency 

(×105). 

 

Cloud detection errors aside, one would prefer microwave-derived parameters to be 

independent of one another. Unfortunately, this is not the case as demonstrated in Figure 3.2, 

where we plotted the mean clear-sky LWP bias binned according to surface wind speed, 

water vapor, and SST. We found a negative correlation with wind in all seasons and latitude 

bands, whereby the LWP bias decreased from 15-16 g m-2 to 2-3 g m-2 as wind increased 

from 0 to 15 m/s. Dependence on water vapor was generally weaker and more variable. In 
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drier conditions (V  22 mm) the LWP bias increased, while in wetter conditions (V  22 

mm) decreased or leveled off with vapor amount. The influence of SST was even more 

variable and was overall the weakest, except maybe in the warmest regions above 28ºC where 

the bias rapidly decreased. 

These results were qualitatively consistent with findings by Greenwald et al. [2007], 

and indicated possible shortcomings in the surface emission and gaseous absorption models 

of the Wentz algorithm. We emphasize that while these clear-sky uncertainties might also be 

representative of low cloud fraction scenes, it is not obvious how they relate to retrieval 

errors in highly cloudy domains. Undoubtedly, more work is needed to understand and 

remove these unwanted interdependencies in clear-sky observations. Henceforth, we focus on 

cloud retrievals. 

 
3.3.2. Global Annual Mean Statistics 

 Annual statistics of AMSR-E and MODIS LWPs in ice- and rain-free domains, 

totaling more than 60 million retrievals, are summarized in Table 1. When all liquid cloud 

fractions (LCFs) were considered AMSR-E overestimated MODIS by 18 g m-2 with 

respective means of 58 g m-2 and 40 g m-2. The datasets were moderately correlated with a 

coefficient of 0.74 and root-mean-square (rms) difference of 41 g m-2, which was larger than 

the 25 g m-2 random error estimated by Wentz [1997] for microwave retrievals. Adiabatic 

correction made the overall comparison worse by further reducing MODIS LWPs and 

increasing the bias to 25 g m-2. 

 
Table 1.  Global annual statistics of AMSR-E Wentz and MODIS LWP retrievals in warm 

non-precipitating marine clouds for three liquid cloud fraction (LCF) ranges. Means, biases 

(AMSR-E – MODIS), and rms differences are given in g m-2. 

 
All Domains 

(LCF = 0-100%) 

Overcast Domains 

(LCF = 95-100%) 

Broken Domains 

(LCF = 0-50%) 

MODIS Model Standard Adiabatic Standard Adiabatic Standard Adiabatic

AMSR-E Mean 58 58 91 91 44 44 

MODIS Mean 40 33 109 90 13 11 

Bias 18 25 -18 1 31 33 

Rms 41 36 38 31 35 35 

Correlation 0.74 0.72 0.83 0.83 0.45 0.45 

Sample Number 6.1E+7 1.1E+7 3.6E+7 
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 In overcast domains, defined as LCF=95-100% and constituting 18% of all samples, 

LWP was significantly higher with means of 91 g m-2 and 109 g m-2 for AMSR-E and 

MODIS, respectively. However, the bias was of opposite sign as MODIS overestimated 

AMSR-E by 18 g m-2. The agreement between the techniques was considerably tighter with 

an increased correlation of 0.83. Adiabatic correction almost completely removed the 

MODIS overestimation resulting in a bias of only 1 g m-2 and rms difference of 31 g m-2. 

This corroborated Bennartz [2007] that the adiabatic cloud model is superior to the 

operational vertically homogeneous one, at least in a global mean sense. 

 The above results suggested significantly higher microwave LWPs in broken clouds, 

which was confirmed by statistics for clear-sky dominated regions with LCF<50%. In this 

category, constituting 59% of all samples, AMSR-E and MODIS estimates were rather poorly 

correlated at 0.45 and showed the largest biases of 31-33 g m-2 due mostly to a steep drop in 

the MODIS mean. Obviously, adiabatic corrections made matters worst for such broken 

scenes. Motivated by these findings, we further investigated the cloud fraction dependence of 

microwave-VNIR consistency in section 3.4. First, however, we discuss seasonal variations 

in global mean LWP. 

 

3.3.3. Seasonal Variations in Global Means 

 The month-to-month variation of AMSR-E and MODIS global mean LWPs is shown 

in Figure 3.3. Here, black corresponds to AMSR-E, while red and green refer to standard and 

adiabatic MODIS, respectively. When all domains were considered AMSR-E systematically 

overestimated MODIS similarly to the annual mean. The AMSR-E seasonal cycle had 

minimum in December (54 g m-2) and a single maximum in August (63 g m-2). Standard 

MODIS also had minimum in December (38 g m-2); however, it had double maxima in March 

(42 g m-2) and August (41 g m-2). The resulting bias varied from 15 to 22 g m-2 with 

minimum in March and maximum in August. (The bias increased by a further ~7 g m-2 for 

adiabatic MODIS values.) 

 By contrast, overcast means showed standard MODIS overestimation in all months. 

Here, seasonal cycles were in better qualitative agreement with both datasets having 

minimum in December (102 vs. 86 g m-2), and double maxima in April (120 vs. 94 g m-2) and 

August (110 vs. 95 g m-2). For MODIS, however, the relative strengths of maxima were 

markedly different and the amplitude of the seasonal cycle was larger. Adiabatic correction 

lowered MODIS values to within 5 g m-2 (or 6%) of AMSR-E estimates, confirming its 

overall validity on monthly time scales as well. 
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Figure 3.3. Seasonal variation of AMSR-E and MODIS global mean cloud LWP in warm 

nonprecipitating marine clouds for all domains (circles) and overcast domains 

(diamonds). Black, red, and green correspond to AMSR-E, standard (std.) MODIS, and 

adiabatic (adb.) MODIS, respectively. 

 

3.3.4. Cloud Fraction Dependence 

 Here, we further investigate the strong dependence of microwave-VNIR comparison 

on scene brokenness. Mean AMSR-E and MODIS cloud LWPs are plotted for 5%-wide 

liquid cloud fraction bins in Figure 3.4a. Standard MODIS means rapidly increased from 2 g 

m-2 to 108 g m-2, while AMSR-E means, varying from 33 g m-2 to 91 g m-2, were usually 

higher and showed a slower increase with cloud fraction. The corresponding bias steadily 

increased from -17 g m-2 to +35 g m-2 as cloud fraction decreased, changing sign at an LCF of 

~80% (see Figure 3.4b). Simultaneously, the correlation quickly dropped from 0.83 to 0.27 

indicating poor correspondence between the techniques in highly broken scenes. (Similar 

results were obtained regardless of view zenith angle or potential sunglint contamination.) 

These findings qualitatively agreed with Horváth and Davies [2007] and Horváth and 

Gentemann [2007], and showed adiabatic improvement only for cloud fractions above 90%. 

 What could possibly cause such behavior? Plane-parallel MODIS retrievals are 

certainly subject to 3D effects in broken clouds; however, the resulting biases in 1D optical 

thickness and droplet effective radius are often of opposite sign leading to partial cancellation 

of errors in 1D LWP. Overall, shadowing dominates brightening, producing substantial re 

overestimations and somewhat smaller  underestimations, and hence, a positive LWP bias 

[Marshak et al., 2006; Evans et al., 2008]. Indeed, Cornet et al. [2005] has found MODIS 
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domain-mean LWP overestimating the 3D value by 15% in a broken Sc scene off California. 

These studies suggest that 3D errors in MODIS retrievals would go the wrong way explaining 

the observed LWP bias in broken clouds. 

 Another possibility is microwave beamfilling effects. The Wentz algorithm does not 

apply beamfilling corrections to rain-free observations, but we made an equivalent first-order 

correction by scaling MODIS LWPs with the successful-cloud-retrieval fraction. This could 

lead to a MODIS low bias if cloud amounts were systematically underestimated in broken 

scenes. Although the MODIS cloud mask is designed to screen conservatively, the findings 

of Zhao and Di Girolamo [2006] have indicated it tends to overestimate cloud fraction in 

scattered clouds. On the other hand, the fraction of successful MODIS LWP retrievals is 

usually less than the cloud fraction due to failed re retrievals, especially at low LWP. 

Therefore, uncertainties in cloud-amount-scaling can potentially contribute to the observed 

biases.  
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Figure 3.4. Liquid cloud fraction dependence of (a) AMSR-E and MODIS LWP, and (b) the 

corresponding AMSR-E – MODIS bias and correlation for warm non-precipitating 

marine clouds. The cross indicates the clear-sky background bias in AMSR-E LWP. 

  

A more likely explanation, however, is reduced microwave sensitivity to low LWPs at 

37 GHz, which makes retrievals in broken clouds rather susceptible to water vapor absorption 

and surface emission uncertainties. In section 3.1, we found a residual microwave clear-sky 

bias negatively correlated with surface wind and positively with water vapor. Cloud LWP 

bias showed similar dependencies, particularly at lower cloud amounts: AMSR-E 

overestimation decreased with wind speed and increased with water vapor. In addition, the 
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older gaseous absorption and liquid dielectric models of the Wentz algorithm have been 

shown by Zuidema et al. [2005] to cause LWP overestimations compared to more recent 

models. All this suggests that updated surface emission and atmospheric absorption 

parameterizations might reduce the disagreement between Wentz and MODIS LWPs at the 

low end of the distribution; however, improved MODIS cloud fraction estimates might also 

have a positive impact. 

 

3.3.5. Zonal Means 

Henceforward, we focus on overcast clouds because in broken cloud scenes the 

dominant AMSR-E overestimation makes analysis of other error sources difficult. Figure 3.5 

plots the zonal variation of AMSR-E and MODIS LWP (panels a-c), and that of the resulting 

bias (panels d-f), separately for annual, boreal summer, and boreal winter periods. Annual 

results showed the LWP peak of the Inter Tropical Convergence Zone (ITCZ) in both 

datasets, somewhat more strongly in AMSR-E than MODIS. Microwave zonal means had 

additional mid-latitude maxima, more markedly in the southern hemisphere. The most 

striking difference between the techniques occurred poleward of 40º where AMSR-E LWP 

generally decreased but MODIS LWP strongly increased. Overall, standard MODIS 

overestimated AMSR-E in most regions and increasingly so toward the poles, with the 

exception of northern equatorial areas where AMSR-E was slightly larger. The results also 

indicated that the negligible global mean bias between microwave and adiabatic VNIR 

estimates was due to cancellation of errors: adiabatic MODIS underestimated AMSR-E 

between 45ºS-45ºN and overestimated it at higher latitudes. 

 Comparing seasonal results yielded some clues regarding the cause of the strong 

poleward increase in MODIS LWP. In boreal summer, the qualitative agreement between 

AMSR-E and MODIS was reasonably good in the northern hemisphere, including mid- to 

high latitudes. However, in the southern hemisphere MODIS showed a very rapid increase 

poleward of 30ºS in contrast to AMSR-E. The situation was approximately reversed in boreal 

winter, when the largest MODIS overestimations occurred in the northern hemisphere 

poleward of 30ºN, although biases were rather large in the southern hemisphere as well. In 

sum, the largest zonal differences occurred at high latitudes in the winter hemisphere. 

These large discrepancies cannot be explained by AMSR-E LWP biases caused by 

Wentz cloud temperature errors, as shown by the orange lines in panels d-f (see also section 

4.2). However, in section 4.1 we offer evidence that they were the likely result of MODIS 

LWP overestimations due to 3D retrieval errors in heterogeneous clouds at low Sun. 
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Figure 3.5. (a-c) Annual, boreal summer, and boreal winter zonal mean AMSR-E LWP 

(black), standard MODIS LWP (red), and adiabatic MODIS LWP (green) in overcast 

domains of warm non-precipitating marine clouds. Dashed orange line is solar zenith 

angle (SZA). (d-f) Corresponding AMSR-E – MODIS LWP bias. Orange line indicates 

estimated AMSR-E LWP bias due to cloud temperature errors assuming a 3%/K 

sensitivity (see Figure 3.11). Bars depict the standard error of the mean. 

 

3.3.6. Global Distribution of Bias 

 Because zonal means can mask large regional differences, we extended the bias 

analysis to the full globe. Geographic variation of annual mean AMSR-E – standard MODIS 

LWP bias is mapped in Figure 3.6a for overcast domains. The strong zonal variation of the 

bias was evident here as well (cf. Figure 3.5d). Poleward of 40º MODIS consistently and 

increasingly overestimated AMSR-E at all longitudes. In the tropics/subtropics (30ºS-30ºN), 

however, large regional differences occurred corresponding to varying cloud regimes. In 

extensive marine Sc regions MODIS showed significantly higher values, while in areas 

where cumuliform clouds were more frequent AMSR-E LWPs were larger. This produced 

large-scale coherent bias gradients wherever marine Sc transitioned into mostly convective 

cloud regimes, with the two most notable areas being the Tropical Eastern/South East Pacific, 

and Gulf of Guinea/South East Atlantic. 

In the first region, marine Sc forming over the cold Peru Current showed AMSR-E – 

standard MODIS LWP biases of -15 to -30 g m-2. This region of negative bias also included 
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the Pacific Cold Tongue. Parallel to its northern edge ran an equally narrow band of positive 

LWP biases (up to +30 g m-2) producing sharp zonal gradients in this region. A similar but 

more extensive LWP bias pattern occurred in the South East Atlantic off the African coast. 

Here, higher standard MODIS LWPs in marine Sc developing over the cold Benguela 

Current smoothly transitioned into higher AMSR-E LWPs in the more cumuliform clouds of 

the Gulf of Guinea.  

 

Figure 3.6. Annual AMSR-E – MODIS LWP bias map in overcast situations for (a) 

standard, and (b) adiabatic optical model. The black line marks the boundary between 

adiabatic improvement and deterioration. 
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Figure 3.7. Annual AMSR-E vs. standard MODIS LWP (a) correlation, and (b) rms 

difference map for overcast domains. Shown results are above the 99% confidence limit. 

 

The bias map for adiabatically corrected MODIS is plotted in Figure 3.6b. Adiabatic 

correction reduced the bias wherever standard MODIS overestimation was higher than 8%. 

(The black line delineates the border between adiabatic improvement and deterioration.) 

These areas were primarily mid- to high latitude oceans poleward of 40º, but also included 

low-latitude marine Sc regions. Within the tropics/subtropics, however, adiabatic correction 
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mostly increased the AMSR-E – MODIS LWP bias. Overall, we found that adiabatic LWP 

was an improvement over standard LWP in 75% of individual MODIS retrievals. In this data 

subset, the standard MODIS high bias of 23 g m-2 reduced to 5 g m-2 after the correction. In 

the remaining quarter of data, on the other hand, the AMSR-E high bias increased from ~0 to 

16 g m-2. When averaging over all data, this eliminated the global mean standard MODIS 

high bias of 18 g m-2 (see Table 1). 

 Finally, we investigated geographic variations in the correlation and rms difference 

between AMSR-E and MODIS LWPs, as illustrated in Figure 3.7. Overall, the datasets were 

correlated at 0.83 with an rms of 38 g m-2 but regional differences were non-negligible. The 

lowest correlations (down to 0.75) and largest rms differences (up to and above 55 g m-2) 

were found mostly at high latitudes above 55-60º, especially in the northern hemisphere; for 

example, Hudson Bay, James Bay, and areas surrounding the Labrador Peninsula and 

Newfoundland. Encouragingly, the correspondence between the techniques was excellent in 

marine Sc regions with correlations up to 0.95 and typical rms differences of only 10-20 g m-

2, albeit with a systematic MODIS overestimation as shown before. 

 

3.4. Potential Error Sources 

3.4.1. Heterogeneity Effects in MODIS LWP 

 As shown previously, a strong feature of AMSR-E – MODIS LWP differences was an 

increasing MODIS overestimation at higher latitudes poleward of 40º. These latitudes are 

generally observed at lower Sun (see Figure 3.5) suggesting that different solar zenith angle 

(SZA) dependencies of microwave and VNIR retrievals might contribute to the observed 

discrepancies. Indeed, previous studies found systematic SZA-dependent biases in 1D plane-

parallel cloud optical thickness retrievals. Based on Earth Radiation Budget Satellite 

observations, Loeb and Davies [1996] noted an increasing overestimation in nadir-view cloud 

optical thickness at higher SZAs, particularly above 60º. Loeb and Coakley [1998] obtained 

similar results in AVHRR measurements even for marine Sc, which is arguably the closest to 

being plane-parallel. 

The strong increase in optical thickness was traced back to the fact that plane-parallel 

model reflectances, on average, decreased with SZA, while observed reflectances increased. 

The hypothesis that this discrepancy was due to neglected 3D effects, such as cloud side 

illumination and bumpy cloud tops was later confirmed through Monte Carlo simulations by 

Loeb et al. [1998] and Várnai and Marshak [2001]. The above studies only considered near-
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nadir views; however, Várnai and Marshak [2007] found similarly strong SZA-dependent 

increases in MODIS cloud optical thickness at all view angles.  
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Figure 3.8. (a)-(b) Solar zenith angle (SZA) dependence of MODIS and AMSR-E LWP for 

various homogeneity classes. (c) MODIS cloud optical thickness versus scene 

homogeneity for different SZA ranges, and (d) mean (average over all SZAs) MODIS 

and AMSR-E LWP versus scene homogeneity. Results are for warm non-precipitating 

overcast domains with χcalculated at the 0.25° scale. 

 

Motivated by these findings we analyzed AMSR-E and MODIS LWPs as a function 

of SZA and scene heterogeneity. Heterogeneity of a 0.25º domain was characterized by 

Cahalan’s [1994]  parameter defined as the ratio of the logarithmic and linear average of 1-
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km cloud optical thicknesses. In general,  varies from 0 to 1 with larger values indicating 

less heterogeneity; for the overcast domains considered in our analysis it ranged from 0.7-1.0. 

A detailed analysis of cloud heterogeneity from MODIS is deferred to Oreopoulos and 

Cahalan [2005]; however, two caveats are worth noting here. First, the  parameter cannot 

distinguish if heterogeneity is due primarily to cloud-top height or cloud extinction 

variations. Second, it measures “apparent” cloud heterogeneity because it is calculated from 

plane-parallel retrievals, themselves affected by 3D effects. Consequently,  may 

overestimate “true” heterogeneity in cases with significant shadowing and side illumination. 

The SZA dependence of AMSR-E and MODIS LWP is shown in Figure 3.8a-b for 

four bins of increasing homogeneity (red, green, blue in panel a, and orange in panel b). Up 

to a SZA of ~35º microwave and VNIR estimates were in relatively good agreement both 

exhibiting modest increases, which most likely represented zonal variations in LWP. At 

higher SZAs, however, they showed strikingly different behavior. While AMSR-E LWP 

leveled off or even slightly decreased with SZA, MODIS LWP rapidly increased. The 

MODIS LWP increase was largest and non-linear in SZA for the most heterogeneous scenes. 

As homogeneity increased, the MODIS LWP rise gradually became smaller and more linear 

with SZA. Only in the most homogeneous clouds (   0.991.00) did MODIS LWP level 

off with SZA, qualitatively similarly to AMSR-E LWP; these clouds were overwhelmingly 

marine Sc, thus, adiabatic correction to MODIS also resulted in good quantitative agreement 

between VNIR and microwave estimates (orange curve in Figure 3.8b). The SZA 

dependencies of mean LWPs averaged over all  bins are given by the magenta curves in 

Figure 3.8b. As before, AMSR-E and MODIS LWPs started to diverge for SZA  35, 

reaching a maximum MODIS overestimation of ~80 g m-2, or ~90% of the AMSR-E value, at 

the most oblique Sun. (Restricting the analysis to fixed geographic locations, thereby 

eliminating zonal variations, yielded similar differences between AMSR-E and MODIS SZA 

dependencies.) 

Our calculations confirmed optical thickness as the primary driver of the MODIS 

LWP rise with SZA. Up to a SZA of 35º, cloud optical thickness retrievals remained 

remarkably consistent irrespective of scene heterogeneity. At higher SZAs, however, optical 

thickness rapidly increased, especially in heterogeneous scenes. For example, between 

overhead and oblique Sun varied from 11 to 16 in the most homogeneous clouds and from 

11 to 28 in the most heterogeneous clouds. Droplet effective radius, on the other hand, 

showed a considerably smaller increase in the 11-13.5 m range. 
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Figure 3.8a also indicated a general decrease in both MODIS and AMSR-E LWP with 

increasing homogeneity, which we investigated in more detail. The variation of MODIS  

with homogeneity is plotted in Figure 3.8c for different SZA ranges. In accordance with our 

previous findings,  systematically increased with SZA for all homogeneity values. However, 

at high Sun cloud optical thickness varied relatively weakly with , while at oblique Sun 

retrievals became very sensitive to scene heterogeneity. An interesting general pattern 

emerged whereby cloud optical thickness first decreased with increasing homogeneity 

reaching a minimum value at   0.93, then it started to increase for even more 

homogeneous clouds. In essence, this figure summarizes our findings, which are: (i) 

heterogeneity effects are most important at oblique Sun (maybe above a SZA of 50º), and (ii) 

the increase in optical thickness with SZA is significantly larger for heterogeneous than for 

homogeneous clouds. 

Finally, Figure 3.8d depicts the overall variation of AMSR-E and MODIS LWP with 

cloud homogeneity, averaged for all Sun elevations. Both LWP estimates exhibited 

qualitatively similar behavior, suggesting that the general – dependence in Figure 3.8c was 

due to the nature of clouds and not 3D effects. However, MODIS retrievals were significantly 

more sensitive to scene heterogeneity than AMSR-E ones. In addition, standard MODIS 

overestimated AMSR-E by an increasing amount as heterogeneity increased. We found that 

in relatively homogeneous scenes adiabatic correction could remove the mean MODIS 

overestimation almost entirely, resulting in excellent agreement between microwave and 

VNIR estimates for   0.87. Although the adiabatic model reduced VNIR LWP biases in 

more heterogeneous clouds as well, here corrections exceeding adiabatic would have been 

needed to fully compensate for the large MODIS 3D-effect overestimations at low solar 

elevations. 

 

3.4.2. Cloud Temperature Errors in AMSR-E LWP 

 AMSR-E LWPs are sensitive to the assumed liquid temperature because microwave 

absorption is stronger in colder than in warmer clouds. Therefore, underestimation of cloud 

temperature, that is overestimation of absorption, implies an underestimation in microwave 

LWP, and vice versa. Earlier versions of the Wentz algorithm specified liquid cloud 

temperature TL simply as the mean temperature between the sea surface and the freezing 

level, the current algorithm, however, uses a parameterization based on column water vapor 

and SST [Wentz and Meissner, 2000; Hilburn and Wentz, 2008]. O’Dell et al. [2008] 
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investigated the errors in TL by using temperature and cloud profiles from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) global model. Compared to this 

model, they found a negative global mean bias of -1 °C and an rms error of 5 °C in the Wentz 

parameterization, which, they estimated, would translate to an LWP low bias and rms error of 

~3% and ~13%, respectively. 

 

 

Figure 3.9. Annual bias between AMSR-E liquid cloud temperature (TL) parameterization 

and MODIS cloud-top temperature (CTT) measurements for warm non-precipitating 

overcast domains. The relationship between LWP bias and cloud temperature bias in the 

four marked subregions is plotted in Figure 3.12. 

 

 In this work, we evaluated the Wentz TL parameterization against MODIS cloud-top 

temperature (CTT) retrievals. In good agreement with O’Dell et al. [2008], we found a global 

annual mean temperature bias of -1.5 °C and an rms error of 5-6 °C in TL. The bias was 

somewhat smaller in boreal winter (-1.2 °C) and spring (-1.2 °C), and larger in boreal 

summer (-2.0 °C) and fall (-1.8 °C), with an absolute minimum in March (-1 °C) and 

maximum in July (-2 °C). Although these global mean biases were relatively small, they 

resulted from partial cancellation of significantly larger regional differences as demonstrated 

in Figure 3.9 for annual results. Over cold oceans AMSR-E cloud temperature was generally 

underestimated with the largest errors, up to and beyond -6 °C, occurring in marine Sc 
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regions; this indicated that the current TL parameterization did not adequately account for the 

temperature inversion associated with these clouds. In contrast, AMSR-E cloud temperature 

was overestimated by a similar amount above warm ocean currents (Kuroshio and Brazil 

Current, Gulf Stream) reflecting the SST dependence of the Wentz parameterization. 
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Figure 3.10. AMSR-E – standard MODIS LWP bias versus AMSR-E TL – MODIS CTT 

bias in the four marked regions of Figure 3.11. Data are 1º annual means in warm non-

precipitating overcast clouds, and the correlation coefficients and dashed lines 

correspond to linear fits. 

 

Comparison of Figures 3.8 and 3.11 suggested that large-scale LWP bias variations 

might have been partly related to similar variations in cloud temperature error, particularly in 

marine Sc transition regions. In order to demonstrate this, we selected four such areas marked 

by black boxes in Figure 3.9: Africa (25ºS-5ºN, 15ºW-15ºE), South America (20ºS-10ºN, 
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110ºW-80ºW), North America (5º-35ºN, 145ºW-115ºW), and Australia (40ºS-10ºS, 80ºE-

110ºE). Fortunately, the strong SZA-dependent MODIS overestimation, which was the 

dominant bias at higher latitudes/SZAs, was reduced in these low latitude/SZA areas. Scatter 

plots of 1º annual mean AMSR-E – standard MODIS LWP bias versus AMSR-E TL – 

MODIS CTT bias are given in Figure 3.10. 

In all four regions, LWP bias and cloud temperature bias showed moderately strong 

positive correlations. The relationship was tightest in North America and Africa, the latter 

even suggesting a non-linear relationship between the quantities, as indicated by a 

considerably higher rank correlation of 0.91. Everything else being equal, a negative liquid 

temperature bias should cause a negative microwave LWP bias and vice versa. In broad 

agreement with this expectation, AMSR-E LWP mostly underestimated/overestimated 

MODIS LWP below/above a cloud temperature error of -1/0 °C, but clearly, additional 

effects were at play as well. The absolute LWP biases in Figure 3.10 corresponded to relative 

biases of ±20%. If one uses O’Dell et al.’s [2008] sensitivity estimate of ~3%/°C, 

temperature errors of ±6 °C would yield relative AMSR-E LWP errors of similar magnitude. 

The actual temperature sensitivity of operational Wentz LWPs will be quantified in a future 

study, by replacing the existing TL parameterization with MODIS cloud-top temperatures. 

 

3.4.3. Cloud Vertical Stratification in MODIS LWP 

 A potentially significant error source in VNIR LWP retrievals is neglecting cloud 

vertical stratification. As explained in section 2.2, the standard MODIS parameterization 

assumes a constant re throughout the cloud. Because the water-absorbing MODIS channels 

favorably sample towards cloud top, this might lead to both negative and positive LWP 

biases depending on the actual effective radius profile. The adiabatic parameterization 

constitutes a first-order correction in marine Sc often characterized by re increasing from 

cloud base to top, but exacerbates microwave-VNIR LWP differences when the droplet 

profile is neutral or decreasing with height. 

In theory, a better approach would be to estimate droplet profile on a case-by-case 

basis from the three near-infrared MODIS size retrievals. Platnick [2000], however, 

expressed serious doubts regarding the possibility of such an inversion due to the relatively 

little difference in the information content of the 1.6 and 2.2 m bands. Nevertheless, Chen et 

al. [2007] made an attempt to derive linear re profiles in a dataset limited to one day, and 

claimed a small but systematic improvement of ~10% in corresponding VNIR LWPs 
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compared to AMSR-E. Chen et al. [2008] further applied this method to data from the East 

Pacific Investigation of Climate (EPIC) Stratocumulus Study, and found that re vertically 

increased in non-drizzling clouds, but often decreased in drizzling cases. 

 

Figure 3.11. Annual mean effective radius difference between the 1.6 µm and 3.7 µm 

MODIS channels for warm non-precipitating overcast domains. The relationship 

between LWP bias and effective radius difference in the four marked sub-regions is 

plotted in Figure 3.14. 

 

 Here, we only investigated if large-scale LWP bias variations in Figure 3.6 might be 

related to variations in cloud vertical stratification, but did not derive VNIR LWP corrections. 

To this effect, we analyzed the geographical distribution of MODIS effective radius 

differences focusing primarily on the least noisy 1.6-3.7 m discrepancies. However, in the 

regional analysis off the Namibian coast we relied on 2.2-3.7 m differences in order to 

minimize absorbing aerosol effects, which introduce the largest negative biases in 1.6-m re 

retrievals [Haywood et al., 2004]. Nominally, negative/positive 1.6-3.7 m or 2.2-3.7 m re 

differences would indicate drop sizes increasing/decreasing from cloud base to top. 

 Annual mean results, given in Figure 3.11, indicated that the geographic distribution 

of re was not random; in the tropics/subtropics it appeared to broadly vary with cloud type. 

Marine Sc was characterized by small negative/positive values, which systematically 
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increased to larger positive values in cumuliform cloud regimes. The southern oceans and 

Arctic regions also showed large positive values, suggesting that undetected cloud-top ice 

might be partially responsible for the observed spatial pattern. In order to reduce possible ice 

effects, we also made calculations restricted to cloud-top temperatures above 273 K and 278 

K. In both cases, spatial variations were very similar to Figure 3.11 showing the sharp 

transitions in the tropics/subtropics.  
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Figure 3.12. AMSR-E – standard MODIS LWP bias versus MODIS effective radius 

difference in the four marked regions of Figure 3.13. Effective radius difference is 

between the 2.2 µm and 3.7 µm channels for Africa in order to minimize absorbing 

aerosol effects, everywhere else it is between the 1.6 µm and 3.7 µm channels. Data are 

1º annual means in warm non-precipitating overcast clouds, and the correlation 

coefficients and dashed lines correspond to linear fits. 
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Contrary to expectations, annual mean re tended to be mostly positive, even in 

marine Sc, suggesting a decrease in drop size from cloud base to top. In Sc areas re was 

mostly negative up to -1 m in boreal summer, in boreal winter, however, it shifted to larger 

positive values resulting in small positive annual means. Consequently, although LWP bias 

was better correlated with re than with microwave cloud temperature error, the sign of re 

could not generally differentiate between MODIS LWP overestimation and underestimation. 

This is clearly demonstrated in Figure 3.12 plotting LWP bias as a function of effective 

radius difference for 1º annual means in our four selected transition regions. As shown, LWP 

bias switched sign at a positive re between 0.5 and 1.5 m instead of near zero. Boreal 

summer and boreal winter scatter plots were similar but with the former shifted to lower re 

by 0.5-1 m and the latter to larger re by ~0.5 m. As a result, the sign of re was indicative 

of that of LWP bias only in boreal summer. 

At this point, we do not have an explanation for this puzzling result and can only list a 

number of potential causes. Although the 3.7 m band is well calibrated, the complicated 

separation of thermal and solar components might introduce re retrieval errors. Another 

possibility is that positive vertical drop size gradients tend to be larger than negative ones, 

leading to mostly positive average values [Chang and Li, 2003]. Cloud-top entrainment might 

also play a role. Both in-situ measurements and large eddy simulations show that a sharp 

decrease in liquid water content and effective radius could occur in the topmost few dozen 

meters of Sc clouds due to mixing with drier ambient air [Stevens, 2005]. This drop-off might 

reduce effective radius retrievals particularly in the 3.7 m band as its weighting function 

peaks closest to cloud top. 

Concerning entrainment effects we note that POLDER (Polarization and 

Directionality of the Earth’s Reflectances) drop size estimates in Sc also showed a low bias 

of ~2 m compared to MODIS 2.2-m values [Bréon and Doutriaux-Boucher, 2005]. 

Because the polarization technique is based on single scattering it is probably even more 

sensitive to cloud-top than the 3.7 m MODIS channel. Although a satisfactory explanation 

was not found for the POLDER-MODIS re bias either, entrainment mixing was offered as a 

possible contributing factor. The impact of this effect on MODIS drop size retrievals will 

have to be quantified by recalculating near-infrared weighting functions using more realistic 

vertical profiles than the ones considered by Platnick [2000], which ignored the cloud-top 

drop-off. 
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As a final note, we warn against over-interpreting the above results. Instantaneous 

retrievals are noisy and subject to a multitude of possible errors, making it difficult to gauge 

the exact information content of near-infrared channels regarding cloud stratification. What 

can be said with some certainty is that in the tropics/subtropics, large-scale variations of 

AMSR-E – MODIS LWP bias appear associated with Sc to Cu transition, and so do 

variations of effective radius difference. However, more detailed algorithm sensitivity studies 

will be needed to establish if this correlation is fortuitous or indeed physical. 

 

3.4.4. Absorbing Aerosol Effects in MODIS LWP 

 In this section, we estimate the effect of absorbing aerosols, which can introduce a 

negative bias in both droplet effective radius and optical thickness, and hence in MODIS 

LWP, when they reside above low-level clouds. This negative bias in the baseline 2.2-m 

effective radius is usually less than 1 m; however, it can be up to 30% in optical thickness 

according to calculations by Haywood et al. [2004]. Bennartz [2007] noted a systematic 

MODIS LWP underestimation in Sc off southern Africa during the biomass-burning season, 

which was attributed to overlying absorbing aerosols by Bennartz and Harshvardhan [2007]. 

In the same region and season, Wilcox et al. [2009] estimated a domain-mean absorbing 

aerosol effect of 5.6 g m-2, defined as AMSR-E – MODIS LWP bias for all samples minus 

that for unpolluted/weakly polluted samples with OMI AI ≤ 1. 

 Using this definition, we first estimated the annual global mean absorbing aerosol 

effect in our data, and found it a trivial -1 g m-2. This was not surprising considering that 

absorbing aerosols are highly seasonal and cover only a small portion of oceans at any given 

time. Next, we made calculations for the period July-August-September in the study area of 

Wilcox et al. [2009] (20°S-0°, 10°W-15°E), which was a subset of our previously defined 

Africa domain. As shown in Figure 3.6, this region is characterized by a marked south-north 

LWP bias gradient, in all seasons and independently of the presence of smoke aerosols. 

Neglecting this underlying LWP bias pattern could distort estimates of aerosol effect because 

different AI bins sample different parts of the domain as demonstrated in Figure 3.13a for 

2007. Here, the unpolluted background bias was calculated from cases with AI ≤ 1, and the 

contour lines encompass 67% of observations in the given AI bins. The smallest AI bin 

mostly sampled the southern portion of the domain further out at sea, but as AI increased 

sampling moved north and east, closer to shore (the source region). Similar results were 
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obtained for the biomass burning seasons in 2005 and 2006 considered by Wilcox et al. 

[2009], with AI bin locations showing some interannual variations. 
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Figure 3.13. (a) Geographic distribution of AMSR-E – standard MODIS LWP bias in the 

African biomass smoke region calculated for warm non-precipitating overcast clouds 

with OMI AI ≤ 1 and averaged over July-August-September 2007. Contour lines 

encompass 67% of observations in the given AI bins. (b) LWP bias as a function of 

aerosol index with bars depicting the standard error of the mean. The black curve 

represents smoke-affected retrievals, while the red curve is the spatial sampling bias 

obtained from panel a. Note: for the red (“unpolluted”) curve OMI AI indicates 

geographic location within the region, rather than actual aerosol load. 

  

The resulting sampling effect is depicted in Figure 3.13b, which plots domain-mean 

AMSR-E – standard MODIS LWP bias for AI values 1-5, corresponding to MODIS aerosol 

optical depths between 0.1 and 2.1. The black curve shows retrievals actually affected by 

smoke, while the red curve is the sampling artifact estimated as the average background 

(unpolluted) LWP bias at the locations of AI measurements in a particular bin. For weakly 

polluted cases with AI ≤ 1, the LWP bias was very close to zero due to cancellation of errors 

between the southern and northern parts of the domain. At higher aerosol loads, however, 

MODIS increasingly underestimated AMSR-E as a result of reduced cloud optical thickness. 

(The MODIS LWP underestimation increased with optical thickness in agreement with 

Haywood et al. [2004] and Wilcox et al. [2009].) As indicated by the red curve, part of the 
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apparent absorbing aerosol bias was in fact caused by larger AI values preferably occurring in 

areas where MODIS generally underestimated AMSR-E. Neglecting such sampling artifacts, 

as in Wilcox et al. [2009], could lead to overestimating absorbing aerosol effects by 30-40% 

at larger AI values. 

As shown above, absorbing aerosols can introduce significant VNIR LWP biases at 

the highest aerosol loads; however, most of our data in Figure 3.13b were only weakly 

polluted, resulting in a rather small mean effect. For example, the apparent reduction in 

domain-mean MODIS LWP during the 2007 biomass burning season was only ~3 g m-2 

(average of black curve), which further reduced to slightly below 2 g m-2 after sampling 

issues were accounted for (average of the difference between the black and red curves). The 

apparent and corrected MODIS underestimations for the 2005-2006 biomass burning season 

were 4-5 g m-2 (in reasonable agreement with Wilcox et al. [2009]) and 2-3 g m-2, 

respectively. 

 

3.4.5. Cloud-Rain Partitioning Issues in AMSR-E LWP 

 Up to this point, we only considered non-raining clouds in our comparison. In this 

section, we extend the analysis to rain-flagged cases; however, still excluding broken or ice-

contaminated scenes. These criteria yielded a further 1.4 million samples, but limited rain 

rates to below 5 mm/hr because higher values were associated with the presence of ice. As 

explained in section 2.1, rain seriously complicates any microwave retrieval technique 

because it requires a priori partitioning of total water into cloud and rain components. 

Specifically, the Wentz algorithm uses a globally fixed rain threshold of 180 g m-2 and 

parameterizes LWP in precipitating clouds as proportional to the square root of rain rate. 

 In order to gain some insight into the validity of these assumptions, we evaluated 

AMSR-E LWP as a function of MODIS adiabatic LWP for the combined (rain-free plus rain-

flagged) dataset. (We used adiabatic MODIS retrievals as reference here because they are 

unbiased compared to AMSR-E in a global mean sense.) Annual results are plotted in Figure 

3.14 by the solid red curve, showing quite good agreement between microwave and VNIR 

estimates up to the rain threshold, above which, however, AMSR-E increasingly 

underestimated MODIS. The mean underestimation reached ~150 g m-2 (or 30%) at the 

largest MODIS LWPs. 

What could cause these discrepancies? As noted earlier, MODIS increasingly 

overestimated AMSR-E at larger solar zenith angles, particularly in heterogeneous clouds, 

which could produce qualitatively similar results. Prompted by this, we made separate 



36                                                 Global Comparison of AMSR-E and MODIS Liquid Water Path                         

 

calculations for the most heterogeneous and most homogeneous third of clouds. In 

heterogeneous cases, retrievals started to diverge at a slightly smaller LWP, while in 

homogeneous cases the divergence occurred at a somewhat larger LWP, otherwise results 

were comparable and stayed within ±30 g m-2 of the overall average (red curve). 

Furthermore, Wilcox et al. [2009] found similar AMSR-E underestimations at lower latitudes 

as well, where MODIS heterogeneity effects were generally reduced. These findings 

suggested that VNIR heterogeneity effects alone could not explain the observed 

discrepancies. 

 The fact that microwave and VNIR estimates started to diverge above the rain 

threshold LWP pointed to possible cloud-rain partitioning issues in AMSR-E retrievals. A 

relatively low precipitation threshold means that part of the water content of thicker rain-free 

clouds might be erroneously assigned to rain. In fact, CloudSat retrievals indicate only ~30% 

probability of precipitation in warm clouds at an LWP of 180-200 g m-2 [Lebsock et al., 

2008]. This suggests that a significant portion of rain-flagged AMSR-E retrievals might 

actually be rain-free, and as such, subject to the above error. (It should be noted, however, 

that a large number of low-level liquid clouds are below the detection limit of the CloudSat 

radar or are otherwise missed due to surface contamination.) 
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Figure 3.14. Cloud-rain partitioning effects on AMSR-E – adiabatic MODIS LWP 

comparison. The solid red curve corresponds to actual retrievals with the operational 

Wentz rain algorithm. Gold diamonds are estimates of what the rain algorithm would 

retrieve in rain-free clouds. The blue curves are modified Wentz retrievals with rain 

removal turned off (i) completely (dashed), and (ii) only for rain rates below 1.5 mm/hr 

(solid). 
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We investigated the effect of rain removal by estimating what LWP the operational 

AMSR-E algorithm would retrieve in rain-free clouds above the precipitation threshold (see 

gold diamonds in Figure 3.14). These estimates were derived from the governing equations in 

section 2.1 and confirmed the observed biases: an increasing portion of the water content of 

thicker rain-free clouds was assigned to precipitation. Obviously, a fraction of clouds with 

LWP between 180 and 500 g m-2 bound to precipitate, thus, the excellent fit between rain-

free cloud estimates and actual observations must also have been due to the presence of 

additional biases (liquid temperature error, heterogeneity effects, etc.). Nevertheless, these 

results demonstrated the general effect of cloud-rain partitioning errors. 

As a further step, Remote Sensing Systems reprocessed our boreal summer and boreal 

winter data with rain removal completely turned off. These modified AMSR-E LWPs, 

indicated by the dashed blue line, compared considerably better with MODIS LWPs, but now 

exhibited slight overestimations. We found the best agreement between microwave and 

VNIR estimates when rain removal was only turned off for rain rates below 1.5 mm/hr, as 

shown by the solid blue line. Taken together, these findings suggested that the 180 g m-2 

precipitation threshold was too low; at least in a global mean sense. 

 Finally, we note that the Wentz algorithm is tuned to produce reasonable rain rates 

and rain coverage in comparison with other well-known precipitation climatologies. It might 

be impossible to optimize the algorithm simultaneously for LWP and rain. However, a 

separate product specifically minimizing discrepancies with MODIS LWPs could be 

introduced. Alternatively, rain removal could be turned off entirely in order to retrieve total 

(cloud plus rain) water path, which is the quantity microwave techniques are ultimately 

sensitive to. This could facilitate more straightforward comparisons with climate models by 

eliminating differences due to dissimilar cloud-rain partitioning in models and satellite 

retrievals. 

 

3.5. Summary 

 We analyzed one year of AMSR-E Wentz and MODIS cloud liquid water path 

estimates, representing the current state-of-the-art in microwave and VNIR retrievals. The 

comparison was made over the global oceans on a quarter-degree scale and only included 

warm clouds in order to avoid ambiguities due to ice; however, both standard (vertically 

homogeneous), and adiabatically stratified MODIS LWPs were evaluated. Our goal was to 

characterize microwave-VNIR LWP differences in a statistically robust dataset, and identify 

their potential causes for future studies. Main findings are summarized as follows. 
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 When all scenes were considered, AMSR-E overestimated MODIS by 45% on 

average, and retrievals were only moderately correlated with a coefficient of 0.74 and rms 

difference of 41 g m-2. However, we found the microwave-VNIR comparison strongly 

dependent on cloud fraction and geographic location. In overcast scenes, estimates were 

generally better correlated at 0.83, but with significant regional variations. The relationship 

between the techniques was loosest at high latitudes above 55º, and tightest in marine Sc 

regions with correlations up to 0.95 and typical rms differences of 10-20 g m-2. Overcast 

domains were also characterized by a MODIS high bias. In broken scenes, on the other hand, 

AMSR-E increasingly overestimated MODIS and retrievals became gradually uncorrelated as 

cloud fraction decreased below 80%. 

Although we could not fully explain this microwave high bias at low cloud fractions, 

we noted a global mean AMSR-E LWP bias of 12 g m-2 in cloud-free scenes as well. This 

clear-sky microwave bias showed systematic geographic variations, being smallest in colder 

marine Sc regions and largest over warm oceans. In addition, the AMSR-E clear-sky bias and 

low-cloud-fraction bias both had similar dependencies: a negative correlation with surface 

wind speed and a weaker positive correlation with water vapor. These results suggested that 

uncertainties in surface emission and gaseous absorption models were partly responsible for 

Wentz overestimation in thin broken clouds. 

 The remainder of the study focused exclusively on overcast domains. In this subset, 

the global annual mean MODIS overestimation of ~17% could be almost completely 

eliminated by adiabatic correction, which worked equally well on monthly time scales, with 

MODIS global means being within 5 g m-2 (or 6%) of AMSR-E means. However, the 

excellent mean performance of the adiabatic model masked significant regional differences. 

Zonal means showed AMSR-E overestimation between 45ºS-45ºN, and rapidly increasing 

MODIS overestimation at higher latitudes, particularly in the winter hemisphere. This was 

the result of strikingly different latitudinal variations in LWP, whereby AMSR-E generally 

decreased but MODIS increased toward the poles. 

 In the tropics/subtropics, the AMSR-E – MODIS LWP bias also showed systematic 

variations with cloud regimes. In marine Sc regions MODIS overestimated AMSR-E, while 

in areas frequented by cumuliform clouds the reverse was true. This resulted in large-scale 

coherent spatial patterns in LWP bias wherever Sc transitioned into trade wind Cu. Most 

notably, there were marked zonal LWP bias gradients at the Pacific Cold Tongue, and in an 

extensive area stretching from the Namibian coast to the Gulf of Guinea. 
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 Prompted by the existence of systematic LWP bias variations in the African Sc region, 

generally regarded as a test bed of aerosol-cloud interactions, we estimated absorbing aerosol 

effects on VNIR retrievals. In a global annual mean sense, absorbing aerosols introduced a 

trivial (-1 g m-2) low bias in MODIS LWPs. The regional-mean bias during the biomass-

burning season was only slightly larger -3 to -5 g m-2, although locally it could be as high as -

30 g m-2 in heavily polluted areas. However, 30-40% of the apparent absorbing aerosol bias 

could be attributed to sampling artifacts due to systematic zonal variations in AMSR-E – 

MODIS LWP difference. These results implied that neglecting persistent geographic 

variations in the background (unpolluted) microwave-VNIR LWP bias could lead to 

overestimating aerosol effects in VNIR retrievals. 

 In pursuit of an explanation for the increasing MODIS overestimation at high 

latitudes, we analyzed the solar zenith angle dependence of microwave and VNIR retrievals. 

Up to a SZA of 35º the techniques showed good agreement, at lower Sun, however, they 

diverged: AMSR-E leveled off, but MODIS rapidly increased with SZA driven by an 

increase in cloud optical thickness. In addition, while the SZA dependence of microwave 

estimates was relatively insensitive to scene type, the increase in MODIS LWPs with SZA 

was significantly larger in heterogeneous than in homogeneous clouds. Only in the most 

homogeneous clouds did VNIR LWPs show SZA dependence qualitatively similar to 

microwave LWPs. These findings suggested that microwave-VNIR differences at high 

latitudes were largely due to 3D effects in the 1D MODIS retrievals over heterogeneous 

clouds at low Sun. 

 Such heterogeneity effects were significantly reduced at lower latitudes; hence, they 

were unlikely to play a major role in the emergence of the coherent tropical LWP bias 

patterns. A more likely candidate was systematic errors in the Wentz cloud temperature 

parameterization, which we evaluated against MODIS cloud-top temperatures. Although the 

global mean cloud temperature bias was only -1.5 °C, regional errors were as high as ±6 °C 

and showed geographic variations similar to LWP bias variations. In marine Sc (over colder 

oceans) the Wentz parameterization underestimated, while in cumuliform clouds (over 

warmer oceans) overestimated liquid temperature, resulting in moderately strong (R = 0.6-

0.8) large-scale correlations between temperature error and LWP bias in Sc transition regions. 

 Systematic errors in standard MODIS LWP due to geographic variations in vertical 

cloud stratification might have also contributed to the tropical LWP bias patterns. Although 

the adiabatic model removed the MODIS high bias in a global mean sense, regionally it 

represented an improvement in marine Sc only, while exacerbated differences in cumuliform 
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clouds where standard MODIS generally underestimated AMSR-E. Motivated by this, we 

investigated if MODIS effective radius difference offered some clues about vertical cloud 

stratification. We found that relative variations in 1.6-3.7 m effective radius difference also 

showed similar large-scale patterns as microwave-VNIR LWP bias, resulting in significant 

correlations (R = 0.7-0.9) between the quantities. However, effective radius difference was 

mostly positive; thus, its sign was generally a poor indicator of the sign of LWP bias. We 

realize that interpreting the information content of MODIS near-infrared channels is rather 

ambiguous; nevertheless, we believe these apparent large-scale correlations do warrant 

further study. 

 Finally, we investigated cloud-rain partitioning uncertainties in Wentz retrievals, 

prompted by the fact that AMSR-E increasingly underestimated MODIS at LWPs above the 

microwave precipitation threshold. The fixed rain threshold of only 180 g m-2 resulted in a 

significant number of rain-free clouds being processed as raining clouds. We found that the 

AMSR-E low bias could be well explained by the Wentz algorithm erroneously assigning an 

increasing portion of the liquid water content of such clouds to precipitation. In fact, when 

rain retrieval was completely turned off, AMSR-E LWPs compared significantly better with 

MODIS values, but now exhibited slight overestimations. The agreement between microwave 

and VNIR estimates was best when rain removal was only turned off for rain rates below 1.5 

mm/hr. Taken together, these findings indicated that the Wentz precipitation threshold was 

too low. 

 Of the potential error sources listed above, the ones affecting microwave retrievals 

appear somewhat easier to tackle. The sensitivity of Wentz LWPs to cloud temperature 

uncertainties could be straightforwardly evaluated by replacing the current parameterization 

with MODIS cloud-top temperatures. Some progress could also be made in deriving a more 

realistic cloud-rain partitioning formulation, either from CloudSat retrievals or cloud 

resolving models. Quantifying and correcting for VNIR retrieval errors due to heterogeneity 

effects or cloud vertical stratification remain significantly more challenging. Perhaps a 

statistical inversion technique utilizing 3D radiative transfer calculations in a large number of 

simulated cloud fields offers the best hope to handle such errors in an operational context. 
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Chapter 4 

Evaluating Diurnal Cycle of South Atlantic Marine Boundary Layer 

Clouds using SEVIRI VNIR and TMI Microwave Retrievals 

 
The main objective of this chapter is to evaluate the diurnal cycle of South Atlantic 

marine boundary layer clouds and its seasonal variability using cloud microphysical and 

optical properties from SEVIRI VNIR measurements, as well as cloud liquid water path from 

TMI microwave observations. The best agreement between SEVIRI VNIR and TMI 

microwave technique is observed over the marine Sc region, with least bias within ±5 g m-2 

and high correlation of 0.9. The diurnal cycle of TMI and SEVIRI liquid water path also 

showed very good agreement within ±5 g m-2 over this Sc regime in all seasons except JJA 

and SON (JASO is affected by absorbing aerosols, and neglecting those aerosols affected 

datasets from the analysis showed better comparison). In terms of diurnal cycle, both TMI 

and SEVIRI LWP decreased from morning to late afternoon and thereafter a slight increase 

was observed. The diurnal variation of SEVIRI LWP followed the variation in cloud optical 

thickness and in fact the cloud fraction and cloud physical thickness; whereas droplet 

effective radius and droplet number concentration showed less variability with time. The 

largest disagreement is observed in the trade wind Cu, due to the deficit in both microwave 

and VNIR measurement techniques in the partial cloudy scenes. Comparison of SEVIRI and 

MODIS CPP retrievals showed very good agreement between SEVIRI and MODIS with 

correlation ≥ 0.9 in the fully overcast cases; on the otherhand MODIS overestimated SEVIRI 

values over broken cases. We have noticed that the use of 1.6 µm channel effective radius 

applies automatic adiabatic correction to the Sc clouds in SEVIRI LWP retrievals, otherwise 

a 5/6 correction factor has to be applied for MODIS LWP retrievals (which is based on 2.2 

µm channel retrieved effective radius) while comparing them with microwave retrieved 

LWP. 

4.1. Introduction 

The low-level marine clouds are particularly important because they constitute the 

main source of uncertainty in simulated cloud feedbacks [Bony and Dufresne, 2005]. These 

clouds typically occur persistently in the subtropical subsidence areas and reflect around 30% 

of the incoming solar radiation back to space. At the same time, longwave cooling rates are 

not affected very strongly because of the comparably low temperature difference between the 

ocean surface and the cloud top. The net energetic effect of these clouds is therefore a cooling 
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of the atmosphere [Manabe and Strickler, 1964; Manabe and Wetherald, 1967]. Recent 

observational evidence indicates that low clouds reduce the net radiation balance on a global 

annually averaged basis by about 15 Wm-2 [Hartmann et al., 1992]. Because of the sensitivity 

of the earth’s radiation budget to low clouds, understanding the characteristics of low clouds 

is a crucial climate question [Randall et al., 1984].  

 The diurnal cycle of marine stratiform clouds has an important influence on their 

radiative effectiveness, as it affects the radiation budget primarily through their albedo. 

Stratocumulus clouds can exhibit a marked diurnal cycle [Wood et al., 2002]. During the 

night, turbulence is driven by a strong long-wave radiative cooling near the top of the Sc 

clouds and results in a vertically well-mixed stable boundary layer. In contrast, during 

daytime the transport of heat and moisture from the surface into the cloud layer is effectively 

reduced or even cut off due to the absorption of solar radiation in the cloud layer and hence 

the stable boundary layer become decoupled. Because entrainment maintains a steady supply 

of relatively warm and dry air from above the inversion into the cloud layer, the cloud layer 

can rapidly thin or even disappear during daytime. In its Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC-AR4), Forster et al. [2007] highlights the 

diurnal cycle of thin, stratiform clouds to be one of the major uncertainties in current 

estimates of cloud radiative forcing. Wilson and Mitchell [1986] showed that, changing the 

resolution of the diurnal cycle of cloud and radiative fluxes in an AGCM can affect the 

simulated climate. Rozendaal et al. [1995] inferred that, calculated with diurnally averaged 

cloud fraction overestimate cloud forcing by up to 3 Wm-2 (16%) at the surface and 3 Wm-2 

(7%) at the top of the atmosphere compared to calculations that account for the diurnal cycle. 

Comparisons of the observed diurnal cycle of clouds with models also find large and 

potentially systematic errors in the modelled diurnal cycle [O'Dell et al., 2008; Roebeling and 

van Meijgaard, 2009]. Similarly, a recent study on aerosol climate effects by the U.S. 

Climate Change Science Program [Chin et al., 2009] identified the diurnal cycle of clouds as 

one important outstanding scientific issue. These results suggest that accurate measurements 

of diurnal properties of Sc clouds are crucial for radiation budget calculations in climate 

model simulations.  

 SEVIRI is the first space-borne instrument with the necessary temporal, spatial, and 

spectral resolution to resolve the diurnal cycle of clouds. Thus, this study uses cloud products 

retrieved from SEVIRI measurements using the algorithm developed and run operationally in 

the CM-SAF. A general overview on the CM-SAF is given in [Schulz, et al., 2009]. Basic 

information on the CM-SAF cloud products used in this study can be found in Roebeling et 
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al. [2006] and Meirink et al. [2010]. Validation of CM-SAF LWP estimates using ground-

based radiometers and radiometer networks have been reported in [Greuell and Roebeling, 

2009; Roebeling et al., 2008a; Roebeling et al., 2008b]. While this approach can take 

advantage of the greater accuracy of the ground-based instruments, these are not available for 

the study area.   

 Recently, a large number of papers have studied the differences in liquid water path 

retrieval based on passive microwave and visible/near-infrared (VNIR) satellite observations 

[Seethala and Horvath, 2010; Wilcox et al., 2009; Greenwald, 2009; Bennartz, 2007; Borg 

and Bennartz, 2007; Horvath and Davies, 2007]. Differences between the two methods have 

been shown to be correlated with various factors, including cloud fraction, observation 

geometry, retrieval assumptions, aerosol above clouds, and others. No clear picture has yet 

emerged. This is partly due to the correlative nature of the satellite studies, which does not 

necessarily allow establishing causal relations. A few issues are relatively clear. A slight 

(mostly) positive bias of passive-microwave derived LWP in cloud-free situations in the 

order of 10-15 g m-2 exists, which is cross-correlated with other retrieved variables 

[Greenwald, 2009; Greenwald et al., 2007]. Also, agreement appears better for more 

stratiform clouds, where a near-adiabatic cloud liquid water profile can be assumed.  

Because microwave and VNIR techniques represent fully independent approaches the 

analysis of retrieval discrepancies can reveal major algorithmic shortcomings, without 

necessarily establishing absolute accuracies. Here, the approach of comparing SEVIRI VNIR 

observations with passive microwave observations is followed. Since the diurnal cycle is 

targeted here, the use of TRMM observations appears particularly useful. The non sun-

synchronous orbit of TRMM allows for a comparison of observations at different local times. 

Over the course of a month the entire (daylight) diurnal cycle can be evaluated. The TRMM 

data used in this study were obtained from Remote Sensing Systems and were derived using 

the algorithms described in [Hilburn and Wentz, 2008]. The error characteristics and 

uncertainties of these data are similar to SSM/I and AMSR-E estimates. Various sources of 

error and potential uncertainties are listed in [e.g., O'Dell et al., 2008]. 

We also have evaluated the impact of cloud variability at sub-pixel scale in SEVIRI 

retrievals. Geostationary imagers sample at a coarser resolution than polar imagers. The 

SEVIRI cloud properties are retrieved at 3 x 3 km2 resolution but the MODIS retrievals are 

done at 1 x 1 km2 resolution. A coarser resolution gives rise to systematic biases in the 

derived cloud physical properties, especially when the cloud is heterogeneous. According to 

Henrich et al. [2010] the resolution with the least bias in the retrieval of optical thickness 
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seems to be the 1 × 1 km2 pixel. Thus, to investigate the pixel size effect on SEVIRI retrieved 

cloud properties, we compare them with the high resolution MODIS retrievals.  

 This chapter is structured as follows. The SEVIRI and TMI datasets are described in 

Section 2 while the description of MODIS and OMI were already given in Chapter 3. 

Methodology is given in Section 3. The results are discussed in Section 4, basically the 

domain mean statistics, spatial distribution, and the diurnal cycle of cloud properties from 

SEVIRI and LWP comparison with TMI. We also evaluate the retrieval artifacts of absorbing 

aerosols over the Sc clouds, and overview the cloud fraction dependence and solar zenith 

angle effect on SEVERI CPP. Finally, the effect of sub-pixel-scale variability in SEVIRI 

retrievals is investigated in comparison with MODIS high resolution retrievals. Results are 

summarized in Section 5. 

 

4.2. Data and Methodology 

4.2.1. Spinning Enhanced Visible and InfraRed Imager (SEVIRI) 

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is an optical 

radiometer onboard METEOSAT-9 geostationary satellite developed by the European Space 

Agency (ESA) and operated by the European Organization for the Exploitation of 

Meteorological Satellites (EUMETSAT). SEVIRI measures radiances at 12 spectral channels 

with 4 VNIR channels (0.4 – 1.6 µm) and 8 IR channels (3.9 – 13.4 µm), and produces one 

image every 15 minutes. The CM-SAF CPP (cloud physical properties) algorithm, developed 

at KNMI, retrieves cloud optical thickness (τ) and cloud particle effective radius (re) based on 

measured reflectances at 0.6 µm and 1.6 µm channel. The retrieval scheme is described in 

Roebeling et al. [2006], and is based on earlier methods that retrieve cloud optical thickness 

and cloud particle size from satellite radiances at wavelengths in the non-absorbing visible 

and the moderately absorbing solar infrared part of the spectrum [Nakajima and King, 1990; 

Han et al., 1994; Nakajima and Nakajima, 1995; Watts et al., 1998]. The liquid water path 

(LWP) is computed from the retrieved τ and re by [Stephens, 1978]:  LWP = 2/3 τ re(1.6µm) ρl, 

where ρl is the density of liquid water. The SEVIRI retrievals are available only during 

daytime and the retrievals are performed assuming that the clouds are plane parallel.  

The CPP products used in this study have been generated at KNMI. They differ from 

the official CM-SAF products in a number of ways: (i) a local (KNMI) cloud mask rather 

than the CM-SAF cloud mask has been used to identify cloudy pixels, (ii) latest information 

on instrument calibration has been used, (iii) algorithm improvements with respect to 

atmospheric correction have been introduced [Meirink et al., 2009], (iv) the full 15-minute 
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SEVIRI dataset was processed instead of an hourly dataset processed operationally in CM-

SAF, and (v) compared to the standard CM-SAF products optical thickness and LWP, 

additional cloud (micro-)physical properties were derived.  

 

4.2.2. TRMM Microwave Imager (TMI) 

The TRMM Microwave Imager (TMI) is a well-calibrated, 5 channel, dual-polarized, 

passive microwave radiometer that orbits at an altitude of 400 km and continuously monitors 

the tropics between 40°S and 40°N. Unlike SSM/I (in a near-polar, sun-synchronous orbit), 

the TRMM satellite travels west to east in a semi-equatorial orbit, which produces data at 

different local times for any location. The radiometer measures the microwave radiation 

emitted by the Earth's surface and clouds at frequencies of 10.7, 19.4, 21.3, 37, 85.5 GHz. 

The Wentz’ absorption-emission based algorithm [Wentz, 1997; Wentz and Spencer, 2000] is 

used to retrieve several important meteorological parameters such as sea surface temperature 

(SST), surface wind speed (W), water vapor path (V), liquid water path (LWP), and rain rate 

(R) over the ocean. Our primary interest, LWP, is derived from 37 GHz observations at a 

resolution of 13 km, but here we used the 0.25° gridded daytime product.  

  

4.2.3. Methodology 

To investigate the diurnal cycle of cloud liquid water path annually and in different 

seasons, we have processed one year (June 2008 to May 2009) of data from SEVIRI, TMI, 

and MODIS. SEVIRI 3 x 3 km2 data is downscaled to TMI resolution and collocation is done 

for those SEVIRI retrievals within TMI observation time of +/-7.5 minutes. As such, the 

mean LWP is representative of the mean in-cloud LWP. To compare it with TMI grid-box 

mean, we scaled it with the successful cloud-retrieval-fraction calculated from SEVIRI 

measurements. Similarly, for a matching comparison, both Terra and Aqua MODIS data have 

been downscaled independently to 0.25o x 0.25o, consistent to TMI resolution. For the 

comparisons between SEVIRI and MODIS observations, original SEVIRI 3 x 3 km2 data 

were downscaled and collocated based on those pixels within MODIS observation time of +/-

5 minutes. These collocated SEVIRI data are termed SEVIRI_M.  

Our entire study domain is roughly 50o x 50o covering [30oW-20oE, 35oS-10oN] over 

the South Atlantic Ocean. Near the Namibian coast, abundant Sc sheets form over relatively 

cold SSTs, and towards the equator these Sc decks transition into scattered Cu. Thus our 

study domain is frequently covered by extensive sheets of sub-tropical marine Sc clouds, 

trade wind Cu with significantly lower cloud cover, and deep convective clouds. The 
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presence of ice cloud masks water clouds below in VNIR retrievals. Also, the microwave 

signal is sensitive to liquid cloud and rain, and the rain retrieval is performed assuming a 

fixed rain-threshold of 180 g m-2 which can introduce a systematic error in retrieved LWP. 

Thus, we examine the mean and diurnal characteristics of only low-level non-raining warm 

(liquid) clouds to avoid instrumental sensitivity to rain and ice. We have noticed that the 

amount and the location of these Sc decks vary from month to month depending on where the 

sun is. So, we use “Region Growing” technique to locate the exact Sc regime. This technique 

takes an initial location of Sc regime (here, we choose the location of 75th percentile cloud 

fraction threshold on frequently occurring Sc regime) and examines neighboring pixels, and 

then determines whether the pixel neighbors should be added to the region. The process is 

iterated on, in the same manner as general data clustering algorithms, until we find reasonable 

location. However, for more broken trade wind Cu regime we chose a 10o x 10o grid box 

depending on their frequency of occurrence. 

 

4.3. Comparison of SEVIRI versus TMI LWP 

4.3.1. Effect of Absorbing Aerosols on SEVIRI Retrievals 

 Before investigating the Sc cloud properties and the emerging diurnal cycle, as a 

necessary step, we examine the impact of absorbing aerosols residing above the South 

Atlantic Sc clouds on SEVIRI retrievals. Biomass burning is a significant source of 

tropospheric aerosols in southwestern Africa during the dry season JASO (July-August-

September-October) and produces episodic plumes of dark smoke over the southeast Atlantic 

Ocean. The mean aerosol index map from OMI for JASO 2008 is depicted in Figure 4.1. The 

aerosol index is an index that detects the presence of UV-absorbing aerosols where positive 

values generally represent absorbing aerosols such as dust and smoke and small or negative 

values represent non-absorbing aerosols and clouds. From the figure it is clear that the smoke 

absorption is higher near the Namibian coast and reduces as we go away from the coast. 

Beneath the elevated layer of smoke there is a persistent deck of bright marine Sc cloud. 

When smoke resides above low-level clouds, the measured visible (0.6 or 0.8 µm) channel 

reflectance will be underestimated due to the absorption by smoke, which can introduce a 

negative bias in both droplet effective radius (re) and optical thickness (τ), and hence in 

SEVIRI LWP. This negative bias in the 1.6 µm retrieved re is significantly larger compared 

to re from the 2.2 µm channel which is usually less than 1 µm, however, it can be up to 30% 

in retrieved τ according to calculations by Haywood et al. [2004]. In SEVIRI 1.6 µm 

retrieval, a strong decrease in re from 11 to 7 µm is observed (Figures 4.2d and 4.3d) even for 
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the aerosol index of 3.5. Bennartz [2007] noted a systematic MODIS LWP underestimation 

in Sc off southern Africa during the biomass burning season, which was attributed to 

overlying absorbing aerosols by Bennartz and Harshvardhan [2007]. In the same region and 

season, Wilcox et al. [2009] estimated a mean negative bias of 5.6 g m-2, but for a larger 25o x 

25o domain Seethala and Horvath [2010] estimated a negative bias of 3 g m-2, in MODIS 

LWP corresponding to less polluted case. 

Here, we estimate the bias in SEVIRI LWP for JASO over the entire study domain 

and over the aerosol dominated Sc domain. Over this domain the mean AI ranges up to 3.5. 

As shown in Figure 4.2-4.3, SEVIRI increasingly underestimates TMI LWP as a result of 

reduced τ and re. The TMI-SEVIRI LWP bias increases with aerosol index over the Sc 

domain and also in the entire domain. Over the entire domain the LWP underestimation due 

to the presence of smoke is ~27 g m-2, however the individual values can go > 40 g m-2 even 

at an AI of 2.5 (as shown in Figure 4.2b and 4.3b). Coddington et al. [2010] also reported an 

underestimation in retrieved τ and re for a stratus residing below an absorbing aerosol layer 

based on aircraft measurements made during the Intercontinental Chemical Transport 

Experiment (INTEX-A) and also using a forward radiative transfer model.  

 

 

 

Figure 4.1. OMI ultraviolet aerosol index averaged for JASO 2008. 
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Figure 4.2. Aerosol index versus cloud properties averaged over the entire study domain, for 

JASO 2008. 

 

The results from Figures 4.2a and 4.3a indicates an increase in LWP with aerosol 

index, which is observed in both TMI and SEVIRI measurements. TMI shows a strong LWP 

increase from 60 to 100 g m-2 as the aerosol loading increases from 0.25 to 3.5, however the 

SEVIRI increase is less prominent and decreases drastically with aerosol index. We also 

notice an increase in cloud physical thickness with AI for SEVIRI measurements. The optical 

thickness also increases from 4.5-8.5 with aerosol index for the entire domain (7-12 for the 

Sc domain), however this increase could be even larger for less polluted cases, as absorbing 

aerosol above the cloud underestimates retrieved τ. These results are similar to a recent 

observational study by Wilcox [2010] where he found that the diurnal mean SW heating rate 

increased when smoke resides above clouds. This extra heating introduced an additional 

warming of 1K in the 700 hPa air temperature above the cloud deck, and increased the 



49                                                                  Diurnal Cycle of TMI and SEVIRI Liquid Water Path                          

 

buoyancy of free-tropospheric air above the temperature inversion capping the boundary 

layer. This increased buoyancy inhibits the entrainment of dry air through the cloud top, 

thereby helping to preserve humidity and cloud cover in the boundary layer; which also 

coincides with LWP increase of 20 g m-2 and lower cloud tops compared to smoke-free 

environment. The modeling study also confirms these results, for example, Johnson et al. 

[2004] used LES and found an increase in LWP when absorbing aerosols reside above Sc   

 

clouds. Using an atmospheric general circulation model (GFDL AGCM) Randles and 

Ramaswamy [2010] indicated that strong atmospheric absorption from these particles can 

cool the surface and increase upward motion and low-level convergence over South Africa 

during the dry season, thereby increasing clouds. Nevertheless, partially, it could also be due 

to the fact that higher aerosol loading samples are spatially coincident with thicker clouds. 

Figure 4.3. Aerosol index versus cloud properties averaged over the Sc domain, for JASO 

2008. 
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Further, while sampling SAFARI-2000 data offshore of West Africa, Hobbs [2002] and 

McGill et al. [2003] argued that smoke was typically observed in layers that were vertically 

separated from Sc clouds below and hence the direct microphysical interaction between the 

aerosols and the Sc clouds was often inhibited by the strong temperature inversion above the 

cloud layer; which was later confirmed by Wilcox [2010] that aerosol layers occur 

predominantly between 2 km and 4 km, but cloud layers are identified predominantly below 

1.5 km altitude and beneath the layer of elevated smoke aerosol.  

 

 

 

 

 

Figure 4.4. Diurnal cycle of CPP over the Sc domain averaged for JASO 2008, based on 

(top) full data, (middle) data with AI <1, and (bottom) data with AI<0.25. 
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Figure 4.5. JASO mean statistics of SEVIRI versus TMI LWP (top) including all data, 

(middle) all data but AI<1, and (bottom) all data but AI<0.25 over the Sc regime. 
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We further evaluate the impact of absorbing aerosols over Sc regime especially in the 

diurnal cycle representation. The diurnal cycle of TMI and SEVIRI CPP averaged for JASO 

2008 is presented in Figure 4.4. The cloud optical thickness decrease by about ~50 % from 

morning to late afternoon, but the droplet effective radius remains more or less constant with 

time. Also, a 20 % decrease in cloud fraction, a 100 m decrease in cloud physical thickness, 

and a 50 cm-3 decrease in the cloud droplet number concentration were observed with time 

(figure not shown). Overall, both TMI and SEVIRI LWP show a 50% decrease from morning 

to late afternoon. Both SEVIRI and TMI LWP show similar variability in diurnal cycle, 

however a large bias of 10-20 gm-2 is exists between them. This large bias is partially 

removed by considering least polluted cases in the analysis. Figure 4.4 (middle and bottom 

panels) shows the diurnal cycle of TMI and SEVIRI CPP where the polluted pixels are 

removed, and the results are in much better agreement. In Figure 4.5 the JASO mean TMI 

versus SEVIRI LWP statistics is shown, and obviously the LWP bias has been reduced to 

half for pixels with AI<1 and the bias is further halved for datasets with AI<0.25. It can also 

be noticed that SEVIRI liquid water path increases with changing AI threshold.  The mean 

LWP bias over the Sc domain is 16.49 g m-2. The LWP bias is reduced 8.82 g m-2 if we only 

consider data where AI<1. Further neglecting those data with AI<0.25 reduces the LWP bias 

to 3.73 g m-2. From Figure 4.6 it is also very clear that the SEVIRI observations are more and 

more shifted towards the one-to-one line as we remove the more and more pixels affected by 

aerosols. As these absorbing aerosols introduce low bias in SEVIRI LWP, for further 

analysis, we neglect all the aerosol affected pixels i.e., AI>1. 

 

4.3.2. Mean Statistics of TMI and SEVIRI LWP 

 In this section, we describe the annual and seasonal mean statistics of cloud 

LWP for the entire South Atlantic study domain, the trade wind Cu, and the Sc regime as 

obtained from both SEVIRI and TMI and shown in Figures 4.6 – 4.10. Note that Figures 4.6 

– 4.10 are only for AI <1. Over the entire South Atlantic domain, the correlation in LWP 

between the two techniques varies from 0.48 to 0.74 with the domain mean positive (TMI-

SEVIRI) LWP bias consisting to 8-18 g m-2. The mean LWP varies with season and is 

maximum in November and minimum in February. In this case, SEVIRI seems to 

underestimate the LWP and TMI seems to overestimate it in all the seasons. Similarly, a 

global mean positive bias of 18 g m-2 is observed in AMSR-E and MODIS comparison. So, 

the microwave technique appears to overestimate the LWP in general, due to the 

overestimation in broken cloud fields. The annual mean bias is only 12 g m-2 with 52 g m-2 
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deviation from mean. MAM shows the smallest bias with ~7 g m-2, but with a larger mean 

deviation of 66 g m-2 and a smaller correlation of 0.48.  The largest bias of 18 g m-2 is 

observed for JJA, with mean deviation of 45 g m-2 and correlation of 0.64. But for SON and 

DJF biases are 12 g m-2 and 13 g m-2, with mean deviations of 42.5 g m-2 and 48.7 g m-2 

respectively. Over this domain, the amount of observed mean liquid water path is largest in 

September-October-November. 

 
 
Figure 4.6. Annual mean statistics for the South Atlantic study domain (for liquid cloud 

fraction: 0-100%, no rain, no ice, AI<1). 

 

Over the South Atlantic Sc region both SEVIRI VNIR and TMI microwave 

techniques show robust skill to retrieve LWP with a large correlation of 0.9-0.94 annually 

and in all seasons as shown in Figures 4.8-4.9. Both TMI and SEVIRI show a mean annual 

LWP of ~45 g m-2 with a small bias of 0.26 g m-2 and standard deviation of 21 g m-2. The 

daytime averaged seasonal LWP variation of SEVIRI vs. TMI is 35.64 vs. 42.51, 69.24 vs. 

66.66, 52.24 vs. 52.15, and 38.27 vs. 38.16 (g m-2) in seasons JJA, SON, DJF and MAM, 

respectively. Fairall et al. [1990] estimated a mean Sc LWP of 75 g m-2 off the coast of 

Southern California during FIRE from March through October 1987. An average cloud LWP 

of 120 ± 320 g m-2 is reported by Zuidema and Hartmann [1995] from SSM/I data averaged 

over stratus cloud regime. These LWP values are somewhat larger compared to our mean 

LWPs. However, the mean TMI-SEVIRI LWP bias in our Sc domain is within ±5 g m-2 in all 

the months/seasons, except those months which are affected by absorbing aerosols.  In JASO, 
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the observed mean bias is 10-25 g m-2 and SEVIRI retrievals are artificially affected by the 

absorbing aerosols in these months.  

 

 

 

As we explained in th previous section, the absorbing aerosols introduce a negative 

bias in both τ and re, and hence in the deduced LWP in SEVIRI retrieval. Neglecting the 

pixels with larger loading of absorbing aerosols and considering only those pixels with 

0<AI<1.0, the bias has been reduced to ~12.5 g m-2 in individual months and even to ~7 g m-2 

seasonally. All together the bias between TMI and SEVIRI LWP is small, compared to the 

AMSR-E - MODIS LWP bias [refer Seethala and Horvath, 2010], where MODIS highly 

overestimated LWP and the overestimation could only be reduced after applying the adiabatic 

correction to MODIS LWP. As TMI and AMSR-E retrievals are based on the same Wentz’s 

algorithm, the differences may arise from SEVIRI and MODIS retrieval differences. The 

basic difference between SEVIRI and MODIS is, that the SEVIRI re retrievals are performed 

based on radiance from the 1.6 µm channel which samples clouds slightly deeper compared 

to MODIS 2.2 µm channel, which is mostly sensitive to the top layer of clouds leading to 

larger MODIS re in case of more adiabatic Sc clouds. This could have a significant impact, 

eventhough it is assumed that the re retrievals are likely to be the same in both 1.6 µm and 2.2 

µm channels. Another possibility could be that for thin clouds of τ below 8, the SEVIRI CPP 

algorithm weighs re towards the re-climatology of 8 µm, but MODIS provides true retrieved 

Figure 4.7. Annual mean statistics for the Sc regime. (for liquid cloud fraction: 0-100%, 

no rain, no ice, AI<1). 
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values. Again SEVIRI original pixels are an order of magnitude larger than the MODIS 

pixels, and, as we reduce the resolution, the errors in retrieved τ and re may cancel out and get 

better comparison of SEVIRI with TMI. Another difference could be related to the so-called 

clear-sky restoral applied to MODIS. MODIS retrieves cloud properties only in confident 

cloudy conditions which may introduce a high bias in τ. On the other hand, SEVIRI retrievals 

for partly cloudy pixels may introduce a low bias in τ. These effects would introduce a 

high/low LWP bias in MODIS/SEVIRI, respectively. Thus, the above listed differences could 

easily explain the difference in MODIS vs. AMSR-E comparison and our SEVIRI vs. TMI 

comparison. 

 

 

 
 

Figure 4.8. Seasonal mean statistics for the Sc regime (a) JJA, (b) SON, (c) DJF, and (d) 

MAM. (for liquid cloud fraction: 0-100%, no rain, no ice, AI<1) . 

 

a) b) 

c) 
d) 
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Figure 4.9. Annual mean statistics for the trade wind Cu [10oS-20oS, 10oW-20oW] regime. 

(for liquid cloud fraction: 0-100%, no rain, no ice, AI<1). 

 

Over the trade wind Cu domain, SEVIRI retrieves smaller LWP and TMI retrieves 

larger LWP compared to the Sc domain, which yields a very large positive bias of 15-25 g m-

2 in all seasons, although SEVIRI and TMI showed relatively good correlations of 0.79-0.86. 

The dominant error sources in both VNIR and microwave technique in the broken cloud 

fields could explain this bias. Larger 3D radiative effect and non-linear averaging of 

reflectance and optical thickness in partial cloudy pixels could introduce negative bias in 

retrieved SEVIRI LWP. Moreover, the weighting of re towards the re-climatology of 8 µm for 

optically thin clouds of τ<8 would introduce strong negative bias in the SEVIRI CPP 

algorithm as these trCu clouds are very thin and often have an optical thickness below 5. 

Besides, a known positive bias of 12-15 g m-2 is also observed in Wentz’ microwave 

algorithm in clear-sky cases which suites for broken cloud scenes as well. Unfortunately, 

these errors cannot be separated from the measurements, and more modeling study is required 

to quantify them. 
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a) b) 

c) d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10. Seasonal mean statistics for the trade wind Cu regime (a) JJA, (b) SON, (c) 

DJF, and (d) MAM. (for liquid cloud fraction: 0-100%, no rain, no ice, AI<1). 

 

4.3.3. Spatial Distribution of TMI LWP and SEVIRI CPP  

In this section, we discuss the annual and seasonal mean maps of TMI and SEVIRI 

LWP, TMI-SEVIRI LWP bias, cloud optical thickness, droplet effective radius, and LCF 

(liquid cloud fraction) for all four seasons and for our 50o x 50o study domain. Klein and 

Hartmann [1993] used surface-based cloud climatology and showed that there is strong 

seasonal variability in the amount of stratus clouds, and that the seasonal cycle of Sc cloud 

amount is closely tied to the seasonal cycle of static stability. For the South Atlantic Sc 

region, the maximum static stability is observed during SON and the minimum in February. 

They also revealed from the Earth Radiation Budget Experiment that the strongest net cloud 

forcing occurs during the months of August through November. Thus, it is important to 
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examine the seasonal variability of these clouds throughout the year, as it alters the earth’s 

radiation budget directly through net cloud forcing. The annual and seasonal mean maps of 

SEVIRI and TMI LWP and their biases (shown in Figures 4.11-4.12) are calculated only for 

no ice and no rain conditions to minimize obvious first order errors. Overall, the SEVIRI 

mean LWP is much lower compared to the TMI mean LWP except over the South Atlantic 

Sc region, regardless of seasons. Over the marine Sc domain, both SEVIRI VNIR and TMI 

microwave retrieval techniques show very good agreement, but often with a very small 

SEVIRI overestimation. This SEVIRI overestimation over the Sc domain is much smaller 

compared to the MODIS overestimation in this domain compared to AMSR-E LWP (see 

AMSR-E-MODIS LWP bias map of Seethala and Horváth, 2010 or Chapter 3). The possible 

reason for the better agreement between TMI and SEVIRI was discussed in the previous 

section. It is clear that, in JJA and SON, the SEVIRI retrievals seem to highly underestimate 

LWP over the Sc region, due to the presence of large amounts of absorbing aerosols. Over 

this Sc domain optical thickness varied from 6 to 10, and the effective radius varied from 7-

11. The cloud thickness differs from season to season with annual mean of 350 m.   

The worst agreement in retrieved LWP between the two techniques is observed over 

the trade wind Cu regime. TMI is retrieving higher LWP compared to SEVIRI. The observed 

discrepancy might be due to the fact that both VNIR and microwave techniques are less 

accurate in low cloud fraction scenes for the following reasons: (a) There is a known TMI 

positive clear-sky bias which could also be representative of more broken fields, (b) The 

performance of the SEVIRI cloud mask is unknown, and the cloud mask algorithm is more 

similar to MODIS; but Zhao and Di Girolamo [2006] showed that with a 15-m-resolution 

cloud mask, MODIS agreed only 62% of the time in trade wind Cu, thus, cloud detection 

problems in SEVIRI might partly explain this low LWP bias, (c) 3D radiative effects 

(solar/view angle effects) are larger over the more broken trade wind Cu, although we found 

negligible solar zenith angle effect in SEVIRI retrievals (see Section 4.6), (d) SEVIRI may 

underestimate optical thickness due to the nonlinear relationship between visible reflectance 

and optical thickness in broken scenes, (e) Underestimation in SEVIRI optical thickness as 

the retrievals are performed also for partially cloudy scenes (and not applying clear-sky 

restoral like MODIS does), and, (f) for thin clouds of cloud optical thickness below 8, 

SEVIRI CPP algorithm weighs re towards the re-climatology of 8 µm which can 

underestimate the true re and hence LWP. In general, over the broken cloud scenes the optical 

thickness is below 5 with large number of CDNC and larger droplet effective radii (>11 µm) 

than over the Sc regime. 
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a)  b)  c) 

d)  e) f) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Annual mean of (a) TMI LWP, (b) SEVIRI LWP, (c) (TMI – SEVIRI) LWP 

bias, (d) cloud optical thickness, (e) effective radius, and (f) liquid cloud fraction. (The 

black contour denotes the 75th percentile of cloud fraction over the study domain.) 

 

Figure 4.13 depicts the monthly/seasonal variation in cloud fraction. We can notice 

from the cloud fraction map that the distribution and amount of South Atlantic Sc deck is 

varying from season-to-season or more precisely month-to-month.  In SON, we observe a 

huge amount of these clouds with large spread. In JJA there are relatively less clouds and 

they are shifted a bit to the north. Lower cloud fraction is seen in MAM, however the lowest 

fraction is observed in DJF. The results are in agreement with Klein and Hartmann [1993] 

who showed that the season of maximum stratus clouds is associated with the season of 

greatest lower-tropospheric static stability. From their study over South Atlantic Sc region 

SON showed largest LTS and DJF showed smallest. They also inferred that a 6% increase in 

stratus fractional area coverage is associated with a 1oC increase in static stability. 
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Figure 4.12. Seasonal mean of TMI LWP (left column), SEVIRI LWP (middle column), 

(TMI – SEVIRI) LWP bias (right column), for JJA (top row), SON (second row), DJF 

(third row), and MAM (bottom row). 
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Figure 4.13. Monthly mean variation in liquid cloud fraction for June 2008 through May 
2009. 
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4.3.4. Diurnal Cycle of TMI LWP and SEVIRI CPP 

We examine the diurnal cycle of cloud properties over the entire South Atlantic 

domain, the Sc domain and the trade wind Cu domains. Despite occurring over the oceans in 

regions of large scale subsidence, marine Sc shows an interesting diurnal variation [Minnis 

and Harrison, 1984]. Over the extensive marine Sc regime, regardless of season, both TMI 

and SEVIRI LWP decrease with time from sunrise to sunset, and thereafter slight increase as 

shown in Figures 4.15-4.19. The figures shown here are only for aerosol neglected pixels, to 

avoid misinterpretations related to retrieval errors caused by aerosols (see Section 4.1). Our 

results are consistent with Wood et al. [2002] who also studied the diurnal variation in LWP 

over the South Atlantic Sc region, based on two complete years of TMI data and found 

similar diurnal features. However, there are many other scientists who contributed their effort 

in investigating the diurnal cycle of Sc clouds which occurs over other parts of globe. 

Notably, Blaskovic et al. [1990] evaluated the diurnal cycle of North-East Pacific Sc clouds 

off the California coast from the observations taken during FIRE. Their results indicated that 

cloud thickness and liquid water path exhibit a clear decrease during the day from sunrise to 

sunset, increasing thereafter. The decrease in LWP is associated with the decrease in cloud 

thickness. The cloud base height has diurnal range of (150+/-30) m, rising from sunrise till 

mid-afternoon. The cloud top height has a similar diurnal range of (130+/-30) m, but the main 

descent occurs in the late afternoon. Surface air temperature also increases at sunrise, directly 

in phase with the cloud base lifting, and has a diurnal range of 2oC. Ciesielski et al. [2001] 

evaluated the diurnal variation of North Atlantic Sc clouds from the Atlantic Stratocumulus 

Transition Experiment (ASTEX), his results showed that fractional low cloudiness varies 

over this region from a maximum of 54% in the predawn hours to a minimum of 39% in the 

mid-afternoon. These changes in low cloudiness are accompanied by an opposite trend in the 

boundary layer moisture, which shows a predawn drying and an afternoon moistening. 

Duynkerke et al. [2004] compared the diurnal variation in the cloud liquid water path from 

six LES models and the observed data from FIRE, and found a fair agreement between them. 

Their analysis revealed that the diurnal variation in the cloud liquid water path is related to 

the transition from a decoupled boundary layer during daytime to a vertically well-mixed 

boundary layer during night. The observed diurnal cycle of Sc is characterized by a cloud 

layer which gradually thickens during night, whereas during the day, the cloud layer thins due 

to SW radiative absorption and decoupling. The latter state is characterized by slightly 

negative buoyancy fluxes and a minimum vertical velocity variance near the cloud base. This 
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implies that surface-driven, moist thermals cannot penetrate the cloud layer, while 

entrainment maintains a steady supply of relatively warm and dry air from just above the 

inversion into the cloud layer. This results in a distinct diurnal cycle of the LWP, which has 

minimum values during the day. During the night the vertical velocity variance has one single 

peak near the middle of the boundary layer. Moreover, the diurnal cycle in SEVIRI LWP is 

mainly driven by the cloud optical thickness rather than by the droplet effective radius, which 

shows less variability. Cloud optical thickness shows a sharp decrease of ~6 from morning 

(τ=10) to evening (τ=4) in annual mean results. However individual seasons show even a 

decrease of ~10 in optical thicknesses (SON) from morning to late afternoon.  MODIS 

Terra+Aqua optical thickness values (green stars) are also shown in Figures 4.15-4.19. 

MODIS also shows a decrease in optical thickness from morning to afternoon, however less 

pronounced than SEVIRI. The SEVIRI effective radius and droplet concentration did not 

show much variability during the day. MODIS optical thickness and effective radius values 

are always higher than SEVIRI values, with optical thickness of magnitude 1 difference and 

effective radius of ~3 µm difference. MODIS Terra LWP is in very good agreement with 

SEVIRI and TMI in terms of magnitude, however MODIS Aqua LWP underestimates 

SEVIRI and TMI values. This Aqua-MODIS underestimation is mainly due to a lower cloud 

fraction, as we scale SEVIRI and MODIS LWP by their liquid cloud fraction in order to 

compare with TMI domain means. (Note that if we compare in-cloud LWP, MODIS is higher 

than SEVIRI, and this issue is explained in detail in the next section.) Compared to SEVIRI, 

Aqua-MODIS has ~40% lower cloud fraction while Terra-MODIS agrees within 10%. The 

large difference in cloud fraction in Aqua-MODIS and SEVIRI could be a consequence of 

MODIS clear-sky restoral (i.e., retrieval only over confident cloudy pixels), together with 

larger SEVIRI pixel size. Finally, to represent the entire diurnal cycle, we have plotted TMI 

LWP (grey curve) which includes both day and night, which clearly represents the observed 

daytime diurnal cycle and also the variation during night.  

Again, the diurnal cycle in LWP consistently follows the variation in the cloud 

fraction as well. This result is further consistent with Fairall et al. [1990] who stated that the 

cloud fraction is maximum at sunrise (0.74) and minimum at sunset (0.41) with a maximum 

cloud albedo of 0.61 at sunrise and a minimum value of 0.31 a few hours after local noon.  

Zuidema and Hartmann [1995] stated that the stratus cloud LWP is correlated with cloud 

amount and is negatively correlated with low cloud-top temperature. They also inferred that 

no correlation is observed between effective radius and liquid water path, as larger drops are 

found in the evening and not in the morning, along with lower LWPs and lower albedos. In 
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our study the occurrence of maximum LWP is between 07 and 09 UTC, but it highly varies 

with season. The diurnal range in LWP is 60-75% which is fairly high compared to previous 

studies. Wood et al. [2002] reported a diurnal amplitude of 15-35% in low cloud regions to 

the west of continents using TMI data, Zuidema and Hartmann [1995] obtained only a 25% 

variation in LWP using SSM/I data. However, Fairall et al. [1990] found larger values of 60-

70% using a 17 day period of near-continuous ground based microwave radiometer data 

around the time of FIRE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Annual mean diurnal cycle of cloud properties averaged over the entire South 

Atlantic domain (AI<1). 
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Figure 4.15. Annual mean diurnal cycle of CPP over the South Atlantic Sc domain.  
 

 The diurnal variation of TMI and SEVIRI liquid water path is in good agreement 

within ±5 g m-2, in the aerosol unaffected seasons and also in the annual basis. In JJA and 

SON, even if we eliminate aerosols affected pixels with AI≥1, the diurnal cycle agreement is 

within ±10 g m-2 only, which is mainly due to a strong underestimation of ~15-20 g m-2 in 

SEVIRI LWP. This is due to the fact that τ and re decrease due to the effect of absorbing 

aerosols above these clouds. This implies that removing the pixels with AI≥1 eliminates only 

part of the LWP bias and hence that the influence of aerosols is still present in the data. Our 

analysis indicates that considering another aerosol index threshold of 0.25 leads to much 

better results and smaller biases.  
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Figure 4.16. JJA mean diurnal cycle of CPP over the South Atlantic Sc domain.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.17. SON mean diurnal cycle of CPP over the South Atlantic Sc domain.  
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Figure 4.18. DJF mean diurnal cycle of CPP over the South Atlantic Sc domain.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.19. MAM mean diurnal cycle of CPP over the South Atlantic Sc domain.  
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Figure 4.20. Annual mean diurnal cycle of CPP over the trade wind Cu regime. 
 

Figures 4.20-4.21 show the annually and seasonally averaged diurnal cycle of cloud 

properties in the trade wind Cu regime. Over the trade wind Cu, we can observe different 

diurnal cycle with season; however, both the SEVIRI and TMI LWP show similar variability, 

but with a relatively large bias of 10-40 g m-2. This large LWP bias might be partly due to 

SEVIRI underestimation and partly due to TMI overestimation. Nevertheless, it is interesting 

to notice a diurnal cycle (eventhough they differ from season to season) over the trade wind 

cumulus clouds and which is evident in TMI data (grey curve) as well. Finally, we have 

evaluated the diurnal cycle of liquid clouds over the entire South Atlantic domain as given in 

Figure 4.14. The LWP decreases mainly during day till late noon and then increases slightly. 

Both TMI and SEVIRI LWP agree within 10 to 30 g m-2, but with SEVIRI underestimation. 

Similar variations in diurnal cycle are observed in the optical thickness while the trend is not 

clear for the droplet effective radius. When we consider the entire domain we still see a clear 
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diurnal cycle in annual mean LWP which is mainly due to the diurnal cycle in optical 

thickness. Similar variations are seen in cloud fraction and cloud thickness. The effective 

radius and droplet number concentration remain constant during the day, as expected.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.21. Seasonal mean diurnal cycle of CPP over the trade wind Cu regime during JJA 

(top row), SON (second row), DJF (third row), and MAM (bottom row).  
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4.3.5. Cloud Fraction Dependency of TMI and SEVIRI LWP 

Cloud fraction is an important factor which can introduce errors in both VNIR and 

microwave retrievals, and the cloud retrievals are largely affected when the pixel/footprint is 

not completely overcast. The cloud fraction is calculated from SEVIRI valid liquid pixels 

within the TMI grid box. Most of the grid boxes show the calculated cloud fraction > 95%, 

which is due to coarse SEVIRI (3 km) resolution. The LWP increases with the cloud fraction 

in both TMI and SEVIRI; the TMI-SEVIRI LWP bias decreases with increasing cloud 

fraction. When the cloud fraction is >95%, TMI and SEVIRI show a better agreement in 

retrieved LWP, with bias ~ -6 g m-2. The bias between AMSR-E and MODIS amounts to ~31 

g m-2 in the most broken cloud scenes with cloud fraction 0-5% bin [Seethala and Horvath, 

[2010], Figure 4.4]. Unlike in the AMSR-E and MODIS comparison, TMI and SEVIRI show 

a smaller LWP bias of (~10 g m-2) in the 0-5% cloud fraction bin. The optical thickness, 

effective radius and droplet number concentration also increase with the cloud fraction 

(figure not shown). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.22. Cloud fraction dependence of annual mean cloud properties for the entire South 

Atlantic domain. 
 

4.3.6. Solar Zenith Angle Dependency on SEVIRI LWP 

 The 3D effect at large solar zenith angle is a dominant source of error in VNIR 

retrievals. In this section we discuss the solar zenith angle dependence of SEVIRI cloud 

properties. TMI uses microwave technique and hence is not subject to this problem. Figure 

4.23 gives TMI and SEVIRI cloud properties as a function of solar zenith angle. There is an 

increase in LWP with sun angle however this increase is observed in both TMI and SEVIRI. 

Hence this would be a real increase rather than an increase due to the 3D effect. The bias 

between TMI and SEVIRI is also very small and within ±5 g m-2. The SEVIRI increase in 
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LWP with sun angle is associated with an increase in cloud optical thickness. The droplet 

effective radius shows least variation with sun geometry. However CDNC shows an increase 

with solar geometry. In our previous study Seethala and Horvath [2010] (see Figure 4.8b) 

and many other studies reported a sharp increase in MODIS LWP with solar zenith angle 

compared to AMSR-E LWP based on microwave technique. The difference between SEVIRI 

and MODIS is that MODIS retrievals are done at 1 km resolution, whereas SEVIRI uses 3 

km pixel resolution. This would imply that 3 km scale SEVIRI retrievals is least affected by 

3D effects at large solar zenith angle likely due to cancellation of errors. 

 

 

 

 

 

 

 

 

 

Figure 4.23. Annual mean solar zenith angle dependence in SEVIRI LWP over the entire 

South Atlantic domain 

 

4.4. Comparison of SEVIRI versus MODIS CPP 

Geostationary imagers sample at a coarser resolution than polar imagers. Thus 

SEVIRI cloud properties are retrieved at 3 km resolution but the MODIS retrievals are done 

at 1 km resolution. A coarser resolution gives rise to systematic biases in the derived cloud 

physical properties, especially when the cloud field is heterogeneous. Moreover, most of the 

SEVIRI pixels within TMI grid boxes have a cloud fraction ≥ 0.95, which is primarily due to 

the SEVIRI coarser resolution. Henrich et al. [2010] reported that 1 km pixel area seems least 

biased in the retrieval of optical thickness. Thus, to investigate the pixel size effect (sub-pixel 

scale variability) on SEVIRI retrieved cloud properties, we compare them with the high 

resolution MODIS retrievals. Comparison is done on monthly, seasonal, and annual means, 

however the results are shown here only for the annual means. The analysis is done in two 

steps (1) considering all the pixels (total sky) and (2) considering fully overcast pixels i.e., 

pixels with 100% cloud fraction in MODIS and SEVIRI at a 25 km resolution.  
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4.4.1. Total Sky SEVIRI and MODIS CPP  

 We discuss here certain features of SEVIRI and MODIS cloud properties such as 

liquid cloud fraction, LWP, cloud optical thickness, droplet effective radius, and their bias 

and relative biases. The annual mean cloud fraction varies from 30-100% in SEVIRI and 0-

70% in MODIS retrievals. Over the extensive marine Sc region the cloud fraction is >75% in 

SEVIRI but only 50-70% in MODIS. The larger cloud fraction in SEVIRI retrievals is mainly 

the outcome of clear-sky restoral for MODIS and larger pixel size for SEVIRI. The mean 

optical thickness over Sc region is 6-8 in SEVIRI and 7-9 in MODIS, whereas over the more 

broken trade wind Cu regime MODIS values are 6 to 8 but SEVIRI mean optical thickness 

value is <5. Thus there is a difference of 1-1.5 in optical thickness between both datasets over 

Sc domain and larger difference in optical thickness over broken fields.  

Small optical thickness values would introduce lower retrieved effective radii for 

SEVIRI as the CPP algorithm weighs re towards the re-climatology of 8 µm, while MODIS 

provides actual retrieved values. Moreover SEVIRI effective radius is retrieved from the 1.6 

µm channel reflectance while MODIS retrieves effective radius at 1.6 µm, 2.2 µm, and 3.7 

µm wavelengths. The 3.7 µm channel samples mostly the top layer of clouds, the 2.2 µm 

channel samples a little deeper than the 3.7 µm channel and the 1.6 µm channel samples 

further deeper although all three channels sample near the top of clouds due to the weighting 

function. SEVIRI and MODIS LWP are deduced from their respective optical thickness and 

effective radius, however SEVIRI uses optical thickness at 0.6 µm and effective radius at 1.6 

µm channel reflectance, whereas MODIS uses optical thickness from 0.8 µm channel over 

ocean and effective radius from 2.2 µm channel reflectance. So we discuss MODIS effective 

radius at 1.6 µm and 2.2 µm and SEVIRI re at 1.6 µm. Over Sc re varies from 9 – 13 µm in 

both MODIS channels with the 2.2 µm values slightly larger than the 1.6 µm ones, whereas 

SEVIRI re varies from 8 µm to 10 µm. Thus, there is a difference of 2 µm to 4 µm in re 

between SEVIRI and MODIS. Over thin trade Cu regimes MODIS re is larger than 15 µm but 

SEVIRI re is between 12 µm to 14 µm.  The relative bias in re is also less than 40% over Sc 

regime and larger than 70% over trade Cu regime.  

Based on optical thickness and effective radius retrievals, the calculated SEVIRI LWP 

varies from 40-70 g m-2 and MODIS LWP varies from 50-90 g m-2 over the Sc regime. The 

mean bias is ~15 g m-2. Overall SEVIRI LWP is smaller compared to MODIS LWP and the 

LWP bias is much larger over more broken clouds. 
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a) b) 

 
 

 

 

 

 

 

 

Figure 4.24. Annual mean liquid cloud fraction of (a) SEVIRI, and (b) MODIS. 

 
4.4.2. Overcast Sky SEVIRI and MODIS CPP 

 In the overcast analysis we consider only those pixels with 100% cloud fraction in 

SEVIRI and MODIS retrievals. The SEVIRI annual mean LWP is ~100 g m-2 and MODIS 

mean value is ~120 g m-2. The spatial pattern of both SEVIRI and MODIS LWP agrees very 

well with each other but with MODIS LWP being ~10-20 g m-2 higher than SEVIRI. The 

relative bias varies from 10-40%. The optical thickness mean value is 14 in both SEVIRI and 

MODIS and almost no bias is observed, especially over Sc. The relative bias is also less than 

4% except for very few points. Comparison of re from MODIS 1.6 µm and 2.2 µm channels 

reveals a difference in re of 1-2.5 µm over the marine Sc regime. Similarly comparing re from 

SEVIRI 1.6 µm channel and MODIS 2.2 µm channel also reveals a 1.5-3.5 µm difference 

over the main Sc domain. The larger re difference of 2.5 µm (MODIS 1.6 µm vs. 2.2 µm) or 

3.5 µm (SEVIRI 1.6 µm vs. MODIS 2.2 µm) is mainly observed over the smoke regions. 

Very good agreement, with re differences below 1, is observed between SEVIRI 1.6 µm and 

MODIS 1.6 µm. Moreover the relative re difference between MODIS 2.2 µm and SEVIRI 1.6 

µm channel is  ~15-35% and that of MODIS 1.6 µm vs. SEVIRI 1.6 µm is smaller than 10%. 

Thus, in a mean sense, the use of 2.2 µm channel retrieved re in LWP calculation in MODIS 

would increase the LWP to ~20% compared to SEVIRI LWP (as there is no considerable 

difference in optical thickness, the difference is only from re). From Wood and Hartmann 

[2006], Greenwald [2010], Borg and Bennartz [2007], Seethala and Horvath [2010] it is 

clear that MODIS operational LWP is larger over Sc compared to microwave measurements 
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a) b) 

c) d) 

and this overestimation is eliminated by applying sub-adiabatic correction to the MODIS 

values, which is simply a 17% reduction to the MODIS standard LWP. We have already seen 

unbiased mean LWP between TMI and SEVIRI (refer Section 4.3.3). This might be due to 

the fact that SEVIRI uses 1.6 µm re, which will automatically reduce LWP by ~20% 

(compared to standard MODIS), and hence it is not necessary to apply the adiabatic 

correction as in MODIS. So, SEVIRI LWP can be directly compared with adiabatic MODIS 

LWP over this Sc regime.    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.25. Annual mean liquid water path of (a) SEVIRI, (b) MODIS, (c) MODIS - 

SEVIRI, (d) (MODIS – SEVIRI)/SEVIRI for overcast sky. 
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Figure 4.26. Annual mean optical thickness of (a) SEVIRI, (b) MODIS, (c) MODIS - 

SEVIRI, (d) (MODIS – SEVIRI)/SEVIRI for overcast sky 

 

 

 

 

a) b) 

c) d) 
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Figure 4.27. Annual mean droplet effective radius of (a) SEVIRI (1.6 µm), (b) MODIS (1.6 

µm), (c) MODIS (2.2 µm), (d) MODIS (1.6 µm) – SEVIRI (1.6 µm), (e) MODIS (2.2 µm) 

–SEVIRI (1.6 µm), (f) MODIS (2.2 µm) - MODIS (1.6 µm), (g) [MODIS (1.6 µm)-

SEVIRI (1.6 µm)]/ SEVIRI(1.6 µm), (h) [MODIS (2.2 µm)-SEVIRI (1.6 µm)]/ 

SEVIRI(1.6 µm), and (i) [MODIS (2.2 µm)-MODIS (1.6 µm)]/ MODIS(1.6 µm) for 

overcast sky. 
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4.4.3. Mean Statistics of LWP from SEVIRI and MODIS  

 Figure 4.28 shows the statistics between SEVIRI and MODIS over Sc domain for 

February 2009. Mean SEVIRI LWP is 60 g m-2 and is ~19% lower compared to MODIS 

LWP with a bias of 13.54 g m-2. If one applies adiabatic correction to MODIS LWP the bias 

disappears. Thus there is a very good agreement between SEVIRI and MODIS LWP is 

confirmed by a high correlation of 0.93.  

 

 

 

 

 

 

 

Figure 4.28. SEVIRI versus MODIS LWP statistics over Sc regime in February 2009. 

4.5. Summary 

The objective of this chapter was to evaluate the diurnal cycle of South Atlantic 

marine boundary layer clouds and its seasonal variability using cloud microphysical and 

optical properties from SEVIRI VNIR measurements, as well as cloud liquid water path from 

TMI microwave observations. In general, SEVIRI and TMI showed very good agreement for 

instantaneous and domain mean LWPs in the Sc regime, while the agreement in the trade 

wind Cu regime was worse. Spatial distributions showed a high correlation of ~0.9 for Sc 

regime and negligible bias on seasonal and annual basis.  

We investigated the influence of absorbing aerosols over the Sc domain using aerosol 

index obtained from OMI. Interestingly, both TMI and SEVIRI LWP increased with AI, but 

the TMI increase was considerably larger. This was because absorbing aerosols above liquid 

clouds introduced substantial negative retrieval biases in optical thickness and droplet 

effective radius and, hence, in the deduced SEVIRI LWP. This SEVIRI LWP bias increased 

with AI and could be as large as 40 g m-2 in instantaneous retrievals. Neglecting aerosol 

affected pixels with AI>1, the domain mean TMI-SEVIRI LWP bias could be either 
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completely removed (SON) or at least reduced by half (JJA). Overall, a positive correlation 

between AI and LWP was seen, which could be due to (i) simple spatial correlations, that is, 

both aerosol load and cloud optical thickness increased toward the coast or (ii) aerosols 

actually thickening the underlying cloud layer through dynamical processes.  

The diurnal cycles of TMI and SEVIRI LWP were in good agreement within ±10 g m-

2 in all seasons except JJA and SON. In JJA and SON, larger LWP biases of ~15-30 g m-2 

were observed due to SEVIRI underestimation of LWP in the presence of absorbing aerosols. 

After neglecting aerosol affected pixels in JJA and SON the calculated bias in diurnal cycle 

was reduced to less than ±10 g m-2. Irrespective of season, both TMI and SEVIRI LWP 

decreased from morning to late afternoon and thereafter a slight increase was observed. Prior 

to sunrise clouds were thicker and as the day progressed the cloud layer got thinner due to the 

absorption of solar radiation and associated decoupling of the sub-cloud layer. The variation 

in SEVIRI LWP was mainly due to change in cloud optical thickness/cloud physical 

thickness as both droplet effective radius and droplet number concentration showed only 

small diurnal variability. 

The largest disagreement was observed over trade wind Cu, due to the deficit in both 

microwave and VNIR measurement techniques in the low cloud fraction scenes. However, 

SEVIRI and TMI showed similar variations in diurnal cycle of LWP but with a constant large 

bias of ~20 g m-2 (TMI being higher than SEVIRI). The responsible factors for this large bias 

could be: a known positive clear-sky bias of 12-15 g m-2 and cloud-rain partitioning error in 

Wentz’s microwave algorithm together with microwave less sensitive to low LWP at 37 GHz 

affecting TMI retrievals; and cloud mask uncertainties, plane-parallel bias, and 3D effects in 

broken scenes affecting SEVIRI retrievals. We also found that in our study region and at the 

~3 km scale of SEVIRI, the VNIR retrievals were rather unaffected by 3D radiative effects at 

large solar zenith angles. 

Finally we have evaluated the sub-pixel scale variability in SEVIRI retrievals based 

on MODIS Terra+Aqua retrievals. Very good agreement between SEVIRI and MODIS was 

observed with correlation ≥0.9 in the fully overcast cases. However, over all cloudy cases, 

SEVIRI showed a considerably lower LWP than MODIS. We also found that with the use of 

the 1.6 µm channel effective radius no adiabatic correction to the SEVIRI LWP for Sc clouds 

appeared to be needed to compare it with the microwave retrievals. In contrast, for MODIS 

LWP retrievals based on the 2.2 µm channel retrieved effective radius, an adiabatic 

correction factor of 5/6 should be applied. 
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Chapter 5 

Quantifying Uncertainties in 1D VNIR Cloud Retrievals Using               

LES Cloud Fields and SHDOM Radiative Transfer Model 

 

This chapter is dedicated to quantify the uncertainties in one-dimensional visible/near-

infrared satellite cloud retrievals from hundreds of large-eddy simulated cloud fields and a 

3D radiative transfer model. To do so, we have investigated the 1D visible/near-infrared 

cloud retrievals of ~650 LES cloud fields consisting of stratocumulus, unbroken stratus, and 

broken shallow cumulus clouds. In a plane-parallel model, visible and near-infrared radiances 

increased with view zenith angle at low Sun, and the increase is 2–3 times larger in the 

forward scattering direction than in the backscatter direction; however, for high Sun, these 

radiances decreased with view zenith angle. A case study revealed that the Sc clouds follow 

this plane-parallel theory very well. However, for a broken shallow Cu cloud, the increase in 

radiance with VZA is less pronounced, and the visible radiances underestimated the plane-

parallel ones. The plane-parallel model radiances decreased from medium to larger values of 

solar zenith angle, however, 3D radiances increased with SZA. This increase is larger in both 

the Sc and the shallow Cu field, except that for the shallow Cu fields radiances strongly 

underestimated the plane-parallel ones at high Sun. The 1D VNIR cloud property retrievals 

were done at the native and also at the 1 km horizontal resolution for ~650 cloud fields. 

Initially, the analysis is performed at the pixel-level. The most-homogeneous one-third of the 

clouds exhibited narrow Gaussian distribution, but skewed negatively, indicating the 

overestimation in retrieved LWP. Roughly 40-60% of the data showed the relative LWP bias 

within ±15% depending on SZA. However, the most-heterogeneous one-third of the clouds 

showed much wider distribution with more than one peak, but skewed negatively, and only 

10-25% of data are within ±15% relative bias. Then, the domain mean cloud properties are 

investigated. For the homogeneous clouds the domain mean retrieved LWP did not show any 

variability with solar zenith angle or with view zenith angle, and the retrievals are agreed to 

the true LES values within the 5-10% relative error. However, for the heterogeneous clouds 

an increase in retrieved LWP with SZA is observed. While comparing with true LES values, 

the retrieved LWP underestimated 20-30% in high and medium Sun, agreed at 60o Sun angle, 

and strongly overestimated (LWP doubles) at 70o solar zenith angle. The retrieved LWP 

decreased with the view zenith angle, and the decrease is largest in the forward scattering 

direction, and is less pronounced in the backscatter direction. For the homogeneous clouds, 
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the domain mean relative LWP bias is within ±10% for most of the Sun-view geometries, 

however for the heterogeneous clouds, the relative bias goes to 40% when the solar zenith 

angle is below 60o and above which large bias is observed. We examined the optimal Sun-

view geometry for minimum (min) cloud optical thickness retrieval bias. When the min bias 

is binned according to view zenith angle, maximum (max) of min bias is seen in 30o (in total 

83% of clouds showed min bias in altogether 30o, 45o, 60o VZA). When the min bias is 

binned according to the view azimuth angle, 70% of clouds showed min bias in the 

side/backscatter direction. In terms of SZA, the max no. of clouds showed min bias at 60o, 

which is mainly due to the cancellation of errors due to the frequent occurrence of cloud 

illuminated and shadow side viewing in the heterogeneous clouds.  

  

5.1. Introduction 

Satellite remote sensing is such a complex task that until now it could be done only by 

using one-dimensional (1D) radiative transfer theory, which assumes that the cloudy pixels 

are fully covered by horizontally homogeneous clouds and the pixels’ radiative properties are 

not affected by cloud variability in nearby areas, i.e., the clouds as plane-parallel. By 

assuming clouds and their radiative boundary conditions to be plane‐parallel, the transfer of 

solar radiation is greatly simplified to one‐dimension (the vertical). Based on Nakajima and 

King [1990] cloud optical thickness (τ) and droplet effective radius (re) can be estimated from 

satellite measured visible and near-infrared (VNIR) radiances. This makes radiative transfer 

calculations computationally fast and solutions to the inverse problem faced in satellite 

remote sensing tangible. However, a simple look at clouds, either from the ground or from an 

aircraft, reveals that they are often not horizontally homogenous, and occur with a wide 

variety of shapes and sizes that have obvious three-dimensional (3D) characteristics, and one 

might reasonably expect there to be many discrepancies between 1D and 3D approaches. A 

few major issues which can cause considerable bias in 1D VNIR satellite cloud retrievals are: 

(1) nonlinear averaging of sub-pixel heterogeneity, (2) the effect of cloud sides, illuminated 

versus shadowed side viewing, (3) cloud top structure, and (4) internal cloud heterogeneity. 

Using MISR (Multiangle Imaging SpectroRadiometer) data Girolamo et al. [2010] showed 

that the view‐angular distribution of the retrieved τ measured at 1 km resolution are 

indistinguishable from plane‐parallel clouds 79% of the time for the oceanic stratiform clouds 

when solar zenith angle below 60o, for all other cloud types and Sun angles the frequency in 

which clouds are indistinguishable from plane‐parallel drops sharply to as low as a few 
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percent. With regard to the horizontal distribution of the cloud water content, neglecting the 

heterogeneities can lead to an underestimation of the mean τ by 30% even for flat overcast 

cloud layers [Cahalan, 1994]. This departure from the homogeneous plane-parallel model 

can be highly enhanced because of cloud-top height variations [Loeb et al., 1998]. The 3D 

effects really are important in the interpretation of high-resolution measurements [Marshak et 

al., 1995], and in the cases of highly oblique solar or viewing directions [Loeb and Davies, 

1996; Buriez et al., 2001]. 

Over the years there are many researchers focused on addressing the issue: does 1D 

radiative theory gives accurate results in satellite remote sensing? and found that under 

certain conditions 3D effects can cause significant problems. Specifically, they revealed that 

the 3D effects can make clouds appear too smooth or too rough [Marshak et al., 1995; Davis 

et al., 1997; Oreopoulos et al., 2000b], too bright and thick [Loeb and Davies, 1996; Loeb 

and Coakley, 1998], and artificially asymmetric [Várnai and Marshak, 2002a, 2002b, 2007]. 

Using MISR observations, Horváth and Davies [2004] showed that the angular pattern of 

cloud reflection rarely fits the expectations based on the plane-parallel approximation. 

Examining data from the Earth Radiation Budget Experiment (ERBE), the Advanced Very 

High Resolution Radiometer (AVHRR), and the Polarization and Directionality of the Earth’s 

Reflectances (POLDER), some other studies [Loeb and Davies, 1997; Loeb and Coakley, 

1998; Buriez et al., 2001] found that for low Sun, the 3D interactions such as shadowing 

make clouds appear too dark from oblique views facing the Sun, and that this causes 1D 

retrievals to underestimate τ. Zuidema et al. [2003] found that in highly inhomogeneous 

cumulus (Cu) congestus clouds, oblique backscatter reflectances observed by MISR exceeded 

3D radiative transfer calculations based on cloud structure retrieved from the nadir camera 

using the plane-parallel approximation. Marchand and Ackerman [2004] found that 

stratocumulus (Sc) reflection in backscatter direction was stronger in MISR observations than 

in 1D/2D simulations for cloud structures derived from a variety of ground-based and 

satellite observations. Finally, theoretical studies [Davies, 1984; Bréon, 1992; Kobayashi, 

1993] also indicated that cloud inhomogeneities can enhance reflection through cloud sides 

into oblique side scatter directions relative to cloud reflection into overhead direction. Using 

1 km MODIS observations, Várnai and Marshak [2003] revealed that 1D retrievals yield 

systematically higher cloud optical thickness values when clouds are viewed from backscatter 

directions, and their distributions increased by up to 30%. In fact, all these studies explore the 

importance of Sun-view geometry in the 3D cloud fields and these uncertainties remains 

significant even if the retrievals are averaged over intermediate scales [Loeb et al., 1997; 
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Várnai and Marshak, 2001], although it disappears in very large scale of MODIS level3 

(1ox1o) monthly mean regional or global maps (Maddux [2010]).  

The studies clearly showed that cloud heterogeneity is a significant problem when 

attempting a 1D retrieval of a cloud property such as optical depth. What is less clear, 

however, is how to quantify the frequency and degree of cloud heterogeneity on a global 

scale, in order to understand the errors introduced by the non-critical applications of 1D 

radiative transfer theory. Satellite-based remote sensing of clouds is clearly an ill-posed 

problem, and an accurate retrieval should never be expected. Unless 3D effects are 

parameterized [Iwabuchi and Hayasaka, 2002; Wyser et al., 2002], implementing a 3D 

radiative transfer algorithm in the cloud property retrieval is not practical because it is 

computationally far too expensive and the 3D cloud fields in the actual retrieval process are 

not known. Recently, a few cloud retrieval methods have been proposed that explicitly take 

cloud inhomogeneity and 3D radiative transfer into account for Sc clouds [Iwabuchi and 

Hayasaka, 2003; Cornet et al., 2004; Marchand and Ackerman, 2004; Zinner et al., 2006; 

Evans et al., 2008]. Cornet et al. [2004] simulated multispectral, single-angle radiances from 

hundreds of stochastic clouds with 3D radiative transfer and performed retrievals of the mean 

and standard deviation of τ and re with neural networks. Using stochastic cloud fields and 

Monte Carlo radiative transfer Iwabuchi and Hayasaka [2003] developed a multi-regression 

model to retrieve mean τ and re from the radiance of the target pixel and neighboring pixels at 

two wavelengths. Marchand and Ackerman [2004] developed a technique for retrieving a 3D 

field of Sc liquid water content from AirMISR data using 3D radiative transfer. Zinner et al. 

[2006] developed a technique to retrieve 3D Sc cloud properties from an adiabatic model and 

high-resolution (15 m) radiance data based on the Green’s function deconvolution idea of 

Marshak et al. [1998]. Evans et al. [2008] applied ensemble neural network approach similar 

to Cornet et al. [2004], but with the multi-angular data, to retrieve τ from simulated MISR 

data. They calculated the datasets relating statistics of simulated MISR reflectances and true τ 

from hundreds of LES scenes for a variety of Sc clouds, broken marine trade Cu, and fair-

weather Cu, and thereby retrieved the mean and standard deviation of τ over various size 

pixel patches from the mean and standard deviation of reflectances from seven MISR 

cameras. All these approaches found a substantial improvement in the retrieval accuracy; 

however, these novel methods are not yet ready for the operational use.  

A few researchers recognized that selection of preferred Sun-view geometry, 

however, can significantly reduce this 3D error. A theoretical analysis by Davies [1984] 

showed that the reflection functions of horizontally extensive (stratiform) and horizontally 
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limited (cumuliform) clouds are generally quite different, and also, that both the nadir and 

limb viewing directions should be avoided, with the best choice being the measurement of 

radiances with view zenith angles (VZAs) close to 60o. He further suggested that, for 

situations with large potential azimuthal dependence, as for large solar zenith angles (SZAs), 

the preferred azimuthal viewing directions appear to be approximately 90o or 270o with 

respect to the solar plane. Loeb and Davies [1996] highlighted application of 1D theory to the 

remote sensing of cloud optical thickness from measurements at nadir should therefore be 

restricted to thin clouds and small SZAs. Minnis [1989] revealed that cloud side viewing 

must occur frequently, because it increases cloud coverage significantly for oblique views. 

Using 1 km MODIS observations, Varnai and Marshak [2003] cautioned that for backward 

viewing angles larger than 50° one can expect a substantial overestimate in 1D τ retrievals. 

Recently, Kato et al. [2006, 2009] attempted to estimate the error in retrieved τ and re from a 

single Sc and Cu cloud field. They found 1% relative error in domain mean retrieved τ for the 

overcast scene and 27% for the broken scene.  

Motivated by all these studies, we decided to quantify the errors related to 3D cloud 

structure in 1D VNIR satellite cloud retrievals by looking hundreds of large-eddy simulated 

(LES) cloud fields ranging from Sc, unbroken St, and broken shallow Cu using a 3D radiative 

transfer model, hoping that this would be a quick solution for the current 1D VNIR satellite 

cloud retrievals. This chapter is organized as follows. The 3D cloud fields from LES, the 

radiative transfer models, the cloud retrieval algorithm, and the comparison methodology are 

described in Section 2. The results are presented in Section 3, especially the simulated 3D 

radiances and their comparison with the plane-parallel model; the analysis of the pixel-level 

and the domain mean retrieved cloud properties in terms of Sun-view geometry. The 3D 

retrieval error has been quantified for homogeneous and heterogeneous clouds at 200 Sun-

view geometry. The optimal Sun-view geometry for the minimum retrieved optical thickness 

bias is also estimated. Section 4 provides summary of our findings. 

 

5.2. Datasets, Models, and Methodology 

5.2.1. The Large-Eddy Simulated Cloud Fields 

To estimate an unbiased error in cloud retrieval algorithm that includes 3D radiative 

transfer requires a large number of cloud fields. We choose to use large-eddy simulated cloud 

fields because they can provide realistic cloud structure and have the flexibility to produce a 

wide variety of cloud types. We used cloud fields from seven different LES simulations, and 



84                                                                        Quantifying Uncertainties in 1D VNIR Retrievals                             

 

are listed in Table 1. The mean cloud properties are shown in Figure 5.1. In the figure, 

different runs were named and indicated by black-dashed lines. 

Of which, TRDCT and TRREF runs were performed by Irina Sandu, with the 

University of California, Los Angeles (UCLA) LES [Stevens and Seifer, 2008], as a case 

study of stratocumulus to scattered cumulus transition. The theory is, the Sc clouds form over 

relatively colder sea-surface temperatures (SSTs), and, as the air masses advect equatorward 

over warmer SSTs, the Sc decks breaks-up into scattered shallow Cu. The runs were 

performed to investigate the dominant mechanisms which force this transition of the Sc to the 

scattered Cu clouds. The setups of these simulations are based on a composite of the large-

scale conditions encountered along a set of individual trajectories performed for the north-

eastern Pacific during the summer months of 2006 and 2007. The dynamical core of the 

model is described in Stevens et al. [2002], and the cloud microphysics model is described in 

Ackerman et al. [1995]. Radiative processes are represented using the Monte Carlo spectral 

integration (McSI) method developed by Pincus and Stevens [2009], which is based on the 

delta-four stream radiative transfer code [Liou et al., 1988]. The details of LES simulations 

are described in Sandu et al. [2009] and Sandu and Stevens [2011]. The LES runs are 

performed at a domain size of 8.96 x 8.96 km2. The original horizontal resolution is 70 m, 

and hence the cloud can be accommodated into 128 x 128 grid cells. The vertical extensions 

of the Sc clouds are 500 m to 1.5 km, and that for the Cu clouds are 500 m to 2.1 km.  

 

 

 

 

 

 

 

 

 

 
 
Figure 5.1. The domain mean LES true cloud properties (a) liquid water path and cloud 

fraction, and (b) cloud optical thickness and droplet effective radius. 
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The CGILS-S6, CGILS-S11, and CGILS-S12 runs were representative of shallow Cu, 

Sc, and St regimes respectively, and are provided to us by Thijs Heus. The purpose of these 

runs is to use the cloud responses in the selected region to interpret the cloud feedback in the 

global models. S6 is at (17oN, 149oW) to represent the shallow Cu regime, S11 is at (32oN, 

129oW) near the California coast to represent the Sc regime, and S12 is at (35oN, 125oW) 

immediately off the California coast to represent the St regime. The forcing conditions are 

constructed for July conditions over the northeast subtropical Pacific to sample different 

cloud regimes. Refer http://atmgcm.msrc.sunysb.edu/cfmip_figs/Case_specification.html for 

more details. The domain size for S6 simulation is 9.6 x 9.6 km2 and the cloud vertical height 

varies from 400 m to 3.2 km. S11 simulation is done for a 4.8 x 4.8 km2 domain, and the 

cloud vertically extends from 350 m to 800 m. S12 simulations is done for a 3.2 x 3.2 km2 

domain, and the cloud vertically extends from 400 m to 850 m.  

The LES simulations based on trade-wind cumulus during the Rain in Cumulus over 

the Ocean (RICO) field study were performed by Malte Reick using Savic-Jovcic and Stevens 

[2008] LES version. RICO was a comprehensive field study [Rauber et al., 2007] of shallow 

Cu convection located in the winter trade-winds of the north-western Atlantic Ocean, 

conducted late November 2004 until the end of January 2005. The details about the LES runs 

are described in Rieck et al. [2012]. We had 6 scenes of 12.8 x 12.8 km2 domain size, and the 

cloud height varies from 600 m to 2.8 km. We have considered only those layers which have 

clouds, so it is assumed that the effect of rain will not affect our retrievals.  

 
Table 1. Statistics of 3D cloud fields obtained from the LES runs.  

LES runs τ 
re 

(µm) 

LWP 

(g m-2) 

LCF 

(%) 

Domain 

size (km2) 

Resolution 

(m) 

No. of 

scenes 

TRDCT/TRREF 

(Sc-shallow Cu) 
2-14 6-12 10-150 50-100 8.96 x 8.96 

H: 70 

V: 20/30 
150 

CGILS-S6 

(shallow Cu) 
8-25 8-12 50-350 5-50 9.6 x 9.6 

H: 200 

V: 40 
100 

CGILS-S11 

(Sc) 
<5 6-10 <50 5-25 4.8 x 4.8 

H: 100 

V: 25 
230 

CGILS-S12 

(stratus) 
~5 ~12 ~50 95-100 3.2 x 3.2 

H: 50 

V: 20 
230 

RICO 

(shallow Cu) 
6-12 4-8 40-110 5-15 12.8 x 12.8 

H: 200 

V: 40 
6 
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Thus we got total 700 cloud fields. The overall cloud scenes consist of variety of 

cloud types, ranging from unbroken stratus (St), stratocumulus (Sc) to broken shallow 

cumulus (Cu) scenes. Our clouds are also possible to categorize into optically thick and thin, 

and respective overcast and broken. The emphasis in the selection of LES cloud fields is to 

obtain a large number of scenes with a variety of cloud structure (and cloud properties) for 

the proposed study. However, these sets of LES cloud fields undoubtedly represent a tiny 

fraction of the real boundary layer clouds and, so, we should consider this as examples of 

possible clouds rather than a comprehensive set.  

 

5.2.2. Radiative Transfer Model 

Three-dimensional radiative transfer calculations for the above described LES cloud 

fields are performed with the Spherical Harmonics Discrete Ordinate Method (SHDOM) 

[Evans, 1998]. SHDOM computes unpolarized monochromatic or spectral band radiative 

transfer in a one, two, or three-dimensional medium for collimated solar and/or thermal 

emission sources of radiation. SHDOM is superior to Monte Carlo methods when many 

radiative quantities are desired, or when computing pixel-by-pixel intensity in multiple 

directions. The SHDOM code combines both discrete ordinates and spherical harmonics to 

solve the radiative transfer equation. Spherical harmonics are used to compute the source 

functions and the scattering integral. Another advantage is that the scattering integral is more 

efficiently computed in spherical harmonics than in discrete ordinates. Discrete ordinates are 

used to compute the radiance field, which is then used to compute the source function, and 

the process repeats until a stable solution is found. To speed up calculations and to save 

memory an adaptive grid is used; i.e., the model can start with a rather coarse grid, and fills in 

extra grid points for better accuracy whenever gradients exceed a certain threshold. The 3D 

radiative transfer calculations consume a lot of computer memory compared to the 1D 

calculations, so the methods used here allows us to simulate radiance for cloud fields with 

adequate spatial resolution. The details of accuracy issues and computational costs are 

examined in Pincus and Evans [2009]. 

The latest version of SHDOM is utilized in this study. The simulations are done for 

non-polarized and monochromatic radiation with periodic boundaries. SHDOM accuracy is 

controlled by both spatial and angular resolution. We used Nµ = 16, Nφ = 32, the cell splitting 

accuracy of 0.003, and the solution accuracy of 1.0E-5. We assumed Lambertian surface with 

5% albedo, to represent Ocean black surface. The solar flux is set to π so that the radiance 

output from SHDOM has reflectance units. SHDOM inputs liquid water content (g m-3) and 
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droplet effective radius (µm) from a 3D cloud field. A gamma distribution with shape 

parameter 7 is used for the droplet size distribution. The cloud fields were then combined 

with a Mie scattering table for the particular wavelength to specify the extinction, the single 

scattering albedo and the phase function at each grid point. Finally, the 3D radiance is 

simulated for visible (0.86 µm) and near-infrared (2.13 µm) wavelengths at the domain top 

for various combinations of solar zenith angles (0o to 70o with 10o intervals), view zenith 

angles (0o, 30o, 45o, 60o, 70o), and view azimuths’ (30o, 60o, 90o, 120o, 150o). Here, the 

wavelengths for 3D simulations are selected based on MODIS cloud retrieval algorithm. 

One-dimensional radiative transfer calculations required for the preparation of lookup 

table are performed by SHDOMPP [Evans, 2007], a plane-parallel version of SHDOM. 

SHDOMPP is tuned to get an accuracy similar to DISORT. The relative (%) accuracy 

between SHDOMPP and DISORT is 0.01%, which is considered as highly accurate. With 

this setup 1D radiance is computed at 0.86 µm and 2.13 µm wavelengths for wide range of 

effective radius (2 to 100 µm), optical thickness (2 to 150), view zenith angles (0o to 88o), 

view azimuths’ (2o to 180o), and solar zenith angles (0o to 88o) with very fine resolution.   

 
5.2.3. Cloud Retrieval Algorithm 

A 1D look-up-table (LUT) based cloud retrieval algorithm is generated from the 

SHDOMPP VIS and NIR radiances, following Nakajima and King [1990]. We developed an 

algorithm to retrieve the cloud optical thickness and effective particle radius from measured 

radiances at VIS and NIR wavelengths based on the LUT. The technique is that the reflection 

function of clouds at a non-absorbing channel in the VIS wavelength region is primarily a 

function of the cloud optical thickness, whereas the reflection at a water absorbing channel in 

the NIR is primarily a function of cloud particle size. The algorithm is solely for clouds 

having τ ≥ 4 and re ≥ 6 µm, and for optically thin clouds the retrieval becomes ambiguous, 

resulting in two possible solutions for τ and re.  

The retrieval procedure comprises two separate steps: the first one is the angular 

interpolation, and the second step concerns the cloud parameter retrieval from interpolated 

and corrected radiance data. For the interpolation along the different directions/angles we 

used a simple linear interpolation. The retrievals are done for pixels with true LWP above 10 

g m-2. The cloud properties such as τ and re are retrieved by matching 3D radiance into 1D 

LUT. However, the chance is small that we find the same radiances in both 3D and 1D LUT. 

If the exact radiances are not matching, the 1D LUT radiances are interpolated to find the 

corresponding τ and re. To do the interpolations, we choose an optimization technique by 
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minimizing the difference in (1D and 3D) radiances, which is similar to the one used in 

MODIS operational retrieval algorithm.  

If one assumes that each reflection function measurement is made with equal relative 

precision, maximizing the probability that ),,( o
i
measR  observations have the functional 

form ),,,,(  oe
i
calc rR is equivalent to minimizing the statistic χ2, defined as [Nakajima and 

King, 1990]: 

 

where the summation extends over all wavelengths λi for which measurements have been 

made and calculations performed. The parameters τ and re that give the best fit of the 

measurements i
measR to the nonlinear function ),( e

i
calc rR   are determined by the location of the 

minimum value of χ2 in this 2D space. Thus the simultaneous measurements of τ and re are 

performed. The interpolation error or uncertainty in this method is evaluated in detail in 

following section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. The LUT from SHDOMPP based on Nakajima and King [1990] for (a) high Sun 

(30o) and oblique view (70o), in the forward (dashed), side (solid), and backward (dotted) 

scattering direction. The observed 3D radiances for a Sc and a Cu cloud are over-plotted. 
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Figure 5.3. The LUT from SHDOMPP based on Nakajima and King [1990] for low Sun 

(60o) and oblique view (70o), in the forward (dashed), side (solid), and backward (dotted) 

scattering direction are shown. The observed 3D radiances for a Sc and a Cu cloud are 

over-plotted. 

 

   The retrieval algorithm is validated with homogeneous plane-parallel clouds with 

known cloud properties. The 3D radiance is simulated from SHDOM for a homogeneous 

cloud of 1.25 x 1.25 km2 size with a horizontal resolution of 20 m and vertical resolution of 

25 m. A constant liquid water content of 0.155 g m-3 and constant droplet effective radius of 

8.55 µm is specified from 875 m to 1.25 km vertical. The 3D radiative transfer calculations 

are performed and the retrieval algorithm is applied to compute τ and re based on the 

optimization interpolation technique. We achieved a 3% overestimation in τ and 3.8% 

underestimation in re, finally lead to a 1.7% underestimation in LWP retrievals compared to 



90                                                                        Quantifying Uncertainties in 1D VNIR Retrievals                             

 

the true properties. This ~2% error is very small, and as per MODIS ATBD, their 

optimization interpolation errors are within 3%. We have also checked a scene with slightly 

perturbed cloud properties i.e., the same homogeneous scene, but re is perturbed. The results 

indicated only a ~1.3% overestimation in retrieved LWP. This implies that our retrieval 

algorithm performs equivalent to the operational MODIS cloud retrieval algorithm.  

  Another factor to consider is the sensitivity of retrievals at low and high end of the 

LUT. Figure 5.2 and 5.3 represents the LUT at two different Sun-view geometry: at high Sun 

and oblique view and, low Sun and oblique view respectively, for forward, side, and 

backscattered directions. From Figure 5.2 it is clear that, at high Sun the plane-parallel model 

reflectances are similar for forward/side/backscattering direction. However, at low Sun and 

especially in the oblique view, the plane-parallel model predicts similar radiance for 

back/side scattering direction, but extremely large values in the forward scattering direction 

(shown in Figure 5.3). In the low end of the LUT, i.e., for the smaller values of τ, constant re 

lines are much closer to each other, as the difference in NIR radiance is much smaller. 

Sometimes, different constant re lines can even overlap to each other. In these circumstances, 

the accurate interpolation is not possible and τ and re retrievals get complicated, and the 

results can be erroneous. Moreover, the retrievals can also be influenced by the initial guess 

values. These errors are assumed to be minimal in the middle of the LUT. In this section we 

evaluate the sensitivity of our retrievals at low-end and middle portion of LUT from a 

respective shallow Cu and a Sc cloud field. The 3D radiance from Sc cloud field (filled 

circles in Figure 5.2 and 5.3) mostly fall in the mid-LUT and as expected the retrievals agreed 

within 4% uncertainty. Nevertheless, the radiance from broken Cu (open circles in Figure 5.2 

and 5.3) is scattered over the LUT and falls mostly in the low-end of LUT, sometimes even 

exceeding the high-end of LUT, especially in the side/backscattering direction. In this case, 

the retrievals are obviously uncertain, and the retrievals are strongly affected by the initial 

guess values too. The retrievals differs upto 20% for certain initial guess values. However, in 

our retrieval, since the true cloud properties are known, the true values of (τ, re) itself is fed as 

initial guess values, and hence these errors are assumed to be minimal. 

 

5.2.4. Methodology 

To calculate the magnitude of the retrieval error in cloud properties, we have 

developed a 1D retrieval algorithm based on Nakajima and King [1990]. The cloud optical 

thickness and effective radius are retrieved using 3D radiances measured at VNIR 

wavelengths. The 3D radiances are computed from the 3D LES cloud fields using SHDOM 
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radiative transfer code. The 3D reflectances are computed at 200 combinations of angles 

composed of a) 5 instrument viewing zenith angles (θ) = 0o, 30o, 45o, 60o, and 70o (similar to 

MISR viewing angles), b) 5 view azimuth angles (φ) = 30o, 60o, 90o, 120o, and 150o (here we 

excluded most forward (0o) and most backward (180o) observing directions in order to 

eliminate the extreme effects, as these angles are rarely used in practice), and c) 8 solar zenith 

angles (θo) = 0o, 10o, 20o, 30o, 40o, 50o, 60o, and 70o. To avoid errors caused by differences in 

model assumptions, look-up tables for the cloud property retrievals are prepared using 

SHDOMPP, a plane-parallel version of SHDOM. The retrievals are performed for individual 

cloud fields at its native resolution and also at standard 1 x 1 km2 MODIS resolution. The 

radiances from the plane-parallel model and 3D radiative transfer were compared. The error 

in retrieved cloud properties is estimated by comparing the true cloud properties with the 

retrieved cloud properties at different Sun-view geometry. Moreover, we limit this study to 

only non-raining low-level oceanic water clouds.  

 

5.3. Results and Discussion 

5.3.1. Spatial Distribution of 3D Radiance  

Passive remote sensing of cloud retrievals is uniquely determined by its reflectance in 

one particular direction; however, often this implicit assumption fails to produce accurate 

cloud retrievals. Thus, this section is aimed to address inconsistencies in measured 3D 

radiance at different directions especially when the cloud is heterogeneous – by comparing it 

with the radiance from plane-parallel model. Measured VIS and NIR radiances are affected 

by cloud fraction within satellite pixel size, cloud horizontal/vertical variability, droplet 

effective radius, absorption, etc.  

Thus, the spatial variability of simulated 3D radiance for a Sc (Figure 5.4-5.5) and a 

shallow Cu (Figure 5.6-5.7) field is discussed here. The general features of Sc cloud are, 

more variability in spatial distribution of radiance is observed for nadir view, for the side 

views clouds look much smoother, and for the very oblique view cloud-top-variability is 

obvious.  
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Figure 5.4. Simulated 3D radiance in forward (top row), side (middle row), and backward 

(bottom row) scattering direction at 0o, 45o and 70o VZAs for 20o solar zenith angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Simulated 3D radiance in forward (top row), side (middle row), and backward 

(bottom row) scattering direction at 0o, 45o and 70o VZAs for 60o solar zenith angle. 
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Figure 5.6. Simulated 3D radiance in forward (top row), side (middle row), and backward 

(bottom row) scattering direction at 0o, 45o and 70o VZAs for 20o solar zenith angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Simulated 3D radiance in forward (top row), side (middle row), and backward 

(bottom row) scattering direction at 0o, 45o and 70o VZAs for 60o solar zenith angle.  
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In the Sc field, when the Sun is fairly high (θo=0o to 20o), larger radiance is observed 

in the nadir view, and the radiance decreases with VZA. In other words, at high Sun, the Sc 

clouds appear brighter in the nadir view and darker in the oblique view, regardless of the 

viewing plane. This result is in agreement with the 1D concept that the 1D radiance is larger 

in the nadir view and decreases with VZA. However, at oblique Sun, especially at 60o and 

70o SZA in the backscatter direction, the 3D radiance remains constant until 60o VZA. Above 

60o (i.e., VZA of 70o) clouds appear darker (probably because a large part of the radiance 

may escape through the forward scattering direction and only a single or few scattering 

events may exhibit in the backscatter direction); in the most forward scattering direction (in 

our case, a viewing azimuth of 30o) the radiance increases with VZA, and in the very oblique 

view clouds appear much brighter, as shown in Figure 5.4-5.5. An explanation for this could 

be that the cloud field is scattering a large fraction of the radiation close to the forward 

direction, which is characteristic of Mie scattering. In the Sc cloud, the variability of radiance 

with SZA is negligible except at very low Sun of 70o.  

For the scattered Cu, a clear and very significant increase in radiance with SZA is 

noticed. Another striking feature is the increase of apparent cloud fraction with VZA, and is 

more than doubles at very oblique view, as shown in Figure 5.6-5.7. At high Sun, the 3D 

radiances are smaller in the oblique view compared to the nadir view, as more photons can 

escape from the cloudy pixels to clear neighborhoods. Compared to low Sun, smaller 

radiance is observed at high Sun. One reason could be the fact that the photons can easily 

escape from the cloudy to neighboring clear pixels, and the second reason could be that 

neither the shadowing nor the illumination occurs at high Sun, so there is no compensation of 

errors, and which is assumed to be happen in other (larger) Sun angles. Also, for low Sun 

(50o, 60o, and 70o) the radiances increase with VZA regardless of the viewing plane. 

However, the increase is much higher (sometimes even doubles) for the forward scattering 

direction than for the backscatter direction. 

 

5.3.2. Dependency of Radiance on Sun-view Geometry  

In the previous section, we discussed the spatial variability of radiances. In this 

section, we describe how the corresponding domain mean simulated 3D and calculated 1D 

reflectance varies with respect to view geometry and solar zenith angle, especially for a thick-

unbroken stratocumulus and thick-broken cumulus field, at visible and near-infrared bands.  

The view angle dependence of simulated 3D and plane-parallel reflectance are shown 

in Figure 5.8 for homogeneous (Sc) and heterogeneous (scattered Cu) cloud fields, at VIS and 
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NIR wavelengths. In a plane-parallel model (see Figure 5.8), at high Sun 1D reflectances 

decrease with VZA, in the moderate Sun the reflectance show very little difference, and, for 

larger SZA (θo≥40o) the reflectances increase with VZA and the increase is roughly four 

times larger in the forward direction and twice larger in the backward direction compared to 

the nadir. For a Sc cloud, the view angle dependence of 3D radiances follows the plane-

parallel model very well and the radiances agrees within ~5% (refer Figure 5.8a-b) in both 

VIS and NIR wavelengths, also in the forward and backward scattering direction. Similar 

results are obtained in Loeb and Davies [1997], when the plane-parallel reflectance is 

compared with ERBE observations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. The 3D and 1D radiances as a function of VZA in the backscatter direction 

(φ=150o) and in the forward scattering direction (φ=30o) for different SZA: (a) VIS and 

(b) NIR bands for stratocumulus, and (c) VIS and (d) NIR bands for scattered cumulus.  
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However, for a broken Cu field, compared to plane-parallel model VIS and NIR 

reflectances underestimate and the underestimation is larger in the VIS compared to the NIR 

reflectance. This would translate into an underestimation in τ and an overestimation in re with 

the former being dominant. The view angle dependence of 3D radiances is also similar to the 

plane-parallel model reflectances, but less pronounced, even at the very low Sun. From the 

statistical analysis of a large set of MODIS observations Varnai and Marshak [2003] showed 

that in oblique backscatter directions, cloud reflection is stronger than the 1D theory would 

predict. However, we haven’t seen any such great difference in the 3D radiance at backscatter 

direction even for thick-broken Cu field. This is because they used 250 m pixel level data, 

which is much finer resolution than our ~9 km domain mean values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. The 3D and 1D radiances as a function of relative azimuth angle: (a) VIS and (b) 

NIR bands for stratocumulus, and (c) VIS and (d) NIR bands for scattered cumulus. 
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Loeb and Coakley [1998] examined the validity of plane-parallel theory for cloudy 

atmospheres by directly comparing calculated and observed VIS reflectance from AVHRR 

observations of marine stratus cloud layers off the coasts of California, Peru, and Angola. 

When the 1D reflectance is directly compared with the observations at different view angles, 

relative differences are generally smaller (≤10%) in the backscatter direction for solar zenith 

angles below 60o and show no systematic view angle dependence. In the forward scattering 

direction, the 1D reflectances increases much more rapidly with the view zenith angle than in 

the observed reflectances. The relative differences in the forward scattering direction are ~2–

3 times larger than that in the backscatter direction. For the solar zenith angles above 60o in 

the forward scattering direction, the 1D model underestimates observed reflectances at nadir 

view by 20–30% and overestimates at the most oblique view by 15–20%.  

Figure 5.9 compares the 3D and the plane-parallel reflectance as a function of view 

azimuth angle φ. For moderate Sun the plane parallel model appears to provide a reasonable 

representation of radiances for the Sc field even at side and oblique views, and the relative 

difference is within 20%. At very low Sun, side views exhibits very good agreement between 

the plane-parallel and the 3D reflectances, however for very oblique view both VIS and NIR 

3D radiances are larger compared to the plane-parallel, and 2-3 times larger in the forward 

scattering direction, and agrees within 20% in the backscatter direction. For the broken Cu 

cloud at moderate Sun, the 3D radiances underestimate the plane-parallel by 2-3 times in the 

VIS and by 1-1.5 times in the NIR wavelengths. However, at low Sun a 10% underestimation 

in the 3D visible radiance is compensated by a 10% overestimation in the NIR radiance 

compared to the plane-parallel values. One can also note that the influence of 3D effects goes 

in the other direction for the droplet effective radius and for the optical thickness. Loeb and 

Davies [1997] also indicated that 1D reflectances increase more rapidly with VZA than the 

observed reflectances in the forward scattering direction at low Sun elevations but show 

similar VZA dependence in the backward direction. In agreement to our findings, Dagestad 

[2005] also found that for a typical Sc cloud the radiance is mainly unaffected by rotating the 

clouds in the azimuth direction when the pixel size is 3.5 km, however, for a typical 6.7 km 

Cu field he observed some variability in the radiance while rotating.  

We have also evaluated SZA dependence of the 3D and the 1D radiances and are 

shown in Figures 5.10-5.11. In general, both VIS and NIR radiances from a plane-parallel 

model decrease for moderate to large SZAs for all the viewing angles except for the very 

oblique views, where it increases with SZA. For the Sc field, at nadir view the 3D radiance 

also show a decrease from moderate to larger SZA, in agreement with the plane-parallel 
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radiance in both forward and backward scattering directions. For all other viewing angles, the 

3D radiances increase with SZA and the increase is atleast 4 times larger in the forward 

scattering direction and is 10-20% larger in the backscatter direction. A slight 

underestimation in the 3D radiance is noticed at high Sun compared to the 1D radiance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. The 3D and 1D radiances as a function of SZA: at (a) VIS and (b) NIR 

wavelengths for the stratocumulus and at (c) VIS and (d) NIR wavelengths for the 

scattered cumulus, in the forward scattering direction. 

 

However, for the broken Cu field, the 3D radiance is 2-3 times smaller in the VIS and 

40-50% smaller in the NIR radiance compared to the plane-parallel radiance, for the solar 

zenith angle ≤ 60o. For very oblique Sun, the 3D radiance is in agreement at backscatter 

radiance, and overestimate at forward scattering direction in compared to the plane-parallel 
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radiance. The difference in the 3D radiance from the 1D is shown to be explainable by cloud 

side illumination as well as by the presence of structured cloud tops. Our results are 

qualitatively consistent with the observational results of Loeb and Davies [1996] and Loeb et 

al. [1997] and highlight the importance of 3D cloud effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. The 3D and the 1D radiances as a function of SZA: at (a) VIS and (b) NIR 

wavelengths for the stratocumulus and at (c) VIS and (d) NIR wavelengths for the 

scattered cumulus, in the backward scattering direction. 

 

5.3.3. Overview of Heterogeneity Parameters 

One can use different measures to study the cloud heterogeneity effects in satellite 

cloud retrievals. The possible factors that can cause heterogeneity in a cloud field could be 

horizontal variability of LWP, cloud-top-variability, variability in cloud optical thickness, 
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droplet effective radius, fractional cloud cover, etc. We evaluate the cloud heterogeneity 

effects in retrieved cloud properties with three different heterogeneity measures, namely χ to 

represent within-cloud heterogeneity, σCTOP to represent the cloud-top-variability, and Hσ to 

compute the radiative smoothing/roughing factor. A brief discussion of these heterogeneity 

measures is given below.  

 

(a) Within-Cloud Heterogeneity (χ parameter) 

The inhomogeneity parameter χ, first introduced by Cahalan et al. [1994], is defined 

as the ratio of logarithmic and linear average of cloud optical thickness distribution, 




lne
 . This χ parameter can be calculated, in our case, from both LES true and retrieved 

τ. In general, χ varies from 0 to 1, and the larger the χ values the more homogeneous the 

scene is. The χ parameter is calculated for individual cloud scenes at their domain size. A 

comparison of the χ parameter calculated from true versus retrieved τ is shown in Figure 

5.12. The retrieved χ values are larger than the true χ values at high Sun. However, at low 

Sun, the retrieved χ values are much smaller than the true χ. When the Sun is above 60o 

zenith the retrieved χ values underestimate the true χ due to cloud shadowing and 

illumination effect. Thus, in the 1D retrievals the clouds appear more homogeneous at high 

Sun and more heterogeneous at low Sun than the real cloud. However, the use of this 

parameter brings out the details of horizontal cloud heterogeneity (i.e., how the liquid water 

path is distributed within a pixel/cloud) of a given cloud field. Cahalan et al. [1994] disputes 

that in-cloud variability leads largest error in calculated albedo, especially when the cloud 

fraction errors are smaller, and therefore it is important to address the related 3D errors.  

Studies such as Oreopoulos and Cahalan [2005] and Seethala and Horvath [2010] 

used this χ parameter to study the cloud heterogeneity and reported as a useful parameter to 

separate the heterogeneity. Oreopoulos and Cahalan [2005] found that the cloud 

heterogeneity is weaker in summer than in winter. Seethala and Horvath [2010] also found 

that the summer hemisphere is more homogeneous than the winter hemisphere. In this study, 

we have utilized this χ parameter to study the cloud inhomogeneity and found that this 

parameter effectively separate the cloud heterogeneity. In our data χ varies from 0 – 1 and the 

first one-third of our total cloud fields show χ < 0.85 and are assumed as more heterogeneous 

scenes. The last one-third of the data show χ>0.95 and are considered as more homogeneous 

scenes.  
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Figure 5.12. scatterplot of χ calculated from true and retrieved τ for different solar zenith 

angles. 
 
(b) Cloud-top Variability (σCTOP)   

Since the original cloud fields are simulated by LES, it is easy for us to calculate the 

actual cloud top height and its variability within the cloud field. The top most layer of grid 

cell with LWC above 10 g m-3 is assumed as cloud top height. The standard deviation (σCTOP) 
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is computed for individual scenes from the grid cells. This parameter can separate clouds 

with flat cloud top from the ones with more cloud top variability. Indeed, σCTOP provides the 

information about cloud-top-variability of individual cloud scenes. Our clouds have cloud top 

variability ranging from a few meters to 1 km. The clouds with σCTOP < 30 m (which holds 

first thrice of our data) are consider as more homogeneous clouds and clouds with σCTOP > 

100 m are consider as more heterogeneous clouds. However, Varnai and Marshak [2007], 

asuming a 6 K/km vertical temperature gradient, showed 50–80 m and 180–250 m altitude 

changes over 1 km horizontal distance for the homogeneous and heterogeneous thresholds, 

respectively, for the MODIS observations. 
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Figure 5.13: The relationship between different inhomogeneity parameter χ, Hσ, σCTOP 

 

(c) Radiative Smoothing/Roughing (Hσ) 

Another important heterogeneity parameter is Hσ proposed by Liang et al. [2009], 

calculated from 0.86 µm radiance measurements. RH /  , where R and σ are the mean 

and standard deviation of 0.86 µm radiance calculated from 1 km pixels for the individual 

cloud scenes. The assumption is that homogeneous clouds would look radiatively smoother, 

with smaller values of Hσ, and clouds with larger cloud-top-variability would be rough and 

indicated by larger Hσ. The values of Hσ can probably have some impact on the solar zenith 

angle. Clouds can appear smoother under high Sun due to a net horizontal transport of 

sunlight from thicker to thinner regions [Zuidema and Evans, 1998], whereas they can appear 
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rougher for low Sun due to the cloud illumination and shadowing of cloud sides [Varnai and 

Marshak, 2003]. Regardless of this, when comparing regions under the same solar zenith 

angles larger values represent more heterogeneous clouds and smaller values represent more 

homogeneous/smoother clouds. Girolamo et al. [2010] evaluated this parameter and quoted 

this as a most useful parameter to separate the cloud heterogeneity. They also noticed that the 

summer hemisphere appearing much more locally homogeneous compared to the winter 

hemisphere, although which could be due to the solar zenith angle effect on Hσ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. The absolute bias in LWP as a function of different heterogeneity parameter (a) 

Hσ, (b) σCTOP, (c) χLES, and (d) χRET. 

 

(d) Relationship b/w Heterogeneity Parameters  

The relationships between all three heterogeneity parameters have been examined. 

Figure 5.13 shows the scatter-plot of χ (calculated from LES) versus Hσ. The color and size 

of the circles determines σCTOP. Smaller circles represent clouds with less cloud-top-

variability, and bigger circles represent larger cloud-top-variability. Thus χ ranges from 0.2 to 

a) b) 

c) d)
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1. Hσ vary from 0 to 6. σCTOP varies from few meters to 1.2 km.  It is evident from the figure, 

that all three parameters are able to discriminate the homogeneous and the heterogeneous 

clouds very well. The bias in LWP, τ, and re are evaluated independently based on these 

parameters, and shown in Figure 5.14. The homogeneous cloud scenes show smaller Hσ and 

σCTOP and larger χ, and the reverse holds for the heterogeneity.  

From Figure 5.14 it is clear that the absolute bias in LWP increase with increasing 

heterogeneity. All three inhomogeneity parameters σCTOP, χLES, and χRET show a zero LWP 

bias in the most homogeneous bin except Hσ. The LWP bias is ±2 g m-2 for Hσ < 1.5. Both 

LES and retrieved LWP agree very well for Hσ < 1.5, and above which the retrievals show an 

underestimation in LWP compared to LES. In fact, the retrieved τ agrees very well with LES 

τ for Hσ<1.5, and thereafter a slight underestimation of 0.5 is noticed. The retrieved re 

overestimates the LES truth by ~2 µm for Hσ < 1.5, thereafter an underestimation of 0.5 µm is 

noticed. Similar results are observed with all other heterogeneity parameters. 

 

5.3.4. Pixel-Level Analysis 

Our primary interest is to evaluate the domain mean retrieval biases which are 

essential in climate modeling perspective; however, it is also important to study the bias in 

individual pixels. Thus, in this section, we evaluate how the biases in retrieved cloud 

properties distribute on a pixel-level basis. The frequency histogram of bias and relative bias 

in the retrieved liquid water path for both the most homogeneous and the most heterogeneous 

cloud scenes are shown in Figure 5.15-5.16 for both 100 m and 1 km pixel retrieval. The 

homogeneity of cloud scene is measured based on Hσ which shows the scene roughness from 

visible radiance. Clear deviation is seen between most homogeneous (first-tercile) and most 

heterogeneous (fourth-quarter) bias and relative bias frequency distribution. The first-tercile 

and fourth-quarter is selected to represent the most homogeneous and most heterogeneous 

scenes respectively, as our cloud scenes are dominated by homogeneous clouds. The upper 

limit value of Hσ for the homogeneous case is 0.22 (for 100 m pixels) and 0.26 (for 1 km 

pixel), and the lower limit value of Hσ used to select heterogeneous scenes is 0.48 (for 100 m 

pixels) and 0.58 (for 1 km pixel). The homogeneous portion of dataset resembles a narrow 

gaussian distribution, but negatively skewed, indicating the overestimation in retrieved LWP. 

The skewness (tail) towards left shows considerable increase with solar zenith angle, 

indicating the retrieval errors associated with the solar zenith angle. Also, the result is similar 

for 100 m and 1 km resolution pixels, which indicates that the retrieval resolution is less 

important if the clouds are homogeneous. Roughly 25% of the data lies in a relative LWP 



105                                                                        Quantifying Uncertainties in 1D VNIR Retrievals                           

 

bias of ±5% and 60% of data in relative bias of ±15%, the amount of data that falls under 

these bias range decreases to 15% and 40% respectively as the solar zenith angle increases to 

70o. The shape of the frequency distribution of absolute bias in LWP is more symmetric 

compared to that of relative bias. Around 65-70% of the data showed an absolute bias of ±10 

g m-2 in LWP regardless of pixel resolution, and the absolute bias is also skewed towards the 

left admitting the overestimation in retrieved LWP for the homogeneous cloud scenes. Unlike 

the frequency distribution of homogeneous clouds, the bias and relative bias of heterogeneous 

clouds distribute differently. It seems the pixel size also plays an important role in this case. 

As shown in Figure 5.15 100 m pixels shows more like a gaussian distribution, centered at 0 

with longer negative tail in the frequency distribution of relative bias, but fewer number of 

datasets fall with least relative bias compared to homogeneous clouds. In absolute bias, for 

the solar zenith angle 50o, 60o, and 70o the number of dataset with minimum bias exceeds that 

in homogeneous cases. Moreover 50% of data shows a bias < ±10 g m-2 in 60o solar zenith 

angle. This can be due to the cancellation of errors due to the shadowing and the brightening 

at low Sun or due to 3D cloud radiative effects. 

The frequency histogram of relative difference in true and retrieved τ is provided in 

Figure 5.17, for most homogeneous and most heterogeneous clouds at 100 m and 1 km pixel 

resolution. In the homogeneous clouds the distribution (peaks) centered at 0 but skew towards 

larger negative values, indicating an overestimation in retrieved mean τ compared to true 

LES τ. Loeb and Davies [1996] also indicated that, the frequency distributions of cloud 

optical depth showed a systematic shift towards larger values with increasing solar zenith 

angle (θo), and the increase is much larger for the low Sun. The cause is traced to a 

fundamental flaw in plane-parallel theory applied to real clouds: the solar zenith angle 

dependence of model reflectance is opposite to that of the observations. Here, roughly 40–

70% of data shows the relative bias within ±15%, the percentage of data with smaller bias 

decreased with θo. The results are similar for both 100 m and 1 km retrievals, indicating that 

the pixel size is less important if clouds are completely overcast and homogeneous. In 

contrast to homogeneous clouds, the frequency distribution of heterogeneous clouds is sparse 

and variable with a fairly large negative tail.  The distribution peak shifts to the left (-10%) of 

0 relative bias, and also highly depends on θo. The distribution peak also shifts with the 

retrieval resolution, which can be clearly seen in Figure 5.17a-e.  Especially 1 km pixels 

shows different peaks with irregular distributions, however 100 m pixels follows normal 

distribution with peaks shifted a bit to the left of the distribution centre 0 and negatively 

skewed. In general, the distribution gets wider with θo. There is a small percentage of the data 
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that in both the most homogeneous and the heterogeneous clouds that show larger than 100% 

relative bias. The frequency histogram of absolute difference between LES and retrieved τ is 

shown in Figure 5.18 for different solar zenith angle. In the homogeneous clouds the 

distribution is symmetric and center at 0 absolute bias in all Sun angles, but with fairly large 

negative tail. The negative tail decreases with increasing solar zenith angle. It is also clear 

from the absolute bias histogram of homogeneous cloud scenes that the results are not 

affected by pixel size, as there is difference in frequency of only 1-2%. Overall, 60 – 80% of 

the data is within the absolute bias of ±1.5, and the percentage of data that falls in this bias 

range decrease with increasing solar zenith angle. In this case, the distribution of 

heterogeneous clouds also peaks at 0 absolute bias except for θ=70o, however the percentage 

of data which show no or less τ bias strongly depend on and increased with θo. The 

percentage of data which have nil bias in heterogeneous clouds are less than that in 

homogeneous clouds for high Sun (0-30o), stays equal at medium Sun angles (40-50o), and 

exceeds thereafter. There is considerable difference in frequency between 100 m and 1 km 

pixel is observed in certain Sun angles. 

Interpreting retrieved re with true LES is complex in the sense that satellite retrieval of 

re at NIR is sensitive mostly to the top layer of clouds.  To compare the retrieved re with the 

LES true values, we calculated re from LES considering only the top layer with optical 

thickness of 2. The frequency histogram of bias in retrieved re relative to LES true is shown 

in Figure 5.19. In homogeneous clouds, the distribution mostly peaks at relative bias 0 with 

the exception of 10o and 70o Sun angle, and is negatively skewed. Only ~40% of data show 

smaller relative bias within ±15%. Similar to τ, the resolution effect in re is also negligible 

when the clouds are most homogeneous. The results are further complicated when the clouds 

are heterogeneous. The frequency histogram of absolute bias in retrieved re compared to LES 

is shown in Figure 5.20. The most homogeneous clouds show a gaussian distribution with a 

frequency maximum at 0 bias only when the solar zenith angle is 0o. In all other solar zenith 

angles the maxima is shifted to -1 µm bias, except 70o in which the maxima is at +1 µm bias. 

Like τ, the differences are small between 100 m and 1 km pixel resolution in this case. Unlike 

the most homogeneous clouds, the distribution of most heterogeneous clouds show multi 

maxima oriented to both positive and negative side of the 0 bias. 
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Figure 5.15. The frequency histogram of bias (%) in retrieved liquid water path (LWP) 

relative to LES values for different solar zenith angle.  
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Figure 5.16. The frequency histogram of bias (%) in retrieved liquid water path (LWP) 

compared to LES values for different solar zenith angle.  
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Figure 5.17. The frequency histogram of bias (%) in retrieved optical thickness (τ) relative to 

LES values for different solar zenith angle.  
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Figure 5.18. The frequency histogram of bias (%) in retrieved optical thickness (τ) compared 

to LES values for different solar zenith angle. 
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Figure 5.19. The frequency histogram of bias (%) in retrieved droplet effective radius (re) 

relative to representative LES values for different solar zenith angle. 
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Figure 5.20. The frequency histogram of bias (%) in retrieved droplet effective radius (re) 

compared to representative LES values for different solar zenith angle. 
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5.3.5. Domain Mean Cloud Properties 

Figure 5.21 represents the time series of in-cloud mean LES truth and retrieved cloud 

water path, τ, re of most homogeneous and most heterogeneous clouds for selected Sun-view 

geometry. We select here and show only very few cases of Sc and scattered Cu to represent 

the main features of homogeneous and heterogeneous clouds. The retrieved τ for the most-

homogeneous clouds agrees very well with the LES τ in all the Sun-view geometry. The 

results show better agreement in both 100 m and 1 km resolution and also in the in-cloud 

mean and in the domain mean (figures not shown). The bias between LES truth and retrieved 

τ varies ~0 – 2. An overestimation in τ of ~2 is noticed at low Sun for nadir view, which 

follows the hypothesis of Varnai and Davies [1999] that the heterogeneities make it more 

difficult for radiation to leave the clouds in forward directions; the clouds reflect relatively 

large portion of the incoming solar radiation toward the zenith for oblique than for overhead 

Sun [Loeb and Davies, 1996; Loeb and Coakley, 1998; Varnai and Davies, 1999]. The 

difference from the 1D case is shown to be explainable by cloud side illumination as well as 

by the presence of structured cloud tops. Cloud sides enhance the amount of incident solar 

radiation intercepted by cloud, allowing more radiation to be scattered upward in the nadir 

direction. Structured cloud tops change the slope of illuminated cloud top surfaces, such that 

nadir reflectance at low solar elevations increases with the slope of the illuminated surface. 

For simple cloud geometries the two effects make equivalent contributions to the increase in 

nadir reflectance with solar zenith angle. While this increase is most pronounced for 

vertically extensive broken cloud fields, it also affects reflectance from overcast cloud fields 

with bumpy cloud tops. Thus the observed solar zenith angle bias in cloud optical depth for 

the general cloud scene is likely also occurs for extensive overcast cloud fields. However, 

large discrepancies are observed in the scattered Cu. In most of the cloud fields a strong 

underestimation (~10-25) in the retrieved τ regardless of viewing and scattering angles is 

seen. This is possible because, when the clouds are broken, the radiation can escape from the 

cloudy to clear pixels, or, thicker to thinner pixels, and results less photon available to 

backscatter. However, at low Sun for nadir view the agreement is somewhat better. The 

agreement strongly depends on the level of scene heterogeneity. For the homogeneous clouds 

the retrieved re overestimates 2-4 µm compared to the true LES re. Similar overestimation is 

observed in operational MODIS re at 2.1 µm retrievals, and probably due to the fact that the 

2.1 µm channel samples the top layer of the cloud and results overestimation in clouds (Sc) 

with adiabatic re profile [Seethala and Horvath, 2010; Zhang and Platnick, 2011]. For the 

heterogeneous clouds, the retrieved re strongly underestimate, except for the nadir view.  
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Figure 5.21. Time series of in-cloud mean LES truth and retrieved (a) cloud optical 

thickness, (b) effective radius, (c) LWP for few cases of Sc (homogeneous) and Cu 

(heterogeneous) in different Sun-view geometry for backscatter direction (1 km retrievals). 
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With a similar study as ours, Kato et al. [2006] reported that, the retrieved cloud 

optical thickness averaged over all pixels is high for the overcast cloud, and low for the non-

overcast clouds. The magnitude of relative error in the retrieved domain-averaged optical 

thickness and effective radius increased with heterogeneity. Much of the observed error in the 

retrieved optical depth and particle size values at the nadir view for Cu can be ascribed to 

cloud brokenness at scales smaller than the 1 km pixels used in the retrievals. In the extreme 

case of the Cu scene, for which the retrieval errors are the largest, approximately 90% of the 

1 km nadir view pixels are only partially filled by clouds. The underestimation of the optical 

thickness leads to overestimation of the particle size in the retrieval. Inaccurate treatment of 

cloud inhomogeneity in the radiative transfer computations contributes to retrieval errors for 

both partly cloudy and overcast pixels. A wellknown aspect of this mistreatment is the 

averaging of nonlinear reflectance function values within a pixel, which causes the retrieved 

optical thickness to be small [Zuidema and Evans, 1998; Oreopoulos and Davies, 1998]. 

Error also results because the retrieval algorithm is unable to account for the radiative 

transport that occurs between neighboring pixels with different scattering coefficients in the 

true 3D processes. 

Finally, the retrieved LWP is in better agreement with the LES true cloud water path, 

especially for thick homogeneous clouds. The bias is within ±20 g m-2
 (~15% relative bias). 

For the heterogeneous clouds, an underestimation in LWP is observed regardless of the Sun-

view geometry. The bias is comparably smaller at low Sun and for nadir view, which is due 

to the good agreement in τ between retrieval and LES at this Sun-view geometry.  

 

5.3.6. Scale Effect on Retrievals 

We compare the statistics of domain mean LES true cloud properties with cloud 

properties retrieved at 100 m and 1 km resolution. While considering all the cloud scenes, the 

domain mean τ is 3 in both LES and retrieval. The mean re is 6 µm in LES and the retrieved 

re overestimate to 7 µm. The domain mean LWP is 31 g m-2 in LES, which reduces to 29 g m-

2 in the retrieval. The retrieved τ bias relative to true τ is 15%, the relative bias in re stays 

within 1%, finally ~25% relative bias is observed in LWP compared to the LES values. The 

scale effect: The retrievals at high (100 m) and low (1 km) resolution do not show much 

difference in domain mean cloud properties. A small reduction in relative bias followed by an 

increase in rms is noticed in 1km retrieval compared to the 100 m retrievals. Consequently, 

correlation coefficient shows a minor decrease in 1 km than high resolution retrievals. The 

changes are larger for LWP compared to τ. Varnai and Marshak [2003] indicated that the 
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asymmetries caused by 3D effect can be eliminated from MODIS retrievals with the 

resolution of ~10 km, but not other consequences of 3D effects. Similarly, Dagestad [2005] 

also noticed a 100% variance in reflectance in a high-resolution run of few meters and no 

variance at ~4 km resolution for the same scene with different orientation.  

 

Table 2. Domain mean statistics of cloud properties for all scenes. 

ALL 100 m retrieval 1 km retrieval 

τ re (µm) LWP (g m-2) τ re (µm) LWP (g m-2) 

LES 3 6 31 3.5 6 31 

Retrieved 3 7 29 3 7 29 

Relative Bias 15% 1% 25% 15% -2% 24% 

rms 0.4 1 4 0.5 1.4 6 

correlation 0.99 0.98 0.99 0.98 0.97 0.98 

No. scenes 622 640 

 

While considering the fully overcast clouds the domain mean τ increase to 6 in both 

the LES and in the retrieval. The mean re is ~12 µm in LES and 13 µm in retrieval, which 

results 10% overestimation in retrieved re. The mean LWP ranges 56-58 g m-2 in LES and 57-

60 g m-2 in the retrieval. A 5% increase in LWP is observed which is mainly due to the 

overestimation in re.  An unbiased τ is retrieved in this case, however 12-15% relative bias is 

seen in re and 1.5-3% in LWP. Very good correlation above 0.99 is observed in τ and LWP, 

and somehow correlation breaks in re.  The scale effect is also less important in this case. 

 

Table 3. Domain mean statistics of cloud properties, for overcast scenes only. 

CF ≥ 95% 100 m retrieval 1 km retrieval 

τ re (µm) LWP (g m-2) τ re (µm) LWP (g m-2) 

LES 6 12 56 6 12 58 

Retrieved 6 13 57 6 13.5 60 

Relative Bias 0.27% -12% -1.5% -1% -15% -3% 

rms 0.19 1.2 2.2 0.23 1.4 2.7 

correlation 0.99 0.13 0.99 0.99 0.31 0.99 

No. scenes 239 207 

 

In broken clouds, the domain mean cloud properties are smaller due to the averaging 

of clear and cloudy pixels. A 65% underestimation in the retrieved LWP is observed in 

compared to the LES truth, which is due to the underestimation in the retrieved optical 
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thickness. A 45% underestimation in domain mean τ and 10% underestimation in re are 

observed.  

 
Table 4. Domain mean statistics of cloud properties for broken scenes. 
 

CF ≤ 50% 100 m retrieval 1 km retrieval 

τ re (µm) LWP (g m-2) τ re (µm) LWP (g m-2) 

LES 0.9 1.3 7 1 1.3 9 

Retrieved 0.5 0.9 3 0.6 1. 3 

Relative Bias 35% 26% 59% 34% 20% 56% 

rms 0.4 0.5 4 0.6 0.6 7 

correlation 0.75 0.77 0.72 0.65 0.74 0.58 

No. scenes 277 283 

 
 
5.3.7. Cloud Fraction Dependency of Biases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22. Cloud fraction dependency of LES and retrieved within-cloud and domain mean 

cloud liquid water path, optical thickness, and their biases (1km retrievals). 
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Due to the non-linear relationship between radiance and optical thickness, the cloud 

property retrievals are strongly depends on cloud fraction within the pixel. Cloud fraction 

dependency of τ and LWP retrieved at 1 km resolution are shown in Figure 5.22 for both 

domain mean and within-cloud mean values. The τ, re and LWP increases with increasing 

cloud fraction in domain mean cases. In general very good agreement is seen between LES 

and retrieved τ and LWP above 50% cloud fraction. Below 50% cloud fraction slight 

underestimation in domain mean τ and LWP and a stronger underestimation in within-cloud 

mean τ and LWP are observed. In contrast, the retrieved effective radius overestimate above 

40% cloud fraction and underestimate below which. 

 

5.3.8. Sun-view Geometry Dependence 

(a) Solar Zenith Angle Dependence  

Indeed, previous studies found systematic SZA-dependent biases in 1D plane-parallel 

cloud optical thickness retrievals. Based on ERBE observations, Loeb and Davies [1996] 

noted an increasing overestimation in nadir-view cloud optical thickness at higher SZAs, 

particularly above 60º. Loeb and Coakley [1998] obtained similar results in AVHRR 

measurements even for marine Sc, which is arguably the closest to being plane-parallel. The 

strong increase in optical thickness was traced back to the fact that the plane-parallel model 

reflectances, on average, decreased with SZA, while observed reflectances increased. The 

hypothesis that this discrepancy was due to neglected 3D effects, such as cloud side 

illumination and bumpy cloud tops were later confirmed through Monte Carlo simulations by 

Loeb et al. [1998] and Várnai and Marshak [2001]. The above studies only considered near-

nadir views; however, Várnai and Marshak [2007] found similarly strong SZA-dependent 

increases in MODIS cloud optical thickness at all view angles. 

The solar zenith angle dependence of retrieved cloud properties in most- 

homogeneous and heterogeneous clouds is evaluated here aswell. Figure 5.23 shows domain 

mean (retrieved at 1 km resolution) true and retrieved LWP and optical thickness, and their 

differences for both homogeneous and heterogeneous cloud scenes. In the homogeneous 

cloud scenes, the retrieved effective radius agrees well with the true value from LES within 

2%, the retrieved optical thickness agrees with 10% underestimation compared to LES 

values, and finally the retrieved LWP agrees well with LES values within 10% 

underestimation. Moreover, these homogeneous scenes do not show much variability with 

solar zenith angles.  
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In the most heterogeneous cloud scenes, the retrieved domain mean effective radius 

show good agreement with LES true values in all solar zenith angle. However, the retrieved 

domain mean optical thickness agrees with LES true value up to the solar zenith angle of 50o 

and thereafter an increase towards higher solar zenith angles. At 70o solar zenith angle the 

retrieved optical thickness is four times larger than the true LES value. Thus, 20-30% 

underestimation in retrieved LWP is observed in the solar zenith angles below 50o, a very 

good agreement at 60o solar zenith angle, and the retrieved LWP doubles at 70o solar zenith 

angle. Similar results are obtained in comparing MODIS LWP with AMSR-E LWP [Seethala 

and Horvath, 2010]. (The difference seen in true cloud properties with respect to solar zenith 

angle is due to difference in number of datasets.)  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 5.23. Solar zenith angle dependence of domain mean LWP and τ (1 km retrievals). 
 

(b) View Zenith Angle Dependence  

This section examines view angle-dependent biases due to cloud inhomogeneity in the 

1D cloud property retrievals. Varnai and Marshak [2003] noticed an increase in optical 

thickness with view zenith angle, but larger increase towards oblique view in the backward 

observing direction, and claimed as, is due to the increase in the ratio of saturated pixels. 

Varnai and Marshak [2007] further examined cloud inhomogeneity influence in VZA-

dependence of MODIS τ retrieval. They noticed τ retrievals are remarkably consistent for all 
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view directions if clouds are homogeneous; they give much higher τ-values for oblique views 

than for overhead views if clouds are heterogeneous and the Sun is fairly low. The mean 

optical thickness retrieved for the most heterogeneous third of cloudy pixels is more than 

40% higher for oblique views than for overhead views if the solar zenith angle exceeds 60o. 

They concluded that the most likely reason for the increase lies in three-dimensional radiative 

interactions that are not considered in current, 1D retrieval algorithms. Namely, the radiative 

effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced 

optical thickness values. Loeb and Coakley [1998] and Kato et al. [2006] showed that 1D 

retrievals of mean τ decrease by as much as ~40% between nadir and oblique view angles, in 

the forward scattering direction. Loeb and Coakley [1998] indicated τ is fairly insensitive to 

changes in VZA in the backscattering direction; while Kato et al. [2006] shown that the 

retrieved τ decreases with VZA even in the backscatter direction but that the angular 

dependence is less pronounced compared to that in the forward direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24. View zenith angle dependence of domain mean LWP and LWP bias (a, b) most 

homogeneous, and (c, d) most heterogeneous (1 km retrievals). 

a) b) 

c) d) 
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For the forward scattering direction we consider the retrievals with relative azimuth < 

90o (i.e., φ=30o and φ=60o), and for the backward scattering direction we consider the 

retrievals with relative azimuth > 90o (i.e., φ=120o and φ=150o).  In homogeneous scenes, the 

retrieved LWP at different solar zenith angle agrees within 5% with LES LWP, except the 

underestimation in retrieval in the very oblique view in the forward scattering direction - this 

underestimation is mainly from the optical thickness underestimation. Otherwise an unbiased 

optical thickness is retrieved. In agreement with Kato et al. [2006], we also found an 

underestimation in LWP in backscatter direction, which might be due to the domain 

averaging. The effective radius overestimated the true LES by 1 – 1.5 µm. In the most 

heterogeneous portion of cloud scenes the retrieved LWP underestimated in all solar zenith 

angles except at 60o in the backward scattering direction. This underestimation in LWP is 

further increased with view zenith angle and the increase is larger in the forward scattering 

direction than in the backward scattering direction. 

In the forward scattering direction, the radiances (in both VIS and NIR) increase with 

VZA. In the backscatter direction also we noticed an increase in radiance with VZA. 

However, there is a decrease in retrieved cloud properties with VZA in the forward scattering 

direction. The reason is according to Mie theory, most part of the reflectance should be in the 

forward scattering direction for a plane-parallel cloud, and the reflectance should further 

increase with increasing view zenith angle. This can be clearly seen in the LUT (Figures 5.2-

5.3) provided in Section 2.3. At particular view geometry, eventhough visible reflectance 

increases, we found a decrease in τ (which is clear from Figure 5.3, but for forward scattering 

LUT). Nevertheless, due to the cloud 3D structure, more reflectance is backscattered in other 

directions and hence the photons may be reduced which might otherwise travel in the forward 

scattering direction. Thus, eventhough, the reflectance is larger in the forward scattering 

direction, according to Mie theory for a plane-parallel cloud it should be even larger than that 

to get the exact cloud optical thickness and effective radius in the forward direction.  

 

(c) View Azimuth versus View Zenith Angle  

In this section we evaluate the dependence of retrieval bias as a function of view 

azimuth angle and view zenith angle. In the most homogeneous portion of clouds the relative 

bias in LWP is within ±10%. At 60o SZA, there is a slight overestimation in the backward 

scattering direction due to the cloud illumination, and an underestimation in the most forward 

scattering direction at very oblique view of 70o due to the cloud shadow. Mostly, an unbiased 

τ is retrieved in the homogeneous clouds and the bias is ±5%, except at SZA 60o, where a 
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15% underestimation is observed in the forward scattering direction at very oblique view 

mainly due to the cloud shadow side viewing. In general, the retrieved re overestimated 10-

15%, and the overestimation is larger in the forward scattering direction at very oblique view 

and also in the backward scattering direction in side and fairly oblique views.  

 

 

 

 

 

 

Figure 5.25. The relative bias in domain mean LWP is binned according to view azimuth 
angle (φ) and view zenith angle (θ) for homogeneous clouds at SZA (0o, 20o, 40o, 60o). 

 
 

 

 

 

 

 

Figure 5.26. The relative bias in domain mean τ is binned according to view azimuth angle 
(φ) and view zenith angle (θ) for homogeneous clouds at SZA (0o, 20o, 40o, 60o). 

 
 

 

 

 

 

 

Figure 5.27. The relative bias in domain mean re is binned according to view azimuth angle 
(φ) and view zenith angle (θ) for homogeneous clouds at SZA (0o, 20o, 40o, 60o). 

 
In the more heterogeneous cloud scenes, the optical thickness errors are smaller and 

within ±10 % in general, except at the forward scattering direction in the very oblique view. 

There is large overestimation ~50% in effective radius in the overhead Sun and nadir view. 

There is 10-20% underestimation in effective radius in the forward scattering direction at 

oblique views but high Sun. The underestimation increased with solar zenith angle, and at 
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low Sun, more in the side- and backscattered direction. At high Sun and nadir or side views 

the bias in retrieved effective radius is negligible.  

 

 

 

 

 

 

Figure 5.28. The relative bias in domain mean LWP is binned according to view azimuth 
angle (φ) and view zenith angle (θ) for heterogeneous clouds at SZA (0o, 20o, 40o, 60o). 

 
 

 

 

 

 

 

Figure 5.29. The relative bias in domain mean τ is binned according to view azimuth angle 
(φ) and view zenith angle (θ) for heterogeneous clouds at SZA (0o, 20o, 40o, 60o). 

 
 

 

 

 

 

 

Figure 5.30. The relative bias in domain mean re is binned according to view azimuth angle 
(φ) and view zenith angle (θ) for heterogeneous clouds at SZA (0o, 20o, 40o, 60o). 

 

5.3.9. Error in Cloud Retrieval and Heterogeneity Measures 

In this section the absolute and relative bias in domain mean (based on 1 km pixel 

retrievals) LWP, optical thickness, and effective radius has been evaluated as a function of 

different heterogeneity measures. The results were also categorized as a function of solar 

zenith angle to see the correspondence of solar zenith angle in bias and heterogeneity 

parameters. The relative bias in LWP and τ is shown in Figure 5.31-5.33 binned with 

different heterogeneity parameters, but only for θo=20o. The relative bias in LWP shows a 
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clear dependence of all three heterogeneity parameters. The relative bias in LWP is smaller 

and within ±10% in the most homogeneous portion and the bias increased with the increasing 

heterogeneity. In the heterogeneous cases a general underestimation in retrieved LWP is 

observed and the underestimation goes larger than 80% compared to true LES LWP. When 

the results are categorized in terms of θo it is clear that the overall bias is smaller at θo=60o. 

When the LWP relative bias is binned with respect to χ (from LES) and Hσ the relative bias 

showed a clear increase towards Hσ than that in the χ. The relative bias show stronger 

dependence on Hσ compared to other heterogeneity parameters σCTOP and χLES or χRET. The 

dependence of χRET with relative bias is similar to χLES except the fact that the retrieved χ 

values moved towards larger values (i.e. more homogeneous) at high Sun and moved towards 

smaller values (i.e. more heterogeneous) at low Sun.  

 

 

 

 

 

 

 

 

 

Figure 5.31. The relative bias in domain mean (a) LWP and (b) τ binned according to χ 

parameter calculated from LES (χLES) and Hσ for θo=20o. 

 

 

 

 

 

 

 

 

 

 

Figure 5.32. The relative bias in domain mean (a) LWP and (b) τ binned according to 

standard deviation in cloud top height (σCTOP) and Hσ for θo=20o. 

a) b) 

a) b) 
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Figure 5.33. The relative bias in domain mean (a) LWP and (b) τ binned according to χ 

calculated from LES (χLES) and standard deviation in cloud top height (σCTOP) for θo=20o. 

 

 

 

 

 

 

 

 

Figure 5.34. The absolute bias in domain mean (a) τ, (b) re, and (c) LWP binned according to 

χ calculated from LES (χLES) and Hσ for θo=20o. 

 

A clear transition from very small bias to very large positive bias can be observed in τ 

relative bias plot, in all SZA. The bias is interestingly smaller when the Sun is fairly oblique 

~60o. The bias in re also showed a clear dependence on heterogeneity. As Girolamo [2010] 

we have also observed Hσ as the most powerful heterogeneity parameter compared to χRET 

and σCTOP. The absolute bias in LWP, τ and re is shown in Figure 5.34. In the most 

homogeneous portion of data there is almost nil bias or a very small overestimation ~0.5 is 

observed in retrieved τ. On the otherhand, the retrieved re shows an overestimation of 2-3 µm. 

This leads an overestimation in retrieved LWP upto 5–10 g m-2.  However, over the most 

heterogeneous portion of the data the retrieved re seems to be unbiased. Hence the 

underestimation in retrieved LWP is mainly due to the underestimation in τ. The 

underestimation in τ is around 1–2, and in LWP is around 20-25 g m-2. Overall, the bias in 

retrieved cloud properties is smaller for 1 km retrievals and the domain means.  

a) b) 

a) b) c) 
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5.3.10. Error Estimation for 1D VNIR Cloud Retrievals 

Based on the values of three different heterogeneity parameters Hσ, σCTOP, and χLES or 

χRET the cloud scenes have been classified into either homogeneous or heterogeneous. The 

first one-third of the data based on the heterogeneity parameters are assumed as most-

homogeneous and the last one-third of the data is assumed as most-heterogeneous. The 

criteria is as below: 

 
Homogeneity criteria: 

          Hσ < 0.3 

         σCTOP < 30 m 

 χLES or χRET >  0.95 

 
Heterogeneous criteria:  

             Hσ > 1.5 

            σCTOP > 100 m 

 χLES or χRET <  0.85  

 
We had roughly 310 cloud scenes which satisfy the homogeneity criteria and 230 

scenes which satisfy the heterogeneity criteria. Thus from these scenes we calculate the 

absolute bias and relative bias for τ, re, and LWP. The relative bias in all three variables for 

different Sun-view geometry is provided in Table 5-7. For the homogeneous cloud scenes the 

relative bias in τ is ± 5% in all the Sun-view geometry except at very low Sun and very 

oblique view especially in the most forward and most backward direction. Effective radius is 

mostly overestimated and the relative bias varies from 5 to 25%. The relative bias in LWP is 

also between ± 10% in most of the Sun-view geometry.   

In heterogeneous scenes, the retrieved LWP underestimates at all solar zenith angles 

except the very low Sun of 60o and 70o where they show an overestimation. The relative bias 

in retrieved LWP is within 40% except 70o solar zenith angle. The retrieved effective radius 

show an overestimation compared to LES values in all Sun-view geometry and the relative 

bias in re varies from 5% to 45%. The optical thickness underestimates in general in all solar 

zenith angles except very low Sun of 60o and 70o. The relative bias (underestimation) is 

roughly 2 to 30%. However, in 60o solar zenith angle there is a large overestimation in 

retrieved τ compared to τ from LES, and the relative bias in τ at this solar zenith angle can go 

even upto 100% especially at nadir view.   

 



127                                                                        Quantifying Uncertainties in 1D VNIR Retrievals                           

 

Table 5. The relative bias of domain mean (retrieved) τ in most homogeneous clouds. The 

values in the bracket indicate the relative bias in most heterogeneous clouds. 

 

(τLES-τRET)/ τLES * 100. [homogeneous (heterogeneous)] 
              φ→ 
θ ↓ 

30 o 60 o 90 o 120 o 150 o 

θo = 0o     

0 o 
30 o 
45 o 
60 o 
70 o 

      2.2 (20) 
     -0.1(22) 
      0.6(24) 
      0.5(26) 
     -1.4(22) 

       2.2(20) 
     -0.1(23) 
       0.6(24) 
       0.5(26) 
     -1.2(21) 

     2.2(20) 
   -0.2(22) 
     0.5(24) 
     0.6(25) 
   -1.3(20) 

     2.2(20) 
    -0.1(23) 
     0.6(25) 
     0.7(26) 
   -1.0(21) 

     2.2(20) 
    -0.1(23) 
     0.6(24) 
     0.7(26) 
    -0.9(21) 

θo = 10o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -2.7(14) 
      3.0(26) 
      0.5(26) 
      0.6(26) 
     -1.4(22) 

    - 2.7(14) 
      2.4(25) 
      0.2(25) 
      0.6(26) 
     -0.9(22) 

    - 2.7(14) 
     -0.6(22) 
      0.3(24) 
      1.0(25) 
     -0.9(21) 

    - 2.7(14) 
     -0.3(23) 
      2.8(28) 
      1.0(26) 
     -0.3(22) 

    - 2.7(14) 
     -0.1(23) 
      3.7(28) 
      0.3(25) 
      0.4(23) 

θo = 20o     

0 o 
30 o 
45 o 
60 o 
70 o 

    -0.8(16) 
    -0.4(23) 
      1.1(26) 
      1.2(26) 
    -1.0(22) 

    -0.8(16) 
     0.8(23) 
      1.0(26) 
      1.1(26) 
     -0.6(22) 

    -0.8(16) 
     2.0(24) 
    -0.1(24) 
      1.2(25) 
     -0.4(21) 

    -0.8(16) 
     0.4(23) 
     3.6(28) 
     0.8(26) 
     0.9(23) 

    -0.8(16) 
    -0.2(22) 
      1.2(25) 
      2.8(27) 
      0.9(23) 

θo = 30o     

0 o 
30 o 
45 o 
60 o 
70 o 

    -0.7(15) 
      0.6(17) 
      1.5(26) 
      2.5(28) 
      0.8(23) 

    -0.7(15) 
    -0.1(23) 
      1.3(13) 
      1.9(26) 
      0.5(23) 

    -0.7(15) 
      2.1(24) 
      0.7(25) 
      1.5(24) 
      0.4(20) 

    -0.7(15) 
      0. 5(22) 
      4.5(28) 
      0.7(25) 
      2.2(23) 

    -0.7(15) 
    -0.4(21) 
      1.4(24) 
      6.4(29) 
      0.7(8) 

θo = 40o     

0 o 
30 o 
45 o 
60 o 
70 o 

      1.7(16) 
      0.3(23) 
      2.0(26) 
      4.5(28) 
      5.0(26) 

      1.7(16) 
      0.4(23) 
      1.5(25) 
      3.0(26) 
      2.2(23) 

     1.7(16) 
    -0.8(20) 
      1.4(24) 
      2.0(23) 
      1.4(16) 

     1.7(16) 
     0.7(19) 
     5.0(26) 
     1.0(22) 
     3.0(20) 

        1.7(16) 
        0.1(18) 
        1.5(22) 
        3.9(25) 
      15.3(32) 

θo = 50o     

0 o 
30 o 
45 o 
60 o 
70 o 

      -2.6(-5) 
      -0.5(16) 
        1.9(18) 
        7.1(25) 
      12.7(26) 

     -2.6(-5) 
     -0.7(16) 
      1.2(19) 
      4.1(20) 
      5.2(18) 

     -2.6(-5) 
     -0.4(13) 
      0.9(16) 
      2.6(13) 
      2.4(2) 

     -2.6(-5) 
      1.9(8) 
      1.8(17) 
      1.5(14) 
      4.1(7) 

     -2.6(-5) 
      0.1(9) 
      1.5(14) 
      4.8(11) 
      4.6(8) 

θo = 60o     

0 o 
30 o 
45 o 
60 o 
70 o 

      -4.6(-94) 
      -4.7(-39) 
      -2.5(-30) 
        6.0(-1) 
      21.4(21) 

     -4.6(-94) 
     -4.2(-35) 
     -2.5(-24) 
      2.0(2) 
      6.9(-3) 

     -4.6(-94) 
     -3.7(-46) 
     -2.4(-31) 
      0.2(-26) 
      0.7(-43) 

    -4.6(-94) 
    -4.2(-44) 
    -2.9(-29) 
      0.5(-34) 
      3.6(-37) 

    -4.6(-94) 
      1.8(-57) 
      0.8(-45) 
      4.2(-34) 
      8.4(-59) 

θo = 70o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -13.4(>100) 
       -23.0 
       -65.7 
     >100 
     >100 

     -13.4 
     -17.2 
     -23.0 
     -40.4 
     -40.0 

     -13.4 
     -14.5 
     -15.8 
     -20.0 
     -23.2 

     -13.4 
     -11.3 
       -9.6 
       -8.0 
       -6.9 

     -13.4 
     -11.8 
       -4.2 
       -3.5 
       -1.0 
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Table 6. The relative bias of domain mean (retrieved) re in most homogeneous clouds. The 

values in the bracket indicate the relative bias in most heterogeneous clouds. 

 

(RLES-RRET) / RLES * 100. [homogeneous] 
              φ→ 
θ ↓ 

30 o 60 o 90 o 120 o 150 o 

θo = 0o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -17 (-45) 
       -9(-27) 
     -16(-43) 
     -10(-18) 
       -7(-14) 

     -17(-45) 
       -9(-27) 
     -16(-44) 
       -9(-17) 
       -7(-12) 

   -17(-45) 
     -9(-27) 
   -17(-44) 
     -9(-18) 
     -6(-13) 

   -17(-45) 
     -9(-28) 
   -16(-44) 
     -9(-19) 
     -7(-15) 

   -17(-45) 
   -10(-28) 
   -16(-46) 
     -9(-21) 
     -7(-17) 

θo = 10o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -9(-33) 
   -11(-20) 
   -11(-27) 
   -10(-17) 
     -8(-16) 

     -9(-33) 
   -10(-35) 
   -13(-30) 
     -9(-17) 
     -7(-13) 

     -9(-33) 
   -11(-29) 
   -17(-46) 
     -9(-17) 
     -6(-13) 

     -9(-33) 
   -10(-28) 
   -13(-25) 
   -11(-20) 
     -7(-15) 

     -9(-33) 
   -10(-28) 
   -11(-28) 
   -13(-27) 
     -7(-15) 

θo = 20o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -9(-31) 
   -14(-32) 
   -10(-22) 
   -10(-16) 
     -8(-15) 

     -9(-31) 
   -14(-26) 
   -10(-20) 
     -9(-18) 
     -8(-13) 

     -9(-31) 
   -10(-31) 
   -15(-29) 
     -9(-16) 
     -7(-13) 

       -9(-31) 
     -10(-29) 
     -12(-19) 
     -13(-24) 
       -8(-15) 

     -9(-31) 
   -10(-28) 
   -11(-23) 
   -19(-22) 
   -11(-19) 

θo = 30o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -9(-32) 
   -10(-25) 
   -10(-20) 
   -11(-18) 
     -9(-15) 

     -9(-32) 
   -12(-32) 
   -10(-20) 
   -10(-17) 
     -8(-12) 

     -9(-32) 
   -13(-31) 
   -13(-27) 
   -10(-15) 
     -7(-13) 

     -9(-32) 
   -10(-27) 
   -12(-20) 
   -16(-26) 
     -8(-13) 

     -9(-32) 
   -10(-28) 
   -11(-24) 
   -12(-24) 
   -24(-50) 

θo = 40o     

0 o 
30 o 
45 o 
60 o 
70 o 

      -10(-24) 
       -9(-24) 
     -11(-20) 
     -12(-19) 
     -10(-15) 

       -10(-24) 
        -9(-26) 
      -10(-20) 
      -11(-16) 
        -9(-14) 

     -10(-24) 
     -14(-31) 
     -10(-17) 
     -10(-15) 
       -7(-12) 

     -10(-24) 
     -11(-27) 
     -13(-16) 
     -17(-25) 
     -10(-13) 

   -10(-24) 
   -10(-25) 
   -11(-22) 
   -12(-19) 
   -12(-11) 

θo = 50o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -12(-38) 
       -8(-23) 
     -11(-22) 
     -14(-20) 
     -14(-24) 

     -12(-38) 
       -8(-24) 
     -10(-20) 
     -11(-18) 
     -10(-16) 

     -12(-38) 
       -9(-21) 
       -9(-16) 
       -9(-15) 
       -7(-13) 

     -12(-38) 
     -14(-31) 
     -17(-21) 
     -17(-26) 
     -11(-15) 

     -12(-38) 
     -10(-23) 
     -11(-21) 
     -12(-19) 
     -15(-19) 

θo = 60o     

0 o 
30 o 
45 o 
60 o 
70 o 

       -6(-22) 
       -9(-22) 
     -11(-22) 
     -16(-25) 
     -19(-25) 

       -6(-22) 
       -8(-21) 
     -10(-20) 
     -12(-19) 
     -12(-19) 

     -6(-22) 
     -7(-18) 
     -8(-15) 
     -9(-13) 
     -7(-12) 

       -6(-22) 
     -13(-29) 
     -16(-24) 
     -15(-21) 
     -11(-13) 

       -6(-22) 
     -11(-27) 
     -11(-19) 
     -13(-17) 
     -12(-16) 

θo = 70o     

0 o 
30 o 
45 o 
60 o 
70 o 

     -2(-13) 
     -5(-13) 
     -6(-11) 
     -5(-6) 
      3(-13) 

     -2(-13) 
     -4(-16) 
     -6(-12) 
     -8(-13) 
   -10(-16) 

     -2(-13) 
     -3(-12) 
     -5(-11) 
      -6(-8) 
      -4(-6) 

     -2(-13) 
     -5(-13) 
     -8(-12) 
   -10(-10) 
      -8(-6) 

       -2(-13) 
     -23(-43) 
     -12(-17) 
     -11(-12) 
     -11(-12) 
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Table 7. The relative bias of domain mean (retrieved) LWP in most homogeneous clouds. 

The values in the bracket indicate the relative bias in most heterogeneous clouds. 

 

(LWPLES-LWPRET) / LWPLES * 100. [homogeneous] 
              φ→ 
θ ↓ 

30 o 60 o 90 o 120 o 150 o 

θo = 0o     

0 o 
30 o 
45 o 
60 o 
70 o 

        -5(20) 
        -2(29) 
        -6(24) 
     -0.5(38) 
      0.4(36) 

        -5(20) 
        -2(29) 
        -6(23) 
     -0.2(37) 
         1(36) 

     -5(20) 
     -2(30) 
     -7(24) 
      0(36) 
      1(36) 

     -5(20) 
     -2(30) 
     -6(24) 
  -0.2(36) 
      1(35) 

     -5(20) 
     -2(30) 
     -6(24) 
  -0.2(36) 
      1(35) 

θo = 10o     

0 o 
30 o 
45 o 
60 o 
70 o 

       -4(20) 
    -0.2(34) 
       -3(33) 
    -0.5(37) 
        0(35) 

       -4(20) 
      0.2(29) 
       -4(31) 
    -0.3(37) 
        1(36) 

       -4(20) 
       -3(28) 
       -7(24) 
      0.3(37) 
         1(36) 

     -4(20) 
     -2(30) 
     -3(34) 
     -1(36) 
      1(36) 

    -4(20) 
    -2(30) 
   0.5(34) 
    -4(32) 
      2(36) 

θo = 20o     

0 o 
30 o 
45 o 
60 o 
70 o 

       -2(24) 
       -6(27) 
       -1(36) 
    -0.2(38) 
      0.2(36) 

     -2(24) 
     -5(27) 
     -1(36) 
   0.2(37) 
      1(36) 

    -2(24) 
    -1(30) 
    -6(30) 
  0.2(37) 
     2(36) 

    -2(24) 
    -2(30) 
    -1(37) 
    -4(34) 
     2(37) 

   -2(24) 
   -2(29) 
   -2(32) 
   -7(31) 
   -1(33) 

θo = 30o     

0 o 
30 o 
45 o 
60 o 
70 o 

       -2(24) 
       -1(34) 
    -0.3(36) 
       -0(39) 
        1(37) 

    -2(24) 
    -4(30) 
    -1(36) 
     0(38) 
     1(38) 
 

     -2(24) 
     -3(30) 
     -3(33) 
   0.3(37) 
      2(35) 

     -2(24) 
     -2(30) 
      1(36) 
     -6(31) 
      2(36) 

     -2(24) 
     -2(28) 
     -2(32) 
      3(37) 
   -13(16) 

θo = 40o     

0 o 
30 o 
45 o 
60 o 
70 o 

    -1(27) 
 -0.5(33) 
 -0.4(36) 
     1(39) 
     4(39) 

     -1(27) 
     -1(33) 
  -0.4(36) 
      1(38) 
      2(37) 

    -1(27) 
    -6(27) 
    -1(36) 
      1(36) 
      3(32) 

    -1(27) 
    -3(27) 
      0(35) 
    -7(28) 
      2(33) 

     -1(27) 
     -2(27) 
     -2(30) 
   0.5(33) 
    12(43) 

θo = 50o     

0 o 
30 o 
45 o 
60 o 
70 o 

       -5(12) 
    -0.5(29) 
       -0(30) 
        4(36) 
      10(36) 

     -5(12) 
     -1(29) 
     -0(31) 
      2(33) 
      5(33) 

     -5(12) 
     -1(28) 
      0(30) 
      2(30) 
      4(19) 

     -5(12) 
     -3(20) 
     -7(23) 
     -6(21) 
      2(21) 

     -5(12) 
     -2(21) 
     -2(24) 
      1(19) 
      0(17) 

θo = 60o     

0 o 
30 o 
45 o 
60 o 
70 o 

       -1(-9) 
        -3(6) 
        -1(9) 
        5(22) 
      20(37) 

      -1(-9) 
       -2(6) 
     -1(10) 
      2(23) 
      8(21) 

    -1(-9) 
     -1(7) 
     -1(8) 
      1(8) 
     4(-3) 

     -1(-9) 
     -7(-2) 
     -9(-2) 
     -4(-2) 
       3(0) 

     -1(-9) 
      0(-9) 
     -1(-7) 
      1(-12) 
      6(-23) 

θo = 70o     

0 o 
30 o 
45 o 
60 o 
70 o 

      -2(-142) 
       -7(-72) 
     -21(-84) 
   -72(-184) 
   -98(-240) 

     -2(-142) 
       -5(-58) 
       -8(-57) 
     -14(-87) 
       -9(-76) 

     -2(-142) 
     -3(-87) 
     -4(-82) 
     -6(-66) 
     -6(-88) 

     -2(-142) 
     -3(-36) 
     -4(-42) 
     -3(-47) 
      0(-65) 

    -2(-142) 
   -17(-40) 
     -3(-70) 
     -1(-76) 
      3(-162) 
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5.3.11. Multi-Linear Regression Analysis 

A multiple linear regression analysis is carry out to predict the values of relative bias 

in τ and LWP, from a set of explanatory variables Hσ, σCTOP, χRET, χLES, τLES. Multiple linear 

regression attempts to model the relationship between two or more explanatory variables and 

a response variable by fitting a linear equation to observed data. Every value of the 

independent variable x is associated with a value of the dependent variable y. The regression 

line for p explanatory variables x1, x2, ... , xp is defined to be µy = β0 + β1x1 + β2x2 + ... + βpxp. 

The observed values for y vary about their means µy and are assumed to have the same 

standard deviation σ. The fitted values b0, b1, ..., bp estimate the parameters β0, β1, ..., βp of 

the population regression line. Formally, the model for multiple linear regression, given n 

observations, is 

 

  yi = β0 + β1xi1 + β2xi2 + ... + βpxip + ei   for i = 1,2, ... n. 

 

Where ei is residual, the difference between observed and predicted relative bias and β0 is 

constant. 

We predict the bias and relative bias in τ and LWP using true LES τ and different 

cloud heterogeneity measures calculated from the observed 0.86 µm radiance, cloud top 

height, retrieved τ, true τ, etc. The observed versus predicted relative bias in both τ and LWP 

is shown in Figure 5.35-5.36. The multi-linear correlation coefficient between the relative 

bias and the explanatory variables is above 0.9 and the correlation breaks with the solar 

zenith angle. Good (linear-)relation between true and predicted relative bias is noticed for 

Sun angles smaller than 60o and the relation breaks at 60o solar angle and later. Table 8 

summarizes the coefficients of multi-linear regression fit and their root-mean square 

deviations for specific Sun-view geometry. However, we perform the multi-linear regression 

simply to demonstrate how these statistical errors derived from LES-SHDOM could be used 

to statistically correct the VNIR retrievals. In reality, especially for pixel-level retrievals, the 

errors depend non-linearly on SZA, VZA, heterogeneity, etc., so clearly, a linear regression 

model is not a good choice. A better model would be a neural network (similar to Cornet et 

al., [2004, 2005] neural net correction scheme), which can handle the non-linear relationship 

between retrieval errors and SZA, VZA, heterogeneity, etc.  
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Table 8. β parameters and their corresponding bias to predict domain mean relative τ bias. 

 β0 β1 (Hσ) β2 (σCTOP) β3 (χRET) β4 (χLES) β5 (τLES) 

θo = 0o φ = 90o, θ = 0o 

coefficients -5.9 3.5 -16 204 -208 1.3 

SD (σ)  0.3 1.8 9.5 5 0.1 

 φ = 90o, θ = 45o 

coefficients 10 11.4 10.4 79 -110 1.9 

SD (σ)            0.4 3.4 6.7 8.4 0.2 

 φ = 90o, θ = 70o 

coefficients -43 15 28 73 -44 0.9 

SD (σ)  0.5      4.2     6.6      9.8       0.2 

θo = 30o φ = 90o, θ = 0o 

coefficients 28 7.5 -6 77 -120 1.2 

SD (σ)  0.4      2.4      12.4      7.6      0.1 

 φ = 90o, θ = 45o 

coefficients 8 12.8       19.3      30.8      -54        1.3        

SD (σ)  0.4      3.4      7.7      9.0      0.2 

 φ = 90o, θ = 70o 

coefficients -42 14       29.5       68       -37      0.6        

SD (σ)  0.5      4.3        6.1       10.2      0.2 

θo = 60o φ = 90o, θ = 0o 

coefficients -58.415 3.109      -50.443    617.560    -558.649       0.149   

SD (σ)  3.166      22.951     29.293     74.858     1.270 

 φ = 90o, θ = 45o 

coefficients -72 11       25       284      -225       1.4      

SD (σ)  1.4       13.5      12.6     39.8       0.6 

 φ = 90o, θ = 70o 

coefficients -77 7.6       17       296      -219     -0.02      

SD (σ)  2.0       20       14     53      0.9 
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Figure 5.35. Domain mean observed vs. modelled relative τ bias for selected Sun-view 

geometry at relative azimuth φ=90o. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36. Domain mean observed vs. modelled relative LWP bias for selected Sun-view 

geometry at relative azimuth φ=90o. 
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5.3.12. Optimal Error in Sun-view Geometry 

The selection of preferred satellite viewing directions can significantly reduce this 

error. So, one way of reducing the retrieval error is to find out the view geometries and Sun 

angles whose retrieval error is minimal and tune the satellite instruments accordingly. Thus, 

in this section, we seek optimal viewing geometries and solar zenith angles from ~550 cloud 

scenes that give minimum error in optical thickness.  

Davies [1984] reported that the differences are greatest for nadir and limb views, but 

tend to vanish for radiances with a view zenith angle of 60o. If a single measurement is to be 

used to estimate the upwelling irradiance from an arbitrary scene, it therefore appears that 

both the nadir and limb viewing directions should be avoided, with the best choice being the 

measurement of radiances with zenith angles close to 60o. For situations with large potential 

azimuthal dependence, as for large solar zenith angles, the preferred azimuthal viewing 

directions appear to be approximately 90o or 270o with respect to the solar plane. Kato et al. 

[2009] also attempted to estimate optimal geometry from the stratocumulus cloud fields. 

They found, when the solar zenith angle is small (θo = 30o), the error is negative but less than 

10% (except for φ = 180o). However, if the optical thickness is derived from nadir view only 

for overhead sun, the domain averaged optical thickness is underestimated by more than 

10%. The azimuthally averaged τ error is less than 10% in the range of the viewing zenith 

angle from 0o to 60o when the solar zenith angle is around 30o. When the solar zenith angle 

increases to 60o, viewing zenith averaged τ error exceeds 10% especially if viewed from the 

forward direction while it can be less than 10% in the backward direction. The azimuthally 

averaged τ error is less than 10% when the viewing zenith angle is less than 30o and solar 

zenith angle is 60o. When the solar zenith angle further increases to 70o, both internal and 

external error terms are greater than 10% but with the opposite sign, and hence the retrieved  

optical thickness error is less than 10%.  

We evaluate the bias in retrieved τ at different Sun-view geometry and characterize 

the frequency of occurrence of minimum (min) and maximum (max) bias as a function of all 

these different angles, and shown in Figure 5.37-5.38. When the retrieved τ is categorized in 

terms of viewing zenith angle (θ) the max frequency of min bias is achieved in 30o view 

zenith angle. In total of 550 cloud scenes, ~35% of scenes show min bias at θ=30o, ~25% and 

~23% of scenes show min bias at θ=45o and 60o respectively. There are 17% of cloud scenes 

which show min bias although at very oblique viewing angle (θ=70o). Nevertheless, there are 

no clouds which show min bias in the nadir view (θ=0o), which is somewhat expected 

because there will be no cancellation of errors due to the cloud brightening and darkening, 
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which are expected to happen in all other viewing angles.  In terms of relative azimuth angle 

(φ) there is clear difference in frequency of occurrence of minimum (τ) bias between forward 

and backward scattering direction. ~30% of scenes in the forward scattering direction 

(φ<90o), ~20% of scenes in the side-scattering direction (φ=90o), and ~50% of scenes in the 

backscattered direction (φ>90o) show minimum τ bias. This would mean that 70% of total 

clouds show minimum bias either in side/backscattered radiance. Hence, the retrievals seem 

less affected if the measuring instruments are tuned to this geometry. Figure 5.37c shows the 

frequency of minimum τ bias at different solar zenith angles (θ). While considering 

individual θo, the maximum frequency of minimum τ bias is seen at low Sun (θo=60o and 

70o). At 60o solar zenith angle there are clouds which show minimum bias regardless of 

viewing/satellite plane (φ) respect to Sun, probably the errors cancels out as the satellite 

views cloud shadow side and illuminating side more often. On the other Sun angles there is 

minimum bias mostly in the side scattering and backscattering direction. At 40o and 50o Sun 

angles the maximum number of minimum bias is observed mostly in the 30o and 45o view 

zenith angles at φ=120o. At 20o and 30o solar zenith angles the minimum bias is observed 

mostly in side scattering and backscattering radiance direction especially at 30o, 45o, 60o 

viewing angles. At 10o Sun angle there are fewer number of scenes show minimum bias but 

at all azimuth angles; especially forward scattering and side scattering direction at 30o view 

zenith angle and back scattering at 45o viewing angle. At the overhead Sun, the maximum 

scenes with minimum τ bias is seen either in φ = 60o or in φ = 120o. Overall, 30o viewing 

angle in most of the solar zenith angles and additionally 45o or 60o viewing angles in few 

solar zenith angles (especially when the Sun is fairly low) show minimum τ bias. Moreover, 

120o relative azimuth angle seems to be the best in all the Sun- angles, additionally 150o also 

show more scenes with less τ bias especially when the Sun is 30o or 40o zenith. Interestingly 

for the 60o solar zenith angle, 30o and 150o relative azimuth angles are the ones giving 

maximum scenes with minimum bias especially in the viewing angles 30o and 45o.  

For solar zenith angle below 50o only very few scenes show max τ bias, which are 

mostly in the forward scattering direction (φ=30o and 60o). When the Sun is fairly low (at 60o 

and 70o solar zenith angle) the max scenes with max τ bias is seen in the 30o relative azimuth 

angle especially in the very oblique (θ=70o) view zenith angle.   
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Figure 5.37. The frequency of occurrence of minimum domain mean τ bias in different Sun-

view geometry (a) view zenith angle, (b) view azimuth angle, and (c) solar zenith angle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.38. The frequency of occurrence of min domain mean τ bias in different Sun-view 

geometry (a) view azimuth angle and SZA, (b) view zenith angle and SZA.  
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5.4. Summary 

This chapter investigated the three-dimensional radiative effects in 1D VNIR satellite 

cloud retrievals based on hundreds of large-eddy simulated cloud fields and a 3D radiative 

transfer model. Satellite cloud retrievals in visible and near-infrared channel is done by 

assuming clouds as plane-parallel, homogeneous, and independent pixels. However, using 

MISR data Girolamo et al. [2010] showed that the retrieved τ at 1 km resolution are 

indistinguishable from plane‐parallel clouds 79% of the time, for the oceanic stratiform 

clouds when solar zenith angle < 60o and for all other cloud types and Sun angles, this 

frequency drops sharply to as low as a few percent. Cahalan et al. [1994] reported an albedo 

bias of 10% or greater would be introduced into large regions of climate models if clouds 

were given their observed liquid water amounts, because of the treatment of clouds as plane-

parallel. The difficulty in remote sensing of inhomogeneous cloud properties arises from the 

de-correlation between 3D radiances and cloud properties. An accurate retrieval in satellite 

based remote sensing of clouds should never be expected. However, it should be possible to 

estimate error from thousands of cloud fields which meets the conditions of real cloud. 

Thus, our goal is to estimate 3D radiative errors in 1D retrievals, based on 650 LES 

cloud fields ranging from stratocumulus, unbroken stratus, to broken cumulus fields. To 

calculate the magnitude of cloud retrieval error, we have developed a one-dimensional 2-

channel cloud retrieval algorithm based on Nakajima and King [1990]. The 1D look-up-table 

has been prepared based on SHDOMPP, a 1D radiative transfer model. The 3D radiances at 

two wavelengths (0.86 µm and 2.12 µm in this study) are computed from the 3D LES cloud 

fields using SHDOM, a 3D radiative transfer model. The retrievals are performed for 

individual cloud fields at its original higher resolution and also at standard 1 km resolution. 

The optical thickness and effective radius for each pixel is retrieved simultaneously from the 

1D LUT. The resulting retrieved cloud properties are compared to the true LES values at its 

original resolution and also at 1 km resolution. 

The simulated 3D and calculated 1D radiance have been compared. For a plane-

parallel cloud, visible and near-infrared radiances increased with view zenith angle in oblique 

Sun, and the increase is 2 – 3 times larger in the forward scattering direction than the 

backscatter direction. Nevertheless, for high Sun, the radiances decreased with viewing angle. 

A case study reveals that the stratocumulus cloud follows this plane-parallel theory very well, 

however, for a broken shallow cumulus cloud, the increase in radiance with view zenith angle 

is less pronounced, and a general underestimation in visible radiance is noticed. Besides, the 

plane-parallel model showed decrease in radiance from medium to larger values of solar 
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zenith angle, however, 3D radiances increased with solar zenith angle. This increase is larger 

in both stratocumulus and shallow cumulus field, except a strong underestimation in shallow 

cumulus radiance for high Sun. 

Different heterogeneity measures have been utilized to study the 3D radiative effects 

of homogeneous and heterogeneous cloud fields. The pixel-level analysis showed that most-

homogeneous one-third scenes exhibited narrow Gaussian distribution, but skewed 

negatively, indicating the overestimation in retrieved LWP. Roughly 40-60% of the data 

showed the relative LWP bias within ±15% depending on the solar zenith angle, however, 

one-fourth of most-heterogeneous scenes showed much wider distribution with more than 

one peak, but skewed negatively, and only 10-25% of datasets are within ±15% relative LWP 

bias. For most-homogeneous cloud the distribution of relative cloud optical thickness (τ) bias 

peaks at 0. Roughly 40-70% of the data showed relative bias within ±15%, and the 

percentage of data that showed minimum bias decreased with increasing solar zenith angle. In 

contrast to homogeneous clouds, the frequency distribution of heterogeneous clouds is sparse 

and variable with fairly large negative tail. The distribution peak also shifted to -10% relative 

bias and also highly depended on solar zenith angle. Interpreting the retrieved droplet 

effective radius (re) with true LES is complex in the sense that satellite retrieval of re at near-

infrared wavelength is sensitive mostly to the top layer of clouds. To compare retrieved re 

with LES true values, we calculated re from LES considering only the top layer with optical 

thickness of 2, which is a rough estimate of retrieved re. In homogeneous clouds, the 

distribution mostly peaks at relative bias 0 with the exception of 10o and 70o Sun angle, and 

skewed negatively. Only ~40% of data showed small relative bias within ±15%. The results 

are further complicated when the cloud is inhomogeneous. Also, the results indicated that the 

pixel size is less important when the cloud is homogeneous. 

The domain mean LWP bias is ±10 g m-2 for most-homogeneous scenes and a larger 

underestimation in most heterogeneous scenes is observed. The retrieved τ for the most- 

homogeneous clouds agreed very well to the LES true τ in all Sun-view geometry. The bias 

between LES and retrieved τ varies ~0 – 1.5. The minimum bias is seen at the nadir view 

(θ=0o) especially in low Sun regardless of scattering direction (φ). The maximum τ bias is 

seen at low Sun (θo=60o) and oblique view (θ=70o) especially in the forward scattering 

(φ=30o) direction. However, large discrepancies are observed in the heterogeneous cloud 

scenes. In most cases, an underestimation in retrieved τ is observed in the overhead Sun 

(θo=0o) regardless of viewing and scattering angles (θ, φ). This is possible because, when the 

clouds are broken, the radiation (photon) can escape from the cloudy to clear pixels, or, 
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thicker to thinner pixels, and results less photon available to backscatter. In the oblique view 

(θ=70o) the retrieved τ is underestimated mostly in the forward scattering (φ=30o) direction. 

The bias in domain mean τ is negligible and is <1. The bias is larger for the within-cloud 

means of 1 km pixels, and maximum bias (overestimation in retrieved τ) is as large as ~25, 

and is seen in nadir views at oblique Sun, and a small underestimation in overhead Sun and 

the mean bias is as large as ~5 is seen. For the homogeneous cloud scenes, the retrieved re is 

fairly agreed with the LES re. For the domain mean case, mean re bias between LES and 

retrieval is mostly negative indicating an overestimation in retrieved re, and the 

overestimation (bias) is ~0-3 µm. For the heterogeneous cloud scenes, an unbiased mean re is 

observed in the domain mean. However, individually, in the within-cloud means retrieved re 

overestimated especially in nadir view and high Sun, probably compensating for the 

underestimation of retrieved τ.   

In the homogeneous cloud scenes, the retrieved effective radius agreed well with the 

true value from LES within 2%, the retrieved optical thickness agreed with 10% 

underestimation compared to LES values, and finally the retrieved LWP agreed well with 

LES values within 10% underestimation. Moreover, these homogeneous scenes did not show 

much variability with solar zenith angles. In the most heterogeneous cloud scenes, the 

retrieved domain mean effective radius show good agreement with LES true values in all 

solar zenith angle. However, the retrieved domain mean optical thickness agreed with LES 

true value upto the solar zenith angle of 50o and thereafter an increase towards higher solar 

zenith angles. At 70o solar zenith angle the retrieved optical thickness is four times larger 

than the true LES value. Thus, 20-30% underestimation is observed in the solar zenith angles 

below 50o, a very good agreement at 60o solar zenith angle, and the retrieved LWP doubles at 

70o solar zenith angle. 

 Furthermore, the view angle dependency of cloud scenes has been examined. In 

homogeneous scenes, the retrieved LWP at different solar zenith angles agreed within 5% 

with LES LWP, except the underestimation in retrieval in the very oblique view in the 

forward scattering direction - this underestimation is mainly from the optical thickness 

underestimation. Otherwise an unbiased optical thickness is retrieved. The effective radius 

overestimated the true LES by 1 – 1.5 µm.  In the most heterogeneous portion of cloud scenes 

the retrieved LWP underestimated in all solar zenith angles except at 60o solar zenith angle in 

the backward scattering direction. This underestimation in LWP is further increased with 

view zenith angle and larger in the forward scattering direction than in the backward 

scattering direction. 
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We have prepared an error table to represent the LWP error in most-homogeneous 

and heterogeneous clouds at different Sun-view geometry. For the homogeneous cloud scenes 

the relative bias in τ is ± 5% in all the Sun-view geometry except at very low Sun and very 

oblique view especially in the most forward and most backward direction. Effective radius is 

mostly overestimated and the relative bias varied from 5 to 25%. The relative bias in LWP is 

also between ± 10% in most of the Sun-view geometry. In heterogeneous scenes, the 

retrieved LWP underestimated at all solar zenith angles except at the very low Sun of 60o and 

70o where they showed an overestimation. The relative bias in retrieved LWP is within 40% 

except 70o solar zenith angle. The retrieved effective radius showed an overestimation 

compared to LES values in all Sun-view geometry and the relative bias in re varied from 5% 

to 45%. The optical thickness underestimated in general in all solar zenith angles except at 

very low Sun of 60o and 70o. The relative bias (underestimation) is roughly 2 to 30%. 

However, in 60o solar zenith angle in retrieved τ showed large overestimation compared to 

true τ from LES, and the relative bias in τ at this solar angle can go even up to 100% 

especially at nadir view.  

Finally, we examined optimal Sun-view geometry for the minimum retrieval bias in τ. 

When the minimum bias is binned according to viewing angle, maximum (35%) number of 

minimum bias is seen in 30o (in total 83% of scenes showed minimum bias in altogether 30o, 

45o, 60o view zenith angle). When the bias is binned according to azimuth angle, 70% of 

clouds showed minimum bias either in side/backscattered direction. Maximum scenes 

showed minimum bias at 60o solar zenith angle, mostly due to the cancellation of errors due 

to cloud side illumination and shadowing.  
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Chapter 6 

Conclusions and Future Scope 

 

The weakest link in climate simulations is the poor representation of clouds, 

particularly of marine boundary layer clouds, which constitute the main source of uncertainty 

in modeled cloud feedbacks [Bony and Dufresne, 2005]. The dominant part of predicted 

global cloud forcing change is produced by these ubiquitous warm clouds, the radiative 

fluxes of which are very sensitive to their vertically integrated liquid water content or liquid 

water path (LWP) [Turner et al., 2007]. However, both the satellite observations [Greenwald 

et al., 2007; Horváth and Davies, 2007] and the climate model simulations [Cess et al., 1989; 

O'Dell et al., 2008; Roebeling and van Meijgaard, 2009] show considerable discrepancies in 

the global distribution and also in the diurnal cycle of this quantity. Therefore, climate-

modeling efforts would greatly benefit from accurate cloud LWP measurements with well-

established error characteristics. Evaluating two fully independent satellite methods 

(microwave and vis/near-infrared) against each other using a large set of coincident retrievals 

could reveal major algorithmic shortcomings. The main source of error is cloud-rain 

separation in microwave techniques and 3D radiative effects in plane-parallel VNIR 

retrievals. In addition, both methods suffer from unresolved sub-pixel-scale variability. Our 

aim is to make a step toward creation of a consensus satellite cloud liquid water climatology 

that might be more useful in constraining global climate models than existing datasets. More 

precisely, the research objectives are: i) better constraining cloud liquid water path by 

systematically investigating inconsistencies between microwave and VNIR cloud liquid 

water path estimates and ii) better understanding of observed retrieval differences, by 

combining simulated cloud fields and 3D radiative transfer models. In this dissertation, our 

objective is addressed in Chapter 3 to 5 and the key results are summarized in this chapter.  

 

6.1. Conclusions 

In Chapter 3 we assessed one year of AMSR-E Wentz and MODIS cloud liquid water path 

estimates, representing the current state-of-the-art in microwave and VNIR retrievals. The 

comparison was made over the global oceans on a quarter-degree resolution and only 

included non-raining warm clouds in order to avoid ambiguities due to rain and ice. Our goal 

was to characterize microwave-VNIR LWP differences in a statistically robust dataset, and 

identify their potential causes for future studies. Main findings are: 
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 When all scenes were considered, AMSR-E overestimated MODIS by 45% on average, 

and retrievals were only moderately correlated with a coefficient of 0.74. 

 In broken scenes, AMSR-E increasingly overestimated MODIS and retrievals became 

gradually uncorrelated as cloud fraction decreased. 

 In overcast scenes, estimates were generally better correlated at 0.83, but with 

significant regional variations and also characterized by a MODIS high bias 

(Microwave and VNIR retrievals are most consistent in extensive marine Sc clouds 

with correlations up to 0.95 and typical rms differences of 15 g m-2). 

 The overall MODIS high LWP bias in overcast domains could be removed, in a global 

mean sense, by adiabatic correction; however large regional differences remained. 

 MODIS showed strong overestimations at high latitudes, which we traced to 3D effects 

in plane-parallel VNIR retrievals over heterogeneous clouds at low Sun. 

 In the tropics/subtropics, AMSR-E – MODIS LWP differences also depended on cloud 

type, with MODIS overestimating in stratiform and underestimating in cumuliform 

clouds, resulting in large-scale coherent bias patterns where marine Sc transitioned into 

trade wind Cu. We concluded that this bias pattern emerges due to geographic 

variations in droplet effective radius profile affecting VNIR retrievals, as well as due to 

uncertainties in cloud temperature parameterization affecting microwave retrievals.  

 Cloud-rain partitioning was found to introduce a systematic low bias in Wentz 

retrievals above 180 g m-2 as the microwave algorithm erroneously assigned an 

increasing portion of the liquid water content of thicker non-precipitating clouds to rain. 

 

In Chapter 4 we evaluated the diurnal cycle of South Atlantic marine boundary layer clouds 

and its seasonal variability using one year long cloud microphysical and optical properties 

from SEVIRI VNIR measurements, as well as cloud liquid water path from TMI microwave 

observations. We further investigated the sub-pixel-scale variability in SEVIRI VNIR cloud 

retrievals using high resolution MODIS VNIR retrievals. The main findings are:  

 Best agreement between SEVIRI VNIR and TMI microwave technique is observed 

over the marine Sc region, with least bias within ±5 g m-2 and high correlation of 0.9. 

 The largest disagreement is observed in the trade wind Cu, due to the deficit in both 

microwave and VNIR measurement technique (addressed in Chapter 3) in the partial 

cloudy scenes. However, SEVIRI and TMI showed similar variations in diurnal cycle 

of LWP but with a constant large bias of ~20 g m-2 (TMI being larger than SEVIRI). 
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 The diurnal cycles of TMI and SEVIRI LWP were in good agreement within ±10 g m-2 

in all seasons (after neglecting aerosol affected pixels). Both TMI and SEVIRI LWP 

decreased from morning to late afternoon and thereafter a slight increase was observed. 

The diurnal variation of SEVIRI LWP followed the variation in cloud optical thickness 

and in fact the cloud fraction and cloud physical thickness; whereas droplet effective 

radius and droplet number concentration showed negligible variability with time. 

 Comparison of SEVIRI and MODIS LWP showed excellent agreement with correlation 

above 0.9 in the fully overcast cases; however, high MODIS values are observed over 

broken clouds. We noticed that the use of 1.6 µm channel effective radius applies 

automatic adiabatic correction to the Sc clouds in SEVIRI LWP retrievals, otherwise a 

5/6 correction factor has to be applied for MODIS LWP retrievals (which is based on 

2.2 µm channel retrieved effective radius) while comparing them with microwave 

retrieved LWP. 

 We investigated the influence of absorbing aerosols over the Sc domain using aerosol 

index from OMI. Interestingly, both TMI and SEVIRI LWP increased with aerosol 

index, but the TMI increase was considerably larger. This was because absorbing 

aerosols above liquid clouds introduced substantial negative retrieval biases in optical 

thickness and droplet effective radius and, hence, in the deduced LWP in SEVIRI 

VNIR retrievals. This SEVIRI LWP bias increased with aerosol index and the mean 

bias is 27 g m-2.  

 

In Chapter 5 we quantified the uncertainties in (1D) plane-parallel VNIR satellite retrievals 

from hundreds of LES simulated cloud fields and a 3D radiative transfer model. The 1D 

retrievals (of 3D radiances) are done for ~650 cloud fields consisting of stratocumulus, 

unbroken stratus, to broken trade cumulus clouds, at 200 distinct Sun-view geometry. The 

retrieved cloud properties are compared back to the true LES cloud properties and the 

retrieval errors has been quantified. The key findings are:  

 The 3D radiances of Sc follows plane-parallel theory very well (i.e., at oblique Sun, 

radiances increased with viewing angle, and the increase is 2–3 times larger in the 

forward scattering direction than the backscatter direction; at high Sun, radiances 

decrease with viewing angle). Nevertheless, for a broken shallow Cu, the increase in 

radiance with view zenith angle is less pronounced, and a general underestimation in 

visible radiance is noticed. Besides, the plane-parallel model radiance decreased from 
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medium to larger values of solar zenith angle, however, 3D radiance increased with 

solar zenith angle. This increase is larger in both Sc and shallow Cu, except a strong 

underestimation of shallow Cu radiance at high Sun. 

 The pixel-level analysis showed that most homogeneous one-third scenes exhibited 

narrow Gaussian distribution, but skewed negatively, indicating the overestimation in 

retrieved LWP. Roughly 40-60% of the data showed the relative LWP bias within 

±15% depending on SZA, however, most heterogeneous scenes showed much wider 

distribution with more than one peak, but skewed negatively, and only 10-25% of 

datasets are within ±15% relative bias. 

 The domain mean LWP bias is ±10 g m-2 for most homogeneous scenes; however large 

underestimation is observed for most heterogeneous scenes. Also, the retrieved LWP 

did not show any variability with SZA for homogeneous scenes, however, for 

heterogeneous scenes an increase in retrieved LWP with SZA is observed, provided 

that, 20-30% underestimation in high to medium Sun, agreement at 60o Sun, and large 

overestimation (LWP doubles) thereafter. 

 For the homogeneous cloud scenes, the retrieved LWP did not show much variability 

with view zenith angle, and agrees within 5-10% relative error. However, for 

heterogeneous scenes, LWP decreased with viewing angle, and the decrease is largest 

in the forward scattering direction, and less pronounced in the backscatter direction. 

 We have prepared an error table to represent the LWP error in homogeneous and 

heterogeneous clouds at different Sun-view geometry. For the homogeneous clouds, the 

relative LWP bias is within ±10% for most of the Sun-view geometry. Nevertheless for 

the heterogeneous clouds the relative bias is within 40% when SZA below 60o and is 

larger for all other solar angles. 

 A multi-linear regression model has been fitted to predict the bias and relative bias in 

retrieved cloud optical thickness and LWP, using true optical thickness and different 

heterogeneity measures. The prediction was better for Sun angle below 60o (with multi-

linear correlation coefficient of 0.9), and above which the relationship breaks. 

 We examined optimal Sun-view geometry for the minimum (min) retrieval bias in τ. 

When the min bias is binned according to VZA, maximum no. of min bias is seen in 

30o (in total 83% of scenes showed min bias in altogether 30o, 45o, 60o VZA). When it 

is binned according to azimuth angle, 70% of clouds shown min bias either in 
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side/backscatter direction. Maximum scenes showed min bias at 60o SZA, mostly 

cancellation of errors due to the cloud side illumination and shadow viewing.  

 

6.2. Future Scope 

Our study interpreted many key issues in plane-parallel VNIR and microwave cloud 

retrievals. Nevertheless, the study is limited in certain aspects and one can elaborate this work 

by considering the following points.   

 The 1D cloud retrievals were done only for few selected Sun-view geometries, as it 

consumes lot of computation power and time. However, if possible one should repeat 

the retrievals of all the cloud fields with very fine 1o resolution of Sun-view geometry. 

This is essential to sort-out the transition in retrieval bias of cloud properties with 

respect to different Sun-view geometry.    

 We estimated uncertainty in cloud retrievals only in 1D VNIR techniques. As we learnt 

that similar problem persists in microwave techniques as well, one should apply 

microwave retrieval algorithm for all these known cloud fields and evaluate microwave 

retrieved LWP errors. Simultaneous cloud retrievals from both VNIR and microwave 

techniques could be an additional benefit to estimate the contribution of errors from 

individual techniques.  

  We have estimated the retrieval errors only from few hundred cloud fields. To 

implement these error estimates in operational cloud retrievals algorithms (e.g., 

MODIS), one should consider thousands of cloud fields which satisfy different type of 

existing real clouds.  

 We retrieved droplet effective radius only from 2.13 µm channel radiance (because 

MODIS computes LWP using effective radius retrieved from 2.13 µm channel). 

However, one can retrieve effective radius at different wavelengths, for e.g., 1.6 µm 

and 3.17 µm. These wavelengths sample clouds at different levels. Hence one can 

estimate the re profile and compare with the true LES profile, and also can learn the 

cause for observed differences between retrieved and LES truth.  

 We built a multi-linear regression model to predict the error in retrieved cloud optical 

thickness. A non-linear correction scheme, such as a neuronet, could be developed 

instead of a multi-linear regression model. The multi-linear regression model was really 

just a toy model to drive home the point that the errors are dependent on heterogeneity, 

SZA, VZA, etc. and a simple linear regression can demonstrate it, especially for 
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domain means. But any practical scheme has to take into account the fact that the errors 

are NON-LINEARLY depend on parameters such as VZA, SZA, heterogeneity. 

 Finally, this study is performed only for the non-raining liquid clouds. The analysis can 

be repeated for raining or mixed-phase or ice phase clouds. 
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