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Predicting multiyear North Atlantic Ocean variability
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[11 We assess the skill of retrospective multiyear forecasts of North Atlantic ocean
characteristics obtained with ocean-atmosphere-sea ice models that are initialized with
estimates from the observed ocean state. We show that these multimodel forecasts can
skilfully predict surface and subsurface ocean variability with lead times of 2 to 9 years.
We focus on assessment of forecasts of major well-observed oceanic phenomena that

are thought to be related to the Atlantic meridional overturning circulation (AMOC).
Variability in the North Atlantic subpolar gyre, in particular that associated with the
Atlantic Multidecadal Oscillation, is skilfully predicted 2-9 years ahead. The fresh water
content and heat content in major convection areas such as the Labrador Sea are predictable
as well, although individual events are not captured. The skill of these predictions is higher

than that of uninitialized coupled model simulations and damped persistence. However,
except for heat content in the subpolar gyre, differences between damped persistence

and the initialized predictions are not significant. Since atmospheric variability is not
predictable on multiyear time scales, initialization of the ocean and oceanic processes likely
provide skill. Assessment of relationships of patterns of variability and ocean heat
content and fresh water content shows differences among models indicating that model
improvement can lead to further improvements of the predictions. The results imply

there is scope for skilful predictions of the AMOC.
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1. Introduction

[2] Dynamical seasonal prediction systems that have
been developed by operational meteorological institutes
can produce skilful predictions months ahead, in particular
in the tropics [Goddard et al., 2001, van Oldenborgh
et al., 2005]. The notion that the climate system contains
inherent memory on even longer time scales has led to
explorations of the potential for decadal predictions. In
particular, the oceanic heat and fresh water content and the
ocean circulation associated with the Atlantic Meridional
Overturning Circulation (AMOC) and the subtropical
and subpolar gyres are thought to provide memory that
may impact the climate system on decadal time scales.
Mechanisms of AMOC variability have been identified that
provide a theoretical framework for AMOC predictability
[e.g., Marotzke, 1990, Weaver and Sarachik, 1991, Griffies
and Tziperman, 1995, te Raa and Dijkstra, 2002]. Idealized
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model studies have shown that aspects of the climate may
be predicted decades ahead, with the subpolar gyre in the
Atlantic as a hotspot [Griffies and Bryan, 1997, Collins
and Sinha, 2003]. Also, statistical estimates of potential
predictability highlight the midlatitudes and high latitudes
as areas where skill in decadal predictions may be obtained
[Boer, 2004].

[3] Realistic forecast experiments are feasible now
because of improved coupled atmosphere-ocean-land-sea
ice models and the development of ocean analyses products
in which ocean observations are assimilated into ocean or
coupled models. Following strategies from seasonal fore-
casts, first attempts for decadal forecasts have been made
and evaluated [Smith et al., 2007, Keenlyside et al., 2008,
Pohlmann et al., 2009, Mochizuki et al., 2010]. The skill
of these predictions over the continents is limited, but
several studies show skilful predictions in the North Atlantic
[van Oldenborgh et al., 2012, Yeager et al., 2012,
Chikamoto et al., 2012, Smith et al., 2010, Kim et al.,
2012], in accordance with earlier statistical estimates of
potential predictability and coherent predictions of the
AMOC [Pohlmann et al., 2012].

[4] In this study, we use a new ensemble of model
hindcasts to assess the skill of multiyear forecasts of the
Atlantic Ocean in more detail. Rather than focusing on the
AMOC, which is not directly observed over decadal time
scales, we study the skill of forecasts of oceanographic
phenomena that are observed directly in the subpolar gyre.
Many of these phenomena have been associated with
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variability in the AMOC and poleward heat transport and
are thus relevant to climate in the North Atlantic region.
For instance, there is well-observed variability in the surface
and subsurface salinity in the North Atlantic. Yashayaev
[2007] has shown variability in Labrador Sea Water proper-
ties, with strong convection resulting in a fresher water
column in the mid-1990s, a reduction afterward and short
periods of resumed convection in the early-2000s. Dickson
et al. [1988] and Belkin et al. [1998] report propagation of
salinity anomalies along the pathway of the subpolar gyre,
with two strong fresh water events: one in the 1970s and
one in the 1980s. These events coincide with a shut-off of
convection in the Labrador Sea. On longer time scales, a
freshening trend has been observed [Dickson et al., 2002,
Curry and Mauritzen, 2005].

[5s] Sea surface temperature also shows pronounced low-
frequency variability. Quasi-periodic warming and cooling
of the entire North Atlantic on multidecadal time scales is
often referred to as the Atlantic Multidecadal Oscillation
[AMO, e.g., Delworth and Mann, 2000]. These changes are
thought to affect the temperature and precipitation of the
adjacent continents [Sutfon and Hodson, 2005, Zhang and
Delwoth, 2006, Knight et al., 2006] although this depends
strongly on the detrending procedure used [7renberth and
Shea, 2006, van Oldenborgh et al., 2009]. Other features of
variability include abrupt changes in the interhemispheric
temperature gradient [Thompson et al., 2010]. In particular,
around 1970, an abrupt shift is observed in the difference
between Northern and Southern Hemisphere averaged
temperatures. This change is particularly evident in the North
and South Atlantic.

[6] In this paper, we address the skill of retrospective
forecasts of these observed events and quasi-oscillatory
patterns of variability that are thought to be associated with
low-frequency AMOC variations. Previous studies already
showed skill in predictions of the AMO. Here, we extend
the analyses to (sub)surface ocean variability, including the
AMOC. We emphasize that we address observed events in
the ocean. We quantify the extent to which a multimodel
decadal prediction system can, in retrospect, predict such
major events. We also investigate whether these changes
are related to the AMOC variability of the global climate
models by showing the covariability between the AMOC
and subsurface temperature and salinity. We use a range of
models and initialization strategies as a proxy for model
uncertainty and observational uncertainty. In the next sec-
tion, we describe the model systems and their initialization
strategies. In section 3, we assess the predictability of
oceanographic phenomena in the North Atlantic that are
well observed, and, in section 4, we discuss the results,
followed by conclusions in section 5.

2. Methods

[7] Ensemble forecasting methods are commonly
employed in order to represent uncertainties in estimates of
the initial state of the climate system and to capture uncer-
tainties arising from unpredictable components. Indeed,
combining results from a multimodel ensemble of different
prediction systems has been shown to improve skill in
seasonal predictions [Doblas-Reyes et al., 2005]. Here, we
use four different state-of-the-art climate model systems with

different initialization methods to assess multiyear hindcasts
(see Table 1). These hindcasts have been made as part of
the EU Framework 7 THOR project and will be referred to
as THOR in the figures.

[8] Most forecast systems used the same experimental
setup proposed for the Coupled Model Intercomparison
Project 5 [CMIPS, Taylor et al., 2012]. This means that
every 5 years, a hindcast was started on the first of
November, starting from 1960 up to 2005. Only the MPI-
M model system starts on the first of January. Every hindcast
consists of 10 members, except for EC-Earth and European
Center for Medium-Range Weather Forecast (ECMWF)
that have five members. Each hindcast runs for 10 years.
The external forcing of the models (greenhouse gasses,
ozone, natural and anthropogenic aecrosols, solar activity,
land use) is based on the CMIP5 recommended historical
datasets. After 2005, the concentrations and land use are
based on the RCP 4.5 emission scenario [Moss et al. 2010].

2.1. Model Description

2.1.1. The EC-Earth Model System

[9] The EC-Earth V2.3 has been used in this study. The
EC-Earth V2.2 model and its main characteristics are
described by Hazeleger et al. [2010, 2012]. In EC-Earth
V2.3, a slightly different aerosol forcing has been used,
consistent with the CMIP5 protocol. We use a horizontal
spectral resolution of TI159 (triangular truncation at
wavenumber 159) and 62 layers in the vertical up to 5 hPa.
The atmosphere model is derived from the Integrated
Forecast System cycle 31rl of the ECMWF. The ocean
model is the NEMO version 2 model [Madec, 2008], and
the sea ice model is the LIM version 2 model [Goosse and
Fichefet, 1999]. For details and further references, we refer
to Hazeleger et al. [2012].

[10] The system employs a full-field initialization.
The ocean initial conditions have been produced with
NEMOVAR at ECMWF, a multivariate 3D-var data assimila-
tion method for the NEMO ocean model [ Weaver et al., 2005,
Mogensen et al., 2012, Balmaseda et al., 2012]. Observed
three-dimensional temperature and salinity and the sea surface
height are assimilated. In particular, the NEMOVAR-ORAS4
five-member ensemble has been used, which is the
operational analysis for the new Seasonal forecast system
(S4) at ECMWF [Mogensen et al., 2012]. The sea ice condi-
tions have been obtained from NEMO V2 and LIM2 forced
by surface fluxes obtained from the Drakkar Forcing Set
V4.3 [Brodeau et al., 2010]. The atmosphere and land surface
are initialized from ERA40 data [Uppala and coauthors,
2005] before 1989 and ERA-interim [Dee and coauthors,
2011] thereafter. The atmosphere is perturbed using singular
vectors to create an ensemble of five members.

Table 1. Summary of Models and Initialization Techniques Used
by the THOR Models (See Section 2.1 for Details)

Model Init. Method Init. Data
MPI-M ECHAMS5/MPI-OM anomaly ORAS3
UKMO HadCM3 anomaly UKMO anal.
ECMWF IFS/NEMO full ORAS4
KNMI EC-Earth full ORAS4
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2.1.2. The DePreSys System

[11] The Met Office Decadal Prediction System,
DePreSys [Smith et al., 2007, 2010], is based on the third
Hadley Center coupled global climate model, HadCM3
[Gordon and coauthors, 2000, Pope et al., 2000]. The
atmosphere component has 19 vertical levels with a lid at
approximately 40 km and a horizontal resolution of 2.5°
latitude by 3.75° longitude. The ocean component has a
horizontal resolution of 1.25 by 1.25°, and 20 vertical levels
with 5 in the upper 50 m, the upper layer being 10 m thick.

[12] In order to create initial conditions for hindcasts
and forecasts, HadCM3 is run in assimilation mode from
December 1958 to the present day, including time-varying
radiative forcing from changes in well-mixed trace gases,
ozone, sulphate and volcanic aerosol, and solar irradiance.
During this integration, the atmosphere and ocean are
relaxed towards atmospheric and ocean analyses with a
restoring time scale of 3 h in the atmosphere and 6 h in
the ocean. The values are assimilated as anomalies with
respect to the model climate [see Smith et al., 2010]. The
climatological period from which anomalies are computed
is 1958 to 2001 for the atmosphere and 1951 to 2006 for
the ocean. Atmospheric analyses are taken from ERA-40
[Uppala and coauthors, 2005] and ECMWF operational
analyses, while analyses of ocean anomalies are created
using an updated version of the scheme developed by Smith
and Murphy [2007], based on anomaly covariances calcu-
lated from HadCM3, with adjustments to improve the fit to
observations. The ensemble consists of 10 members.

2.1.3. The MPI-M Model System

[13] The Hamburg Max Planck Institut fiir Meteorologie
(MPI-M) model version used in this study is the ECHAMS/
MPI-OM. The horizontal resolution in the atmosphere is
T63 (triangular truncation at wavenumber 63) and 31 layers
in the vertical. The ocean model has an average horizontal
resolution of 1.5°, but finer around Greenland. It has 40 verti-
cal layers. More details about the same model setup with
coarser resolution can be found in Kréger et al. [2012] and
references therein.

[14] A 10-member ensemble was produced for each start
date as outlined above. Initial conditions of the individual
ensemble members were generated by shifting the initial
states of ocean and atmosphere simultaneously against the
radiative forcing (“lagged initialization”, daily intervals).
Initial states stem from an assimilation run where anomalies
of three-dimensional temperature and salinity fields from
ORAS3 [Balmaseda et al., 2008] were nudged into the
coupled model. The restoring time scale of the anomalies
is 10 days.

2.1.4. The ECMWF Model System

[15] A five-member ensemble of decadal predictions over
the period 1960-2000 was carried out with the ECMWF
coupled system. The atmosphere model is the Integrated
Forecast System, cycle 36r4 [Bechtold et al., 2008, Jung
et al., 2010]. The ocean and sea ice modules are the NEMO
version 2 and LIM2 models, identical to EC-Earth [Madec,
2008, Goosse and Fichefet, 1999]. The horizontal resolution
of the model is the same as for EC-Earth: T159 horizontal
resolution in the atmosphere, 1° horizontal resolution in
the ocean. ECMWEF uses 91 layers in the vertical in the
atmosphere and 42 oceanic layers. The model is identical
as the ECMWF Seasonal Forecast System 4 [Molteni

et al.,2011], except for the sea ice model which is excluded
in the Seasonal Forecast System. Compared to EC-Earth, the
model has a higher vertical resolution and a newer IFS
model cycle is used.

[16] The system employs full-field initialization that is
very similar to EC-Earth. The atmosphere and land surface
initialization is derived from the ERA-40 reanalysis [Uppala
and coauthors, 2005] for the period 1960 to 1985 and from
ERA-Interim [Dee and coauthors, 2011] for the remaining
starting dates. The ocean and sea ice initial conditions
and initialization strategy are identical to that of EC-Earth
(see bove).

3. Assessment of Skill

[17] We assess the skill of forecasts of observed surface
and subsurface phenomena in the North Atlantic ocean, with
a focus on the subpolar regions. For verification, we use a
range of gridded data products. We prefer to use objectively
analyzed fields that are close to the observations, rather than
assimilation products that may be substantially influenced
by the ocean model and assimilation method that is used,
in particular in data sparse regions. The main argument to
use the following datasets is that they are independent from
the models. For sea surface temperature, we use the ERSST
V3b data [Smith et al., 2008] For subsurface temperatures
and heat content, we use World Ocean Database 09 data
[Levitus et al., 2009; note that these include recent correc-
tions on in-situ XBT temperature measurements]. For
surface and subsurface salinity, the EN3 data is used [/ngleby
and Huddleston, 2007]. For atmospheric quantities, we use
the NCEP/NCAR reanalysis [Kalnay and coauthors, 1996].

[18] Because there is inherent climate variability, uncer-
tainties in the model system formulations and in observational
estimates of the real climate, a probabilistic verification is
preferred. However, due to the long time scales considered
here and the limited data availability, the use of probabilistic
verification metrics is limited. Therefore, we use deterministic
skill scores, such as anomaly correlations and root mean
square differences between the ensemble mean and observa-
tions to quantify the skill of the multimodel ensemble, and
we present time series such that individual events can be
recognized. All members and start dates are used to assess
the skill of the hindcasts as a function of the lead time.
These scores are computed relative to anomalies over the
verification period. This procedure implies that a drift correc-
tion has been applied by subtracting the average drift as a func-
tion of lead time as determined from all ensemble members
and start dates. This is done for each model separately. Here,
we assume that the drift is independent of the climate state,
which is a common approach in seasonal forecasting. For the
root mean square difference, we also assumed that the
amplitude of the model forecast has been amplified to match
the observations. When possible the score of a simple first-
order autoregressive model (AR1) based on observations is
included as a benchmark for the observed variations.

3.1. Atlantic Multidecadal Oscillation

[19] The AMO is often diagnosed as a pattern of
multidecadal variability in north Atlantic SST and appears
to vary with a time scale of about 70-90 years in the obser-
vations. Control simulations of models used in this study
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indicate that this pattern of variability is related to AMOC
variations [Knight et al., 2006, Wouters et al., 2012].
Although the AMO may vary naturally, it also appears to
be influenced by external forcing factors including volca-
noes [Otterd et al., 2010] and anthropogenic aerosols [Booth
et al., 2012]. Furthermore, global warming from increases
in greenhouse gases also affects North Atlantic SSTs. In
order to minimize the influence of global warming on the
AMO, we follow Trenberth and Shea [2006] and compute
an AMO index as the SST anomaly in the North Atlantic
(we use 0-60°N, 80-0°W), minus the global mean SST
(60°S to 60°N) trend from 1960-2000. This index is almost
orthogonal to the global warming signal, as it almost is in
ensembles of climate models [van Oldenborgh et al., 2009].

[20] Figure 1 shows time series of the AMO from observa-
tions and the spread and ensemble mean of the multimodel
hindcasts at lead time of 1 year, 2-5 years, and 6-9 years.
The temperature anomalies are averaged over the respective
lead times. The deterministic scores indicate that the AMO
is well predictable on multiyear time scales. Very high
correlations between the observed and the multimodel mean
time series are found. This confirms the results of van
Oldenborgh et al. [2012] who showed a similar result in a
different multimodel ensemble. The uninitialized CMIP5
multimodel mean data shows a correlation coefficient of
the 2—5 year averaged temperature anomalies of less than
0.2 for 25 years (not shown), indicating that the AMO does
not vary due to variations in external forcing and initializa-
tion with estimates of observed climate enhances skill of
predictions. However, it is not possible to say whether initializa-
tion improves the skill by predicting natural variability or by
correcting the model response to previous external forcing
factors such as volcanoes [Otterd et al., 2010] or anthropogenic
acrosols [Booth et al., 2012]. Also, the AR1 model shows at
one year lead time a high correlation. At longer lead times,
the dynamical prediction models show larger correlations, but
differences are not significant and the AR1 is more skilful than
the uninitialized CMIP5 models, which indicates memory in
this part of the climate system due to the initial state.

[21] These scores are comparable with those reported by
van Oldenborgh et al. [2012]. They found anomaly correla-
tions of 0.84 and 0.57 at 2-5 years and 6-9 years,

respectively. It shows that there is scope for multiyear
predictions in the Atlantic Ocean and because the AMO is
believed to be related to the AMOC, possibly the AMOC
itself, although it should be noted that the AMO does not
seem to drive AMOC variations in the models (see section
4 for further discussion). It also implies that related climate
phenomena such as hurricane formation in the Atlantic and
Sahel rainfall may be predictable [e.g., Smith et al., 2010,
Vecchi et al., 2012]. However, analyzing predictions of
these phenomena is beyond the scope of this study, which
focuses on the ocean.

3.2.

[22] A particular event of interest is the abrupt change in
interhemispheric gradient of SST that occurred in the early
1970s. This is clearly seen as a cooling in the North Atlantic,
visible in the AMO time series as well, and a warming in the
South Atlantic [Thompson et al., 2010]. This is one of the most
abrupt shifts visible in the observed SST record. Such
interhemispheric gradients have often been associated with
the AMOC, in particular in studies of paleorecords [Steig
etal., 1998].

[23] The uninitialized climate models of CMIP5 do not
show skill at predicting the interhemispheric gradient (here
defined as SST averaged over the entire northern hemisphere
minus the SST averaged over the entire southern hemi-
sphere, not shown). However, the initialized multimodel
ensemble does show some skill (Figure 2). At one year lead
time, the correlation between the observations and the
multimodel mean is 0.7. It appears that most of the skill
originates from SST in the North Atlantic, which corresponds
to the AMO discussed in the previous section. However, the
ARI1 model shows very similar skill scores. Also, the largest
signal, which is the shift in the early 1970s, is not captured
in the multimodel mean. Since also the uninitialized CMIP5
model mean does not indicate such shifts, it either points to
missing processes in the models or to an observational
artifact.

Interhemispheric Gradient

3.3. Upper Ocean Heat Content

[24] Because the SST predictions associated with the
AMO are skilful, it is expected that heat content forecasts,
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Figure 1.
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Observed (red curves) and ensemble mean predicted (magenta curves) AMO time series.

Gray curves show the predictions from an AR1 model. Left panel 1: year lead time and yearly averaged anom-
alies, middle panel 2—5 years lead time, and 2—5 year averaged anomalies; Right panel: 6-9 year lead time and
6-9 year averaged anomalies. Individual ensemble members are indicated by asterisks. Top left corner shows
the root mean square error of the ensemble mean, the slope 4 between the ensemble mean and observed time
series, and the anomaly correlations. The root mean square error has been computed after correcting for the
biases in mean and amplitude (4). On the right-hand side this is shown for the AR1 model.
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Figure 2. Observed (red curves) and ensemble mean predicted (magenta curves) interhemispheric
temperature gradient. Gray curves show the predictions from an AR1 model. Left panel: 1 year lead time
and yearly averaged anomalies; Middle panel: 2—5 years lead time and 2—5 year averaged anomalies; Right
panel: 6-9 year lead time and 6-9 year averaged anomalies. Individual ensemble members are indicated by

asterisks. Numbers in corners as in Figure 1.

which is the integral of temperature to a defined depth,
would also be expected to be skilful. Indeed, the heat content
of the upper 700 m in the subpolar North Atlantic (defined as
50-65°N, 65-0°W) is extremely well predicted (Figure 3).
The persistence has a substantial impact on short lead times,
explaining the high score for year-1 predictions. However,
the predictions of 6-9 year averaged anomalies are less
trivial. The scores are significantly better than those obtained
with the AR1 model and indicate that oceanic mechanisms
are at play that provide predictability. One of these processes
is the formation of deep mixed layers in winter that produce
homogeneous subsurface water masses that are advected
around the gyres. Because the stratification is present in
the initialization, some skill in predictions of the subsurface
ocean is expected.

[25] The warming in the mid-1990s has been studied
before [Robson et al., 2012; Yeager et al., 2012] and is
thought to be generated by a persistently positive North
Atlantic Oscillation (NAO) leading to a surge in the AMOC.
The current results indicate that even hindcasts that started in
1990 capture part of this warming (consistent with Yeager
et al. [2012]), although the amplitude of the temperature rise
is underestimated. For 2—5 years lead time and 6-9 years lead
time, the AR1 model does not capture the warming from 1990
onward. The preconditioning and hence the nonlinear effect
of the NAO on the oceanic conditions is captured partly in
the initial state. There are indications that the AMOC surge

alone cannot explain the predictability of the event because
of the different relationships between AMO and AMOC in
the prediction systems (see section 4.2). More start dates
and more analysis are needed to study this in more detail.

3.4. Labrador Sea Water

[26] The formation of Labrador Sea Water shows
pronounced decadal variability. The production of this water
mass is thought to have an impact on the strength of the
AMOC. At the end of the 1980s, deep convection occurred
up to 2000 m, creating a cold and fresh water layer. Convec-
tion ceased in the mid-1990s. This major convection event is
thought to be mainly driven by the atmospheric circulation
variability. However, ocean processes may also be impor-
tant. For example, changes in surface freshwater inflow
by the East Greenland Current and Davis Straight affect
the stability, and the inflow of more salty water of subtropi-
cal origin in the Irminger Current affects the stratification.
Mesoscale eddies have been shown to be critical for
restratification after convection [Gelderloos et al., 2011].
Although these eddies are not resolved in the model systems
used here, the eddy parameterizations will cause some influx
of fresh water from the boundary currents towards the center
of the Labrador Sea. Hence, initialization of ocean condi-
tions might be expected to improve predictions of Labrador
Sea water.
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Figure 3. Observed (red curves) and ensemble mean predicted (magenta curves) upper ocean heat
content (0—700 m) in the subpolar gyre (50-65°N, 65-0°W). Gray curves show the predictions from an
ARI1 model. Left panel: 1 year lead time and yearly averaged anomalies; Middle panel: 2—5 years lead
time and 2—-5 year averaged anomalies; Right panel: 6-9 year lead time and 6-9 year averaged anomalies.
Individual ensemble members are indicated by asterisks. Numbers in corners as in Figure 1.
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Figure 4. Observed (red curves) and ensemble mean predicted (magenta curves) depth integrated salinity
anomalies (0—700 m). Gray curves show the predictions from an AR1 model. Left panel: 1 year lead time
and yearly averaged anomalies; Middle panel: 2—-5 years lead time and 2—5 year averaged anomalies; Right
panel: 6-9 year lead time and 6-9 year averaged anomalies. Individual ensemble members are indicated by
asterisks. The Labrador Sea is defined as 45.5-60.5°W, 54—62°N. Numbers in corners as in Figure 1.

[27] Despite the lack of representation of the rich ocean
dynamics in the coarse resolution coupled models assessed
here, the upper ocean salinity in the Labrador Sea (defined
as 60.5-45.5°W, 54.0-62.0°N) is very well predicted
(Figure 4). Even with a lead time of 6-9 years, a high anom-
aly correlation of 6-9 year averaged anomalies of 0.73 is
found between the ensemble mean and observed time series.
For the AR1 model, we find a correlation of 0.49. Individual
convection years, indicated by minima in upper ocean
salinity, are not predicted well systematically (as expected),
but it is striking that skill in forecasts of the water masses is
found at multiyear lead times.

[28] Similar results are obtained for heat content in the Lab-
rador Sea (0.77,0.73, 0.64 correlations for anomalies averaged
at 1 year, 2-5 years, and 6-9 years, respectively, time series
not shown). Surface salinity is also highly predictable and
shows similar anomaly correlations (0.64, 0.75, 0.74 correla-
tions for anomalies averaged at 1 year, 2-5 years, and 6—
9 years, respectively, time series not shown). However,
integrated salinity over the upper 2000 m is predicted with less
skill. In particular, the increase in the 1990s is not captured
at the 6-9 years lead time. Similar results are obtained for
the entire subpolar gyre (up to 65°N), but for the Nordic seas
(65-80°N), the longer range skill deteriorates (not shown).

[20] Great Salinity Anomalies are one of the most striking
examples of oceanic phenomena reported in the literature
[Belkin et al., 1998]. In the early 1970s and in the early
1980s minima in upper ocean salinity occurred in the Labra-
dor Sea and there are indications that these propagated along
the subpolar gyre on a multiyear time scale. The minimum
salinity in the East Greenland current observed in 1982 can
perhaps be tracked to the Lofoten Basin in 1988. The salinity
anomalies are clearly visible in the EN3 and NEMOVAR
data in the Labrador Sea, but coherent propagation is not
obvious. Similarly, the predictions assessed here show
surface salinity anomalies in the Labrador Sea, but without
coherent propagation around the subpolar gyre.

4. Discussion

4.1. Forecasts of Subpolar Gyre Water
Mass Variations

[30] The analyses above have shown that there is skill
in multiyear predictions of North Atlantic Ocean

characteristics. The difference in skill between the
multimodel mean skill scores and those of damped persis-
tence was investigated using a one-sided F-test on the ratio
of the root mean square error scores and a T-test on the
difference of the Fisher-z transforms of the correlation
scores, taking serial autocorrelations of the residuals into
account whenever these are significantly different from zero.
Only the correlation scores of 3 year averaged anomalies of
ocean heat content in the subpolar gyre at 6-9 years lead
time are significantly better in the dynamical models using
these tests. However, for all quantities investigated here at
lead times of 2—5 years and 69 years, the correlation scores
of the multimodel mean is higher than the score for damped
persistence. We conclude that the results indicate that there
is predictive skill for 2—-5 year and 6-9 year averages beyond
simple damped persistence, but the results do not definitely
demonstrate that such skill has been achieved.

[31] In the subpolar gyre and Labrador Sea skill on
multiyear time scales is found at the surface and up to
700m depth. The deep mixed layers in winter enhance
persistence, but cannot explain the skill of averaged anoma-
lies at 6-9 years, as indicated by the low skill from the
damped persistence. An event of particular interest is the
warming in the mid-1990s, which is captured by the dynam-
ical models, but not by damped persistence.

[32] Many studies indicate that variability in open ocean
convection that produces the water masses is forced by the
variations in atmosphere-ocean surface fluxes related to the
NAO (Dickson et al. [1996], Eden and Willebrand [2001]).
It is therefore important to investigate whether the atmo-
spheric forcing has provided the predictability found here.
However, the multimodel mean predictions of mean sea level
pressure over the ocean do not show skill for the annual mean
wind forcing at multiyear time scales (Figure 5). It is therefore
likely that oceanographic processes, such as preconditioning
of the stratification and advection, are important for the
forecast skill on decadal time scales (see Marshall and Schott,
1999 for a review on mechanisms of ocean convection). Even
though the atmospheric forcing shows no skill, it may have
contributed to the preconditioning. Doming of isopycnals
leads to a weaker stratification so that convective instability
can arise easier. Also, during restratification, both the heat
fluxes at the surface and the advection of fresh water masses
into the subpolar gyre could potentially provide predictability
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Figure 5. Anomaly correlation between NCEP/NCAR reanalysis mean sea level pressure anomalies and
ensemble mean anomalies (detrended) in the hindcasts at year 1 (left) and year 2—5 lead time (right). Ligh-
ter shades (lighter than the shading in the color bar) denote areas where the correlations are not significant
at p < 0.1 (two-sided), taking serial autocorrelations into account.

in the restratification phase. In nonconvective regions, the ad-
vection by ocean currents could provide predictability beyond
the persistence derived from the initial state. Detailed analysis
of these mechanisms would be interesting, but are beyond the
scope of this paper.

4.2. AMOC Variations

[33] In the previous sections, we showed that subsurface
oceanic thermal and fresh water characteristics that are
thought to be related to the AMOC variations can be skilfully
predicted at multiyear time scales. Also, the AMO, which is
thought to respond to AMOC variations, is predictable at
these time scales. This encouraging result may imply that
the AMOC can be skilfully predicted.

[34] In Figure 6, we show forecasts of the maximum
AMOC strength at 26°N. The ensemble mean of the forecasts
at | year lead time indicates interannual variability and a
longer-term reduction of the AMOC. At longer lead times, a
reduction from 1995 onward is present. However, the spread
is large, with one model, ECHAMS-OM, standing out with
high values. Independent verification is not possible due to

lack of data. We include the AMOC transport data from
the RAPID/MOCHA array in the figure for comparison
[Cunningham et al., 2007].

[35] A prerequisite of a reliable AMOC prediction is that
the relations between the ocean characteristics and responses
are robust in the prediction systems. Therefore, we further
explore the mechanisms by analyzing lead-lag relations
between the AMOC and fresh water and heat content in
the subpolar gyre.

[36] Figure 7 shows the —4 year to +4 year lead-lag
correlations between the maximum annually averaged
AMOC strength at 40°N and the subpolar fresh water and
heat content up to 700 m in the 10 year forecasts. Heat and
fresh water variations contribute to density variations that
are thought to drive AMOC variability. For heat content, a
robust relationship is found amongst models. The upper
subpolar gyre tends to be colder preceding a higher AMOC
strength and warmer afterwards. This is consistent with,
for example, Wouters et al. [2012] who find that a positive
contribution of temperature on density variations in the
subpolar gyre leads AMOC changes. Furthermore, the
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Figure 6. Observed (red dot) and ensemble mean predicted (magenta curves) AMOC strength at 26°N in
Sv (10° m’s™"). Left panel: 1 year lead time and yearly averaged anomalies; Middle panel: 2—5 years lead
time and 25 year averaged anomalies; Right panel: 6-9 year lead time and 69 year averaged anomalies.
Individual ensemble members are indicated by asterisks.
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Figure 7. Lead-lag relations between maximum AMOC strength at 40°N and 0—700 m integrated temper-
ature (left) and salinity (right) in the subpolar gyre in the Atlantic (47-65°N). The different prediction
systems are indicated in Table 1. The error bars denote the 33%, 50%, and 67% quantiles of a nonparametric

bootstrap estimate of the uncertainty.

reverse (but weaker) relationship of a warmer subpolar gyre
following increased AMOC is consistent with a stronger
heat transport by the AMOC

[37] For vertically integrated salinity, the signal is not
consistent among the prediction systems. EC-Earth V2.3
and ECMWF S4 show similar relationships between fresh
water and the AMOC strength. This is not surprising because
these models have many common modules. In both models, a
high salinity at subpolar latitudes leads to a stronger AMOC.
At zero lag, there is a positive correlation. In contrast, in
ECHAMS5-0OM, there is a reverse relationship between subpo-
lar salinity and the AMOC when salinity leads. Also, when
the AMOC leads different characteristics are found among

QA corr EC-EARTH23 0sc700 with MOC at 40N lag —48m b

corr EC-EARTH23 0sc700 with MOC at 40N lag Om c
i

the models. For instance, the HadCM3 model shows that
the subpolar gyre freshens, while the other systems indicate
that a stronger AMOC will lead to a more saline subpolar
gyre. It should be noted that correlations are low, and there-
fore a small amount of variance of AMOC variations can be
explained by salinity variations. Still, the differences between
the models are well outside the sampling accuracy denoted by
67% error bars (estimated with a nonparametric bootstrap).
[38] The details of the lead-lag relations can be seen in
Figure 8. Here, spatial distributions of the correlations
between integrated fresh water content and the AMOC are
shown (ECMWF S4 is not shown as it is very similar to
EC-Earth V2.3). Differences between models are found when

corr EC-EARTH23 0sc700 with MOC at 40N lag 48m
L

sl
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Figure 8. Correlation between maximum AMOC strength at 40°N and integrated salinity (0—700 m)
at lag -4 years (left, salinity leads), lag 0 years, and lag 4 years (AMOC leads). Top row: EC-Earth
V2.3, middle row: ECHAMS5-OM, bottom row: HadCM3.
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Figure 9. Left: lagged correlations between integrated temperature (0—700 m) and the AMO (northward of
30°N) for the different prediction systems. Right: lagged correlations between integrated salinity (0—700 m)
and the AMO (northward of 30°N) for the different prediction systems. The error bars denote the 33%, 50%,
and 67% quantiles of a nonparametric bootstrap estimate of the uncertainty.
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Figure 10. Correlation between the AMO (north of 30°N) and integrated salinity (0—700 m) at lag -4 years
(left, salinity leads), lag 0 years, and lag 4 years (AMOC leads). Top to bottom: EN3 observations, EC-Earth
V2.3, ECMWF S4, ECHAMS-OM, HadCM3.
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the AMOC lags. Both EC-Earth V2.3 and ECHAMS5-OM
show a negative correlation in the Gulf Stream extension
while HadCM3 is positively correlated at lag —4 years. At
zero lag, the results of Figure 7 are reflected with positive
salinity anomalies in the subpolar gyre in EC-Earth V2.3
and ECMWF S4 (not shown) and negative for HadCM3
and ECHAMS-OM. Apparently, salinity plays a more impor-
tant role in EC-Earth V2.3 and ECMWF S4 in generating
AMOC variability than in HadCM3 and ECHAMS-OM.

[39] It is hard to judge a priori which model shows the
correct mechanisms of AMOC variability. The lack of
direct observations prior to the RAPID/MOCHA array
implies that verification of the AMOC beyond annual time
scales is nearly impossible. Therefore, we further investigate
the robustness of potentially relevant mechanisms of AMOC
variability using observed ocean characteristics. In particular,
we relate the integrated heat content and fresh water content
in the subpolar gyre to the AMO. Only SST north of 30°N
is used to exclude the tropical regions and focus on the
North Atlantic only.

[40] Figure 9 shows the lead-lag relations for the different
prediction systems and those of the observations. The
general characteristics are similar, that is, all correlations are
positive, but all prediction systems underestimate the correla-
tion between the subsurface and surface variability at all lags
compared to observations. These differences are expressed
in the spatial correlation patterns as well (Figure 10). There
is a positive correlation between the AMO and upper ocean
salinity variations in the subpolar Atlantic at negative and
zero lags that is only partially captured by some of the predic-
tion systems. From these results, it is hard to judge the differ-
ences in quality of the individual models because all show
deficiencies. It also shows that there is room for improvement
of the predictions by improving on the mechanisms of vari-
ability in the prediction systems. Currently, the multimodel
approach averages out some of the compensating biases.
Improving the models will likely lead to enhanced skill.

5. Summary and Conclusions

[41] In this paper, we assessed the multiyear predictive
skill in the North Atlantic of a multimodel ensemble of
coupled atmosphere-ocean-sea ice hindcasts following the
CMIP5 protocol. We investigated the hindcast skill of
surface and subsurface characteristics, focusing on observ-
ables that are thought to be related to the AMOC, such as
the AMO, stratification in the subpolar gyre, and Labrador
Sea water mass characteristics. The multimodel ensemble
shows skill up to 69 years ahead in the surface and subsur-
face temperature and salinity. This is consistent with potential
predictability estimates [Boer, 2004] and previous studies
[Yeager et al., 2012, van Oldenborgh et al., 2012, Chikamoto
et al., 2012, Smith et al., 2010]. There is enhanced skill in the
subpolar gyre provided by the initialization of the prediction
systems that exceeds skill obtained from damped persistence.
However, except for 3 year averaged subpolar heat content at
lead times of 6-9 years, differences between skill of damped
persistence and initialized dynamical prediction systems are
not significant. We conclude that the results indicate that there
is predictive skill for 2-5 year and 6-9 year averages beyond
simple damped persistence, but the results do not definitely
demonstrate that such skill has been achieved. The external

forcing by greenhouse gasses and aerosols provides some
predictability as well. However, the skill exceeds that of
coupled simulations which have not been initialized with an
estimate of the observed state of the climate. The skill is
comparable with that obtained in a study of earlier prediction
systems [van Oldenborgh et al., 2012]. Although individual
events and abrupt shifts are not very well predicted, the skill
for multiyear variability is an encouraging result.

[42] We extend previous assessments by including verifica-
tion of subsurface ocean characteristics. Water masses in the
subpolar gyre, including regions of active open ocean convec-
tion such as the Labrador Sea are highly predictable on
multiyear time scales, with improved skill through initializa-
tion compared to uninitialized models in which water masses
tend to be too homogenized in the subpolar gyre [de Jong
et al., 2009]. However, the skill of dynamic atmospheric
variables is low, and there is no indication of long-term
predictability of the sea level pressure. This indicates that
the skill of predictions in our multimodel ensemble is of
oceanic origin. Preconditioning to convection and advection
of water masses that are properly initialized provides memory
to the climate system that can lead to skilful predictions, even
in models that do not resolve oceanic mesoscale eddies.

[43] It remains an open question whether the AMOC can
be skilfully predicted as well beyond seasonal time scales.
Pohlmann et al. [2012] found consistent predictions of the
AMOC up to a few years ahead when assessed against the
AMOC from a multimodel ocean analysis.

[44] The prediction systems appear to have different
relationships between the AMOC and the temperature and
salinity in the subpolar gyre. Also, the correlations between
the AMO, which is well related to the AMOC in models,
and the well-predicted integrated subpolar temperature and
salinity are not consistent among models. Observations are
used to explore the relationships between the AMO and upper
ocean thermal and fresh water variations. It appears that all
models show deficiencies and underestimate the correlation
between surface and subsurface variations.

[45] The initialized predictions with global coupled
models on multiyear time scales are relatively new. The
scientific community has recently started to perform and
analyze such predictions and optimize prediction systems.
It is very encouraging that these prediction systems are
already capable of providing skilful multiyear predictions
in the North Atlantic and possibly associated climate
phenomena. However, there is clearly scope for further
improvement. The small number of start dates assessed here
(every 5 years) can cause sampling errors and more start
dates are needed. Also, the ocean analyses that are used to
initialize the prediction systems include limited subsurface
ocean data. There are indications that a better coverage of
deep ocean data improves the predictions [Dunstone and
Smith, 2010]. The methods to perturb the initial states could
be further improved [Hawkins and Sutton, 2011]. Also, the
model systems themselves contain large biases. The lagged
correlations between the AMO and ocean characteristics
show that the mechanisms of variability differ among the
models [Branstator et al., 2012 and this study]. It is possible
that initialization corrects biases in the external forcing.
There are indications that variations in aerosol concentration
provide predictability [Booth et al., 2012]. Improving on the
representation of mechanisms of variability, external forcing
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and confronting the models with observations will likely
lead to improved predictions of the Atlantic region.
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