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ABSTRACT

Analytic solutions to a planetary boundary layer (PBL) model with an eddy-diffusivity profile (i.e., a K profile)
and nonlocal fluxes are presented for the quasi-steady regime. The solutions demonstrate how different processes
contribute to the quasi-steady profiles of heat and/or other scalars in the convective boundary layer. It is shown
that for a standard cubic form of the K profile, and flux scales based on the surface fluxes, the nondimensional
nonlocal term should be less than six; larger values can cause scalar profiles of water vapor to increase with
height in the upper portion of the PBL and can produce weakly superadiabatic layers in the upper PBL temperature
profiles. Solutions are also shown to be sensitive to the choice of flux scale: fluxes scaled by their vertically
averaged values imply that nondimensional profiles of top-down scalars will have a neutral point somewhere
in the PBL, a result in conflict with previous work on the subject, and the predictions of the same model with
fluxes scaled by their surface values. The analysis also shows that allowing K to go to zero with the square of
the distance from the PBL top results in nonconvergent profiles; in general K should reduce to some positive
value at the top of the PBL, or go to zero less rapidly. It is further shown that the class of models investigated
here may be physically interpreted as relaxation models, that is, they tend to relax profiles of scalars in the PBL
to implicitly defined similarity profiles on a convective timescale. Finally, analysis of a 1-yr integration of a
climate model, interpreted in light of the author’s analytic results, suggests that a dynamically important aspect
of the nonlocal term is its role in ventilating the surface layer, and thereby indirectly affecting the diagnoses of
PBL depth in many models.

1. Introduction

Ertel (1942) proposed that the potential temperature
flux, wu , be constituted of two terms, one proportional
to the average lapse rate at the same height, the other
not:

]Q
wu 5 2K 1 N. (1)h ]z

The first term on the right is the traditional mixing length
term, in that the gradient of the expected value of the
potential temperature Q(z, t) in a layer is multiplied by
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a turbulent diffusivity, Kh, to give a flux.1 Ertel intro-
duced the second term to account for the fact that in a
convective layer, parcels crossing a level z, but origi-
nating at some level z 1 l, would tend to have a slightly
elevated (for l , 0) or depressed (for l . 0) potential
temperature relative to Q(z 1 l, t); the main point being
that this perturbation is not related to the local gradient.
The addition of the convective term, to account for bi-
ased starting plumes, could then generalize the classical
mixing-length theory to allow the local flux to be coun-
ter to the local gradient.2

Figure 1 presents a mean profile of potential tem-
perature calculated on the basis of a large-eddy simu-
lation (LES) of the convective atmospheric boundary
layer. This profile illustrates the motive force behind
(1), in that the flux and the local gradient are not gen-
erally proportional. Although our point is demonstrated
on the basis of LES, this is done for illustrative purposes
only—that there are regions in the PBL where the flux

1 Throughout we distinguish between the expected value of a de-
pendent variable at some level z, and the fluctuating component of
that variable, through the use of upper and lower case, respectively.

2 This theory is often attributed to Priestley and Swinbank (1947),
who independently arrived at similar conclusions.
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FIG. 1. Potential temperature Q(z) minus its minimum value (thick
solid line), and normalized flux, wu /Q

*
(short dashed line), taken

from a large-eddy simulation of the convective boundary layer. Shad-
ed zone highlights the region where the flux of u is counter to the
gradient of Q. The neutral point zn of the profile is located at the
base of the countergradient zone.

FIG. 2. Schematic illustrating the configuration of our problem, in
which we heat a horizontally homogeneous box of fluid at the top
and bottom.

is counter to the local gradient has been accepted to be
characteristic of real convective flows for at least a half
a century (cf. Ertel 1942; Priestley and Swinbank 1947;
Sutton 1953; Priestley 1959; Deardorff 1966).

Deardorff (1966), apparently unaware of Ertel’s pa-
per, proposed a model very similar to (1):

]Q
wu 5 2K 2 g , (2)h h1 2]z

and used prior observations to estimate the value of the
nonlocal term denoted by gh above. Models of the flux
having the form of (2) have since been incorporated into
a variety of PBL models beginning with the model of
Mailhôt and Benoit (1982). Subsequently, Troen and
Mahrt (1986) used this nonlocal formulation of the flux-
es in a model that diagnoses the PBL depth and then
constrains K (the eddy diffusivities or viscosities) to a
fixed profile over the depth of the PBL. Variants of the
K-profile approach of Troen and Mahrt have since been
used in a wide variety of applications, such as climate
studies (Holtslag and Boville 1993), weather forecast
models (Beljaars and Betts 1992; Hong and Pan 1996),
mesoscale models, and models of the upper-ocean
boundary layer (Large et al. 1994). Consequently (2),
with K specified according to a fixed profile, shall form
the basis for our subsequent study.

In the more than 30 years since (2) was proposed by
Deardorff, a number of attempts have been made to
formally justify gh ± 0 on the basis of an analysis of
budgets of the second-order equations (e.g., Deardorff

1966, 1972; Holtslag and Moeng 1991). However, we
know of no analysis that thoroughly shows how differ-
ent values of gh affect the quasi-steady solutions derived
from PBL models that use (2) as a model of the flux.
The point of this paper is to address this situation within
the context of a specific type of PBL model, namely,
the K-profile model. We take a predominantly mathe-
matical point of view, and in so doing make no attempt
to either physically justify the validity of (2) or assess
its merits relative to competing theories of convective
boundary layers—although physical issues raised on the
basis of our analysis are highlighted in the last section
of the discussion. For the most part, we simply wish to
understand, in some general yet quantitative sense, the
implications of allowing gh to differ from zero, in part
because we believe that a thorough mathematical un-
derstanding of (2) is a prerequisite to well-grounded
physical interpretations of its effects. A further benefit
of our approach is that it provides a simple framework
within which we can rigorously address numerical con-
vergence of our solutions as a function of the model
discretization.

2. Problem formulation

A simple problem that allows us to gain insight into
the effect of the nonlocal term is that of the evolution
of the height-dependent expected value of the potential
temperature in a convective layer bounded by two plates
(separated by a distance z*), and forced by a surface
heat flux Q0 and a constant ‘‘entrainment flux’’ at the
upper boundary (e.g., Fig. 2).3 Strictly speaking entrain-
ment also causes a deepening of the layer. To simplify

3 We note that in so formulating the problem, we completely avoid
one of the more important and interesting problems in the study of
planetary boundary layers, namely how to determine the height and
entrainment flux at the top of the PBL.
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FIG. 3. Rms deviation of the flux at t/t
*

from its quasi-steady value
for a numerical integration of (4) [with K and g specified as in Holts-
lag and Moeng (1991)] in which initially the upper part of a 2.5-km
convective layer was warmed by 2 K and the lower part cooled by
2 K to ensure large deviations at the initial time.

the mathematics, this aspect of the problem has been
neglected here, although numerical tests show that for
a known entrainment flux this simplification has no no-
table effect on our analysis. Indeed, neglecting the deep-
ening of the layer due to entrainment corresponds to the
limiting solution of the problem as the capping inversion
becomes infinitely strong, or the solution corresponding
to the situation where large-scale subsidence exactly
balances entrainment.

For a dry Boussinesq fluid in the absence of any mean
wind, diabatic processes, or horizontal heterogeneity,
the equation that governs the behavior of Q(z, t) is sim-
ply,

]Q ]wu
5 2 , (3)

]t ]z

which, upon application of our model for the flux, that
is, (2), takes the form

]Q ] ]Q
5 K 2 g . (4)h h1 2[ ]]t ]z ]z

Equating a convective-flux scale, Q*, with the surface
heat flux (i.e., Q* 5 Q0), we can define a convective
velocity scale w* 5 (gbQ*z*)1/3 [where b 5 (1/300)
K21 is the coefficient of thermal expansion]. This def-
inition of w* leads to the definition of an overturning
(or convective) timescale, t* 5 z*/w*, and a temperature
scale u* 5 Q*/w*, which together facilitate the non-
dimensionalization of our problem through

z → z* ẑ, t → t* t̂, Q → u* and (5)Q̂,

Q*ˆK → (w*z*)K , g → ĝ . (6)h h h h1 2w*z*
Equation (4) may thus be interpreted either dimension-
ally or nondimensionally. Unless otherwise stated we
adopt the nondimensional viewpoint, although in the
interests of notational simplicity, we subsequently drop
the hats that we have just now introduced. When we
return to a dimensional framework in section 2d, we
distinguish dimensional variables by a superscript d, that
is, refers to the dimensional diffusivity, similarly zddK h

and are used to represent the dimensional counter-dgh

parts of z and gh.
We are interested in quasi-steady solutions to (4). By

quasi-steady solutions we mean steady-state solutions
to

2] ]Q ] ]Q
5 K 2 g , (7)h h21 2 1 2[ ]]t ]z ]z ]z

that is solutions of (4) that are independent of height.
Consequently these solutions can be thought of as a class
of similarity solutions to (4) in that they describe so-
lutions for which ]Q/]z is invariant; that is, the shape
of the Q profile is not changing in time.

The assumption of quasi-steadiness is greatly sim-
plifying, but not overly limiting, in that most of the

analysis upon which (2) is based has been developed
by studying LES in a quasi-steady state (cf. Holtslag
and Moeng 1991; Cuijpers and Holtslag 1998). Further
justification for this assumption is provided in Fig. 3,
which shows that the rms deviation between the in-
stantaneous and quasi-steady flux approaches zero on a
timescale given by t*. For a convective layer t* is about
10 min. That means that the quasi-steady solutions are
directly relevant to models with time steps greater than
10 min (e.g., most NWP and climate models), and in-
directly relevant to models that consider higher-fre-
quency phenomena, for example, regional and cloud-
resolving models, because [as our analysis in section
4d(1) shows] on shorter timescales, the model effec-
tively relaxes the profiles to their quasi-steady shapes
on a convective timescale.

3. Analytical solutions

Steady-state solutions to (7) [or alternatively quasi-
steady solutions to (4)] are characterized by linear flux-
es, that is,

dQ
dwu /Q* 5 2K 2 g 5 (1 2 z) 1 Az, (8)h h1 2dz

where A is defined to be the ratio of the entrainment to
the surface (or scaling) flux, and is taken as a parameter
of our system. The dependency of the system on the
surface flux is eliminated through the nondimension-
alization (i.e., by writing Q* as a function of Q0). Also,
in seeking quasi-steady solutions, we have effectively
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removed the time dependence from the problem, so par-
tial derivatives go over to total derivatives. Solving (8)
for dQ/dz results in

dQ g K (z) 2 [(1 2 z) 1 Az]h h5 . (9)
dz K (z)h

If gh and Kh(z) take suitably simple forms, (9) can
be integrated analytically. Although, for many purposes,
a great deal of insight as to the nature of the quasi-
steady profiles of Q can also be obtained from a simple
consideration of the neutral points zn (e.g., Fig. 1). These
points are here defined to be the level (or levels) where
dQ/dz vanishes; that is,

dQ
5 0. (10))dz z5zn

Independent of the form of gh and Kh, (9) illustrates
how zn (or the zns) is determined by the surface fluxes,
the entrainment fluxes (the A term), and the product
ghKh. Because gh and Kh appear only together in the
form of a product in the numerator of (9), and thus
should not be specified independently, was noted by
Troen and Mahrt (1986). It means that it is not possible
to regulate the nonlocal fluxes by specifying gh inde-
pendently of Kh. So, for instance, values of gh found to
work well in one model, cannot necessarily be expected
to work in a model that uses a different form of Kh. In
a quasi-steady state one way to specify gh would be as
a function of A, the desired level of the neutral point,
zn, and Kh:

(1 2 z ) 1 Azn ng 5 . (11)h K (z )h n

a. Analytic Q(z) profiles for common forms of Kh and
gh

For z . 0.1, gh [denoted by c4 in Holtslag and Moeng
(1991), by C9 in Troen and Mahrt (1986), and by C*
in Large et al. (1994)] is typically given a constant value
between 2 and 10 (Holtslag and Moeng 1991), and Kh

is given a prescribed shape

Kh(z) 5 kz(1 2 z)2 z ∈ (0, 1) (12)

chosen to reflect the shape of the vertical velocity var-
iance profile (see also Cuijpers and Holtslag 1998).
Specifying the maximum value Kh is allowed to take,
that is,

↑K 5 max K (z), (13)h h
0#z#1

determines the proportionality constant k (not to be con-
fused with k, which we later introduce to represent von
Kármán’s constant). Analysis of LES by Holtslag and
Moeng (1991) suggests that 5 0.1, which implies k↑K h

5 0.675.
Before proceeding, some comments are in order re-

garding the form of (12). Equation (12) implies that K

vanishes at the boundaries of the turbulent flow. This
implies unphysical gradients in the resultant profiles [cf.
Eq. (9)] near z 5 0 and z 5 1. In principle K should
be reduced to a value no smaller than the maximum of
either the molecular diffusivities (or viscosities) appro-
priate to the fluid under consideration, the values
thought to best characterize the weak turbulent diffu-
sivities (or viscosities) of the outer fluid in which the
PBL is embedded (e.g., Large et al. 1994), or the value
necessary to give the proper entrainment flux at z* (e.g.,
Beljaars and Betts 1992). Last, we note that in our prob-
lem, the entrainment zone has been approximated as
infinitely thin. In reality (and especially for weakly
capped flows) the heat flux only gradually approaches
zero above the level of its minimum (cf. Fig. 1 where
the flux only becomes zero at about 1.15z*), neglecting
the effects of a finite entrainment-zone depth in our
problem is relevant to models that do not resolve such
features; nonetheless, our prime motivation for this as-
sumption is that it greatly simplifies the analysis but
does not compromise the integrity of the analytic so-
lutions away from the boundaries.

Substituting (12) into (9) yields
2dQ g kz(1 2 z) 2 [(1 2 z) 1 Az]h5 (14)

2dz kz(1 2 z)

1 A
5 g 2 2 , (15)h 2kz(1 2 z) k(1 2 z)

which lends itself to straightforward integration:

1 z A
Q(z) 5 g z 2 ln 2 1 const.h 1 2k 1 2 z k(1 2 z)

z ∈ (0, 1). (16)

Equation (16) shows how under (2), with K given by
(12) and gh equal to a constant, the quasi-steady heat
flux profile can be thought of as being determined by
three processes (see also Fig. 4): surface fluxes (as il-
lustrated by the term marked with a B in the figure),
entrainment (the A term), and nonlocal processes pro-
portional to gh. It follows from (14) that surface fluxes
alone (e.g., without nonlocal fluxes) imply that Q(z) is
strictly decreasing with height throughout the PBL. En-
trainment fluxes (with A , 0) allow the gradient of the
profile to vanish, but require that it does so only where
the flux vanishes [as is obvious from (2)], while the
nonlocal term allows the zero flux point and the neutral
point to be at different levels. The constant of integration
is determined by conservation of energy and thus re-
flects the time integrated heat input into the layer.

Unfortunately, the behavior of Q(z; gh, k, A) is not
obvious simply by inspecting (16); however, a rather
simple way to gain insight into Q(z; gh, k, A) is to
consider the neutral points, zn, of the Q profile (recall
that zn is any point where dQ/dz vanishes). Although
the neutral points do not uniquely determine the profile,
they do place strong constraints on it. The locations of
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FIG. 4. Breakdown of different components of the analytic solution
given by the thick solid line. Dotted line, surface processes. Short
dashed line shows nonlocal term. Dashed–dotted line shows entrain-
ment term. The K terms tend to dilate along the u/u

*
axis for de-

creasing k while the nonlocal term’s slope is given by kgh. When
interpreting near-boundary gradients in Q/u

*
, recall that u

*
is typi-

cally about 0.2, which tends to exaggerate the gradients in the profiles
relative to scalings based on the strength of the inversion.

the zn are determined by demanding that the numerator
of (14) vanish, that is,

f 1(z) 5 ghkz3 2 2ghkz2 1 (ghk 2 A 1 1)z 2 1

5 0. (17)

Further insight into the mathematical properties of
the solution is readily obtained through a thorough
analysis of f 1(z; A, ghk); although, we will not belabor
this approach here, we do consider the solutions f 1(z)
5 0 as a function of A and ghk. Figure 5a shows how
zn varies with ghk for a range of values of A. For now
we are interested in the Q profile, so we only consider
the curves corresponding to A , 0. In this, A , 0,
regime there must always be a zero of f 1 (i.e., a place
where the dQ/dz vanishes) for z ∈ (0, 1); physically
this makes sense because in the convective boundary
layer the surface layer must be superadiabatic and the
entrainment layer must be subadiabatic, hence, by con-
tinuity, at some point the profile must be neutral. The
left-most point of the curves (i.e., ghk 5 0) simply
illustrates where the linear-flux is zero for a given value
of A.

Two interesting features of the A , 0 curves in Fig.
5a merit further discussion: (i) the implication that there
is only a rather limited range of values for ghk capable
of producing physical profiles; and (ii) that even within
this range, that is, for reasonable values of ghk, un-
physical profiles can still result if the entrainment flux
ratio A becomes too small.

With respect to our point (i) above, Fig. 5b shows
three curves for A 5 20.2 but different values of ghk.
This figure, and panel (a) both suggest that value of ghk
between 3 and 3.5 produce profiles, which by the lo-
cation of their neutral points, seem to most closely cor-
respond to LES (e.g., Fig. 1). These values corresponds
to 4.4 , gh , 5.2 for K given by (12) and k 5 0.675.
For ghk , 2.5 the nonlocal model is having too small
of an effect, and the region of countergradient flux is
probably too small. For ghk . 4.5 the nonlocal flux is
probably too dominant, leading to fluxes that already
begin to become countergradient below 0.3z*.

With respect to our point (ii) above, we note that if
A is too small, that is, in situations of very small en-
trainment fluxes the profile can have three zeros. In
this situation there must be a region near the upper
boundary of the flow where the gradient due to the
surface flux dominates (because A K 1), forcing the
profile to actually become weakly superadiabatic in the
region between the second and third zero. This unsat-
isfactory aspect of the model-derived profiles is illus-
trated in Fig. 5c. Although we illustrate our point for
the somewhat large value of ghk 5 4.8, similar, albeit
less pronounced, behavior can occur for more physical
values of ghk.

Last, we illustrate in Fig. 5d, a point noted above
(that the values of zn do not uniquely determine the
structure of the profile). Here we see that keeping ghk
fixed while varying k can lead to profiles that are better
mixed through a deeper layer (for larger k), thus im-
plying less superadiabatic profiles near the top of the
surface layer.

b. Solutions for passive scalars

In addition to the heat flux, nonlocal fluxes are often
included in evolution equations for other scalars such
as moisture, or chemical constituents, in which case
A may take on a much wider range of values. If these
scalars (generically referred to by C hereafter) are
conserved, then they too satisfy (4), except that Q is
replaced by C, wu is replaced by wc , and the non-
dimensionalizing parameter C* is given by wc (z 5
0)/w* (where w* is still scaled based on the surface
heat flux).

Thus all of our previous analysis for the quasi-steady
Q profiles extends directly to a consideration of the
quasi-steady C profiles, except that now we must con-
sider a broader range of values for A. In particular, it is
not unusual for the entrainment moisture flux to exceed
the surface moisture flux. Figure 5a illustrates that as A
increases, increasingly large values of gc are necessary
to obtain a vanishing gradient in the solution for z ∈
(0, 1). Although the initial tendency is for increasing gc

to lead to better mixed quasi-steady profiles in the PBL
interior—as, for instance, is illustrated by the quasi-
steady profiles of C plotted in Fig. 6 for A 5 0.5 and
three different values of gck, this can be over done—
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FIG. 5. (a) Solutions to (17) for different values of A as labeled. (b) Analytic (nondimensional) profiles for A 5 20.2, k 5 0.675, and
ghk varying as indicated. Note that these profiles correspond to the points marked by the arrows along the ghk axis in panel (a). (c) Profiles
at ghk 5 4.8 for two different values of A. (d) Profiles for ghk 5 3.2 but k either doubled or halved, where k0 5 0.675.

too large a value of gck can lead to a reversal of scalar
gradients in the middle of the PBL. Because for A sig-
nificantly larger than 0 a countergradient flux (or an
increasing lapse rate) seems unphysical, one is hard
pressed to justify values of gck larger than six, which
is about the magnitude of values in common use. This
conclusion supports some previous work on the subject
(e.g., Holtslag and Moeng 1991), as it further indicates
that for the diffusivities modeled by (12) with k 5
0.675, gh ø 5 is more appropriate than the larger values
that are sometimes used.

c. Integral scaling
Cuijpers and Holtslag (1998) argue that the nonlocal

fluxes are more appropriately scaled by integral fluxes.
For the special case of conserved quantities this implies
that in a quasi-steady state (where the fluxes are linear and
the integral can be evaluated analytically), the scale value
for a scalar flux wc is simply wc* 5 (wc 0 1 ,wc )/2zi

which for 5 Awc 0 implies that wc*/wc 0 5 (1 1 A)/2.wczi

This revised scaling, in that the entrainment fluxes now
explicitly appear in the scaling flux, results in a slightly
different class of solutions. Namely those that satisfy
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FIG. 6. Quasi-steady profiles for a C scalar with A 5 0.5. Designed
to mimic a moisture variable. Solid, dashed, and dashed–dotted lines,
respectively, plot solutions for (gc, k) 5 (0, 0.675), (5, 0.675), and
(10, 0.675).

FIG. 7. Solutions to (19) for different values of A as labeled. Note
that in comparison to Fig. 5a we have added two solutions (denoted
by thin lines) for A 5 2 and A 5 100.

2
2g kz(1 2 z) 2 (1 2 z 1 Az)cdC 1 1 A

5 (18)
2dz kz(1 2 z)

as opposed to (14). Following the path of the previous
analysis, let us consider zeros of this new equation, that
is, zeros of a function

1 2 A
3 2f (z; A, g k) 5 g kz 2 2g kz 1 g k 1 2 z2 c c c c1 21 1 A

2
2 5 0.

1 1 A
(19)

The zeros of f 2 are plotted in Fig. 7; note that

1 1
f ; A, g k 5 g k 2 1, (20)2 c c1 22 8

which is why, irrespective of the value taken by A, at
z 5 ½ the zeros are found at gck 5 8.

In general, Fig. 7 yields similar results to the previous
analysis, with one important, and surprising exception:
the prediction that for a pure ‘‘top-down’’ scalar4 there

4 A top-down scalar is one for which A → ` implying . 0wc zi

and wc 0 5 0, and is the complement to a bottom-up scalar defined,
which has the property that wc 0 . 0 and 5 0. This way ofwc zi

looking at the profiles of scalars was introduced by Wyngaard and
Brost (1984). Note that our analysis implies that the scaling of the
top-down and bottom-up scalars differs (both are scaled by the same
value, i.e., the average flux) from the original proposals in situations
when the generalized scalar is composed of both a top-down and
bottom-up component.

exists some z ∈ [0, 1] for which f 2(z) 5 0. In physical
terms, this says that the gradient of the profile vanishes
somewhere inside the PBL. Because the flux is positive
definite (everywhere greater than zero for z ∈ [0, 1]),
the K-profile model with integral scaling predicts that
the concept of an eddy diffusivity does not hold for top-
down scalars. This is not the case for the K-profile model
scaled by surface convective fluxes; in that case the
nonlocal term vanishes for top-down scalars. This result
also differs from previous analyses of LES (e.g., see the
discussions in Wyngaard 1987; Wyngaard and Weil
1991, and references therein) in which eddy diffusivities
are found to be well defined for pure top-down scalars.

In a similar vein, we note that the similarity functions
for bottom-up and top-down scalar gradients, denoted
by gb(z) and gt(z), respectively, are just the limits of
(18) as A goes to 0 and `, respectively, that is,

2
g (z) 5 g 2 (21)b c kz(1 2 z)

2
g (z) 5 g 2 , (22)t c 2k(1 2 z)

from which it is apparent that gt(1 2 z) ± gb(z), that
is, the scaling implies transport asymmetry between top-
down and bottom-up scalars, where the source of this
asymmetry is in the asymmetry in the velocity variance
statistics (as represented by the profile of K).

d. Relationships to previous work

Many models (e.g., Large et al. 1994; Hong and Pan
1996) based on the approach pioneered by Troen and
Mahrt (1986) write the dimensional forms and :d dK gh h
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d d d d d d 2K (z ) 5 c w (z )z (1 2 z /z*) (23)h 1 h

Q*
d dg (z ) 5 G , (24)h h d dw (z )z*h

where c1 is a constant that Large et al. (1994) set to
unity; others (e.g., Troen and Mahrt 1986; Hong and
Pan 1996) set c1 5 k, where k ø 0.4 is Kármán’s con-
stant. Here Gh turns out to be proportional to gh (as we
show below); it is assigned various names in the liter-
ature, that is, C by Troen and Mahrt (1986), b by Hong
and Pan (1996), and Cs Large et al. (1994). The above
equations differ from our previous formulation [e.g., Eq.
(6)] through the introduction of the function ; adwh

height-dependent surface-layer scale velocity defined by

 dz
21 dc u*f if z , «z*2 h 1 2 L

d dw (z ) 5 h (25)
«z*

21c u*f otherwise, 2 h 1 2L

where u* is the friction velocity, L 5 ) is3 32z u /(kw* * *
the Monin–Obukhov length, c2 is a constant, which is
usually given the value of unity (e.g., Troen and Mahrt
1986; Hong and Pan 1996) or set to k (Large et al 1994),
« ø 0.1 is the nondimensional height of the surface
layer, and f h is the nondimensional Q-profile, which in
convective situations is generally given a form

21/3d dz z
f 5 a 2 c , (26)h h h1 2 1 2L L

where ah and ch are empirical constants. From (25) and
(26) it follows that

(zd . «z*) → c2(kch«)1/3w*
dwh (27)

in the convective limit.
Thus, nondimensionalizing and by the convec-d dK gh h

tive scales leads to

k
z]}}}}}| |

1/3 2K (z . «) 5 c c (kc «) z(1 2 z) (28)h 1 2 h

Ghg (z . «) 5 . (29)h 1/3c (kc «)2 h

The point of all this should now be evident, namely that
the forms for nonlocal fluxes and K profiles in the ex-
isting literature relate to the nondimensional values dis-
cussed here in ways that depend on ch, c1, and c2. Be-
cause neither Troen and Mahrt (1986), nor Hong and
Pan (1996) write down the forms they use for f h we
are unable to discern the value of ch that they use, con-
sequently their models are difficult to compare quan-
titatively to values of gh and k discussed here. Large et
al. (1994) use ch 5 98.96, which leads to k ø 0.633

and gh ø 10. This combination leads to a value of ghk,
which is probably a factor of two too large.5

e. Surface-layer matching

Equations (23)–(25) imply that within the surface lay-
er k and gh will have a dependence on z. However,
because of the form of (9), surface-layer matching does
not impact our solutions for the quasi-steady profiles
above the surface layer, that is, for z $ «. In the surface
layer, however, the additional z dependence of Kh and
gh results in a slightly modified equation for the gradient
of Q:

2dQ g kz(1 2 z) 2 [(1 2 z) 1 Az]h5 (30)
1/3)dz z#« z

2k z(1 2 z)1 2«

1/3 1/3« A«
1/35 g (« /z) 2 2 . (31)h 4/3 1/3 2kz (1 2 z) kz (1 2 z)

One could again integrate (31); here we satisfy our-
selves with pointing out that the consistent application
of surface-layer matching has no effect on the values
of zn, and only affects the near-surface values of the
quasi-steady profile. The main effect of the revised sur-
face-layer scaling is in accord with the desired effect;
namely, it acts to force the near-surface values of dQ/dz
to scale with z24/3 as opposed to with z21. Further support
for the surface layer forms used by Large et al. (1994)
is provided by an analysis of LES results (Holtslag and
Moeng 1991), which illustrates the tendency of gh to
increase toward the boundaries of the turbulent flow.
However, it should be emphasized that because the non-
local term affects the profile of the mean field through-
out the boundary layer, it is not appropriate to match
the bulk of the PBL to the surface layer in the absence
of this term, which is why the nonlocal term is often
set to zero for z , « (e.g., Large et al. 1994).

4. Discussion

a. Previous studies

Until now we have predominantly concerned our-
selves with the mathematical properties of quasi-steady
solutions to (4). In the introduction we claimed that such
an analysis could help form the basis for better inter-
pretations of sensitivity experiments conducted with
PBL models that make use of (2). Consider, for example,
the sensitivity studies described by Hong and Pan (1996)
where they examined the response of the National Cen-

5 Note that ghk implies a value of zn ø 0.2, which is not evident
in the profile of Fig. 1 in Large et al. (1994); however, this is because
that profile was constructed from a version of the KPP model used
slightly different constants than what eventually were advocated for
in the paper (W. G. Large 1998, personal communication).
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ter for Environmental Prediction’s Medium-Range Fore-
cast Model to changes in the boundary layer formula-
tion. In particular they looked at how changes to the
K-profile model and the nonlocal flux formulation af-
fected forecasts of the PBL structure during the First
International Satellite Land Surface Climatology Project
(ISLSCP) Field Experiment. They found that the non-
local term leads to a better ventilated surface layer, and
a more stable upper boundary layer (for the case of Q)
and a better mixed overall profile for the case of mois-
ture. This is in accord with what one would expect based
on the analytic, quasi-steady solutions. Thus our results
support the premise underlying the analysis of Hong
and Pan (1996), namely, that the profiles derived from
the operational model result directly from changes made
to the PBL parameterization.

Hong and Pan (1996) also show that increasing the
exponent in the formulation of K has an effect similar
to reducing the magnitude of the nonlocal term. To un-
derstand this let us define Kp 5 kz(1 2 z)p, and recall
that Hong and Pan (1996) compared solutions with p
5 2 and p 5 3. Because ø 0.7 [recall the defi-↑ ↑K K3 2

nition of K↑ from (13)], and because the location of the
neutral point of the quasi-steady profile depends on gK↑,
reducing the maximum value of K has an effect similar
to reducing the value of the nonlocal term by a similar
amount. Thus our analysis indicates that changing from
K2 to K3 (in their forecast model) affects the solution
in three different ways: (i) the shape of the profile is
changed, which appears to be the desired effect of
changing p, and is in our view a minor one; (ii) the
magnitude of the K-profile is changed; and (iii) the be-
havior of the nonlocal term is changed due to the change
in K.

b. Sensitivities in a climate model

Holtslag and Boville (1993) examine the sensitivity
of a climate model to changes in the PBL scheme; how-
ever, they only report on differences between a nonlocal
PBL scheme and a local PBL scheme, where the local
scheme determines the mixing coefficients based on lo-
cal properties of the state variables and the nonlocal
scheme diagnoses a boundary layer depth (which is usu-
ally several levels) and diagnoses mixing properties
based on the bulk properties of the PBL. Although the
nonlocal scheme makes use of a variety of internal as-
sumptions (such as the role of nonlocal processes), an
examination of these issues was not an objective of the
Holtslag and Boville study.

But we can touch on such issues here. We do so by
comparing two 1-yr integrations of the standard CCM
version 3.2 with fixed SSTs (Kiehl et al. 1996). In the
first calculation we used the standard PBL package
(which sets gh 5 gc 5 10), while in the second cal-
culation we eliminate nonlocal processes by setting g
5 0. It is well beyond the intended scope of this paper
to go into detail with regard to the differences between

these simulations. However, some scalar measures of
the overall response of the calculations to the presence
of the nonlocal term are conveniently—if not defini-
tively—interpreted in light of our above results. Name-
ly, by analyzing the diagnostic outputs of the CCM, we
find that in the absence of the nonlocal fluxes the glob-
ally averaged PBL depth over the last 3 months of the
calculation increases by about 10%. Furthermore, sur-
face sensible heat fluxes are reduced by about 5%.

Both the PBL height response, and the surface flux
response, are consistent with the fact that in helping to
better mix (or even stabilize) the outer layer, the PBL
model must (in order to conserve heat and moisture)
better ventilate the surface layer. Because the procedure
for diagnosing the PBL depth depends on the temper-
ature at the lowest model level (cf. Holtslag and Boville
1993), a less ventilated surface (in the absence of non-
local processes) is consistent with a corresponding re-
duction in surface fluxes and an increase in PBL depth.
This effect of the nonlocal term on the PBL depth di-
agnoses has also been noted by Beljaars and Viterbo
(1998), who further point out that such an effect could
impact the entrainment rate predictions by the model.
Overall, our results are consistent with results from ear-
lier analyses, which looked at these questions less di-
rectly (e.g., Holtslag and Boville 1993; Holtslag et al.
1995), in that it suggests that dynamically, the important
consequence of (2) is that in attempting to better mix
(or even stabilize) the upper part of the PBL, the non-
local flux is forced to better ventilate the surface layers
(see, e.g., Figs. 5b or 6), which thus can directly affect
the state of the lowest model level and hence both the
surface fluxes and (at least so far as the state of the
lowest level is tied to a diagnoses of the PBL depth)
entrainment fluxes (Beljaars and Viterbo 1998).

c. Convergence and efficiency

Our above analysis is useful in at least two other
ways. First, analytic solutions can be used to diagnose
directly the diffusive tendencies in a numerical integra-
tion. Second, the simple formulation of our problem [as
per (4)] allows us to explore numerically how a coars-
ening of the vertical resolution affects the solution.

In doing the latter, we compare integrations of (4)
using different vertical grids for a box with z* 5 1000
m, a fixed surface heat flux, Q* 5 0.2 Km s21, and A
5 20.2. Numerically, we solve the system of equations
using a hybrid backward implicit solver, in that (4) is
solved using central differences of Q valid at time t 1
Dt and values of the diffusivities valid at time t. In
comparing simulations with 6, 24, 96, and 384 levels
(Fig. 8) we note two aspects of the solutions worth
commenting on. First, similar to what was found in a
less idealized setting by Holtslag et al. (1995), we find
that for the most part, the relatively coarse representa-
tion of the layer does a good job in representing the
vertical structure of the solution. Second, as the dis-
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FIG. 8. The Q(z) profiles for an initially well-mixed layer after
10 800 s for four different discretizations. Here N 5 384 (solid), N
5 96 (dashed), N 5 24 (dotted), N 5 6 (dashed–dotted). All inte-
grations are integrated as described in the text, and are checked to
ensure they conserve Q exactly, and thus have identical mean values
^Q&. Note that this follows from the fact that the linearly extrapolated
profiles all cross in the surface layer.

cretization is refined (i.e., as we add more levels), the
mid-PBL temperature becomes smaller and smaller,
with no sense of convergence. Because the numerics
conserve Q to machine accuracy (we use 8-byte words),
the reduction in the mid-PBL values of Q with increas-
ing refinement, is compensated for by higher values near
the boundaries.

Mathematically, further insight into the nature of the
discrete solutions can be gained by considering the be-
havior of

b1
Q 5 Q(z) dz, (32)Eb 2 a a

that is, the average value of Q(z) in the interval (a, b).
The N-level discretization of this equation is simply

N1
Q 5 Q(z ),O iN i51

where

b 2 a b 2 a
z 5 a 1 i 2 . (33)i N 2N

If we decompose this series into three separate series,

Q 5 1 1 ,
g A Q0Q Q Q (34)

where the three terms correspond to the three processes
in (16), that is, nonlocal fluxes ( ), entrainment fluxes

g
Q

( ), and surface fluxes ( ), we can analyze the con-
A Q0Q Q

vergence of each process as N increases. In so doing
we find that is independent of N and that con-

g Q0Q Q

verges rapidly with N. By rapidly we note that the dis-
crete approximation of in the surface layer (i.e., a

Q0Q
5 0 and b 5 0.1) is, for N 5 1, within 10% of its
convergent value, increasing to nearly 2% accuracy as
N increases to 5.

The real difficulty lies with our formulation of the
entrainment term. Inspection of (16) shows that di-

A
Q

verges logarithmically due to the fact that Kh vanishes
as (1 2 z)2 as z → 1. As a result, discrete approximations
to vary as ln(N). Because energy must be conserved,

A
Q

the constant of integration must compensate; that is, in
the discrete case solutions are offset by an amount that
depends on N to compensate for the singularity in the

profile as z → 1. This behavior is evident in Fig. 8,
A

Q
where the profiles are beginning to cross near the upper
boundary, and where the offset is by equal amounts in
the interior for successive quadruplings of the number
of points. If instead we let K go to zero less rapidly as
z → 1, or if we do not let K go identically to zero at z
5 1 [but instead match it to some interior eddy (or
molecular) diffusivity (e.g., Large et al. 1994)] the un-
desirable behavior of the solutions is eliminated; fur-
thermore, it can be shown that discrete representations
of the analytic solutions (which the time-stepped equa-
tions want to approach) are capable of representing the
analytic structure of the PBL with very few points.

d. Physical issues

1) A PHYSICAL INTERPRETATION

Although we have taken a predominantly mathemat-
ical point of view, this is not without its physical im-
plications. For instance, our analysis shows that the
K-profile models with nonlocal fluxes can be thought
of as a relaxation model. That is, it tends to relax profiles
of scalars toward a similarity form whose nondimen-
sional shape is implicitly determined both by the shape
of the K-profile, and the choice of scaling.

To see this more clearly, recall that we have shown
how a similarity solution exists (which for this section,
and for some scalar C, let us denote by Cs), with the
property that for a time-invariant forcing

] ]CsK 2 g 5 x , (35)h h 01 2[ ]]z ]z

where x0 is a constant determined by the nonzero com-
ponent of the boundary conditions. With out any loss
of generality we can consider C(z, t) to be linearly com-
posed of a similarity component Cs(z), a time-varying
vertically averaged component ^C&(t) (where we use an-
gle brackets to denote the vertical averaging), and a
deviation term C9(z, t) [not to be confused with the
turbulent fluctuating term c(x, y, z, t)]:

C(z, t) 5 ^C&(t) 1 Cs(z) 1 C9(z, t). (36)

Note that by definition, ^C9& 5 ^Cs& 5 0. In the absence
of large-scale advective fluxes, or sources or sinks of



834 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

C, its governing equation is equivalent in form to (4),
which upon application of (36) results in

] d ]C9 ] ]C9
C(z, t) 5 ^C& 1 5 x 1 K . (37)0 h1 2]t dt ]t ]z ]z

But by definition x0 5 d^C&/dt, so that (37) simplifies
to the following equation for the deviations from the
similarity profile:

]C9 ] ]C9
5 K . (38)h1 2]t ]z ]z

Multiplying (38) by C9 and taking the vertical average,
allows us to form an evolution equation for the inte-
grated variance of the deviation from the similarity pro-
file, that is, the mean-square deviation, as a function of
time,

1 22d ](C9) ]C9
2^(C9) & 5 K 2 2K . (39)h ) 7 1 2 8dt ]z ]z0

Because K is positive semidefinite, the second term on
the rhs unambiguously acts to dissipate (C9)2. The first
term on the rhs is the integrated transport term; it reflects
the fact that the only source of deviations is at the
boundaries, but because the boundary conditions for the
deviation component of the profile are zero by defini-
tion, this term must vanish.

Equation (39) expresses the fact that what is shown
in Fig. 3 holds in general. Namely, that given an initial
profile, and fixed boundary conditions, the PBL model
considered here, unambiguously damps deviations from
an implied similarity profile. As a result, under certain
conditions, the model can be thought of as a way of
relaxing the PBL profile of scalars to an implicitly de-
fined similarity profile on a convective timescale. Thus
in a sense, this class of models can be seen as similar,
albeit more general, than that proposed by Betts (1995).
This interpretation is probably true of a broader class
of PBL models (excluding of course mixed-layer mod-
els, where the relaxation is assumed to be infinitely fast);
what we have done here is merely demonstrate this
point, along with the fact that in our case the form of
this similarity profile is determined (but readily dis-
cernible) by the assumptions inherent in the formulation
of the model, that is, the chosen shape of the K profile,
and the choice of scaling. Given this interpretation, one
could view the nonlocal term less in terms of physical
processes, and more as a simple method for introducing
a larger class of similarity profiles toward which the
boundary layer will be relaxed.

2) PHYSICAL FOUNDATIONS AND THE IMPORTANCE

OF TESTS

Heretofore we have largely accepted the K-profile
framework as given. As indicated in the introduction,
this reflects its wide use in the larger-scale modeling

community, rather than its carefully demonstrated gen-
erality, or the lack of question among micrometeorol-
ogists or turbulence theorists regarding its merits. In-
deed, this basic framework for modeling the fluxes with-
in the PBL is mostly corroborated only on the basis of
a relatively small number of relatively low-resolution
large-eddy simulations in limited regimes of parameter
space.6 Other theories, or models, for the fluxes in the
PBL exist and have varying degrees of support.

For instance, in the introduction we noted that the
original motivation for introducing a nonlocal flux was
that of Ertel, based on the physical premise of biased
starting plumes in convective flows. Subsequently Wyn-
gaard (1987) proposed that changes in the mean field
during parcel transit times could lead to transport asym-
metry between top-down and bottom-up scalars in fields
with skewed vertical velocity statistics. Wyngaard’s idea
was examined further, and formalized into an analytic
model of a flux in which a nonlocal component is pro-
posed to give an equation similar to (1) but with N
proportional to the flux gradient and the skewness of
the vertical velocity (Wyngaard and Weil 1991). Cuij-
pers and Holtslag (1998) examined the ability of the
Wyngaard and Weil model to describe results from LES,
and found that in some situations a simple application
of the proposed model failed to capture the behavior of
the scalar statistics—largely because in the three flows
simulated by Cuijpers and Holtslag the transport asym-
metries in the scalar fluxes were poorly correlated with
the skewness in the distribution of vertical velocities.

In contrast to the models discussed in the preceding
paragraph, the nonlocal model that we have analyzed
in this paper is largely developed without regard to a
specific physical process, but instead based on what one
might term pseudo- or LES empiricism. That is by an-
alyzing large-eddy simulations Holtslag and coworkers
have noted that the dimensional budget equation for the
flux of some scalar c, namely,

]wc ]C g ]wwc 1 ]p
5 2ww 1 uc 2 2 c , (40)

]t ]z u ]z r ]z0 0

can, at least for some convectively driven situations in
a quasi-steady state, be written in a highly parametric
form as

2]wc ]C z w C* wc*5 2ww 1 h 2 ø 0, (41)1 2]t ]z z z* ti

where h is a height-dependent shape function, and the
buoyancy production and turbulent transport of flux and

6 PBL models based on the K-profile framework have been com-
pared to field data (e.g., Vogelezang and Holtslag 1996; Holtslag et
al. 1995), but these comparisons normally test the totality of the model
behavior in poorly constrained environments, as a result differences
between the data and the calculations are difficult to attribute to
specific components of the model.
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a component of the pressure covariance term [i.e., the
second, third, and part of the fourth term on the rhs of
(40)] are collectively represented by the second term on
the rhs above, while the remainder of the pressure co-
variance term is modeled as the ratio of the flux to a
return to isotropy timescale t . In convectively driven
flows Cuijpers and Holtslag (1998) found that by ap-
propriately defining C* and letting h be constant, the
model of the flux implied by (41), that is,

2]C w C**wc 5 2(ww )t 1 ht , (42)
]z z*

which is similar7 to the one given by (2), could satis-
factorily reproduce the results from LES. However, we
should not forget, that LES has been used here as a tool
to make simple pseudoempirical statements about the
character of second-order budgets in a limited range of
circumstances. And while such an approach is by design
able to reproduce many aspects of the flows from which
it was derived, it is not at all certain that it will lead to
results that are accurate in general.

For this reason it is especially important to continue
to test or corroborate (using either field or laboratory
data) the predictions of this model. To the extent that
(2), (12), and gc 5 constant are a faithful reproduction
of the behavior of LES, attempts at corroboration will
also, in a sense, be a test of LES. And while we have
not endeavored to physically analyze or test the physical
basis of the model here, it is our belief that an analysis
such as ours, which illustrates in rich detail the basic
properties of a class of nonlocal K-profile models, pro-
vides an indispensable context (or foundation) for future
tests.

5. Summary and conclusions

For common forms of the eddy diffusivity and the
nonlocal heat flux, we show how the nondimensional
magnitude of these two terms affects the quasi-steady
structure of scalars in the PBL. This is done by ana-
lytically solving for the profiles of conserved scalars in
a quasi-steady state. The assumption of a quasi-steady
state is a key one in facilitating our derivations, but it
is not overly limiting in that most analyses used to jus-
tify models of the form we consider are themselves
based on the quasi-steady assumption. The analytic so-
lutions are useful in a number of respects:

1) They demonstrate how different processes contribute
to the quasi-steady nondimensional profiles of heat
and/or other scalars.

2) They demonstrate that there is only a limited range
of values for ghk that lead to physical profiles across
a reasonable range of parameter space. Too large a

7 The equivalence is shown if we define K(z) 5 (ww )t and K(z)g
5 C

*
/z

*
.2htw

*

value of ghk can lead to superadiabatic Q profiles
near z*, fluxes that already begin to become coun-
tergradient below 0.3z*, and moisture profiles that
increase with height. If ghk is too small, then the
nonlocal flux will not be allowed to sufficiently con-
tribute to the mixing within the PBL.

3) They demonstrate how the similarity structure of top-
down an bottom-up scalars depends significantly on
the choice of flux scale. Scaling fluxes by their ver-
tically averaged value, as proposed by Cuijpers and
Holtslag (1998), forces the nondimensional profiles
of top-down scalars to have a neutral point some-
where in the PBL, a result that conflicts with pre-
vious research, and the results of the same model
where the flux is instead scaled by its surface value—
thereby drawing our attention to an apparent lack of
consensus on these fundamental and important is-
sues.

4) They demonstrate that most K-profile models can be
thought of as relaxation models, wherein the equi-
librium profile toward which the boundary layer is
relaxed is determined by the parameters of the mod-
els and the choice of convective scales.

Although most of our analysis assumed simple forms
for both the eddy diffusivity and the nonlocal flux, we
showed how it could be extended to examine the effect
of including surface-layer matching in the derivations
for K and g. In so doing we found that such matching
has no effect on the bulk of the PBL (i.e., above the
surface layer), and thus need not affect the location of
the neutral points of the Q(z) profile.

The analytic results facilitate interpretations of results
from more complicated models. Our cursory analysis of
a climate simulation suggests that the dynamically im-
portant aspect of the nonlocal flux is its ability to help
ventilate the surface layer, thereby enhancing surface
fluxes. In models that diagnose the depth of the mixed-
layer based on the temperature at the first model level
above the ground, enhanced surface layer ventilation
may lead to the diagnosis of shallower boundary layers.
As noted previously (e.g., Holtslag et al. 1995), our
results support the conclusion that in many implemen-
tations an important (and unintended) effect of the non-
local flux is its ability to modulate the diagnosis of the
boundary layer height, and thus the determination of
the entrainment flux at the top of the PBL.

Last, numerical integrations suggest that given an ac-
curate estimate of the depth of the PBL, as well as the
fluxes into it from above and below, relatively few ver-
tical modes are needed to well represent its vertical
structure. However, letting K go to zero as (1 2 z)n,
where n . 1, results in a singularity at Q(z 5 1). This
singularity tends to complicate the convergence tests,
and suggests that in principle K should not be allowed
to vanish at z 5 1 but instead should be matched to an
interior eddy, or molecular, diffusivity.



836 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

Acknowledgments. Much of this work was carried out
while the author was a postdoctoral fellow with the
Advanced Study Program at NCAR, which is acknowl-
edged for providing a wonderful intellectual environ-
ment in which to work. Revisions were made while the
author was visiting the Max-Planck-Institut für Meteo-
rologie in Hamburg, Germany, as a fellow of the Al-
exander Humboldt Foundation. It is also a pleasure to
thank Chin-Hoh Moeng, and in particular to acknowl-
edge her stubbornness, which to a large degree moti-
vated this investigation. Bert Holtslag, Bill Large, and
John Wyngaard also made a great number of very con-
structive suggestions that greatly improved this manu-
script as well as my understanding of the basic issues
at hand. Larry Mahrt, Arthur Petersen, Jimmy Dudhia,
and two anonymous reviewers also made helpful sug-
gestions that led to improvements in the manuscript.
Last, the Tex project, the Free Software Foundation
(GNU), and James Theiler (xyplot) are thanked for pro-
viding the word processor, text editor, and plotting rou-
tines used in this analysis.

REFERENCES

Beljaars, A., and A. K. Betts, 1992: Validations of the boundary layer
scheme in the ECMWF model. Proc. ECMWF Seminar on Val-
idation of Models Over Europe, Vol. 2, Shinfield Park, Reading,
United Kingdom, ECMWF.
, and P. Viterbo, 1998: Role of the boundary layer in a numerical
weather prediction model. Clear and Cloudy Boundary Layers,
A. A. M. Holtslag and P. G. Duynkerke, Eds., Elsevier, 287–
304.

Betts, A. K., 1995: A lagged mixing parameterization for the dry
convective boundary layer. Mon. Wea. Rev., 123, 1912–1915.

Cuijpers, J. W. M., and A. A. M. Holtslag, 1998: Impact of skewness
and nonlocal effects on scalar and buoyancy fluxes in convective
boundary layers. J. Atmos. Sci., 55, 151–162.

Deardorff, J. W., 1966: The counter-gradient heat flux in the lower
atmosphere and in the laboratory. J. Atmos. Sci., 23, 503–506.
, 1972: Theoretical expression for the countergradient vertical
heat flux. J. Geophys. Res., 77, 5900–5904.

Ertel, H., 1942: Der vertikale Turbulenz-Wärmestrom in der Atmos-
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