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ABSTRACT

The production of anomalous supersaturations at cloud edges other than cloud base has presented a vexing
challenge for modelers attempting to represent the evolution of a droplet spectrum across an Eulerian grid.
Although the problem manifests itself most dramatically for models that explicitly predict on the supersaturation
field, it is also present in models with bulk condensation schemes in which condensation happens implicitly.
Although the problem has been discussed in the context of truncation errors associated with finite difference
approximations to advection, this note demonstrates more generally that the cloud-edge supersaturation problem
is a fundamental problem associated with the ubiquitous assumption that the forcings on the droplet spectra are
well represented by the mean thermodynamic fields. In certain respects, this assumption is equivalent to failing
to represent fractional cloudiness within a grid. Although well-known consequences of this problem are the
underprediction of temperature and the erroneous representation of the mean buoyancy flux within a grid box,
we also demonstrate that the spurious production of droplets can arise in response to the spurious production of
supersaturations in models with detailed microphysical representations.

1. Introduction

. Over the past few years the cloud-edge supersatu-
ration problem has presented a vexing challenge for
two groups (e.g., Kogan et al. 1994 and Feingold et al.
1994) attempting to couple detailed representations of
the droplet spectrum into large-eddy simulation (LES)
dynamical models. In simulations of stratocumulus the

.cloud-edge supersaturation problem manifests itself at
cloud top. Moreover, because of the strength of the
inversion capping stratocumulus, the tendency toward
nonmonotonic solutions using traditional higher-order
advection operators is aggravated. In response to prior
work, conservative thermodynamic variables and mono-
tonic advection operators are generally used, but consis-
tent with Grabowski’s (1989) discussion of the problem,
such an approach only mitigates the spurious production

- of cloud-top supersaturations. For instance, Fig. 1 is a

snapshot of a typical supersaturation field produced in a

simulation using conserved variables and monotonic ad-
vection operators. Although the model well represents the
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classical features of the supersaturation field, with cloud-
base maxima falling off through the depth of the cloud,
secondary cloud-top maxima remain as conspicuous and
robust features of the simulations.

In numerical simulations of small cumulus in shear-
free environments, Grabowski (1989) identified this
problem of spurious supersaturations at cloud bound-
aries and noted that it intensified with increasing res-
olution. He also noted that monotonic corrections to
the advective operators appear to mitigate the spurious
supersaturation problem but do not eliminate it. This is
because the cause of local extrema in supersaturations
may be twofold: (i) the spurious generation of maxima
and minima in the advective solutions of conserved
thermodynamic variables can lead to spurious maxima
and minima in the supersaturation field; and (ii) source
terms in the supersaturation equation may generate lo-
cal extrema. Physical sources of supersaturation exist
only under vertical advection, perhaps prompting Gra-
bowski (1989) to suggest that although monotonicity
in the advection of thermodynamic fields guarantees
monotonicity in the relative humidity field under hor-
izontal advection, it is not sufficient to guarantee mono-
tonicity in the relative humidity field under vertical ad-
vection. As we shall see, and as anticipated by Gra-
bowski and Smolarkiewicz (1990; hereafter GS), there
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FiG. 1. A snapshot of the supersaturation field produced by
a large-eddy simulation with explicit microphysics.

is a purely numerical source of supersaturations due to
the ubiquitous assumption of homogeneity (i.e., the ne-
glect of fractional cloudiness) on the grid scale. Be-
cause this source is not related to any physical process,
but instead is related to the inability of most models to
track cloud interfacial boundaries across a grid, it ap-
pears for both vertical and horizontal advection.

It is the purpose of this note to explore the impact
of the assumption that forcings on the droplet spectra
are well represented by the mean thermodynamic
fields. It will be shown that such an assumption leads
to the production of extrema in the temperature and
supersaturation field along the boundaries of a cloud
advecting across a fixed grid. Although the impact of
neglecting fractional cloudiness on grid-averaged tem-
peratures and buoyancy fluxes has long been recog-
nized (e.g., Sommeria and Deardorff 1977), its impact
on the supersaturation field and the resulting conse-
quences for models that attempt to predict the evolution
of the droplet spectrum has not been considered in de-
tail. The rest of this note is organized as follows. In
section 2 we develop a conceptual framework for the
problem being considered. In section 3 we numerically
investigate the hypothesis developed in section 2. Dis-
cussion proceeds in section 4, followed by conclusions
in section 5.

2. A conceptual framework

The problem we are considering is the manner in
which a specified spatial volume will change as a cloud
advects through it. The resulting system of N + 2 equa-
tions, describing the time evolution of relevant filtered
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(or grid-scale variables) under constant isobaric ad-
vection and various forcings is just,
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Where the overbar designates the filtered variables, 6,
is the liquid water potential temperature, and g,, is the
total-water mixing ratio, both of which are conserved
in the absence of precipitation. The forcing term on the
radius of the kth aerosol category, r;, is that due to
condensation/evaporation and is denoted by #. In ad-
dition to being a function of the prognostic variables,
#has an implicit functional dependence on the ambient
liquid water g; and is parametrically dependent on the
aerosol (assumed spherical and of some specified com-
position) dry radius denoted by a,, and pressure, po.
By choosing the number of aerosol categories, N, such
that each category’s number mixing ratio is unity, lig-
uid water mixing ratio can be diagnosed from the above
variables,

N
g =370 X (r} - a), )
k
where p,, the density of water is fixed and is not ex-
plicitly added to the argument set for #. Consequently,
specifying the set of fixed parameters { i, po, a; } closes
the system.

It is this filtered system of equation that best illus-
trates the current work, because it shows how three
terms contribute to the microphysical evolution of the
system. The first is the advection term, the second is
the forcings associated with the filter-scale variables,
and the last is the residual forcings, which generally
involve correlations in subfilter variables.

There exist a variety of techniques available to solve
a system of partial differential equations such as those
described in Egs. (1)—(3) above. One of the most com-
mon is the finite-difference approach whereby contin-
uous derivatives are represented by finite difference an-
alogs and the filter scale is taken to be the grid scale.
In the presence of sharp gradients, finite difference ap-
proximations to the advection equation often result in
significant truncation errors. Grabowski and Smolar-
kiewicz (1990) were primarily interested in how such
truncation errors impacted the solutions to a simplified
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form of the above system, where the simplification in-
volved neglecting the detailed evolution of the cloud
drop spectrum through the assumption that phase re-
laxation times were zero so that relative humidities
never exceed unity, and all excess water was con-
densed. In contrast, our purpose is to assume that ad-
vection can be performed perfectly and examine the
common assumption that &' is negligible in comparison
to % It will turn out that by formulating the problem in
a simple enough way we are able to derive analytic
solutions to the advective tendencies, thereby isolating
the impact of approximations regarding the other forc-
ings.

The assumption that ¥’ is negligible compared to ¥
is common in Eulerian cloud models and is equivalent
to assuming that the grid-averaged microphysics is well
forced by the grid-averaged thermodynamics. In a
sense, such an assumption is related to the neglect of
fractional cloudiness, as cloud formation responds to
whether or not the grid box is saturated in the mean.
Some bulk condensation models have been formulated
to account for fractional cloudiness (e.g., Sommeria
and Deardorff 1977). Although such methods may fa-
cilitate the computation of the %' term above, when
such approaches dre taken, it is generally in models
with larger grid volumes and for purposes other than
accurately representing the forcings on the grid-scale
droplet spectrum. To our knowledge every model that
represents the explicit evolution of the cloud drops does
so on a relatively small grid scale and so it has been
universally assumed that neglect of higher-order terms,
and the resulting neglect of &', is justified. '

Let us first heuristically understand the evolution of
the system described by Egs. (1)—(3). Using the car-
toon depicted in Fig. 2, the essence of the problem is
illustrated in terms of a three-step process. To begin
with (i.e., for ¢+ < 7%; where 7* is the time at which
the grid box saturates in the mean) the mean relative
humidity of the downwind grid box will increase be-
cause of the changing temperature and moisture under
advection. How fast the relative humidity increases de-
pends on the partitioning of the total water between the
vapor and liquid forms. So long as the grid-averaged
relative humidity is less than 100% and the advection
timescales are greater than the evaporation timescales,
cloud ‘drops that are independently advected into the
grid box will be evaporated and deactivated. Because
of this evaporation of liquid water, the vapor field
builds too rapidly, and the sensible temperature field
decreases, causing relative humidities to rise too rap-
idly. This process proceeds until some time ¢ =" 7* at
which the downwind grid box becomes just saturated
and cloud drops will no longer evaporate upon being
advected into it. During the first interval, r € (0, 7*),
some fraction less than 7*/7 of drops will evaporate.
However, - during the second interval, ¢+ € (7%, 1),
where 7 is the advective timescale, the formerly dry
grid box must begin to recondense the water and re-
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F1G. 2. Schematic representation of the movement of a cloud
boundary across a grid under constant, isobaric flow.

activate the drops that were evaporated in the first half
of the process. If the timescales for this process are
sufficiently long, the downwind grid box may recon-
dense the water without reactivating any of the drops
that were evaporated during the first half of the process.
If the timescales are too short, reactivation may occur.
In both cases the situation is such that the final drop
concentrations in the downwind grid box may only bear
a weak relation to the concentrations originally present
in the upwind or donor grid cell. Consequently, we may
see a reduction in the number of drops associated with
a spuriously low cloud-top supersaturation, or an en-
hancement, solely as a product of the timescale 7 of
the advection. One mitigating factor would be that in
the absence of strong gradients in relative humidity
across the cloud boundary, the evaporation timescales
may be longer than the advective timescales; conse-
quently, sufficient integral radius may remain so as to
prevent spurious reactivation during the time period
over which recondensation takes place.

3. Numerical investigations of conceptual model

The numerical problem is formulated in an idealized
manner to more clearly illustrate its essence. Specifi-
cally, we shall constrain our cloud and environment to
both be steady and horizontally homogeneous in sub-
domains, which are respectively described by the con-
stant vectors x ¢ and x ’. Where x is used to repre-
sent the set of prognostic variables:



May 1996

X={9hqw’rl?”"rN}~ (5)
The dry aerosol size distributions are considered con-
stant across the entire domain and are initialized as in
Stevens et al. (1996).

The cloud, x ©, is initialized to be exactly saturated at
some equilibrium liquid water content with some number
of activated aerosol categories N,, such that the fraction
of activated aerosol is given by N,/N < 1. The environ-
ment, x (¢, is initialized at some relative humidity less
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than one, with the radius of the aerosol corresponding to
their equilibrium sizes. The cloud boundary is initially
coincident with a grid boundary, and the flow velocity
and grid scale are implicitly specified through an advec-
tive timescale 7, which represents the amount of time it
takes a cloud to transverse a grid cell. We will be inter-
ested in the evolution of the state of a grid cell described
by X (t) as a function of time ¢ € (0, 7).

The analytic solution is such that ¥ changes linearly
from x ¢ to x > over the interval, in response to the
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Fi1G. 3. Evolution of various fields as a function of normalized time, #r, for three different values of 7. Analytic solutions are given by
linear dotted line. Solid line corresponds to 7 = 181, short dash corresponds to 7 = 32, long dash corresponds to = = 1024. Sensible
temperature (a); relative humidity (b); percent of activated aerosol (c); and liquid water mixing ratio (d).
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advective tendencies and the lack of any physical forc-
ings on the droplet spectrum (i.e., ¥ = 0). In other
words, at any time in the interval (0, 7) the grid volume
will be composed of a fraction #/7 of cloudy air de-
scribed by x ¢, and the remainder of the volume will
be environmental air. Consequently the analytic solu-
tion of the evolution of x(¢) is simply the linear com-
bination of cloudy and environmental states:

x ¢, t<0

X(C) — X(e)

X(t)z X(€)+—————[, O<st<=srT (6)
T

x 9, t>T

For steady isobaric advection ¥ = 0, and the analytic
solution to the advective tendencies is given by taking
the time derivative of the above solution: ’

I:d)_((t)] _ X(c) — X(e)
adv

, for O<t=<r.
dt T

(7)

The system may be numerically integrated, using the
analytic solution to the advective tendency ovér the in-
terval (0, 7) given by Eq. (7), to see how the micro-
physical fields respond under the assumption that ¥’ is
negligible. Because there are no forcings (in the La-
grangian sense) on 6, or g, the procedure formally
guarantees the correct time evolution for these vari-
ables, reducing the problem to one of integrating the
following set of ordinary differential equations over the
interval (0, 7) and under the assumption that %' is neg-
ligible:

6, _ 6" - 6:° ®)
dt T
4G, _qw —qw )
dt T
dr, () _ (&) _
7;—;-’5=u+9’, where k=1,2,---,N.
-
(10)

By considering the evolution of a single grid box, the
x dependence of the system has been eliminated
through the specification of the analytic solutions to the
advective tendencies and the partial time derivatives
are replaced by total time derivatives. The integration
is performed in two parts, as the advective tendencies
are first applied at each time increment using a forward
timestep, the forcing terms are subsequently integrated
on the same small timestep using the differential equa-
tion solver VODE (Brown et al. 1989). The integration
has been done at increasingly small time increments to
ensure convergence of the solutions.

In Fig. 3 a number of fields are plotted as a function
of nondimensionalized time, #/7. The analytic solutions
are given by the dotted line, whereas the numerical so-

MONTHLY WEATHER REVIEW

VOLUME 124

lutions are realized by driving the microphysical forc-
ings with the grid-averaged supersaturation field in the
manner described above. The solid line is the control
corresponding to a timescale of 7 = 181 s, the long-
dashed line corresponds to a longer timescale of 7
= 1024 s, while the short-dashed line corresponds to a
shorter timescale of 7 = 32 s. Values of the initial state
are tabulated in Table 1.

These results demonstrate our earlier arguments,

" whereby nonmonotonic behavior is observed in the

sensible temperature (Fig. 3a) and the relative humid-
ity (Fig. 3b) as a byproduct of driving the microphys-
ical forcings with the grid-averaged values of the su-
persaturation field. Initially, the grid is on average sub-
saturated, so that the number of activated aerosol (Fig.
3c¢) is zero, as all the drops advected in to the grid box
are promptly evaporated; correspondingly, there is no
liquid water in the domain (Fig. 3d), and sensible tem-
peratures are depressed from what they should other-
wise be. At some time, actually prematurely, the grid
becomes saturated in the mean. However at this time
there are no previously activated drops present to ac-
commodate the production of excess vapor, nor is the
liquid water that is being advected-in sufficient to ac-
commodate the rapid rate of vapor production. Con-
sequently, supersaturations develop [of the order of
several percent consistent with the simulations of Gra-
bowski (1989)] and droplet activation from the ambi-
ent aerosol population proceeds. Shortly thereafter, su-
persaturations peak and then begin falling again as suf-
ficient integral radius is available to accommodate the
ambient excess vapor and its continual production. At
this point, further activations cease (Fig. 3c), and tem-
peratures begin to converge on the analytic solutions
from below (Fig. 3a).

Notice that during the course of this process the sen-
sible temperature and supersaturation both develop lo-
cal extrema (i.e., they are nonmonotonic) and that this
property is not a result of truncation errors in the ad-
vection of prognostic variables, but rather a logical con-
sequence of driving microphysical forcings with grid-
averaged supersaturations. In addition, comparing the
curves within Fig. 3a and Fig. 3b it is apparent that the
extent of the local extrema in the relative humidity and
sensible temperature fields is a function of the timescale
of the process. Shorter timescales favor larger super-
saturations, which lead to more activated aerosol and
smaller mean diameters. Larger supersaturations on
shorter timescales is a result consistent with Grabow-

TABLE 1. Values of environmental and cloudy states at initial time.

8; (K) v (8 kg™ a (gkg™) NL/N (%)
x© 285.3 8.0 0.5 50
x*© 286.3 7.0 0.0 0

Pressure was held constant at po = 946 mb.
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ski’s (1989) observations of increasing supersatura-
tions at cloud edges due to a reduction in grid spacing,
although his results also showed the effect of the in-
creasing truncation error associated with imperfect fi-
nite difference approximations to advection.

To better illustrate the manner in which timescales
impact the solutions we repeated our simulations for
several more advective timescales and plotted the num-
ber of activated drops corresponding to x (¢ = 7) versus
7 in Fig. 4. The results illustrate the earlier arguments
that postulated that the number of drops at the end of
the advection process will be a strong function of the
timescale of the advection. Moreover, it appears that
the actual number of activated drops at the end of the
process is relatively independent of the analytic answer.

4. Discussion

In analyzing problems similar to that discussed here,
GS recognized that viscous mixing between cloud and
subsaturated air could generate cooling due to the evap-
oration of cloud drops and conjectured that even in the
strictly inviscid sense undershoots in the potential tem-
perature could occur at the cloud edges because of the
inability of models to ‘‘track the actual position of the
cloud boundary within a grid box.”” However, as dis-
cussed in section 2, their work was primarily concerned
with addressing how truncation errors in solutions to
the advection equation impacted the monotonicity of
the supersaturation field. In one extension of the flux-
limiting methodology, they did, however, attempt to
limit extrema in the supersaturation field, by placing
extra limiters on the total water field. However, having
herein demonstrated their conjecture (i.e., that the local
extrema in potential temperature and hence supersatu-
ration is related to the failure to track cloud interfacial
boundaries through a grid box) one may question the
benefit of forcing monotonicity, through limiters ap-
plied to the advective operators, on a field whose source
of local extremum is, at least in part, related to a process
other than advection. In other words, it does not seem
appropriate (as in GS) to ensure monotonicity in the
supersaturation field by applying additional' correc-
tions to the advective representation of the basic ther-
modynamic variables.

The results reported above suggest that a basic prob-
lem in representing the supersaturation field in an Eu-
lerian model stems from the inability to represent the
location of the boundary of the cloud with a resolution
better than the model grid scale. Although it was shown
that the inability to locate the boundary of the cloud

! Additional in the sense that they do more than ensure monotonic-
ity in the advected field, but also ensure monotonicity in other sec-
ondary fields whose departures from monotonicity are not related to
errors in the representation of advection in the primary thermody-
namic fields.
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FIG. 4. Variation of percent of activated drops as a function of
timescale 7. The analytic solution would be independent of timescale
with N,/N = 50%.

within a grid box is equivalent to the inability to rep-
resent subgrid variability in the condensational forcing
terms of models with detailed microphysics, even in
bulk models where the forcing is implicit (through the
transcendental equation relating 6 to 4, and g,,), this
problem will persist as long as the implicit relations are
based on grid-averaged variables only.

Although underestimates in the temperature and
overestimates in the negative buoyancy flux are prob-
lems associated with both bulk and detailed micro-
physical models, these problems of fractional cloudi-
ness have been discussed in the past. Given that, the
principle contribution of the present work is to illustrate
the manner in which the fractional cloudiness problem
impacts models that (in predicting the supersaturation
field) predict the detailed evolution of the droplet spec-
trum. Our results suggest that over large areas of the
cloud boundary, the spurious generation of supersatu-
rations will lead to the activation of aerosol in a manner
that bears little or no relationship to the activation of
aerosol associated with cloud-base supersaturations in
ascending air. Consequently, in the absence of either a
resolution to this problem, or ingenious sensitivity ex-
periments, modelers who use detailed microphysics to
evaluate a number of mixing hypotheses will be unable
to state with confidence to what extent the droplet spec-
tra, which results from mixing across cloud interfacial
boundaries, will accurately represent the physical
system.

The quantitative extent of these problems will likely
be a function of the rate at which a cloud moves across
a grid, in addition to the amount of cloud surface area
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relative to volume. Consequently, simulations of rela-
tively shallow cumulus that move across a grid in a
mean wind would appear to be particularly susceptible
to the sorts of problems discussed here. For simulations
of stratocumulus in which the cloud is relatively well
capped, and cyclical in the horizontal, problems are
limited to cloud top. In particular it appears that the
descent of the cloud top, near the region feeding a
downdraft, causes the grid box to become subsaturated
in the mean, leading to the premature evaporation of
cloud drops. As a consequence, the number concentra-
tions in downdrafts are significantly depleted (Stevens
et al. 1996). This indicates how the problem, which
hitherto has been discussed in the simple case of the
leading edge of a cloud advecting into a formerly dry
grid box, is also significant along the trailing edge of
the cloud. ‘
Despite strong evidence that simulated cloud-top su-
persaturations are a numerical artifact, certain physical
explanations have been advanced and may be worthy
of further exploration. Kogan et al. (1994) suggested
that strong radiative cooling at cloud top could be re-
sponsible for the observed cloud-top maxima in the su-
persaturation field. Simulated cooling rates on the order
of 10 K h™! are equivalent to the expansional cooling
associated with updraft velocities on the order of 0.5
m s~ and could at first glance constitute a significant
forcing on the supersaturation field. However, such af-
fects are not consistent with short-phase relaxation
times at cloud top. Additionally, gravity waves have
been posited as a forcing for cloud-top supersaturations
(Kogan et al. 1995). Here the proposed mechanism has
mixing causing an evaporation of all liquid water in a
parcel so that the parcel resides just below its lifting
condensation level. Acted upon by gravity waves, these
just subsaturated parcels of air may be sharply forced
above their lifting condensation level forcing the gen-
eration of supersaturations and the reactivation of drops
within the parcel for entirely physical reasons. Al-
though it is conceivable that physical processes (such
as the collusion of events in the gravity wave hypoth-
esis) may lead to the production of cloud top super-
saturations, it is our belief that the numerical issues
discussed above obviate our ability to discuss hypoth-
eses such as these on the basis of results from the cur-
rent generation of numerical models—particularly be-
cause gravity waves will increase vertical velocities at
cloud top, exacerbating the numerical problems.
Although it is not the purpose of this note to consider
solutions to the above problems, some comments in this
respect are in order. The fractional cloudiness scheme
developed by Sommeria and Deardorff (1977) allows
the diagnosis of fractional cloud amount R and mean
liquid water g; within a grid cell, based on the assump-
tion that the total water ¢, and liquid water potential
temperature 6, are distributed according to a bivariate
Gaussian distribution function. Such a scheme relies on
some information about the covariances and variances
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of the thermodynamic set {q,, 6, }, and these may be
obtained either by solving prognostic equations for the
variance or diagnosing them assuming quasi-station-
ary statistics. In either case, information about the set
{R, 4, g, 0:, 8]8], q..q,} could conceivably be
used to partition a grid cell into cloudy and clear
states denoted by the variable set {R, g;, g%, 67,
gy, 97}, such that the variances and means are pre-
served. The microphysics could be forced on this par-
titioned grid, perhaps alleviating the problems dis-
cussed above. An alternative method that shows
promise is one in which the volume of cloud is
tracked within the grid box. This allows for the re-
construction of the cloud boundary and the partition-
ing of physical processes into the cloudy and non-
cloudy subdomains. Although there are a number of
algorithms designed for tracking the motion of an
interfacial surface across a three-dimensional grid,
the volume-of-fluid method (VOF) appears quite
promising because it represents the best trade-off be-
tween efficiency and accuracy; currently it is being
implemented and tested in two-dimensional cloud
models (J. Reisner 1995, personal communication).

5. Conclusions

The inability of models to accurately track the
cloud boundary within a grid box leads to spurious
production or destruction of cloud drops at leading
and trailing edges of a cloud. Formally this problem
can be thought of one in which the neglect of sub-
grid variability in the microphysical forcings has se-
rious implications on the evolution of the cloud as
it moves across a discretized domain. A component
of this problem is the underprediction of liquid wa-
ter in partially filled grid boxes, which results
in underpredictions of temperature and buoyancy
forces in those grid boxes. Although these artifacts
were demonstrated in the context of detailed micro-
physical models, they will also be evident in bulk
microphysical models and could impact the ability
of cloud models to accurately address a variety of
hypotheses associated with mixing across cloud in-
terfacial boundaries.
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