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Abstract Different models of effective transfer coefficients of momentum and scalar admixtures for area 
averaging of surface fluxes over fiat, but heterogeneous, terrain are discussed. These proposals are tested by 
use of a micro-scale numerical model which simulates the response of the surface-layer flow to varying 
boundary conditions in detail. It is found that sufficiently accurate estimates of effective transfer coefficients 
can be obtained by averaging the turbulent scales of velocity and concentration based on a 'blending' height. 
It is suggested that the blending height should be defined as a height at which the sum of deviations of mean 
flow from local equilibrium and from horizontal homogeneity attains a minimum. This height is of the order 
of the diffusion height scale which forms a scale for the height up to which the mean flow can be influenced by 
vertical diffusion. 

It is demonstrated that the dispersion of scalar admixtures is particularly sensitive to variations of the 
surface (or stomatal) resistance, more than to perturbation of the laminar resistance. Furthermore, it is 
investigated how the subgrid-scale transport terms, which arise due to motions larger than turbulent-scale, 
but smaller than grid-scale, can affect the calculation of surface fluxes and transfer coefficients. 

Key word index: Atmospheric surface layer, surface fluxes, area averaging, effective turbulent transfer 
coefficients, effective drag coefficient, effective roughness, effective laminar resistance, effective surface 
resistance. 

INTRODUCTION 

Numerical  models of atmospheric flow require para- 
meterization of subgrid-scale transport, i.e. transport 
by motions which are not resolved by the grid. Cur- 
rent parameterization schemes of subgrid-scale trans- 
port within the atmospheric surface-layer usually as- 
sume that the surface-layer flow can be treafed as a 
steady state, horizontally homogeneous flow which is 
in equilibrium with the underlying surface. However, 
except over vast regions of horizontally homogeneous 
surface conditions, such as over some portions over 
the ocean, the atmospheric boundary-layer is rarely an 
equilibrium flow; instead, it always has to adjust to 
changing surface conditions. For  variations of surface 
conditions at a sufficiently large scale (say, a few km) 
the surface-layer is commonly supposed to be in a 
local equilibrium with the lower boundary. This as- 
sumption justifies the use of conveniently simple para- 
meterization schemes based on boundary-layer simi- 
larity theory. With surface inhomogeneities at small 
scales, particularly at scales smaller than resolved by 
the grid, these practical parameterization schemes are 
no longer applicable. In this case, it is necessary to 
consider grid averages of surface properties and of 
flow variables; also, the influence of local advection on 
the flow structure has to be regarded. Furthermore,  it 
must be taken into account that subgrid-scale trans- 
port originates not only from micro-turbulent mo- 
tions, but also from motions which are induced by 
heterogeneous terrain. 

Recently, various studies have addressed the para- 
meterization of turbulent momentum transfer in het- 
erogeneous terrain with emphasis on the formulation 
of an 'effective' roughness length. (e.g. Andr6 and 
Blondin, 1986; Wieringa, 1986; Taylor, 1987; Mason, 
1988). Although there is no commonly valid definition 
of an effective roughness length, it is agreed that the 
effective roughness length is a value intended to 
represent a spatial average in heterogeneous terrain 
such that by use of boundary-layer similarity theory a 
correct spatial average of surface stress or mean 
velocity is found. 

This paper is partly a reassessment of the earlier 
proposals. Attention is focussed, however, on the 
formulation of an 'effective' drag coefficient (to be 
defined in section 4.1.) rather than effective roughness 
lengths. Some of the earlier concepts are modified. 
Furthermore,  an effective transfer coefficient of scalar 
admixtures is suggested. Before discussing these pro- 
posals, an investigation is made of how subgrid-scale 
transport terms, which arise due to motions larger 
than turbulent scale, but smaller than grid-scale, can 
affect the calculation of surface fluxes and transfer 
coefficients. 

The parameterization schemes proposed in this 
study are tested by use of a microscale model, which 
resolves the variation of surface-layer structure due to 
terrain inhomogeneities in detail, and by interpreting 
the entire flow domain of the micro-scale model (or a 
part of it) as one surface-layer grid box of a hypoth- 
etical larger-scale model. 
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The micro-scale model is briefly presented in section 
2. Subsequently, in section 3, examples of flow modifi- 
cation due to spatially varying surface conditions are 
given in order to outline important mechanisms of 
local advection and to point at the differences between 
local momentum and mass advection. In section 4, the 
surface-layer parameterization for transfer coefficients 
will be discussed. 

2. THE MICRO-SCALE MODEL 

2.1. Basic equations 

The flow to be studied is a steady state, incom- 
pressible, inviscid turbulent flow at neutral stratific- 
ation. The flow is assumed to be horizontally homog, 
eneous in y-direction. The flow region is confined to 
the atmospheric surface-layer in which the influence of 
Earth's rotation on the flow is neglected. The basic 
equations of the mean flow are: 

~U OW 
- - + - - = 0  (la) 
Ox Oz 

OU OU Ouu Ouw 1 OP 
U~-x+ W~-z + ~ - x  4 0 z  poOx (lb) 

~W OW Ouw Oww 10P 
(lc) 

u ax + W ~z + ax + Oz po ~Z 

OC ~C Ouc Owc 
U~x + W~z +-~-x +~-z =O. (2) 

x and z are horizontal and vertical coordinates, U and 
W are the mean horizontal and vertical velocities, C is 
the mean concentration of a passive scalar, u, w and c 
are the fluctuating components, being defined as dif- 
ferences of actual and mean quantity, uw, uu, ww, uc, 
and ~ are their covariances and autocovariances, P is 
the mean hydrodynamic pressure, and Po is the density 
of the fluid. 

Turbulent momentum fluxes are calculated by using 
Boussinesq's approach (see Hinze, 1975): 

f ou l  OUj'~ 2 

E is the turbulent kinetic energy: 

1 _ _  
E =~uiu i. 

(In Equation 3, Cartesian tensor notation and the 
Einstein summation convention (see Lumley and Pan- 
ofsky, 1964) are used. Subscript '1' refers to the x- 
component and subscript '2' to the z-component of a 
vector.) The turbulent fluxes of passive constituents 
are parameterized by 

-u'--~-ot~K=( OC ~ (4) 
\~x, / 

where ~c is the inverse turbulent Schmidt number. 
Since in this study no particular tracer is considered, ~c 
= 1 is chosen. 

For  the exchange coefficient K,, the so called E - e  
(also known as k-e) model is used, hence 

E 2 
K . , = c ~ - -  (5) 

where e is the dissipation of turbulent kinetic energy. 
In contrast to other first-order turbulence closures, the 
E -  e model realistically simulates a slow relaxation of 
eddy viscosity to varying surface conditions (Claussen, 
1988). Considering the deviation of the surface-layer 
flow from local equilibrium, the E - e  model yields 
results similar to that of a second-order closure model, 
but it is less complicated to handle. 

Equations l a -c  are solved by using a stream 
function-vorticity model. Details of the numerical 
model including specification of constants are given in 
Claussen (1987, 1988). The boundary conditions to 
Equations la--c are discussed in detail by Claussen 
(1987, 1988). Here, only the boundary conditions for 
Equation 2 will be given. 

2.2. Boundary conditions 

The lower boundary condition is specified at some 
height z = z, at or slightly above the largest roughness 
length within the flow domain. Varying surface elev- 
ation is not taken into account. Within the first grid 
box above z = z ,  which has a vertical depth of a few 
cm, the flow is assumed to be in equilibrium with its 
local roughness and surface resistance. Hence, 

c, /z , \  
C(z , )== ln t -~o~)+c ,u , r  ~ (6) 

where u, is the friction velocity, c,  is the turbulent 
concentration scale, and r s is the surface resistance 
which is a measure for the resistance against transport 
of an admixture into a surface. Zoc is the so-called 
roughness length for concentration. The numerical 
value of Zoc depends on the pollutant as well as the 
surface characteristics. Over surfaces covered with a 
vegetation or with similar porous or fibrous roughness 
elements, ln(zo/Zo~ ) is approximately a constant, 
whereas over surfaces with bluff roughness elements, 
ln(zo/Zo~ ) depends on u,  and z o. In keeping with 
Brutsaert (1979) and Hicks (1985) 

ln(Z°  ) = 2 . 3  (7a) 
\Zoc/  

is chosen for vegetated surfaces and 

ln ( Z° ) = 2.9 Re~,l'* ScX/2 - 2 (7b) 
kZoc / 

for surfaces covered with bluffroughness elements. Se 
is the molecular Schmidt number and Re, = u, zo/v is 
the friction Reynolds number. 
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For convenience, Equation 6 can also be written as 

C(z,) = c ,  u ,  (r~(z~)+ r b -t- r s). (8) 

This equation defines the aerodynamic resistance r~ 
and the laminar  resistance r b. 

As upstream condition it is assumed that the entire 
boundary-layer is in equilibrium with the underlying 
surface. Thus, the upstream conditions are specified at 
a distance x,  sufficiently far upstream of any change in 
surface roughness or surface resistance where 
x J z  o ~ 600 at least (compare with Claussen, 1987). 

The dimensions of the flow domain are chosen such 
that the upper boundary  is at least twice as deep as any 
internal boundary-layer of velocity or concentration. 
Thus, it seems warranted to use the unperturbed 
upstream values as upper boundary values. 

The mesh spacing is a few cm close to the ground 
and close to roughness transitions. The grid mesh is 
stretched linearly by 5% from one grid box to the next 
as height and distance from a roughness transition 
increase. 

3. EXAMPLES OF LOCAL MOMENTUM AND MASS 
ADVECTION 

3.1. Momentum advection 

A neutrally stratified, steady state flow is considered 
which passes over a strip of modified surface rough- 
ness. The strip with a roughness length ZOF =0.01 m is 
embedded in an elsewhere homogeneous surface with 
a roughness length Zo0=0.001 m. At a height z = H  
= 10 m, the inflow velocity is U(H)=  1 m s-~. 

Figure 1 shows the isolines of percentage deviation 
of local horizontal mean velocity from its unperturbed 
upstream value. Above the strip of modified rough- 
ness, which is located at -10m~<x~<0m,  as well as 
upstream and downstream of it, a deceleration of 
mean flow is observed. The velocity-defect wake, i.e. 
the isoline of 1% deceleration, reaches a maximum 
height of h u "  1.3 m and has a maximum horizontal 
extent of x u = 6 7 m  downstream of the roughness 
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Fig. 1. Isolines of percentage relative difference between 
perturbed, local and unperturbed, upstream horizontal 
mean velocity. The flow configuration: the air passes over 
a strip of modified surface roughness with Zov= 10 2 m 
located at - 10m~<x~<0 m. The strip is embedded in an 

elsewhere homogeneous surface with Zoo = 10-3 m. 

modification. A detailed study of hu and xu with an 
assessment to their scaling properties has been re- 
ported in an earlier paper (Claussen, 1989). Besides the 
deceleration of mean flow, an acceleration is notice- 
able above the strip of modified roughness. The up- 
stream deceleration as well as the acceleration have 
been discussed earlier (Claussen, 1987). It was shown 
that upstream deceleration and acceleration is caused 
by a perturbation of mean pressure. The internal 
boundary-layer of horizontal mean velocity was found 
to extend to roughly X/Zorn ~ 300 upstream of a rough- 
ness transition where Zorn is the larger one of upstream 
and downstream roughness length. 

At sufficiently large distances downstream of a 
roughness transition the modification of mean flow 
due to a perturbation of mean pressure gradient can 
be neglected in comparison with advection and diffu- 
sion. Considering the turbulent diffusion of 
momentum, the predicted depth of an internal bound- 
ary-layer as well as the structure of vertical profiles of 
mean velocity and turbulent momentum flux strongly 
depend on the parameterization of eddy viscosity. 
Empirical (Beljaars et al., 1983) and theoretical (Claus- 
sen, 1988) studies brought forth that eddy viscosity 
adjusts very slowly to changing surface conditions. By 
comparison of different models of eddy viscosity it was 
seen (Claussen, 1988) that the simultaneous response 
of mixing-length and mixing-velocity (e.g. the square 
root of turbulent kinetic energy) to a perturbation of 
surface roughness accounts for the slow relaxation of 
eddy viscosity. Models of eddy viscosity which do not 
allow for a variation of mixing length would yield an 
unrealistically strong growth of an internal boundary 
and too small a deviation of the flux-profile relation- 
ship from equilibrium. 

3.2. Mass advection 

In Fig. 2 isolines of percentage deviation of local 
mean concentration from upstream equilibrium are 
plotted. The flow situation is the same as for Fig. 1. As 
lower boundary condition a constant Zo/Zoc, i.e. Equa- 
tion 7a, and a zero surface resistance is chosen. 
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Fig. 2. Isolines of relative difference between perturbed, 
local and unperturbed, upstream mean concentration of a 
scalar admixture. The flow configuration is the same as in 

Fig. 1 and ln(zo/zo~)=2.3 and r , = 0 s m  1. 
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The shape of the concentration wake is similar to 
the velocity-defect wake in Fig. 1 except for the flow 
region close to the roughness transitions. The obvious 
reason for this difference is that the transport of a 
passive tracer is not directly affected by the mean 
pressure, in contrast to momentum. The maximum 
height and maximum horizontal extent of the concen- 
tration wake are approximately 25% smaller than 
that of the velocity-defect wake. Of course, height and 
horizontal extent of the concentration wake depend 
on the turbulent Schmidt number 1/ct c. For  a Schmidt 
number larger than unity, the concentration wake 
would be shorter and shallower than in this simu- 
lation. As an example, an increase of the turbulent 
Schmidt number by a factor of 2 reduces internal 
boundary-layer height by a factor of approximately 
25%. 

The qualitative picture provided in Fig. 2 changes 
drastically, if the surface resistance is altered. In Fig. 3 
the isolines of percentage deviation of concentration 
from upstream equilibrium are depicted for the case of 
very large surface resistance at the strip of modified 
roughness. Since this surface virtually blocks vertical 
flow of contaminant, the concentration is enhanced 
and the concentration-excess is advected downstream. 
Moreover, the interaction of blocking of downward 
transport and advection leads to an accumulation of 
admixture close to the surface such that, locally, a 
vertical turbulent flux counter to the upstream flux 
results. 

This example demonstrates that the dispersion of 
passive admixtures is more sensitive to the surface 
resistance r~ than to the aerodynamic r,(z,) and lam- 
inar r b resistance, simply because the former can be 
much larger than the latter. 

4. SUBGRID-SCALE PARAMETERIZATION 

4.1. General remarks 

Because of finite discretization in numerical models 
the flow is divided into the resolved or grid-scale part 
and the unresolved or subgrid-scale part. Thus, a 
mean quantity--theoretically an ensemble average--  

is partitioned as 

U(x, y, z) = { U } + U + (x, y, z) (9) 

where { } symbolizes the volume-average over a grid 
box and the superscript ' + '  refers to a deviation from 
grid box average, i.e. to motions at scales smaller than 
resolved by the grid. Considering the so-called 'con- 
trol-volume approach' in numerical modeling (See 
Anderson et al., 1984), conservative quantities are 
formulated as averages over a grid volume and trans- 
porting fluxes (advective and diffusive) over the sur- 
faces enveloping the grid volume. Other finite-differ- 
ence methods define variables at discrete points; how- 
ever, the above problem remains, because discrete 
quantities must be interpreted as somehow averaged 
values. Similar problems occur in the interpretation of 
observational data. 

In this study, turbulent fluxes from the earth's 
surface into the lowest atmospheric grid box of a 
model are considered. The local surface-layer fluxes 
are often parameterized by a bulk formula (e.g. Louis, 
1979): 

- ~ o  (x, y)= Cs(x, y, z)U(x, y, z)(C(x, y, z)-Co(x, y)) 
(lo) 

where Cs is a bulk transfer coefficient and the subscript 
'0' refers to a value at the Earth's surface. In the case of 
turbulent transports of matter, C~ is often called 
Dalton number, for momentum transfer, drag coeffic- 
ient; for the latter, the index 's' is replaced by an index 
'd'. In a numerical model an 'effective' transfer coeffic- 
ient C', can be defined by 

[ - ~ o ] = C s { U } ( { C } - [ C o ] )  (11) 

where [ ] indicates an arearaverage over a part of the 
surface enveloping a grid box, here, over the bottom of 
the first atmospheric grid box. The value of the 
effective transfer coefficient depends on the flow con- 
figuration and on the numerical grid. In the following 
section, it will be shown how subgrid-scale motions 
other than micro-turbulence must be taken into con- 
sideration when calculating an average surface flux 
and how this might affect the formulation of an 
effective transfer coefficient. 
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Fig. 3. Same as Fig. 2, except for r s = 1 0  5 s m  -1 at 
- 10m~<x~<0m. 

4.2. Average transfer coefficients 

In his study of turbulent heat flux at the earth's 
surface, Mahrt (1979) demonstrates that the effective 
and grid-averaged transfer coefficients of heat trans- 
port differ considerably. Here, it will be investigated 
whether the same is true for the transfer coefficient of a 
passive tracer and for the drag coefficient. 

Averaging Equation 10 by using the partition as in 
Equation 9, it is found that 

[ -  ~-~o ] = { c j  {v }  {•c} + {cs} { v  + AC + } 

+ { a c } { c :  u + } + { u } { C : A  c+ } 

+ { c s  ÷ u *AC + } (12) 
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with AC = ( C -  Co). For  turbulent momentum flux it is 
deduced that 

[ - -~ -~O' l  = { C d }  { U }  2 -1 i- {Cd'U + U + } 

+ 2 { U } { C f U + } + { C f U + U  + } (13) 
where C d is the drag coefficient. In Fig. 4, the correla- 
tion terms at the right-hand side of Equation 13 are 
presented for the same flow configuration as in Fig. 1. 
It is seen that {Cd} {U} 2 is by far the largest term. The 
second largest term is {U}{C~-U ÷ }.Since the latter 
term is negative, {Cd} overestimates Cd, in the present 
case by 10-70%. 

Although Fig. 4 refers to just one special flow 
configuration and although {Cd} as well as (~d depend 
on the specification of depth Az and horizontal extent 
Ax of the grid box, the qualitative picture provided in 
Fig. 4 is similar for different Ax and for other, quite 
different surface conditions such as single step changes 
in surface roughness, multiple strips of modified 
roughness, and randomly varying roughness. 
{Cd}/> Cd is generally observed. As a practical conse- 
quence, when formulating a parametric model of (~d, it 
would be unwise to seek a parameterization of a local 
C d and subsequently to average this local parameteriz- 
ation. Instead, parameterization of [UWo] and {U} 
should be found from which t~d, can be calculated. 

In Fig. 5 the terms at the right-hand side of Equa- 
tion I I are plotted for a flow configuration as in Fig. 2. 
Here, { AC } { C~ U + } and { U } { C~ AC + } are the lar- 
gest subgrid-scale correlations which lead to too large 
an estimate of (~ by {C~}. Again, this result can be 
generalized. The only exception from the above 'rule' 
was found for a flow situation in which the surface 

iO0 ~ i 
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-40 -10 O0 20 ~0 

u w  [ rn2/s2] "~" 

Fig. 4. Various contributions to the 
grid-averaged surface momentum flux 
(dimension r m  2 s - 2 ] ) as function of the 
vertical depth of a surface-layer grid 
box. The flow configuration is the same 
as in Fig. 1, the horizontal extent over 
which the surface average is taken, i.e. 
the horizontal size of the surface-layer 
grid box is -15m~<x~<5m. The 
various terms are (see right-hand side of 
Equation 13): full line: {Cd}{U} 2, 
dashed line: {U}{C~U+}, chain- 
dotted line: {C d } {U + U ÷ }, and dotted 

line {C~" U + U ÷ }. 
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Fig. 5. Same as Fig. 4, except for the 
surface flux of a scalar admixture. The 
flow configuration is the same as in 
Fig. 2. The various terms are (see right- 
hand side of Equation 12): Full line: 
{Cs} { U} {AC}, chain-dotted line: {AC} 
{Cs + U + }, dashed line: {U} {C~ + AC + }, 
chain-dashed line: {Cs}{U +AC + }, 

and dotted line: {Cs + U +AC + }. 

resistance varies drastically (i.e. 0 sm x ~<r~ 
<10s sm-~) .  

By contrast with Mahrt 's (1987) results, the subgrid- 
scale correlation terms in turbulent transports of 
momentum and matter in a neutrally stratified atmos- 
phere are much smaller than those in heat transfer; but 
still they also are not negligibly small. 

4.3. Parametric drag coefficients 

4.3.1. Formulation. In a horizontally homogeneous 
surface-layer, the local drag coefficient is given by 

-h%o / , ~ ' k  2 Cd(z)=~--= t ~  ) (14) 

and the effective drag coefficient is 

^ /~ 2 

with z~ given by 

In zp I " :  z - - =  l n - - d z ,  (16) 
ZO ,JZo ZO 

where Az is the vertical depth of a surface-layer grid 
box. zp is the reference height of the effective drag 
coefficient. From sensitivity studies (not presented 
here) it turns out that Zp does not strongly depend on 
z o. Thus, in the case of heterogeneous roughness, an 
approximate guess of some average z o should give a 
sufficiently accurate value of Zp, so that the error in t~ d 
is negligibly small. 

Equation 15 indicates that (~d depends on the 
parameter z o (besides on a reference height zp). Mahrt  
(1987) mentions that one common error in the formu- 
lation of subgrid fluxes is the approximation of trans- 
fer coefficients in terms of grid~averaged parameter, in 
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this case of (~d in terms of grid-averaged Zo, i.e. 

. (17) 
t~d, 1 = int7 ~ 

Of course, this approach is wrong. It will be interesting 
to see how wrong it is. 

A more sophisticated approach is the use of some 
effective roughness length. Taylor (1987) proposes that 
one practical definition of an effective roughness 
length is given by 

In Zorn = [In Zo]. (18a) 

This Z0m is supposed to be an approximation to a more 
refined effective roughness length £o,, given by 

In Zom = [u, ln Zo] (18b) 
[u,]  

[u,  ln zo] and [u , ]  are calculated from Rossby num- 
ber similarity. ~0m is defined to ensure a correct 
average velocity profile by assuming that the surface- 
layer flow is always in a local equilibrium, hence, 

{U}= ( [ u , ] l n z v - [ u , l n z o ] ) = - ( [ u , ] l n z  v 

- [ u ,  ] I n  ~Om) 

1 
~-- ([U, ] In zp -- [u, ] In Zorn )- (19) 

K 

Taylor (1987) reports that ~0m and Zorn only slightly 
differ except for extreme roughness transitions (e.g. 
~0m/Z0m~6 in the case of a grid square with equal 
halves with Zo~ and Zo2 and Zol/zo2 = 104). Use of :~0m 
instead of Zorn may pose a serious problem. Since ~0m 
depends on the actual flow field, the averages 
[u, ln Zo] and [u , ]  have to be performed at each time 
step. This average can be quite expending, if in- 
ventories of surface conditions with a high resolution 
are used. (Such an inventory of the F.R.G. contains 
several million surface pixels.) The calculation of ~om is 
problematic also from the physical point of view, 
because the parameters implicit in the Rossby number 
similarity are hard to determine (see Hasse, 1976). 
Therefore, with Equation 18 in its approximate form, a 
conveniently simple parametric model of (~d is 

^ K 2 

Implicit in Equation 20 is the assumption that the 
difference between [u , ]  2 and [u~] is small. (In fact, 
Taylor (1987) shows that [u, ] 2/[u~ ] is always close to 
unity. Even in the case of a grid square with equal 
halves with z01 and z02 and Zol/Z02 = 104, [u,]2/[u2,] 
= 0 . 8 7 . )  

As mentioned, Z0m is intended to determine the 
correct average velocity profile rather than the correct 
average surface stress; furthermore, it is assumed that 
the mean flow is in equilibrium with the local surface 
everywhere in the boundary-layer. In order to circum- 
vent these shortcomings Wieringa (1986) and Mason 

(1988) suggest evaluation of an effective roughness 
length Zo, by averaging surface momentum fluxes 
based on a 'blending' height 1 b. Mason (1988) consid- 
ers the blending height a scale-height at which the flow 
is approximately in equilibrium with the local surface 
and also independent of position. Hence, Z0e can be 
calculated from 

- ~ . (21) 
0n~'~-~-) 2 0n~o) 

(lb can be viewed as a reference height of an areally- 
averaged drag coefficient; lb does not necessarily coin- 
cide with zv, the reference height of the effective drag 
coefficient.) In order to arrive at a parametric (~d,3, 
which is formally the same as Cd. 2 except for using Z0e 
instead of Zorn, it has to be recognized that 
U(lb)/{U}~--ln(Ib/Zo,)/ln(zv/Zoc). The latter assump- 
tion is less restrictive than the assumption of local 
equilibrium everywhere in the surface-layer, because 
the notion that the velocity profile is logarithmic does 
not necessarily imply that the flow is in equilibrium 
with the underlying surface. The logarithmic shape of 
a velocity profile emerges from a quite general assert- 
ation on the hydrodynamic stability of a boundary- 
layer flow (e.g. Malkus, 1979). 

Mason (1988) provides a heuristic model which 
indicates that roughly l b / L  c ~ O(10-2) where L c is the 
horizontal scale or wave length of roughness vari- 
ations. In fact, at z/Lc ~ O(10-2), a perturbed flow has 
approached a local equilibrium (e.g. Peterson, 1969), 
but it has to be questioned, whether the flow is 
independent of horizontal position. Above z/Lc ~ 
O(10-2), the horizontal mean velocity varies strongly 
with height showing an inflection point in the log- 
arithmic vertical profile, or, downstream of a strip 
of modified roughness, a pronounced 'shoulder' (e.g. 
Petersen and Taylor, 1973; Claussen, 1989). Thus, at 
heights of the order z~O(10 -2) Lc, the flow experi- 
ences perturbations due to upstream roughness trans- 
itions and begins to adjust to some equilibrium rep- 
resenting an average over horizontal scales larger than 
L¢. It can be expected that horizontal flow homogen- 
eity is unlikely at levels z~O( lO-2 )L¢ .  Therefore, a 
different calculation of the blending height will be 
proposed in this study. 

From numerical simulations of flows over random- 
ly varying roughness (to be presented below) it is 
found that the deviation of horizontal mean velocity 
from local equilibrium can be quite large, particularly 
adjacent to a roughness transition. Considering hori- 
zontal averages over scales of several L¢, however, the 
deviation amounts to only a few per cent. This aver- 
aged deviation increases with height (see Fig. 6). On 
the other hand, the variation of horizontal mean 
velocity with fetch decreases with height, because, due 
to turbulent diffusion, the influence of subsequent 
roughness transitions on the flow is less and less 
recognizable as height increases. Thus, there is a 
certain height Zmi n (see Table I) at which the sum of 



Surface fluxes in boundary layer 1355 

1000. I/ f: 

/ I ] : 

N I : 
~0 '\ ...... I 

O0 mo ~ oh2 obs ~ o~, 

Fig. 6. Averaged deviation of hori- 
zontal mean velocity from local equili- 
brium and horizontal homogeneity. 

Thick lines: 

[I U(x, z ) -  [U](z)l] 
a 0 -  

[U](z) 

Thin lines: 

[I U(x, z ) -  Uo(~, ~)1] aC- 
Uo(x, z) 

with Uo(x, z)=(u.(x)/x)ln(z/zo(x)). 
The flow configurations which this 
figure refers to is described in section 
4.3.2.3. Full lines: case WV, dotted lines: 
case UN 1, and dashed lines: case UN2. 

Table 1. 

Zmi n (m) l a (m) I b (m) 

UN2 36 32 3.3 
UN1 60 61 7.8 
WV 45 62 8.1 

The 'blending' height calculated from Fig. 6 (Zm~n) 
and evaluated by Equation 23 (la) and by Mason's 
(1988) model i/b), Equation 10 in his paper. 

both deviations (from local equilibrium and from 
horizontal homogeneity) attains a minimum. It turns 
out that this height is roughly as large as the diffusion 
height scale z a ~ L e u ,  U(za) which forms an asymp- 
totic scale for the height up to which the mean flow can 
be influenced by vertical diffusion (see Tennekes and 
Lumley, 1972). No proof is provided that a height Zml . 
always exists. But in the cases for which no Zmi n can be 
found, the blending height could be defined as a height 
at which the sum of the deviations from local equilib- 
rium and horizontal homogeneity becomes smaller 
than a certain limit value, z a can be evaluated from 

U, 
z a ~ L ¢ - -  = L¢~Se,~ d . (22) 

U(za) I n ( ; )  

The constant of proportionality is chosen 2x in ana- 
logy to Jackson and Hunt 's  (1975) definition of an 
inner scale height of wind flow over low hills. A 

convenient approximation I a to z a is given by 

ld=O.7 z o ( L ~  '*Is, (23) 
\ Z o /  

which approximately fits Equation 22 within 
102< Lc/z  o < 105. It turns out that the calculation of 
an effective roughness length from Equation 21 based 
on either I b or I d is not too sensitive to the exact value 
of I b or l a, therefore, the choice of a typical Lc and z 0 is 
not critical. 

In Table 1, Zmi n, I a and I b are given for the cases 
shown in Fig. 6. It is obvious that ld is a better 
approximation to Zmi, than lb- lb is almost an order of 
magnitude smaller than Zmi,. 

For  completeness, a fourth parametric model (~a. 4 is 
studied which was originally proposed by Andr6 and 
Blondin (1986). Andr6 and Blondin (1986) derive an 
effective roughness length by assuming that the hori- 
zontal mean velocity is uniform over horizontal scales 
of several L c at the top of the first atmospheric grid 
box--regardless of the flow configuration. This in 
general unrealistic assumption brings about  that their 
effective roughness length strongly depends on an 
arbitrary specification of the vertical grid size, al- 
though it should characterize a surface condition 
rather than a grid mesh. 

Andr6 and Blondin's (1986) model can be reformul- 
ated using the above arguments. By recognizing that 
at heights of the order I a the deviation of mean velocity 
from both local equilibrium and horizontal homogen- 
eity attains a minimum, a sufficiently accurate esti- 
mate of [ u , ]  is given by averaging the inverse of 
ln(z /zo)  at z = l  a. Then, Andr6 and Blondin's (1986) 
effective roughness length Zoa revised is 

' I 1 ] ~ - =  ~ . (24) 
I n ~  l n ;  

This zo, depends only on surface conditions and on 
the horizontal grid spacing (which effectively mean 
alteration of surface conditions), but not on the ver- 
tical grid size. From Equation 24 and with the as- 
sumption that [u,]2-~[u2,],  12a. 4 is the same as Cd.2 
except for using zoa instead of Zorn. 

4.3.2. Results.  The relative difference of 12a. i (i 
= 1, 2, 3, 4) and Ca is shown below for different flow 
configurations. 

4.3.2.1. Single rouohness transition 
A flow is considered which flows from a smooth 

surface (zo~ = 10-s m) onto a slightly rougher surface 
(zo2= 10 -3 m). The flow domain extends from x =  

- 10 m to x = + 10 m with the roughness transition at 
x = 0  m. These scales, which are much smaller than a 
typical meso-scale size of Ax ~ O(km), are chosen in 
order to investigate the influence of strong local 
momentum advection on the performance of the 
parametric t~a.~. For  this flow configuration, Lc = Ax 
= 20 m is prescribed. 

From Fig. 7 it is seen that (~a., drastically over- 
estimates the effective drag coefficient and, hence, the 
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Fig. 7. Relative difference of parametric 
and effective drag coefficient 

G.~- Cd 
ACD t~ d 

as function of the vertical depth of a 
surface-layer grid box. Full line: i=1, 
chain-dotted line: i=2, dotted line: i=3, 
dashed line: i=4. Fat, full line: i=  1, 2, 3, 4. 
The flow configuration corresponds to a 
single step change in surface roughness. 

For details see section 4.3.2.1. 

turbulent momentum flux. Ca,2 gives too low an 
A 

estimate, Cd.3 and Ca.4 are in between; C d,4 per- 
forming better for shallower grid boxes, Cd,3, for 
deeper ones. Quite the same result is found, if z0~ 
= 1 0 - 3 m  and z02 = 10 - S m  (not shown here). As it 
will be seen below, the relation 

C~,~>Cd.~>Cd.4>G. 2 

holds generally. 
The thick line in Fig. 7 depicts the error of para- 

metric (~a.~, if the horizontal average is taken over 
0 < x < 1 0 m .  In the latter case, C d . l = f d . a = f d . 4  
= (~d. 2' because the roughness length is uniform over 
the grid mesh. The latter example indicates that the 
parametric (~d,~ may give erroneous momentum flu- 
xes, if in a large-scale model no subgrid-scale, but just  
grid scale, i.e. resolved roughness transitions occur. 
Furthermore, in the latter case, better estimates of the 
effective drag coefficients may result (at least when 
using 6"d, 3 or (~d. 4), if the grid mesh is chosen such that 
the roughness transitions are located within a grid 
box, not at their edges. The variation of the errors with 
the vertical depth Az of a grid box indicates that the 
assumption U(l,t)/{U}~ln(ld/Zo~)/ln(zp/zo~ ) is not 
strictly met. The deviation of mean velocity from a 
logarithmic profile is largest close to a roughness 
transition (e.g. Claussen, 1988). As seen below, if larger 
horizontal grid sizes are considered, then the variation 
of errors with Az becomes smaller. 

4.3.2.2. Alternating roughness lengths 
The flow upstream of any perturbations is in equi- 

librium with Zoo = 10- 3 m. Subsequently, the rough- 
ness length alternates between Zo~ = 1 0 - 2 m  and Zo2 
= 10 -4  m every 100 m, case 1 (thick lines in Fig. 8), 

"°t 15 

i ]  j ,i:= \ I0 ~i i I I  : 
I i  

/ !: i 

oV L - - " ' t  0 -03 m ~, oo 6 ~2 G3 
~::;o 

Fig. 8. Same as Fig. 7, except for 
alternating roughness lengths. The size of 
patches is the same for different roughness 

length. For details see section 4.3.2.2. 

200- I 

w~E 150- ] 

a i 
so- ] l J 

I ; ' j /  .... 

oo .... i 
-o3 4 i 2 - 6  oo 6 ~2 73 

aCo 

Fig. 9. Same as Fig. 8, except that the size 
of patches differs for different roughness 

length. For details see section 4.3.2.2. 

and every 10 m, case 2 (thin lines in Fig. 8). Hence, Lc 
= 200 m and L c = 20 m, respectively. A flow configur- 
ation like this could be found in the marginal ice zone 
where ice banding is frequently observed. Zoo is the 
roughness length for off-sea wind in coastal areas, 
while Zol is the approximate roughness length of brash 
(Anderson, 1987) and z02, of calm sea. The flow 
domain over which the horizontal average is per- 
formed, i.e. the horizontal grid size of a hypothetical 
larger-scale model, is 5 km for case 1 and 500 m for 
case 2. For  both cases, Cd,3 and (~d,4 turn out to be 
superior to C'd. 2 and Cd.1. 

A more difficult flow configuration concerning drag 
parameterization is the following. From Zoo = 10 -4  m 
the roughness length increases to Zol = 10- 2 m for 5 m 
(case 1, thick lines in Fig. 9) and for 20 m (case 2, thin 
lines in Fig. 9) and subsequently returns to Zoo for the 
next 20 m in case 1 and 5 m in case 2. Thus, the flow 
experiences an increase of surface roughness on the 
average over the flow domain due to small-scale 
roughness length variations. The flow domain is 
500 m. 

For both cases, the error of 6"d.4 stays within 
___ 10%, except for very small Az. The error in (~d. 3 
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slightly exceeds + 10%. Cd,2 generally gives too low 
an estimate and Cd, l is the worst model, its error 
exceeds 30% in the case 2 (therefore, not shown in 
Fig. 9). 

4.3.2.3. Randomly varyin9 roughness 
Within a flow domain  of 5 kin, which is again also 

the horizontal  grid size of a larger-scale model, the 
roughness lengths varies randomly every 100 m. The 
random roughness length are taken from a positively 
skewed Weibull distr ibution (labeled WV in Fig. 10) 
with shape parameter  a =  1.5 and scale parameter  b 
= 0.06 and from two uniform distributions (UNI and 
UN2, respectively) with an average roughness length 
[ Z o ] = 0 . 1 5 m  and [Zo]=0 .005m,  respectively. The 
average roughness length of the Weibull distribution 
is [Zo]=0.15 m. The upstream roughness length is 
specified Zoo = Zorn (see Equation 18a). As a first guess, 
L ¢ = 4 0 0 m  is chosen. A choice L c = 2 0 0 m  or L c 
= 500 m alters the results only marginally. 

Figure 11 clearly demonstrates that  the skill of (~d.~ 
in predicting the effective drag coefficient over ran- 
domly varying surface roughness is almost indepen- 
dent of the shape of the probabil i ty  distribution of z o. 
The errors of Cd.~ in the case UN2 are not shown in 
Fig. 11, because they are similar to those for UN1, 
except that  the errors in the former are smaller than in 
the latter case. Again, it can be seen that Ca.3 and Cd.4 
are superior to Cd.~ and Cd.2. On the other hand, the 
errors of the latter models are still quite small, if one 
keeps in mind that  an uncertainty in z o of a factor of 2 
(or 1/2) implies a corresponding error of the drag 
coefficients of + 30% for Zo ~ O(0.1 m) (compare with 
Garrat t ,  1977). 

4.4. Parametric transfer coefficients of scalar admix- 
tures 

4.4.1. Constant zo/zoc. Four  parametric  transfer 
coefficients C~, i (i = 1, 2, 3, 4) are proposed in analogy 
to the four parametric  drag coefficients. For  t~s.~, 
which is analogous to (~d,~, grid averaged z o and %¢ 
are considered, thus, 

/£2 

C~,, - (25) 
In zp In Zp 

[Zo] [Zoo] 

For  Cs, 2, an effective Zocm is defined such that 

/£2 

C s ,  2 Zp Zp _ 
In ~o~- ~ In ~ 

(26a) 

with 

Similarly, 

In Zocm = [ln %¢]. (26b) 

K 2 

C s ,  3 - -  Zp Zp 
l n ~ -  In iU~e 

(27a) 

i t 

sO ' f.~LIN 2 

~0 / I~ wV 

o 30  
N 

20' 

O0 
oo o, 02 03 o', o~ 

Zo [m] 

Fig. 10. Probability distribution of z o. 
WV is a two-parameter Weibull 
distribution with shape parameter a 
= 1.5 and scale parameter b =0.06; the 
mean value ofzo is [zo] =0.15 m. UN1 
and UN2 are uniform distributions 
with [zo]=0.15 m and [%]=0.005 rn, 

respectively. 

5 0 0 -  

~-00. 

i I 

100. /~ 
// 

O0 
- 0 2  -0 ' I  oo ~, 0'~ 

/~Co 

Fig. l l. Same as Fig. 7, except for 
randomly varying roughness lengths. 
Thick lines: case UN1, thin lines case 

WV. For details see section 4.3.2.3. 

with 

and 

with 

1 1 

ln=o, In . . . .  [ In  ~ l n  ~oX~- ] 
amid  ~ _  ~ " - , (27b) 

/£2 

(~s.4- (28a) 
In zp -ln % 

[Zoa] Zoo. 

'I'd] In la = ~ (28b) 

Z o c a  

is obtained. 
The concept of a blending height of mean velocity is 

also applicable to mean concentration of a scalar 
admixture. In general, the blending height of mean 
concentration is of the same order of magnitude as 
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that of mean velocity. Therefore, the use of I d in 
Equations 27 and 28 is justified. Only in flows over 
surfaces with drastically varying surface roughness, 
the blending height of mean concentration exceeds 
that of mean velocity. However, in this case, more 
important problems arise than finding the correct 
blending height. 

Provided, that Zo/Zoc is a constant as over vegetated 
surfaces (Equation 7a), parametric transfer coefficients 
of scalar admixtures behave like parametric drag 
coefficients with the exception that the errors in t~,,i (i 
= 1, 2, 3, 4) are smaller than Ca, i (i = 1, 2, 3, 4). As an 
example, the results from a flow over randomly var- 
ying z o are presented in Fig. 12. The flow configur- 
ation is the same as in Fig. 11 using the Weibull z o 
distribution (case WV). 

In the following sections 4.4.2 and 4.4.3 only (~,,4 is 
considered, becau'se it seems to be superior to t~s, z and 
t~s. 2- t~d. 3 could be taken as well; however, calculation 
of Equation 28 is a little more convenient than Equa- 
tion 27. 

4.4.2. Varying Zo/Zoc. If Zo/Zo~ remains a constant, 
there are obviously little problems in providing a 
parametric transfer coefficient. The problems arise, if 
Zo/Zo¢ varies with the friction Reynolds number as 
over surfaces with bluff roughness elements (Equation 
7b). In this case averaging over Zo~ or functions of Zo~ 
would require a local or subgrid-scale Re., which is 
unknown to a model. 

A practical guess of C~,4 is found by writing 

K2 /(.2 

Cs'4-1nZPl n zp lnZP(lnZP+lnZO~ (29) 
Z0a Z0ea Z0a \ Z0a Z0ea/ 

and by approximating ln(zoffZo¢,) by 

In z°" =2.92(t~*z°'Y/'[Scl/2]-2 (30) 
Zoo,  k v / 

with 

a, = ~ { U } .  (31) 

In -p 
ZOa 

Equation 30 is, of course, not deduced, it is merely an 
'educated' guess which has to be validated by numeri- 
cal simulations. 

Figure 13 depicts the errors in ¢~d.4' The flow 
configuration are the same as in Fig. 11 using the 
Weibull z o distribution WV (full line), the uniform z o 
distribution UN 1 (dotted line), and UN2 (dashed line). 
Cases WV, UN1, and UN2 essentially differ by their 
friction Reynolds number; for WV and UN1, 
3 0 < R e .  < 1000 and for UN2, 0 . 2 < R e . < 4 0 .  Sur- 
prisingly enough, the 'educated' guess is quite good an 
approximation. From other flow simulations not pre- 
sented here, it turns out that if Zo/Zo~ is a constant 
throughout the flow domain, say ln(zo/zo~)---?, then 
ln(zoo./Zo~.) = 7 is also a good approximation to Equa- 
tion 28b. 

I 

I 

tOO i 

O0 
- .2 -d, oo d~ o'2 

ACs 

Fig. 12. Same as Fig. 7, except for 
relative differences of parametric and 
effective transfer coefficients of scalar 
admixtures. The flow configuration is 
the same as for Fig. 11, case WV, and 
the boundary conditions are ln(zo/Zoc) 

=2.3 and r~=0sm -1. 

NIO 

tOO. 

E~oo. 

/00. 

100- 

oo 
-010 

I 

6Cs 

Fig. 13. Relative difference of 
parametric and effective transfer 
coefficients of scalar admixtures C,.4 
and Cs, as function of the vertical depth 
of a surface-layer grid box. The flow 
configurations are the same as for Fig. 
1 l, except for full line: case WV, dotted 
line: case UN1, dashed line: case UN2, 
and the boundary condition r, 
=0sm -~ and 

ln(~o~)= 2.9 Rel./" Sc'/2- 2. 

4.4.3. Non-zero surface resistance. In the case of 
non-vanishing surface resistance, the same problem 
occurs as in the case of varying zo/zoc. In order to find 
a correct [c , ] ,  the local friction velocity should be 
known (see Equation 6). If an effective surface resist- 
ance rs. is defined by averaging c ,  based on a blending 
height, then, in analogy to Equation 28b and with 
Equation 6, rs, could be calculated from 

--  - ~ _ -  . 0 2 )  
ln~o~--~-. + xu.,grsa n~oo. +ru.,sr s 
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where in ignorance of a local u,(x), some appropriate 
first guess u,.g is taken. Unfortunately, rsa is quite 
sensitive to u, .s  which makes the use of Equation 32 
impractical. 

A pragmatic alternative to Equation 32 is given by 

r,a = (33) 

and taking u , .g=  fi, (see Equation 31). The formula- 
tion of an effective surface resistance by Equation 33 
basically takes into account that the surface flux of a 
scalar admixture is inversely proportional to the sur- 
face resistance (compare with Equations 6 and 8). The 
errors of (~s.4 with use of Equation 33 are depicted in 
Fig. 14. 

The flow configuration which Fig. 14 refers to is the 
same as in Fig. 12, except for different probability 
distributions of z o and r s listed below. 

Case 1, full line: uniform z o distribution UN2 (see 
Fig. 10), Weibull distribution for r s with shape para- 
meter a = l  and scale parameter b=50 ,  thus, 
[rs] ~_ 50 s m-1.  The upstream surface resistance is rs 
= 0 s m  -1. 

Case 2, dotted line: same as Case 1 except for 
upstream resistance r s = [rs] -- 50 s m 1 

Case 3, dashed line: same as Case 1, except for the 
Weibull z o distribution WV (see Fig. 10). 

Case 4, chain-dashed line: same as Case 1, except for 
varying r~ between r ~ = 0 s m  -1, if z0~<[Zo], and rs 
- - 1 0 5 s m  -1, if Zo>[Zo]. This specification brings 
about that 2/3 of the surface is covered with r s 
= 0 s m  1, and 1/3 w i t h r s = 1 0 5 s m  1. 

Case 5, chain-dotted line: same as Case 1 except for 
a Weibull r~ distribution with scale parameter b = 500, 
thus, [rs] "-- 500 s m -  1. 

Two cases in which a very large surface resistance r~ 
= 105sm -1 was specified for more than half of the 
flow domain are not shown. In these cases the error of 
C's, 4 varies between + 3 0 %  and + 8 0 % .  Obviously, 
Equation 33 provides a reasonably good estimate of 

500- 

~.O0- 

"E 300- 

200- 

100- \ 

0O 
-03 -~2 -0', 

/~Cs 

I 

O0 01 

Fig. 14. Same as Fig. 13, except for 
different flow configurations and 
boundary conditions r s~0sm -1 and 
In(zo/zoc)=2.3. The flow configura- 
tions are described in detail in section 

4.4.3. 

an effective surface resistance for flow configurations 
in which the surface resistance varies 'moderately', i.e. 
in situations in which the local surface resistances stay 
below rs ~- 1000 s m -  1 or in which less than half of the 
grid area is covered with very large r s. 

5. C O N C L U S I O N S  

Four  models of effective drag coefficient for calcu- 
lating the surface momentum flux over fiat, but hetero- 
geneous, terrain have been discussed. The models are 
compared by use of a micro-scale model which simu- 
lates the response of a surface-layer flow to varying 
boundary conditions in detail. It is found that suffi- 
ciently accurate estimates of surface momentum flux 
can be obtained by averaging the square of friction 
velocity or just the friction velocity itself based on a 
blending height. The concept of a blending height has 
been proposed earlier by Wieringa (1986) and Mason 
(1988). In this study it is suggested that the blending 
height should be defined as a height at which the sum 
of deviations of mean flow from local equilibrium and 
from horizontal homogeneity attains a minimum. This 
height is of the order of the diffusion height scale 
which forms a scale for the height up to which the 
mean flow can be influenced by vertical diffusion. 

In analogy to the parametric drag coefficients para- 
metric transfer coefficients of scalar admixtures are 
proposed. Again, averaging of the turbulent concen- 
tration scale or the product of turbulent concentration 
scale and friction velocity at the blending height gives 
the best estimates of the effective transfer coefficient. 
The former average is more easily evaluated than the 
latter and, thus, preferred as parametric transfer coef- 
ficient. 

The errors of the parametric drag coefficient and 
parametric transfer coefficient of scalar admixtures 
proposed in this study are within __+ 10%, which is 
quite small an error considering the imperfection in 
the determination of a roughness length itself. There- 
fore, it seems that the determination of surface fluxes is 
restricted by the uncertainty of local roughness length 
rather than by the parametric models. 

The formulation of a parametric transfer coefficient 
of scalar admixtures has been extended to include 
surface conditions with varying surface resistance, 
which is a measure for the resistance against transport 
of an admixture into a surface, and with wind speed 
dependent laminar resistance, which basically gives 
the difference of roughness lengths of mean velocity 
and mean concentration of a scalar admixture. The 
effective transfer coefficient is difficult to parameterize 
for these surface conditions, because the local friction 
velocity should be known in order to obtain a correct 
estimate. Moreover, it is demonstrated that the disper- 
sion of a scalar admixture is particularly sensitive to 
the variation of surface resistance, more than to 
perturbations of laminar resistance. For the case of 
wind speed dependent laminar resistance a practical 

AE(A) 24:6-B 
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parameterization of the effective transfer coefficient is 
found. For  flow configurations with non-vanishing 
surface resistance, a parameterization is suggested 
which yields satisfactory results, except for terrain 
dominantly covered with patches of very strong sur- 
face resistances. This parameterization is a tentative 
proposal, because it is formulated for situations in 
which the surface resistance itself does not depend on 
the flow. On the other hand, it is well-known that the 
surface resistance (or stomatal resistance for vegeta- 
tion) may strongly vary with environmental variables 
such as water vapour deficit and solar radiation (e.g. 
Stewart and DeBruin, 1985). Therefore, the investiga- 
tion concerning changing surface resistance has to be 
regarded as a sensitivity study in order to isolate 
important  mechanisms which further research has to 
focus on. 

In earlier studies on parameterization of turbulent 
momentum transfer at the earth's surface, the influ- 
ence of subgrid-scale motion other than micro-turbu- 
lence on the surface-layer flow has been neglected. 
Here, it is shown that the grid-averaged transfer 
coefficient (of momentum and of scalar admixtures) 
generally overestimates the effective transfer coeffic- 
ient due to subgrid-scale correlation terms. Therefore, 
not the grid-average of the local ratio of surface flUX 
and flow quantity, but the ratio of grid-averaged flux 
and grid-averaged flow quantity must be considered. 
The investigation of surface-layer transport by mo- 
tions, which are larger than turbulent scale, but smal- 
ler than grid-scale, is not completed here. In a sub- 
sequent paper it will be studied how the grid-averaged 
momentum balance is affected by subgrid-scale mo- 
tion which originates from heterogeneous terrain. 
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