@ Max-Planck-Institut
fur Meteorologie

Toward Goal-oriented R-adaptive Models
in Geophysical Fluid Dynamics
using a Generalized Discretization Approach

Werner Bauer

Berichte zur Erdsystemforschung 3p13

Reports on Earth System Science



Die Berichte zur Erdsystemforschung werden
vom Max-Planck-Institut fiir Meteorologie in
Hamburg in unregelmaRiger Abfolge heraus-
gegeben.

Sie enthalten wissenschaftliche und

technische Beitrége, inklusive Dissertationen.

Die Beitrége geben nicht notwendigerweise
die Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung” fiihren
die vorherigen Reihen "Reports” und
"Examensarbeiten” weiter.

The Reports on Earth System Science are published
by the Max Planck Institute for Meteorology in
Hamburg. They appear in irregular intervals.

They contain scientific and technical contributions,
including Ph. D. theses.

The Reports do not necessarily reflect the
opinion of the Institute.

The "Reports on Earth System Science” continue
the former "Reports” and "Examensarbeiten”
of the Max Planck Institute.

Max-Planck-Institut fiir Meteorologie
Bundesstrasse 53

20146 Hamburg

Deutschland

Tel.: +49-(0)40-4 11 73-0
Fax: +49-(0)40-4 11 73-298
Web: www.mpimet.mpg.de

Bettina Diallo, PR & Grafik

Titelfotos:

vorne:

Christian Klepp - Jochem Marotzke - Christian Klepp
hinten:

Clotilde Dubois - Christian Klepp - Katsumasa Tanaka



Toward Goal-oriented R-adaptive Models
in Geophysical Fluid Dynamics
using a Generalized Discretization Approach

Werner Bauer

aus Waldkirchen, Deutschland

Hamburg 2013

ISSN 1614-1199



Werner Bauer

Max-Planck-Institut fiir Meteorologie
Bundesstrasse 53
20146 Hamburg

Als Dissertation angenommen
vom Department Geowissenschaften der Universitat Hamburg

auf Grund der Gutachten von
Prof. Dr. J6rn Behrens

und

Dr. Almut Gassmann

Hamburg, den 10. Juli 2012
Prof. Dr. Jiirgen ORenbriigge
Leiter des Departments fiir Geowissenschaften

ISSN 1614-1199



Toward Goal-oriented R-adaptive Models
in Geophysical Fluid Dynamics
using a Generalized Discretization Approach

Werner Bauer

Hamburg 2013






Abstract

We propose a generalized discretization procedure for meshes on general polytopes for
our new set of invariant equations of geophysical fluid dynamics (GFD) and develop a
goal-oriented r-adaptive shallow-water model to accurately simulate the cyclone tracks of
an idealized scenario of tropical cyclone interaction.

We introduce an invariant form of the equations based on differential geometry, in which
the prognostic variables describing the evolution of the fluid are represented by differential
forms. The introduction of additional auxiliary prognostic variables enables to split the
invariant equations in topological and metric parts. The result is similar in form to the
invariant linear Maxwell’s equations. This allows to use concepts of electrodynamics also
within fluid dynamics, in particular the discrete exterior calculus. Applying this technique
on the topological and metric equations, we obtain a systematic discretization method-
ology, in which the discrete scheme descends directly from the choice of the topological
meshes that approximate the momentum and continuity equations and from the discrete
representation of the metric equations. We illustrate this method on a triangular and on
a hexagonal C-grid discretization of the linear non-rotating shallow-water equations, for
which we study consistency and stability properties for uniform and r-adapted grids.

For the case of rotating fluids, these staggered C-grid schemes require consistent vector
reconstructions to adequately represent the Coriolis term. In our form of the invariant
equations, the Coriolis term can be represented by means of extrusion, i.e. a flow field
swept over a two-dimensional manifold as the Coriolis force acts perpendicularly. We
develop a new method for normal vector reconstruction for a hexagonal C-grid scheme
out of neighboring tangential vector components, in which the weights are determined
by the ability of the tangential components to contribute to the extrusion. For uniform
meshes, this reconstruction is stable and adequately represents waves and their dispersion
relation. Moreover, in contrast to analogous vector reconstruction schemes from litera-
ture, our method does not require the use of the two-dimensional vorticity equation for the
derivation and is therefore easier generalizable to three dimensions. In case of non-uniform
meshes, we extend our linear model with existing techniques to a nonlinear hexagonal C-
grid shallow-water model on r-adapted grid, for which we show stability and proper wave
representation.

For this model, we propose a method of goal-oriented grid adaptation for the simulation
of geophysical phenomena. By a linear sensitivity analysis for an idealized scenario of two
interacting tropical cyclones, we evaluate the contribution of each grid cell to the error in
predicting the cyclone tracks and estimate the required local resolution to minimize this
error. Using this information when adapting the meshes for the shallow-water runs, we
ensure high resolution in regions where the estimated error contributions are high, while
using coarser grid cells outside. This leads to a substantial reduction in the number of
grid points required to achieve a certain accuracy in the track prediction.

Our new formalism for GFD provides a generalized discretization method to obtain finite
difference models on meshes based on general polytopes and allows us to study non-
conventional discretization approaches, which contributes to a better understanding of
the discrete fluid equations. For the proposed grid adaptation method, the computation-
ally expensive sensitivity analysis and the model runs do not have to be performed by the
same model. Following this strategy, the use of efficient models for the sensitivity analysis
is a promising first step toward goal-oriented grid adaptation for complex climate models.
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Chapter 1

Introduction

The simulation of many phenomena in geophysical fluid dynamics (GFD) requires, due
to scale-interactions, an adequate representation of a large range of scales, for instance,
to accurately simulate tropical cyclones (TCs) [30, 59, 63]. However, covering large parts
of the scale range by using uniform grids with sufficiently high resolution would imply
extremely high computational costs. For simulations for which high resolution is not
required over the entire domain, grid adaptation can contribute to high accuracy of the
solution while keeping the computational costs as low as possible.

Mainly two approaches are used for grid adaptation in geophysical applications: ei-
ther new grid points are introduced to increase local resolution (h-adaptivity) and/or grid
points are moved to those regions where higher resolution is required (r-adaptivity). Grid
adaptation methods can be furthermore categorized as static or dynamic. In dynamic
approaches, the grid is adapted to the solution during runtime according to a local re-
finement criterion, e.g., in [15, 14, 50, 64, 98]. Static adaptation is more frequently used
in global atmosphere and ocean models, e.g., in [39, 45, 88, 110, 116]. Here, the grid re-
mains unchanged during the model integration. The locations of high-resolution areas are
usually chosen such that they include certain dynamic or orographic features of interest
or cover regions in which more accurate predictions are required. For an adequate grid
adaptation, application-specific error measures are often more useful in assessing the qual-
ity of a numerical solution than global error norms. Goal-oriented adaptivity methods
allow for an automatic optimization of the grid for such application-specific error mea-
sures. Hereby, the mesh is adapted such that the error with respect to a goal functional is
minimized. This goal functional can represent, for example, the error in the TC position.
Such grid adaptation approaches are often based on the dual-weighted residual (DWR)
method [7, 10, 11, 36].

The discretization methods have to be able to cope with adapted non-uniform grids,
for which, in case of r-adaptivity, the geometrical properties of the cells change with
adaptation or, in case of h-adaptivity, the topology change because of newly added grid
points having possibly hanging nodes. Because the tessellation of the sphere using the
icosahedron, e.g., [18, 89, 90], the lat-lon grid or the cubed sphere, e.g., [115, 116], does
not lead to a completely smooth grid with uniform cells [49, 103], suitable discretization
methods able to cope with this non-uniformity have been studied intensively, e.g. in
[46, 89, 88, 102]. It seems natural to combine these discretization schemes suitable for
non-uniform meshes with r-adaptive grid refinement. In case of dynamic grid adaptation,
the unchanged topology in r-adaptive schemes makes load balancing in parallel computing
easier, when compared to h-adaptive approaches.

Discretization schemes that properly represent waves and their dispersion relations
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[76, 101] are particularly interesting for geophysical applications. Therefore, staggered
grids, in which mass and velocity components are positioned at cell centers and cell edges,
respectively, are often used. These finite difference schemes require, however, a recon-
struction of the vector field to calculate the Coriolis term. For triangular C-grid models
there are several consistent vector reconstructions available, e.g., in [46, 62, 78, 111, 113],
mostly based on the low-order Raviart-Thomas (RT0) interpolation functions [84], which
are also widely used in finite element models. However, for hexagonal C-grids, such recon-
structions are rare and they often represent the waves inadequately [76]. The reason may
lie in the fact that, in contrast to triangular cells where all linear reconstructions reduce
to the low-order RTO0 functions [46], linear reconstructions within a hexagonal cell seem to
be not unique and different approaches have been investigated, e.g., in [43, 78, 107, 114].
Nevertheless, Thuburn et al. [102] recently derived a vector reconstruction with proper
wave representation on arbitrarily-structured C-grids for shallow-water models. Despite
the problem of normal vector reconstruction, an important reason to pursue the develop-
ment of hexagonal models lies in the fact that they represent the divergence field more
accurately than triangular C-grid models do (cf. [43, 112]).

Several attempts have been made to obtain a better geometrical understanding of dis-
cretization schemes on general polytopes. For instance, on the basis of finite elements ex-
terior calculus, Arnold et al. [4] proposed for several partial differential equations (PDEs)
a formulation using differential forms and exterior calculus and provided a set of stable
mixed finite elements that are determined by topological constraints. The invariant form
of the equations provides insight into their geometrical structure and allows to transfer
algebraic properties of the continuous equation to the discrete level. An invariant formu-
lation for the fluid equations has been introduced by Abraham and Marsden [1]. Using
differential forms, the authors derived a general form of the equations on general mani-
folds for the incompressible and for the barotropic equations within one formulation. A
similar invariant formulation is also widely used in computational electrodynamics for
Maxwell’s equations. The frequently used splitting of the invariant Maxwell’s equations
in a topological and in a metric part provides a systematic methodology for discretization
(cf. [22, 25]).

To summarize, although some available finite difference schemes give stable and con-
sistent discrete equations for geophysical applications, further theoretical investigations
are highly desirable. For instance, it is not clear how to generalize the method of Thuburn
and Ringler et al. [89, 102] for hexagonal C-grid toward three-dimensional equations,
as the derivation relies essentially on the two-dimensional vorticity equation. Further-
more, the finite difference methods often used in geophysical fluid dynamics are usually
not based on one general formalism with a strong mathematical background comparable
to the finite element method [120]. The generalized formulation of fluid equations using
differential form incorporates different coordinate systems and dimension within one set
of equations on an arbitrary manifold. It seems thus promising to exploit such general
form for the derivation of discrete schemes on arbitrarily-structured polytopes, in order to
provide r-adaptive models for the investigation of geophysical problems.

1.1 Objectives of the thesis

In this work we develop a generalized discretization framework for the equations of geo-
physical fluid dynamics (GFD) and derive suitable finite difference schemes with r-adaptive
grid refinement for the shallow-water equations. Moreover, we investigate the issue on how
grid adaptation methods can be used to increase the accuracy of model solutions.
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In this context, the research questions covering some major challenges in the develop-
ment and application of an r-adaptive model are:

1. How can we derive suitable finite difference schemes for r-adaptive grid refinement
using a generalized discretization approach?

2. Could such general approach provide new knowledge about the equations of GFD?
What practical benefit do we gain in the process of discretization?

3. What kind of scenarios in geophysical applications profit from grid adaptation? How
do we actually adapt the grid to increase the accuracy of model solutions?

These research questions and, accordingly, the topics in this thesis are ordered in a
logical way leading toward an r-adaptive model for geophysical applications. However,
every topic is by itself worth to be investigated independently from the others. With
respect to the available literature, we suggest for every question an alternative approach,
which may be followed in future research leading to a more profound understanding of
discrete schemes on general unstructured grids.

1.2 Thesis outline

The thesis consists of three main chapters, each addressing a research question. Chapter 2,
3 and 4 are written in a journal article style and contain individual abstracts, introductions
and conclusions, which makes them largely independent to read.

e In Chapter 2 we introduce a novel formulation for the geophysical fluid equations
by splitting them in a topological and in a metric part, which allows a systematic
discretization applying the tools of discrete exterior calculus (DEC). Using this dis-
cretization method, we derive the triangular and hexagonal C-grid discretizations
of the linear non-rotating shallow-water equations and study their consistency and
stability properties on uniform and non-uniform grids.

e In Chapter 3 we develop, on the basis of our invariant formulation, a new method
for consistent normal vector reconstruction required for staggered grid schemes, for
which we use the tools of DEC to represent the Coriolis term. We extend the linear
hexagonal C-grid scheme for rotating fluids toward a nonlinear model on arbitrarily-
structured C-grids and perform simulations of nonlinear test cases also for r-adapted
grids.

e In Chapter 4 we demonstrate how efficient r-adapted grids for the prediction of
tropical cyclone (TC) tracks can be constructed with the help of goal-oriented error
estimates. We perform a linear sensitivity analysis for the scenario of two interacting
TCs to estimate the local grid resolution required to minimize an error measure
correlated with the cyclone positions. We show how such information can be used
to adapt the grid of the nonlinear hexagonal C-grid model such that high accuracy
in cyclone track prediction is guaranteed, while significantly reducing the number of
degrees of freedom required.

Chapter 4 has been submitted to the Journal “Theoretical and Computational Fluid
Dynamics (TCFD)” (Bauer et al. [9]). In Chapter 5 we present a summary, draw some
conclusions and present an outlook for future work.
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Chapter 2

Discretization of the invariant
geophysical fluid equations using
discrete exterior calculus

Abstract We introduce a new formulation of the equations of geophysical fluid dynam-
ics (GFD) consisting of sets of topological and metric invariant equations, which allows a
systematic discretization by applying the tools of discrete exterior calculus (DEC).
Within the invariant equations, where the form of the equations is invariant under coor-
dinate transformation, the prognostic variables describing the evolution of the fluid are
represented by differential forms. By introducing additional auxiliary prognostic variables,
we split the geophysical fluid equations in a topological and in a metric part. The resulting
set of equations has similar form to the invariant linear Maxwell’s equations and allows to
use concepts of electrodynamics also within fluid dynamics. Moreover, such formulation
enables a systematic discretization according to DEC by using chains and cochains to ap-
proximate manifolds and differential forms, respectively. The discrete scheme follows from
the choice of the topological meshes (chains) for the momentum and continuity equations
and from the discrete representation of the metric equations (Hodge-star operator, interior
product). We illustrate that this formulation incorporates several finite difference schemes,
for instance, the triangular and the hexagonal C-grid discretization of the non-rotating
linear shallow-water equations, for which we study consistency and stability properties for
uniform and non-uniform grids.

2.1 Introduction

During the last decades of intensive studies in geophysical fluid dynamics (GFD) on dif-
ferent regimes and scales for several purposes, quite a large variety of different analytic
equations and, accordingly, of different discretization schemes has been developed and
studied on idealized models, as well as intensively used in numerical weather prediction
(NWP) and in climate research. The reason for such variety is manifold. Based on the
full Navier-Stokes equations, plenty of different simplified sets of equations such as the
barotropic or the shallow-water equations have been derived based on certain approxima-
tions, e.g. divergence-free flow, geostrophic balance, etc. Simplified equations allow for an
accurate simulation of certain geophysical features (e.g. the track predictions of tropical
cyclones in a barotropic model), while reducing the computational costs to a minimum.
Furthermore, the analytic system of equations is often modified to meet the specific re-
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quirements of the discretization methods; for instance, the vector-invariant form is often
used in finite difference schemes [3], the flux-form is often applied for finite volume schemes
[67], the formulation of the equations in weak form is essential in finite-element methods
[13]. These three major discretization methods may differ according to the set of analytic
equations with respect to consistency, to stability and to the representation of waves and
of their dispersion relations, which is essential for geophysical applications [76]. In addi-
tion, often required are good performance of the discrete scheme and the possibility to use
adaptive grids.

Several attempts have been made on the analytic and on the discrete level to unify
some of the different equations or schemes and to gain a better understanding on their
mutual relations. Major contributions to a better understanding of the different analytic
equations valid for different scale regimes, which is based on a scale analysis approach, are
achieved by Pedlosky [77] and more recently by Klein et al. [61]. On the level of discrete
schemes, Rostand et al. [92] and LeRoux et al. [65, 66] have compared many low-order
finite elements and some finite difference schemes concerning stationary wave solutions. A
similar comparison, performed for the shallow-water equations on unstructured, staggered
grids by Walters et. al. [111] for low-order finite element and finite difference methods,
showed very similar behavior of some of these methods.

A promising method to formulate partial differential equations (PDE) in a more general
way is the usage of differential geometry. In computational electrodynamics, Maxwell’s
equations are frequently written in invariant form, in which the prognostic variables are
represented by differential forms, e.g. [22, 25]. The invariant form of an equation incor-
porates by definition all different coordinate systems and different dimensions. Based on
this formulation, Bossavit [25] developed a discretization approach called generalized finite
difference (GFD) for the invariant Maxwell’s equations. On the basis of finite elements
exterior calculus, Arnold et al. [4] proposed for several PDEs an invariant formulation us-
ing methods of differential geometry and exterior calculus. They provided a set of stable
mixed finite elements determined by topological and geometrical constraints. An invariant
formulation has also been found for the fluid equations by Abraham and Marsden [1]. Us-
ing differential geometry, the authors derived a general form of the equations on a general
manifold for the incompressible and for the barotropic equations within one formulation.
For the invariant fluid equations, Wilson [119] suggested a discretization based on methods
of algebraic topology [47].

In this chapter we aim for a better geometrical understanding of the geophysical fluid
equations by using the language of differential geometry and contribute to their unifi-
cation. Based on the invariant fluid equations derived by Abraham and Marsden [1],
we formulate the geophysical fluid equations in invariant form, in which the prognostic
variables are written in differential forms. Moreover, by introducing additional auxiliary
prognostic variables, we suggest a splitting into sets of topological and of metric equations,
which leads to a formulation for GFD similar to the invariant Maxwell’s equations used
in computational electrodynamics, cf. Bossavit [19]. Such formulation allows, in addition,
to apply the tools of discrete exterior calculus (DEC) of Desbrun et al. [33].

On the basis of the new formulation, we introduce a systematic discretization approach
using DEC, where chains and cochains are used to approximate manifolds and differential
forms, respectively. The discrete scheme descends directly from the choice of the topo-
logical meshes and from the discrete representation of the metric equations. We assign
to every simplex (vertex, edge and face) one degree of freedom. The chains represent the
topological meshes used to discretize the momentum and continuity equations. The dis-
crete metric equations, namely the Hodge-star operator connecting the topological meshes
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and the discrete representation of the contraction operator, are required to close the sys-
tem of equations. Hereby, the analytic vector identities of the Helmholtz decomposition
are transfered to the discrete level. Our formulation incorporates several finite difference
schemes. Thus, a certain choice of the topological meshes and of the metric equations leads
to a certain finite different schemes, for instance, a triangular, quadrilateral or hexagonal
C-grid schemes. For the triangular and hexagonal C-grid discretization of the non-rotating
linear shallow-water equations, we study consistency and stability properties.

This chapter is structured in the following way. In Section 2.2 we summarize the
results of Abraham and Marsden [1] for the derivation of Euler’s fluid equation in invariant
form and present the required definitions. In Section 2.3 we derive the geophysical fluid
equations in invariant form and proof that such formulation is well defined. In Section 2.4
we suggest the splitting of the invariant fluid equations in a topological and in a metric part.
In Section 2.5 we compare the linear non-rotating fluid equations with the linear Maxwell’s
equations. In Section 2.6 we present the method of DEC by Desbrun et al. [33], which we
apply to the invariant geophysical shallow-water equations in Section 2.7. In Section 2.8
we perform a consistency and stability analysis of the linear non-rotating shallow-water
equation with triangular and hexagonal C-grid discretization for both uniform and non-
uniform grids. In Section 2.9 we present a summary and draw conclusions.

2.2 Euler’s equations in invariant form

In this section we present the fluid equations in invariant form using differential geometry.
The invariant form, in which the prognostic variables are written in differential forms, is
the basis for our derivation of the invariant geophysical fluid equations presented in the
following sections. The definitions and derivations in this section are taken from standard
textbooks on differential geometry, in particular from Abraham and Marsden [1]. For
more details we refer to textbooks on differential geometry and to Appendix A, where we
present a concise derivation of the invariant fluid equations proposed by Abraham and
Marsden [1].

2.2.1 Operators of differential geometry to describe fluids

The equations describing the motion of a fluid (fluid equations) are defined on a general
n-dimensional manifold M (n-manifold M).

Differentiable manifolds: Manifolds are an abstraction of surfaces in the Euclidean
space [1]. A differentiable manifold is a manifold that is locally similar to a linear space
in R™, which allows to use calculus. It is described by a collection of charts that is
called the atlas. Calculations are thereby done within the individual charts with methods
from calculus. Assuming on the charts the compatibility property, i.e. the transition
between charts is differentiable, then calculations done within one chart are valid in any
other differentiable chart and thus on the entire manifold. In case the linear space is an
Euclidean space with metric, the differentiable manifold has also this metric structure
induced by the charts.

On differentiable manifolds exist at every point p € M tangent spaces, T,M, that are
real vector spaces in R™ attached to this point. The elements of the tangent space at point
p are called tangent vectors Xp. The union of all tangential spaces is a 2n-dimensional
manifold called tangent bundle 7 M consisting of all pairs of (p, Xp). A Riemannian
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manifold consists of a real differentiable manifold M in which every tangent space is
equipped with an inner product (metric) g (cf. Appendix A.4).

Ezamples: R™ using the identity as chart is a manifold with the tangent space R"; the
sphere S? using the stereographic projection is a manifold with the tangent spaces R? at
every point on the sphere.

Local coordinates representation: A neighborhood U C M of a n-manifold M
around a point p € M is assigned by the differentiable charts to the Euclidean space R"”,
which allows to represent vectors and differential operators in so called local coordinates.

On the patch U C M let a point p be represented by local coordinates p = (le), . ,xg)
and the patch U with x = (z!,...,2"). On a manifold M one may define a vector X as
a differential operator [60]
. !
X, = ng,@, (2.1)
J

with )Zp € TyM and Xg € R. Furthermore, we regard for the coordinate function z* the
linear functional dz’ : T,,M — R for any vector X € T,M acting in the following way:

dxi()?):Zdexi(Bj) :ZXj% :ZXj5ij =X, (22)
J J J

with 9; = 8%9 and the Kronecker symbol &; [60]. Because of dz'(d;) = 4;; the linear
functionals (dz!,...,dx™) span the dual basis with respect to the basis (1,...,0,) of

T,M. Consequently, a one-form (covector) may be defined with w! = wida! + ... w,dz™.

Vector fields and differential forms: A vector field X on M is a differentiable map-
ping X : M — TM such that Xp € T,M for all p € M. In other words, a vector field
assigns to each point of M a vector based on that point. The set of all C* vector fields
on M is denoted with X(M). A differential k-form w* € QF(M) is a multi-linear and
skew-symmetric map

W X(M) XX X(M) = C . (2.3)

k—times

We denote the space of differential k-form with Q¥(M). To define differential forms,
one usually defines first an exterior algebra and then extend this by charts to differential
k-forms, see Appendix A.1.

As an example, we regard the vector field @ € X (IR?) describing e.g. the velocity of a
fluid. A corresponding one-form wu, using the inner product <, > defined in Appendix A.4,
can be defined by

w:=<i, > forany i< X(R?). (2.4)

We denote @ as the vector proxy of the one-form u € Q'(M).

Integration of forms on manifolds: We define the integral of an n-form w™ € Q"(M)
on an oriented! n-manifold M by generalizing the results of the R" via the charts to M.
For a continuous function f : R" — R with compact support, [ fdz'...dx™ is defined
by the Riemann integral over any rectangle containing the support of f. Analogously we
define an integral for n-forms w represented in local coordinates by the following definition.

! An orientation of M is an equivalence class [u] of volume-forms on M. An oriented manifold (M, [u])
is an orientable (i.e. a volume-form exists) manifold M together with an orientation [1].
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Figure 2.1: Integrating the one-form w' € Q'(M) along the curve v(t) € M.

Definition 2.2.1. Let U C R” be open and w" € Q"(U) have compact support. If,

relative to the standard basis (€1, ..., €,) of R",

w'(z) = wi_p(z)dzt A Ada™ (2.5)
with the components of wy_,(z) = w™(z)(€1,...,€,) (A denotes the wedge product defined
in A.2), then

/Uw”:/nwl___n(x)dxl...dx". (2.6)

Using a differentiable atlas, this definition is generalizable to the manifold M. For
this definition a local and global change of variable theorem is valid, see Theorem A.2.9
in Appendix A.

Example: We give an example for the integration of a one-form w! € Q'(M) along a
smooth curve v : t € [0,1] - M. We divide the interval [0,1] C R in parts A; : ¢; <
t < tiv1,to = 0,t, = 1. The tangential vectors to curve v at points ¢; are given by
Gi := dv]t, (As) € Ty)M [5]. The integral of the one-form w' on the path v is defined as
a limit of Riemann sums, where every sum is the value of w! acting on the tangent vector

Ci7 i.e.
n

[/wl = iiino 2 wh(G) . (2.7)

Figure 2.1 illustrates the integration of the one-form w! € Q'(M) along the path v € M.

Exterior operations on forms: The rate of change of a differential k-form w® € QF(M)
can be calculated by the exterior derivative d : QF(M) — QFF1(M) that acts on the k-
form (cf. Theorem A.2.3 for a more formal definition). In local coordinates the exterior
derivative is given by

. (%}il,

71%(1:61 Adzt . ANdxt i <L <y (2.8)

dk
. ox

Examples: The exterior derivative of a function f € Q°(R?) in R?, i.e. df = 0, fdx +
Oy fdy, is the total derivative of f. The exterior derivative of a one-form w! = w,dz +

wydy € Q(IR?) is given by

dw! = Oywzdy N dx + Opwydx N dy = (Opwy — Oywz)dx N dy .
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The inverse operation to the exterior derivative is the interior product (also called
the contraction operator) i : Q¥(M) — QF~1(M) (cf. Theorem A.2.4 for a more formal
definition). The contraction of the k-form w* € Q(M) with X € X(M) can be written in
the form

i ewh (Xa, .oy Xp) = WX, Xo,y 0y X) (2.9)

for all vectors XZ € X(M),i = 2,...,k. The interior product can be evaluated with

Lemma 2.2.1, for which the Hodge-star operator x and the Riemannian lift b are required.
Given an inner product <, >, there exist a unique relation between a one-form w! €

Q'(M) and the corresponding vector proxy @ € X(M). This mapping is given by

F: M) = XM) ;3 (W=l =t <0, >=7, (2.10)
or the inverse operator by
b X(M) = QU M) =T =<7, >=w. (2.11)

We denote in the following both mappings b and # as Riemannian lift, if there is no danger
of confusion. See Definition A.4.1 in Appendix A for a more formal definition.

The Hodge-star operator  : QF(M) — Q""%(M) defined on an n-manifold M is a
unique relation between k-forms and n — k-forms. It acts on k-form w® € QF(M) in the
following way:

aNxf=<a,f>p for afeQf(M). (2.12)

A general definition and the properties of the Hodge-star operator are given in Prop. A.2.1
in Appendix A.

We illustrate on a two-dimensional example how the Hodge-star operator acts on the
covariant basis vectors do’ € QY(M),i = 1,2: 1 = da! Ada?, xdz! Ada? = 1, xdzt = d2?,
*xdz? = —dz!.

Lemma 2.2.1. (Hirani [54]) Let be X € X(M) a vector field and o € Q*(M) a k-form
on a smooth n-manifold M. Then, the interior product can be computed with the following

formula
ica=(—1)F"M s (xa A X7) . (2.13)

Remark. Using this lemma, we find that the invariant equations of Abraham and Marsden
[1] are equivalent to Wilson’s [119] invariant formulation of the fluid equations for non-
rotating flows.

Lie-derivative: Let X € X (M) be a smooth vector field with local flux ¢;. Then X is
tangential to ¢;(p) at a point p € M and one determines the directional derivative, i.e.
the change of f with variations in direction of X, by L:(flp = %hzof(gpt(p)). L is
called Lie-derivative. We present a general definition of the Lie-derivative acting on vector
fields Y € X(M) and on differential forms w € Q(M) in Theorem A.2.5 in Appendix A.

2.2.2 Fluid equations on general manifolds M

Based on the above introduced operators acting on differential forms and on vector fields
on a Riemannian manifold M, Euler’s equations can be written in invariant form, as
proposed by Abraham and Marden [1]. For a concise derivation of the invariant Euler’s
fluid equations see Appendix B.

In contrast to the conventional fluid equations in vector calculus, where the integral
form of the balance of momentum does change its form when using different coordinate
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systems, the invariant (covariant) fluid equations are invariant under coordinate transfor-
mations. More important is, however, that one obtains by such formulation a well-defined
notion of an integral on any manifold M. This is not given for vector-valued integrals.

Let the one-form @” € Q'(M) describe the velocity of an ideal fluid (cf. Eq. (B.20))
with the functions for density p and pressure p. Then, according to Abraham and Marsden
[1], the invariant Euler’s equations on a compact n-manifold M with smooth boundary
OM and outward unit normal 7 are given by

o(i”) IO I S
5 +Eﬁ(ub)—§d(ub( ))+;dp— ;
0((;;;)) +dx(pi)’ =0, (2.14)

(@-7)da =igu =0 (boundary condition on OM) ,

with initial conditions @(z,0) = @y(x) and volume-form p (cf. Appendix A.2). By clos-
ing the system of equations according to the principle of energy conservation (cf. Ap-
pendix B.3), one obtains either:

1. the incompressible fluid equations by *d * (Z)” = 0, or

2. the barotropic fluid equations using the equation of state, p = ,02%—‘;)’, with the internal
energy w = w(p) defined in Eq. (B.42).

On the basis of the invariant form of Euler’s equations we derive in the following a set of
invariant geophysical fluid equations.

2.3 Geophysical fluid equations in invariant form

We introduce a new invariant form of the equations of geophysical fluid dynamics (GFD)
on the basis of Euler’s fluid equations of Abraham and Marden [1]. To our knowledge such
formulation has not been presented in literature for the equations of GFD. To guarantee
that this formulation is well-defined, we include a proof that for both two and three
dimensions the invariant geophysical fluid equations are equivalent to the corresponding
equations written in vector calculus.

To compare the invariant form with conventional vector calculus, we present the equa-
tions on a rotating Cartesian coordinate system in R? that is positioned on the Earth
surface, as frequently done for geophysical applications. On a rotating sphere with angu-
lar velocity 2 we approximate the Coriolis effect by the two-form f¢ := fdzAdy € Q*(M).
The Coriolis parameter f = 2Qsin(y) reflects the dependency of the Coriolis acceleration
on the surface of the sphere with respect to the latitude ¢ of the fluid element’s posi-
tion (cf. Appendix C.1.2). In case of three dimensions, additional Coriolis effects are
present when regarding the entire rotation vector 20 x @. 1In the following we use the
shallow-atmosphere approximation (cf. C.1.2) and neglect the vertical effects by setting
20 x i ~ fE X 1, with k=é; = (0,0,1), as the effects of the Earth rotation in vertical
direction are small compared to horizontal effects (cf. Pedlosky [77]).

To take the Coriolis effect into account, we replace in Eq. (2.14) the Lie-derivative
Lz by an equivalent representation that uses a combination of exterior derivative d and
of interior product iz according to Cartan’s formula (B.35). With the representation of
the Coriolis term using an interior product, i.e. izf, as shown in detail in Eqn. (2.23)
and (2.25), the geophysical fluid equations (Euler’s equations for rotating fluids) can be
written as presented in the following theorem.



18 Discretization of the invariant geophysical fluid equations using DEC

Theorem 2.3.1. Let M C R",n = 2,3, be a compact n-manifold on a rotating coordinate
system with angular velocity Q and with smooth boundary OM and outward unit normal
fi. Let the one-form i@’ € Q' (M) describe the velocity, the functions p the density and p
the pressure of an ideal fluid. Using the shallow-atmosphere approximation, the Coriolis
effect is represented in the horizontal plane by the two-form fo := fdx Ady. Then, the
mwvariant Euler’s equations on a rotating sphere are given by:

—b
1 1
aait + ig(dﬁb + fc) + §digﬁb + ;dp =0,
0 2.15

(G-7)da =igu =0 (boundary condition on OM) ,

with the induced volume element® da on the boundary, with initial conditions ii(x,0) =
to(x) and with the energy closure

(i) for incompressible flows by xd x (@”) = 0 or

(ii) for barotropic flows by the equation of state, p = pQg—‘;, with the internal energy
w=w(p) of Eq. (B.42).

Remark. The extension of the invariant fluid equations (2.14) by a two-form would also
be possible without the restrictions put on M C R3 in Theorem 2.3.1. Moreover, instead
of the Cartesian framework, a more general formulation using spherical coordinates on a
rotating sphere (cf. White et al. [117]) would be possible but is not subject of this study.
Here, we focus on a representation of the invariant equations comparable to a conventional
set of rotating fluid equations, such as those shown in Eq. (C.1).

The proof of Theorem 2.3.1 is based on a comparison of the invariant equations (2.15)
to the conventional equations in vector calculus (C.1) for which we require the following
two identities.

Lemma 2.3.2. Let M C R? be an n-manifold with inner product <,>, basis (e1, ez, e3)
and dual basis (dz,dy,dz) = (dz',dx?, dx3) according to dx'(e;) = d;j. Let the velocity
be represented by the one-form @° = uydx + uydy + u.dz € QYM). Then, the following
identity 1s valid:

<iﬁdﬁb>ﬁ —Cx, (2.16)
with 5: V x @ and with the Riemannian lift ,b.
Proof. Using Hirani’s lemma 2.2.1 the interior product can be evaluated by
izdi’ = (—1)2672 « (xd@® A7) . (2.17)

Applying the exterior derivative d (A.2.3), the Hogde-star * (A.2.2) and the wedge product

2The induced volume element da is the contraction of the volume-form p with the normal vector 7 on
the boundary OM, i.e. da = izu, cf. [1].



2.3. Geophysical fluid equations in invariant form 19

A (A.2) on @ = uzdr + uydy + u.dz it follows:
di’ = (Opty — Oyug)dx A dy + (Opu, — Ougz)dx A dz + (Oyu, — Ouy)dy A dz
*xdi’ = (Opuy — Oyug)dz — (Oyuy — O ug)dy + (Oyu, — Ozuy)dx
*di® A = Uz (Optly — Oytig)dz N dx + Uy (Opty — Oyug)dz A dy
— Uz (Opuy — Oyug)dy A dx — uy(Opu, — O uyz)dy A dz
+ uy (Oyu, — O uy)dx A dy + u(Oyu, — O, uy)dx Ndz
* (*dﬁl’ A ﬁb) = [uz(azux — Opuy) — Uy (Opuy — Byux)]dx
+ [ux(amuy — Oylig) — u(0xuy — (9yuz)]dy
+ [uy(ﬁyuz — 0xUy) — Ugp(Oxuy — amuz)] dz

On the other hand, we have ( x @ = (V x 4) x @ in Cartesian coordinates, where @ =
Ugpey + Uyey + Uze, is a vector-valued function, i.e.

Oyt — Ozuy Uy
(Vxu)xu=| Oup —0zuy | x| uy
Opty — Oyy U,

U (0;uy — Ozuy) — Uy (Opuy — Oyuy)
Uz (Optly — Oyiy) — Uz (02uy — Oyus) . (2.18)
Uy (Oyu, — Oxuy) — Uy (Ozug — Opuiy)

Using the Riemannian lift f, the one-form % (*dﬁ " AT I’) can be represented as a vector
array that corresponds to Eq. (2.18). O

Lemma 2.3.3. Let M C R? be an n-manifold with inner product <,>, basis (e1,es) and
dual basis (dz,dy) := (dz',dz?) according to dx'(ej) = &;;. Let the velocity be represented
by the one-form @° = uydx + uydyz € QY(M). Then, the following identity is valid:

(iﬁdﬁ")ﬁ —Ckxd, (2.19)

with the Riemannian lift ﬁ b and k=é = ( ,1). ( is the vertical component of the
relative vorticity, i.e. { = k- C and( V X i
Proof. With Hirani’s lemma 2.2.1 we represent the left side of Eq. (2.19) by

izdi’ = (—1)2C72) « (xd@” A7) . (2.20)

Applying the exterior derivative d (A.2.3), the Hogde-star x (A.2.2) and the wedge product
A (A.2) on @ = uzdx + uydy it follows:

da’ = Optly — auxdx/\dy,

= ( )
= (Ozuy — Oyug) ,
*di@” A @ = (Dpuy — Oyuy) (upds + uydy)
*(xd@’ A T°) = (8, Uy — 6 Uz ) (Updy — uyde)

-

The vertical component of the relative vorticity is given by ¢ := k-(V x @) = (0puy—0yuy).
We find the stated identity if we represent

0 Ugs — Uy
Exd=|(0 | x| u |= Uy (2.21)
1 U 0
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and if we apply # on x(xdi " AT I’) to represent the one-form in vector components. O

Proof of theorem 2.3.1. Because the sets of equations in Eq. (2.14) and Eq. (2.15) only
differ by the nonlinear term iz(da by feo), it is sufficient to proof whether this term is well-
defined. The linearity of iy (cf. Theorem A.2.4) allows to separate the Coriolis two-form
fo = fdx A dy € Q*(M) with Coriolis parameter f from the nonlinear term izdi > In
Lemma 2.3.2 and 2.3.3 we have shown that the nonlinear terms are well-defined for two
and three dimensions. It remains to show that the Coriolis term is correctly represented by
the contraction of the two-form f¢ with the velocity field 4. Using the shallow-atmosphere
approximation (C.4), the Coriolis term is represented for both two- and three-dimensional
equations by fE X U = (= fuy, fug,0), with k= (0,0,1). The velocity fields in two and
three dimensions are given by @ = (ug, uy,0) and @ = (ug, uy, uy), respectively.

In two dimensions, we find (izfo)f = fE x @ for the two-form @° = uzdx + uydy. This
can be inferred by using Hirani’s lemma 2.2.1 and the Riemannian lift b:

igfo = (—1)2(272) * (xfo A ﬁ") = x(fugdr + fuydy) = fuzdy — fu,dx . (2.22)
This leads, by linearity of the differential forms, to
(ia(di” + fo)F = (C+ )k x i . (2.23)

In three dimension, we find the identity (izfc)? = fE x @ for the three-form @° = uydx +
uydy + u.dz, as shown by

igfo = (=126 w (xfo AT") = *(fdz A (ugdz + uydy + u.dz))
= x(fugdz N dx + fuydz A dy)) = fugdy — fuydz | (2.24)

leading to the nonlinear term
(ia(di” + fo))f = ((+ fh) <. (2.25)

The identities (2.23) and (2.25) proof that the geophysical fluid equations in invariant
form (2.15) are well-defined in two and three dimensions, because these identities show that
the invariant equations correspond to the geophysical fluid equations in vector calculus of
Eqgn. (C.2) and (C.4) of Appendix C.

O

2.4 Topological and metric geophysical fluid equations

Based on the invariant geophysical fluid equations derived in Section 2.3, we introduce
a novel formulation that consists in splitting the equations into a set of topological and
metric equations. This separation is possible as we introduce auxiliary quantities, denoted
with ~ in the following. Such splitting has its origin in electrodynamics (see e.g. [19, 25])
but has, to our best knowledge, not been used so far in the formulation of fluid equations.
In this section we introduce this formulation for Euler’s fluid equations and for the shallow-
water equations for rotating fluids and proof its well-definedness on R"™,n = 2, 3.

In order to explore the potential of such formulation, we address two issues in the
following sections. First, in Section 2.5, we compare the linear non-rotating equations
with the linear Maxwell’s equations used in electrodynamics, from which we adopted the
idea of splitting the equations in topological and metric parts. Second, in Section 2.6 and
2.7, we use this formulation to discretize the linear shallow-water equations in a systematic
way based on algebraic constraints of the computational meshes.
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2.4.1 Splitting the fluid equations in topological and metric parts

The invariant geophysical fluid equations describe the fluid’s velocity by the one-form
u € QY(M), and its density and pressure by the functions p,p € Q°(M), respectively,
on an n-manifold M. We restrict our investigations to M C R",n = 2,3, on a rotating
coordinate system (rotating frame) with angular velocity Q (cf. Appendix C.1.2).

The quantities u, p, p describe the time evolution of the fluid. In order to split the
system of equations into topological and metric equations, we introduce two auxiliary
quantities for the continuity equation, j, (pu) € Q'(M), that are, for a start, independent
of u and of p used in the momentum equation. In addition, the velocity field ¥ used to
evaluate the contraction within the nonlinear Coriolis term is, for a start, independent
of u. Consequently, the momentum and continuity equations of (2.15) do not contain
operators that require the definition of a metric, thus being purely topological equations.
We have, however, five unknowns for two equations, which requires additional constraints
to close the system. Therefore, we introduce three additional metric dependent equations.
The resulting system is summarized in the following theorem:

Theorem 2.4.1. Let M C R",n = 2,3, be a compact manifold on a rotating frame
with angular velocity Q and with smooth boundary OM. Let the momentum of the fluid be
described by u € QY (M), p,p € Q°(M) while using the shallow-atmosphere approrimation,
i.e fo = fdx' Adx? € Q%(M) with the Coriolis parameter f = 2Qsin(p). Let 7 € X (M) be
an auziliary vector field. Let the two auziliary quantities for density p € Q"(M),n = 2,3,
and mass-flur (pu) € Q' (M) describe the evolution of the density field by the continuity
equation.

Then, the momentum and continuity equations in integral-form with integrations over
arbitrary curves ¢ or volume V on M do not require the definition of a metric, thus are
referred to as topological equations in the following, and are given by:

1 1 —
/8tu+ /ig(du—i— fo)+ /—digu—i—/—dp =0, / 8tﬁ+/ (pu) =0, (2.26)
c c c 2 cP \%4 ov

with boundary conditions igu, with initial conditions u(x,0) = ug(xz) and with the energy
closure (i) for incompressible flows by xd*u = 0 or (ii) for barotropic flows by the equation
of state, p = pQg—;j, where w = w(p) 1is the internal energy of Eq. (B.42). To close the

system of equations, the following three metric equations are required:

pu) = (pu), wp=p, W=7, (2.27)

where x denotes the Hodge-star operator that connects the differential forms of momentum
and continuity equations, and where the Riemannian lift § connects the one-form u with
its vector proxy U.

Proof. We proof that the invariant fluid equations (2.26) and (2.27) are well-defined by
showing the equivalence of these equations with the corresponding vector-invariant fluid
equations in shallow-atmosphere approximation.

Using Stokes theorem, i.e. [, dw =[5, w with w € QF(M), k < n on an n-manifold
M, we can omit the integrations over the curves ¢ and the volumes V. The equations in
local form are given by:

. 1.. 1
O+ i, (du+ f) + §d1uuu + ;dp =0, O*xp+d(pu) =0, (2.28)
in which the metric equations p = *p, (,OAJ) = x(pu) and uf = (< ¥, >)* = ¥ have been
inserted. Applying * on the continuity equation of (2.28) leads to: (i) x % p = p and (ii)
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x d * (pu) = div(pu)?, for which (ii) follows from Prop. B.1.1. Eq. (2.23) and Eq. (2.25)
provide a two- and three-dimensional vector representation, respectively, of the nonlinear
term i, (du+ fc). Furthermore, the pressure term can be represented with Prop. (A.4.3).

We evaluate the interior product i, w using Lemma 2.2.1. In two dimensions with
U = Ugydx + uydy and ul = ¥ = u,€, + uy €y, this leads to

igu= (=)' w (xu A T) = — % (updy — wydr) A (ugde + uydy) = (u2 + ui) *dx ANdy ,

in which xdx A dy = 1. In three dimension with u = u,dr + u,dy + uydz and ut =7 =
Uz €y + Uy€y + Uy €, this leads to

igu = *(xu A7) = *(ugdy A dz + uydz A de + u de A dy) A (upde + uydy + u.dz)
= (u2 + uz +u?)xdr ANdy Adz | (2.29)

with (=1)'G=1) = 1 and xdz A dy A dz = 1. This corresponds to the inner product of
the velocity vector 7, i.e. < ¥,7 >= ¥ for two or three dimensions. Because the kinetic
energy is defined by k = %17 2 all terms in Eq. (2.26) agree with the fluid equations in
vector calculus with shallow-atmosphere approximation of (C.2) and (C.4). O

Remark. The interior product of a one-form u € Q2'(M) can also be evaluated using the
Riemannian lift £ : QM) — X(M), u =< ¥,- > ¥. Let be, for instance, uf = 7 =
Uz€y + uy€y the vector proxy of u in two dimensions. Then it follows:

2

. o o o o o o 2
iu= u(uﬁ) =< U, T >=< ug€y + Uy€y, Uzl + Uy€y >= uy + Uy ,

which agrees with the calculation for the two-dimensional case, iyu = u2 +u§, from above.
The same argumentation is valid for the three-dimensional case.

2.4.2 Systematic selection of a set of equations

Based on the splitting of the geophysical fluid equations in topological and metric parts,
we introduce a systematic way of selecting a set of equations. That is, by the choice of
adequate metric equations we find either the linear or nonlinear, either the rotating or
non-rotating invariant fluid equations. Because of their invariant form, they are valid for
two- and three-dimensional problems. We obtain the following sets of equations:

1. the non-rotating linear fluid equations are obtained if we set for the Riemannian lift
QY M) = 0,uf — 0, leading to i, : Q¥(M) — 0,k = 1,2, e.g. the non-rotating
linear shallow-water equations (2.33) and (2.34);

2. the rotating linear fluid equations are obtained if we set the nonlinear parts to zero,
ie. i,du =0 and diu = 0, e.g. the rotating linear shallow-water equations (3.1)
and (3.2) investigated in Chapter 3;

3. the non-rotating nonlinear fluid equations are obtained by setting the Coriolis pa-
rameter f = 0, e.g. the invariant fluid equations (2.14);

4. the rotating nonlinear fluid equations are obtained if all terms are considered, e.g.
the full GFD equations (2.26) and (2.27).

This selection process becomes particularly interesting in the process of discretization,
as shown in Section 2.6. Assuming one degree of freedom associated to each vertex, edge
and face, we show that the discretization of the topological equations is determined by
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the choice of the computational mesh. Then, the choice of discrete metric equations, for
instance, the discrete Hodge-star operators, determines the discrete scheme.

We investigate such discretization procedure in Section 2.6 on Case 1, the non-rotating
linear shallow-water equations (introduced below). In Chapter 3 of this thesis we introduce
discretization schemes for Cases 2 and 4.

2.4.3 Topological and metrical shallow-water equations

For the remainder of this thesis, we focus on the shallow-water equations to introduce our
concept of discretization. The formulation of the general geophysical fluid equations of
Theorem 2.4.1 can also be applied to the shallow-water equations. In Appendix C.2 we
introduce the invariant geophysical shallow-water equations, which are the basis for the
splitting into topological and metric parts shown in the following.

Corollary 2.4.2. Let M C R? be a compact manifold on a rotating frame with angular
velocity 0 and smooth boundary OM. The Coriolis force is represented by the two-form
fo = fdx' Adx® € Q2(M) with the Coriolis parameter f = 2Qsin(y). Let the momentum
of the fluid be described by u € QY (M), h € Q°(M) and let ¥ € X(M) be an auziliary
vector field. Let the two auxiliary quantities for height h € Q2(M) and mass-flux (/h\z;) €
QY(M) describe the evolution of the density field by the continuity equation. Then, the
topological shallow-water equations in integral-form are given by:

/6tu+/i5(du+fc)+/%di5u+/gdh:0, /6tﬁ+/ (H):O, (2.30)
c c c c \%4 ov

for all ¢,V with boundary izu, with initial conditions u(x,0) = ug(x) and with the energy
closure (i) for incompressible flows by xd*u = 0 (cf. Appendixz B.3). To close the system
of equations, the following metric equations are required:

h=xh, (hu)=x*hu), u'=7, (2.31)
with the Hodge-star operator * and with the Riemannian lift §.

Proof. Similarly to the proof of theorem 2.4.1 we reformulate (2.30) and (2.31) to find the
well-defined invariant shallow-water equations derived in Appendix C.2. Then, a calcula-
tion similar to the proof of theorem 2.3.1 leads to the rotating shallow-water equations in
vector calculus form

S 1
O+ (C+ [k x 7+ V(§172) +gVh=0, 0h+V-(ho)=0, (2.32)

which proves that the shallow-water equations written in topological and metric parts are
well-defined. O

The non-rotating linear shallow-water equations: Let the momentum of the fluid
be described by the velocity field u = uzdz + uydy € Q}(R?) and by the fluid depth
h € Q°(R?) with h = H + §h, where H is the constant background fluid depth and &h the
height variations. Let h € 02(R2?) be an auxiliary height field and @ an auxiliary velocity
field.

On basis of Corollary 2.4.2, we find the non-rotating linear shallow-water equations,
Case 1 of Section 2.4.2, by setting the Riemannian lift to § : Q' (M) — 0,uf — 0 and

obtain:
/Gtu—i—g/dhzo, /atiLJrH/da:o, (2.33)
c c 1% 1%
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with following metric equations to close the system:
h=xh, @=xu. (2.34)

This set of linear fluid equations has striking similarity to the linear equations of electro-
dynamics, introduced below in Eqn. (2.35) and (2.36), if the electric current is j = 0.

2.5 Comparison of fluid dynamics and electrodynamics

Our formulation of the non-rotating linear shallow-water equations leads to a set of equa-
tions consisting of four independent variables, namely wu, 4, h, h, and of four equations,
namely two topological equations (2.33) and two metric equations (2.34). The form of
this equations is similar to the linear Maxwell’s equations, as discussed in the following.

In the literature the comparison of the two sets of equations is usually based on the
similarity of potential vorticity (PV) and electric charges. Thorbe and Bishop [16, 100],
for instance, found an analogy between electrostatics and potential vorticity distributions
by describing a PV anomaly embedded in a zonally-averaged flow in terms of a nonlinear
dielectric medium. An analogy between potential vorticity dynamics and electrodynamics
has been established by Schneider et al. [94] to study boundary effects in PV dynam-
ics. More recently, Herbert [51] investigated similarities but also differences between the
dynamical PV-related equations and the linear Maxwell’s equations.

When regarding the derivations in these references [16, 51, 100, 94], one can infer that
the use of vector calculus leads to quite lengthy calculations. The language of differential
geometry allows for a more abstract and concise formulation. For instance, for the vor-
ticity w = d@® € Q*(M) one finds the vorticity-stream equation given in Eq. (B.59) in
Appendix B (cf. also Abraham and Marsden [1]). In this sense, our approach could con-
tribute to a more concise and general comparison of fluid dynamics and electrodynamics
using differential geometry.

The following short comparison between the linear shallow-water and Maxwells’ equa-
tions goes without the use of potential vorticity. We compare purely the form of the
equations. Our aim is hereby to use concepts developed for computational electrodynam-
ics for the discretization of the shallow-water equations.

Maxwell’s equations in topological and metric parts: The linear Maxwell’s equa-
tions describe the time evolution of the electric field e and magnetic field b that are caused
by a current j within a domain M. Let be e, h € QY(M), b,d € Q*(M) and the current
density j € Q*(M). Then, Maxwell’s equations in integral form (Faraday and Ampere

laws) are given by
l/@b+/de:0,—i/@J+[dE:/j. (2.35)
f f f f f

To close the system, we need the following metric equations (constitutive laws):

d=ex*e, b=pxh, (2.36)

with coefficients €, u. Here, we use a formulation often applied by Bossavit et al. [19, 20,
21, 22, 23, 24].

To describe the physical measurable fields, electric field e and the magnetic field h,
one finds a formulation in two topological equations (2.35) and two metric equations
(2.36). As the current j is a function of e [25], the system of equations is closed as
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four quantities e,b,d, h are described by four equations. The topological equations, also
called network equations, are based on conservation laws. These equations purely need
topological information and no metric information. The system of equation is closed by
the so-called constitutive laws (2.36) for which metric information is required.

Fluid dynamics vs electrodynamics: By the splitting of the non-rotating linear
shallow-water equations we introduce a formulation very similar to the linear Maxwell’s
equations. The physical measurable electric and magnetic fields e, b described by Faraday’s
law (2.35, left) are related to the velocity and height fields u, h in the momentum equation
of (2.33). The newly introduced auxiliary values i, A in the continuity equation of (2.33)
find their counterparts in the electric displacement and in the auxiliary magnetic fields
d, h, respectively, described by Ampere’s law (2.35, right). However, the dimensions of
the equations and fields differ between shallow-water equations and electrodynamics. The
momentum and continuity equations are one- and two-dimensional, respectively, whereas
in electrodynamics both Faraday’s and Ampere’s law are two-dimensional. Because of
the invariant form of the equations, such difference is not apparent in the form of the
equations.

Regarding the rotating linear shallow-water equations, Case 2 of Section 2.4.2, the
Coriolis term can be written in invariant form by (i, fc)! = fk x @ (cf. proof of Theo-
rem 2.3.1). A similar representatlon of the Lorentz force by representing the cross product
with an interior product, i.e. (izh)* = ¥ x B where B is the vector proxy of b, has been
introduced by Bossavit et al. [27]. However, one has to recognize the difference in the
externally prescribed velocity field ¥ used to evaluate the Lorentz force, and the vector
proxy u! that has to be calculated by the flow field u itself. The determination of uf is
a nontrivial task, and we will consider this problem in more detail in Chapter 3. In the
following we exploit the form similarity of Maxwell’s equations and the split form of the
shallow-water equations by discretizing the latter using concepts and tools frequently used
in computational electrodynamics.

2.6 The method of discrete exterior calculus (DEC)

We introduce a method called discrete exterior calculus (DEC) developed by Hirani [54]
and Desbrun and Marsden et al. [32]. Based on exterior calculus and differential geometry
(see e.g. [1]), DEC defines the discrete operators on basis of the continuous differential
operators and mimics its properties, if possible, also in the discrete case. By this, important
properties, for instance, the Hodge decomposition [33] (and its analogous Helmholtz vector
decomposition), can be transfered by definition to the discrete level.

All definitions and results presented in this section are taken from Desbrun et al. [33],
unless otherwise stated. We first introduce the definitions required to approximate mani-
folds and differential operators. Such operators are purely topological and are used later
(in Sect. 2.7) to discretize the topological equations (2.33). The metric equations (2.34)
use the Hodge-star operator and require a metric. We will introduce a discrete diagonal
Hodge-star operator at the end of this sections.

Our formulation of the geophysical fluid equations in invariant form including the
splitting in topological and metric parts allows to apply the discrete operators of DEC on
these equations to discretize them. This is done in Section 2.7 on the basis of the results
of this section for the non-rotating linear shallow-water equations (2.33) and (2.34).
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2.6.1 Discretization of manifolds by simplices

An n-dimensional manifold M can be approximated with simplices, i.e. ordered sets of
vertices, edges, faces, etc. We use complexes of simplices to discretize the momentum
and continuity equations by chains and cochains that are based on simplices and used to
discretize the manifolds and differential forms, respectively.

Notation of a simplex: A k-simplex o is the non-degenerate convex hull of k + 1

geometrically distinct points vg,...,vr € R® with n > k:
k k
op={zxeR" |z = Z a'v; with o' >0 and Zo/ =1}. (2.37)
=0 1=0
The entities vg, ..., v are called the vertices and k the dimension of the k-simplex, which

we denote as
o = {vovvg ... g} . (2.38)

With respect to the ordering of the k£ + 1 vertices of a k-simplex, one can assign a
local orientation to each element of the mesh. The orientation, or(), changes by an odd
permutation of the vertices, e.g. if or({vgv1}) =1 then or({v1vp}) = —1.

Boundary of a Simplex: The notion of a boundary of a simplex is important as it
describes the topological relations between different k-simplices. The boundary of a k-
simplex is the union of (k — 1)-faces, where (k — 1)-faces are (k — 1)-simplices spanned by
k vertices taken from a subset of {vy,...vx}.

To find the boundary of a k-simplex, Desbrun et al. [33] defined a boundary operator
that returns the signed sum of (k — 1)-faces with coefficients 1 and —1 for matching or
non-matching orientation, respectively. This is summarized in the following definition.

Definition 2.6.1. For the k-simplex, the boundary operator O returns the signs sum of
(k — 1)-faces by

k
3{?107)1"'7%} - Z(_l)j{?}07 76}7"' 7?}]6} ) (239)
7=0

where 0; means that v; is missing from the sequence.

With Def. 2.6.1 we find an operator with the property dod = 0 Vo, which we illustrate
on the simplex o9 = {vovive}. It follows: doa = {vgv1} — {wova} + {viv2}, and thus for
0009 = O{vgu1} — O{vove} + O{viva} = v — v1 — vy + vy + v; — v = 0. This is a general
property of the boundary operator 0 applied on any o, k < n.

Simplicial Complex: A collection K of simplices is called a simplicial complex if it
satisfies both that (i) every face of each simplex K is in K, and that (ii) the intersection
of any two simplices in K is either empty or an entire common face.

Discrete Manifolds: To approximate manifolds, we use simplicial complexes (Fig. 2.2).
We define an n-dimensional discrete manifold as an n-dimensional simplicial complex that
satisfies the following condition: for each simplex, the union of all occurring n-simplices
forms an n-dimensional ball, or, if the simplex is on the boundary, only half of a ball (cf.
[33]). Thus, each (n — 1)-simplex has exactly two adjacent n-simplices or only one if it is
a boundary simplex. Figure 2.2 shows a two-dimensional manifold that is approximated
by a two-dimensional simplicial mesh.



2.6. The method of discrete exterior calculus (DEC) 27

Figure 2.2: An n-dimensional manifold M is approximated by an n-dimensional simplicial
complex K.

2.6.2 Topological operators on discrete manifolds

The notion of chains and cochains will be introduce to find a discrete analog for k-
dimensional sub-manifolds and k-form. According to Eq. (2.3) a continuous k-forms is
a multi-linear map from the k-spaces of vector fields X (M) to the space of continuous
functions and an integral of a k-form assigns an value to a k-dimensional sub-manifold,
according to Definition (2.2.1).

To find a discrete analog to a k-dimensional manifold, we use a k-chain that is a
weighted sum of k-simplices with one value for every single simplex.

Definition 2.6.2. A k-chain ¢ of an oriented simplicial complex K is a linear combination
of all the k-simplices in K, i.e.
c= Z c(o) o, (2.40)
ceK
where c(o) € R. The set of k-chains is denoted by Cj. We indicate with K* the set of all
k-simplices in K with cardinality |K*|. Because there is one number for each k-simplex,
the k-chain can be stored as a vector array of dimension |K*|.

Analogously to k-forms acting on k-dimensional sets, we define k-cochains acting on
k-chains in the following way:

Definition 2.6.3. A k-cochain w is the dual of a k-chain, i.e. w is a linear mapping that
takes k-chains to real numbers by

w:Cp—=>R, c—w(e). (2.41)

The set of k-cochains is denoted by C* and is the dual space to C. As a chain ¢ is a
linear combination of simplices, a cochain returns a linear combination of values, such as:

w(c) = /zi e Zc /0 = Z cwli] (2.42)

with wli] := fai w. As the k-simplices form a basis for the vector space C), we only need
to know the mapping of vectors in this basis. Hence, w[i] uniquely determines w and is
moreover a discrete representation of w on a discrete manifold (cf. [33]).

A vector representation of the k-cochain w® can be established when regarding how
wk acts on chains ¢ that are represented as a vector with dimension |K*|. By definition
the linear operator w(c) returns a scalar in R. This can be seen as the inner product
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wP - o1, where the vector w* has the same length as ¢;. If we regard ¢, as column vectors,

then the row vector (wk)t represents an R-linear mapping and w(c) becomes the matrix
multiplication of (w*)! with cy.

Boundary operator on chains: The boundary operator J; of Definition 2.6.1 applied
to a k-simplex returns a (k — 1)-chain with coefficients 0, —1,1. Based on the linearity
property, 0 can also be applied to chains. The boundary operator is thus a linear mapping
from the space of k-simplices into the space of (k — 1)-simplices. This map can be repre-
sented as a matrix with dimension |K*~!| x | KK*| that acts on chains represented as arrays
with dimension |K*|. This matrix is sparse and contains, similarly to the boundary of
simplices, only entries with 0, —1, 1. The operators Jj, differ with respect to the dimension
of the simplex they act upon. As it becomes clear, based on the dimension of the simplex,
which 0 is meant, we simply drop the index k& when there is no ambiguity.

Discrete exterior derivative: Based on the definitions of chains and cochains the
discrete exterior derivative d can be defined via Stokes’ theorem3:

/Odw:/aaw, (2.43)

in which the discrete exterior derivative d : w* — w**1 applied to an arbitrary k-cochain
w¥ is evaluated on an arbitrary simplex o**1.

Frequently, the integration is denoted as pairing of cochains and chains, i.e. fg w =:<
w,o >. Thus, Eq. (2.43) can be written as < dw,o >=< w,do >, where the boundary
operator has been applied to o. Thus, d is the adjoint of the boundary operator 9 and is
also called coboundary operator. Based on the duality of 0 and d, we find 00 = dd = 0,
which can easily be inferred by applying the notation of paring and exploiting the duality
property of both operators.

By definition, the discrete exterior derivative d of (2.43) is a linear mapping of the
space of k-cochain K¥ into the space of k 4+ 1-cochain K**1. An adequate representation
is thus a matrix with dimension |K**!| x |K*|. Based on the duality properties of 9 and
d and by exploiting the notation of pairing we can write:

/ w=<w,dc>=w'(dc) = (W')c = (0'w)lc =< 0w, c >= /(9tw . (2.44)
dc c

Based on Stokes’ theorem (2.43) and on the fact that d is the adjoint operator of 0, the
matrix d equals 0' that is the transposed of the boundary operator 0. Hereby, we use
Stokes’ theorem to convert an integral over a k-dimensional set into a boundary integral
of a (k — 1)-dimensional boundary to find adequate discrete analogs to the continuous
differential operators.

Chain and cochain complexes and its properties: A chain complex is a sequence
of linear spaces connected by a linear operator [ with the property [ -l = 0, e.g. the
boundary and coboundary operators with 30 = dd = 0. The chain complex for the linear
spaces C} in three dimensions based on the boundary operator 0 can be illustrated with
the following diagram:

O3 02

o -2 o 0. (2.45)

3This theorem states in terms of differential forms vector identities equivalent to curl, divergence and
Green’s theorem [1].

0 Cs Cy
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Figure 2.3: Discrete manifold with nodes v;, edges e; and faces f;. The arrows indicate the
intrinsic orientation of the edges and faces. The relative orientation of edges to vertices
and of faces to edges is given by the coincidence matrix G and R, respectively.

As the discrete exterior derivative d is the adjoint of 0, the cochain complex for the linear
spaces C* in three dimensions is given by

da d; do

0 o3 02 Ol 0 0. (2.46)

Such chain and cochain complexes are illustrated in Figure 2.4.

2.6.3 Example on two-dimensional topological meshes

We present in the following on two-dimensional primal and dual meshes concrete real-
izations of chains, cochains, boundary and coboundary operators, and present their im-
plementation as vectors arrays and matrices. We will require these results, in particular
the topological differential operators that are analogs to gradient, curl and divergence
operators, in the next section in order to discretize the shallow-water equations.

In accordance with the notation for simplices of Eq. (2.37) and with the boundary
operator of Def. 2.6.1, we calculate the boundary operator d; for the faces fo = {vovivs}
and fi = {viveus} of Fig. 2.3 by

8 fo = {vov1} — {vovs} + {vivs} = {eo} — {—es} + {—ea}

: (2.47)
Oy [1 = {v1va} — {viv3} + {vovz} = {e1} — {—ea} + {+e2},

where the arrows indicate the intrinsic orientation of the edges. The signs of the simplices
of (2.47) written as a column vector can be identified with the boundary operator 83,i =
0,1, corresponding to face fi, i.e. the boundary operator for fy is 9 = (1,0,0,1, —1)¢,
and for f it is 04 = (0,1,1,0,1).

Analogously, the operator 9%,i = 0,...,4, acts on edges e;, e.g. on eg = {vov1} with
B?eo = v; —vp or on e = —{vyv3} with 3%64 = v1 — 3, and gives corresponding coefficient
vectors (—1,1,0,0)! or (0,1,0,—1)!, respectively.

The chains and cochains are stored as column vectors, and, according to Eq. (2.44),
the transposed cochain vectors then act on the chains by matrix multiplication. Thus, by
arranging the coefficients of the chains column-wise within matrices, we find the boundary
operators for the entire domain as coefficient matrices* by 9, = (05) k=1, |k and O =

4For instance, the boundary chains 8, are represented as column vectors with coefficients 0, —1, 1 of the
basis (e1, ..., €4) spanning the vector space C of one-chains.
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(a{c)k:17.,,7|[(e‘, ie.

(1) (1) -1 0 0 1 0
1 -1 0 0 1

Or = (1) (1) ; O = 0 1 -1 0 0 ) (2.48)
g 0 0 1 -1 -1

where 0y € M(|K¢| x |Kf|) and 9, € M(|K?| x |K¢|) are so-called coincidence matrices
and where |K/|,|K¢| and |K?| are the numbers of faces, edges and nodes, respectively, of
the simplicial complex of Fig. 2.3 that tessellate the manifold.

According to Eq. (2.44), the discrete exterior derivatives are given by the transposed
of the boundary operators, i.e. d; = 95 and dy = 9. The change in the indexing comes
from the fact that both, the boundary and coboundary operators get the index from the
simplex o* they acting on (cf. (2.45) and (2.46)). Thus, the exterior derivatives can be
represented as:

-1 1 0 0
0 -1 1 0
d1:<(1)(1)(1)é_11>, do=] 0 0 -1 1 , (2.49)
1 0 0 -1
0 1 0 -1

with the coincidence matrices d; € M (| K| x |K¢|) and dg € M(|K®¢| x |K"]).

We define F = (f1,..., fixr)'s E = (e1,...,ejxe)t and N = (vi,...,vgv|)" as basis
vectors that span the vector space of two-chains, one-chains and 0-chains, respectively.
For our example in Fig. 2.3 there is N = (vg,...,v3)", E = (eg,...,eq)" and F = (fo, f1)'.
Then,

—vg + V1
UL eg+e3—e
grad(E)’ «dgN = | —vg4wv3 |, cwl(F)’dE=( 0" "™ ) (250
e1t+extey
+vo — U3
+v1 — g

The exterior derivative dg and d; are operators that are applied by matrix multiplication
to the basis vectors N and E, respectively. Every entry of dgIN corresponds to exactly
one edge e with boundary 3fek, and every entry of diE corresponds to exactly one face
with boundary 05 fi. Therefore, the vectors grad(E) and curl(F), obtained by using the
Riemannian lift in (2.50), can be identified with a second order gradient and a first order
curl operator, respectively (cf. Sections 2.7 and 2.8).

The property dd = 0 of the exterior derivative also transfers to the discrete differential
operators (2.50), i.e. dydoIN = 0, as it can be inferred by simple calculations. Thus, the
cochains C* together with the discrete exterior derivative dy, fulfill the necessary conditions
for a cochain complex (2.46).

For the two-dimensional simplicial mesh of Fig. 2.3, denoted in the following as primal
mesh, there exists no boundary operator ds. Therefore, there is no topological divergence
operator that describes the changes in fluxes over the cell boundaries of the primal mesh.
However, on the dual mesh (definition is given below) a topological divergence operator
exists, as derived in the following.
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Exterior derivate on the dual mesh: The definition of the dual exterior derivative
requires the definition of a dual mesh. Based on a triangulation of an n-manifold, we
associate to every k-simplex a dual (n — k)-cell. Thus, for n = 2 we associate to a vertex
a dual two-cell, to an edge a dual edge and to a face a dual vertex (cf. Fig. 2.4). The
number of dual (n — k)-cells is, by construction, equal to that of primal k-simplices. The
set of dual cells is called cell complex and it is not necessarily a simplicial complex [33].
Based on the inherent properties of a primal simplicial complex, the dual mesh inherits
several properties. For instance, on the basis of the primal exterior derivative dP'™al the

dual exterior derivative d"® can be defined according to Desbrun et al. [33] by

ua. rimal
dg™ = (DM@’ (2.51)

for all k < n, where (+)! denotes the transposed matrix.

Following the two-dimensional example of Fig. 2.3 with the primal exterior derivatives
dznmal = d, defined in Eq. (2.51), we find for k = 1 the dual exterior derivative d{"® that
acts on edges by

-1 0 0 1 O
1 -1 0 0 1

dual _ t_ (_ v e
0 0 1 -1 -1

Now, let d{"#! act on E = (61,...,6|Ke|)t7 with [K€¢| = 5 and let be N = (vl,...,vu{v‘)t
with K| = 4 such that

b

div(v,) —ep + €3

div(vy) 1 b, qdualpn | €0 —€1+¢€4

div(vg) = div(N)" = dy™'E = er — e (2.53)
div(vs) e —e3 — ey

Every entry of d{"*'E corresponds to exactly one vertex v including all adjacent edges
signed according to their orientation. The vector div(IN), obtained by using the Rieman-
nian lift in (2.53), can thus be identified with a divergence operator positioned at vertices
v (cf. Sect. 2.7). This operator is second order accurate on uniform meshes and between
first and second order accurate on non-uniform meshes, as shown by a consistency analysis
in Section 2.8.

In the following, we denote the coincidence matrix of the dual mesh d(ljlual with Ddual
and dg,dq, of the primal mesh with G, R, respectively. In order to evaluate the relative
orientation of vertices, edges and faces we use these coincidence matrices. For instance, we
find for the vertices-to-edge relation for edge e = {v1, v} and for the edge-to-face relation
with face f = {v1,v2,v3} and edges ey = {v1,v2},e2 = {v2,v3}, €3 = {v3,v1} the following
signs:

Gt =-1, G22:1,R§1:1,R§2:1,R§3: ) (2.54)

as indicated by the arrows in Figure 2.3.

In three dimensions, we find with dg, d; and dy the topological gradient, curl and di-
vergence operators, respectively. These operators fulfill the cochain properties dodiE =0
and didgIN = 0. By Eq. (2.51), this is also true for the dual exterior derivatives. There-
fore, the properties of a cochain complex and of the coboundary operators, i.e. dd = 0,
transfer to the corresponding discrete differential operators. Hence, the important vector
calculus properties V x V=0 and V-Vx =0 in R? are fulfilled (see more in [33]).
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Figure 2.4: Illustration of the diagonal Hodge-star operator i, k = 1,2,3, taken from
Desbrun et al. [33].

2.6.4 Metric dependent operators on manifolds

The topology and the coincidence matrix d‘fual of the dual topological mesh are defined
via the primal topological mesh without using a metric. Hereby, only the neighborhood
relationships and the orientations of the simplices are required. However, to determine
the actual dual mesh, i.e. the position of the dual vertices, the dual edges that connect
those vertices, and the dual faces that are spanned by dual edges, as well as the dual edge
length and dual cell sizes, we require a discrete Hodge-star operator x. The Hodge-star
connects the primal and dual mesh with each other and assigns to the dual simplices their
geometrical and metric properties.

We require a discrete representation of the Hodge-star operator introduced in Propo-
sition A.2.1. The definition of the discrete Hodge-star operator is not unique, as the con-
nection between primal and dual mesh may be realized in different ways, which, in turn,
may lead to different properties of the discrete schemes. In the following we introduce two
examples of different Hodge-star operators. However, several different possibilities exist,
as studied, for instance, in computational electrodynamics [23].

The discrete diagonal Hodge-star operator: Following Desbrun et al. [33], we
introduce a discrete diagonal Hodge-star operator x that connects the two-dimensional
primal and dual topological meshes by the following diagonal matrices:

le”]| |f]
*9 =
|f17

where v, e, f denote vertices, edges and faces, respectively, and where * means Voronoi
dual. |- | denotes the length or the area of the corresponding edges or faces. Figure 2.4
illustrates the connection between primal and dual simplices via the Hodge-star operator
(2.55) and shows the simplicial complex of the primal and dual meshes with the corre-
sponding boundary and coboundary operators.

[v"]

*0 *1 =

=T (2.55)

Tl

This diagonal Hodge-star operator is used for the remainder of this thesis. By this
choice, we decide to use a staggered C-grid on a hexagonal or triangular mesh. Using
the definitions introduced in this section, in particular the coincidence matrices dg,d;
and d{"s! we derive in Section 2.7 for both meshes the discretized non-rotating linear
shallow-water equations.
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A non-diagonal Hodge-star operator: In principle, our method enables to use differ-
ent Hodge-star operators of different complexity connecting the topological meshes. In the
following we present a non-diagonal Hodge-star operator (also called Galerkin Hodge-star)
introduced by Bossavit [25] for computational electrodynamics on tetrahedral meshes.

The key idea is to use a barycentric dual mesh. On the basis of Whitney interpolation
functions w® (see e.g. Eq. (3.12)) and their property as partition of unity (see discussion
after Eq. (3.10)), Bossavit [25] has shown the following identity:

Z/Dewe(x)'we’(x)e':/Dewe(w)- (2.56)

e'ef

The terms [, ew®(x) - w® () on the left hand side can be summarized to a non-diagonal
matrix, the Hodge-star operator *Ee,, where only off-diagonal elements ¢’ adjacent to edge
e contribute with weight € to the sum. The integral over the domain D on the right hand
side equals the fraction of the dual area € lying within the tetrahedron T, ér, weighted
with ep, i.e. [, ew®(x) = epér [25]. It follows for the non-diagonal Hodge-star

D xefel =N erér, (2.57)

e'e T

where er is uniform in each individual tetrahedron. As one uses Whitney interpolation
functions, the dual vertices, dual edges and dual faces are those of a barycentric dual mesh.

As discussed in Section 2.5, the non-rotating linear shallow-water equations and the
linear Maxwell’s equations have similar form. Thus, it would be interesting to investigate
whether such operator leads also in the case of linear shallow-water equations to a stable
system. However, we postpone further investigation using this non-diagonal Hodge-star
operator to future work.

2.7 Discretization of the non-rotating linear shallow-water
equations

We apply the method of DEC on the invariant non-rotating linear shallow-water equations
split into topological and metric parts (2.33) to discretize them in a systematic way. As
introduced in the previous section, the framework of DEC provides for a certain choice
of primal topological mesh its dual topological mesh and the corresponding boundary
and coboundary operators that are independent of a metric. The topological meshes are
connected via metric dependent discrete Hodge-star operators. The latter are not unique
and different choices lead to different discrete schemes. We introduce in the following two
schemes, namely the triangular and hexagonal C-grid scheme, obtained by a certain choice
of topological meshes and of the discrete Hodge-star operator.

The topological mesh has been introduced as a simplicial complex, a collection of
simplices, to approximate the manifold. This simplicial complex is denoted as primal
topological mesh in the following, and the dual cell complex, induced by the primal mesh
as explained in the previous section, as dual topological mesh. Hereby, we use the diagonal
Hodge-star operator (2.55) to obtain a dual mesh based on circumcenters.

The choices made so far involve both the triangular and hexagonal C-grid schemes.
The two schemes differ, however, by the position of the degrees of freedom (DoF) for mass
and velocity points. One obtains a hexagonal C-grid scheme if the mass points are at
the vertices and the tangential velocity components are at the triangular midpoints. In
contrast, a triangular C-grid scheme is given if mass points are in the circumcenters of the
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triangles and if the normal velocity components are on the intersection of triangular and
hexagonal cell edges.

In the following we introduce a method to obtain the DoF on the meshes by integrating
the discrete k-cochains over chains. Hereby, we restrict our method to one DoF per
simplex, i.e. for every node, edge, face or cell, we assign exactly one DoF, similar to the
method of general finite differences (GFD) of Bossavit [25]. Using Stokes Theorem (2.43),
our approach provides hereby automatically the discrete differential operators.

Discretization by integrating k-cochains over k-chains

The continuous shallow-water equations in integral form (2.33) must hold for all curves
c and all areas A, which leads to an infinite number of equations in the continuous case.
In the discretization step one assumes that the equations should hold only for a finite
number of one-chains and two-chains used to approximate ¢ and A, respectively, and that
the k-forms are approximated by k-cochains.

Continuous equations: If we assume for the non-rotating linear shallow-water equa-
tions (2.33) that the integrals over the k-chains in the topological equations are time
independent, i.e. ¢(t) = co, A(t) = Ap Vt — thus switching from the Lagrangian to the
Eulerian picture in describing fluid motions — we obtain the following continuous system
of equations

8t/u—|—g/ dh =0, at/ h+H [ da=0, Veo, Ao , (2.58)
co co AO AO

with the velocity one-forms u, % € w!(IR?), height and auxiliary height h € Q°(R?) and
he O2(R?), respectively, and with background height H. The following metric equations
close the system:

h=xh, =x*u. (2.59)

Discrete momentum equation: To obtain from Eq. (2.58) the discrete momentum
equation, we approximate the continuous curve co by the one-chain ¢y ~ ) e, where e
denote the edges of the primal topological mesh. The integral of the one-form u along the
edge e is given by u, := fe u. Thus, u. is the DoF associated to edge e of the cochain that
approximates u by u ~ ) _u.. The integration along e for the second term including the
exterior derivative d can be evaluated by using Stokes theorem (2.43), which translates
the exterior derivative in a boundary integral, i.e. fe dh = |, 9e I Thus, we find for the
sum over the edges e = {v;,v;} the discrete momentum equation

D uctgd hy —hy, =0, (2.60)

with 0e = v; — v; according to the boundary operator of Def. (2.6.1).

By linearity it is sufficient to investigate the momentum equation for every single edge.
Using the definitions introduced in the previous section, the momentum equation can be
written in the following matrix form

du+gGh=0, (2.61)

where u = {ue,,7 = 1,...,|K¢} is an array of size |K*¢| for the velocities at the edges,
h = {hy, ..., by} is an array of size [K"| for the height points at the vertices, and

Y U‘KU
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where the exterior derivative is represented by the coincident matrix G € M (|K€| x |K"|)
of Eq. (2.49).

If I, is the length of e, then uw, := 1/l feu is the edge averaged velocity positioned
at the edge midpoint, thus u. = lu.. For every edge e, we find the discrete momentum
equation
Ry — By,

e
—grad', (h)

O+ g =0. (2.62)

The relative orientation of edges to their boundaries is contained in G. The amendment
with the metric information allows to identify in Eq. (2.62) the finite difference gradient
operator grad®, that is tangential to the triangular edges and positioned at edge midpoints.

Discrete continuity equation: To discretize the continuity equation of Eq. (2.58),
we approximate the area Ay by the two-chain Ay =~ > 7 f, where f denotes the cells

(hexagons) of the dual topological mesh. The integral of the two-form h € Q*(R?) over
the face f is given by h ri=[;h / . h  is the Dol associated to the face f of the two-cochain

that approximates h by h ~ z h ¢- To discretize the second term by integrating over f,
we use Stokes theorem (2.43) to translate the exterior derivative d in a boundary integral,
le. [ f du = fa f 4. Thus, we find for the sum over the cells f the discrete continuity

equation
0 hp+HY digr =0, aaf::/ i, (2.63)
of
f f

where df is the cell boundary of f, which can be approximated by a sum of cell edges
edval e Of Y efual § =1,..., #cell edges, and therefore Ggr ~ >, Ugaual.
By linearity it is sufficient to study the continuity equation for every single face f.
Using the results from the previous section, we write the discrete continuity equation in
the following matrix form

dh+ H-DMalg =0, (2.64)
where h = {h 7,0 =1,...,|K/|} is an array of size |K/| for face averaged heights, G =
{t,quar,i = 1,.. |Ke|} is an array of size |K¢| for the velocities at dual edges ed"® and

where the exterior derivative is represented by the coincidence matrix for the dual mesh
Dl ¢ M (|KV| x |K¢|) of Eq. (2.52).

Discrete metric equations: With Eqn. (2.60) and (2.63) we have two equations for
four unknowns, u, @, h, h. We close the system of equations using the discrete Hodge-star
operator (2.55) that serves as discretization of Eq. (2.59) and find a relation between u, h
and the auxiliary fields @, h by

~ A de, 1
hy = xohy, = a7 hy Ugdual = X Ue; = e, = d, —/ u, (2.65)
1 i oo, ey e,
g
:u51

where d., denotes the length of the edges e?ual that are dual to the primal edges e; and
where A; denotes the size of the dual cell. Substituting hy and s in Eq. (2.63), the
discrete continuity equation for every cell f on the dual mesh is given by

1 #edges

Othy + H - —— > (F)deT, =0, (2.66)
]

=divy (Te)
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where the sign + is determined by the coincidence matrix d(ljlual of Eq. (2.52) and describes
the orientation of edge e; with respect to the vertex v. In combination with the metric
information given by the discrete Hodge-star operator, the sum on the left hand side of
Eq. (2.66) gives the divergence of the velocity field at vertices v, denoted with div,(-).

Hexagonal C-grid scheme: To summarize, the discretized equations (2.62) and (2.66)
for the non-rotating linear shallow-water equations correspond to a staggered hexagonal C-
grid discretization. Hereby, the time evolution of the vector arrays u for the normal velocity
components at the hexagonal cell edges and h for the height points at the hexagonal cell
centers are described by the following system of equations written in matrix form:

du+gGh=0, dh+H -DMg=0, (2.67)

and the discrete metric equations:

N A
h:*oh:Tfh, ﬁ:*lu:%u, (2.68)

with the coincidence matrices G and D9 that correspond to the discrete gradient and
discrete dual divergence operators, respectively.

Triangular C-grid scheme: In case the momentum equation (2.58) is integrated over
the dual edges e of the dual topological mesh, i.e. ¢y ~ D edual edual " one obtains,
analogously to the derivations from above, for every dual edge with length d. the following
discrete momentum equation

hee; — Nee,
OfTlyaual + g JT =0, (2.69)
*
=grad® (hcc)
with Udua := 1/d, fedual u, which is the edge averaged velocity normal to the triangle edge.

cc stands for a triangles’ circumcenter. The boundary for the edge eda! = {cci,ccj} is

given by 9e"? = cc; — cc; and is required to evaluate the exterior derivative in (2.58)
using Stokes theorem (2.43). Using Eq. (2.51) to determine the corresponding coincidence
matrix, the orientation of the dual edges to the triangles’ circumcenters can be calculated.
As indicated in Eq. (2.69), one finds the finite difference normal gradient operator grad®,
that is normal to the triangle edge e.

The continuity equation (2.58) is integrated over the primal topological mesh, i.e. over
triangle faces f with Ag ~ feri . We find for every single triangular cell the discrete

continuity equation
#edges

H' i U _dual = 2
Orhee + . Y (B)de g =0, (2.70)

i=1

=divee (ﬂedual )

where he. are the height points at the triangles circumcenters. Ajui denote the triangular
cell area. The sign + is determined by the coincidence matrix d; of Eq. (2.50) and
describes the orientation of the dual edge e1"® with respect to the triangular cell center
cc. Including the metric information, the sum on the right hand side of Eq. (2.70) gives
the divergence operator on the triangular cell centers, denoted with div...

Because of the duality of the primal and dual topological meshes, which is based on
the definition of the dual mesh (cf. Sect. 2.6.3), the triangular and the hexagonal C-grid
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schemes are dual to each other. That is, for a given scheme, one obtains the dual scheme
by exchanging with each other the primal and dual meshes, on which one integrates the
momentum and continuity equations (see calculations above).

In this sense, also the discrete differential operators are dual, namely, the divergence
operator in one model is the curl operator in the dual model and vice versa. For instance,
the divergence operator dive. of the triangular scheme coincides with the curl operator,
denoted with curl.. in the following, of the hexagonal scheme. The latter fact has already
been discussed for an ICON shallow-water model by Bonaventura et al. [18].

2.8 Consistency and stability of the discrete schemes

We investigate the triangular and hexagonal C-grid discretization of the non-rotating
linear shallow-water equations derived in the previous section concerning their consistency
properties and we study the truncation errors of the differential operators. Furthermore,
we investigate also stability for the schemes, as both conditions are required to obtain
convergence. Fundamental theorems of numerical analysis are the Dahlquist’s equivalence
theorem for ordinary differential equations or the Lax’s equivalence theorem for partial
differential equations. Both theorems state that a method converges if and only if it is
consistent and stable [13, 67].

On the basis of an truncation error analysis, where all required functions and opera-
tors are represented as Taylor series, we study the order of accuracy of the schemes, in
particular of the discrete differential operators. In addition, we investigate the stability by
an eigenvalue analysis of the linear algebraic system. To underpin our theoretical results
some numerical experiments are performed.

2.8.1 Consistency properties and truncation errors

Given a partial differential equation (PDE) Pu = f and a corresponding discrete scheme
obtained by finite difference approximations denoted with Pa¢a,v = f, we say that the
finite difference scheme is consistent with the PDE if for any smooth function ¢(x,t) the
following limit exists:

Py — Parpzd — 0 as At,Az —0, (2.71)

i.e. if the discrete scheme agrees with the continuous PDE in case of Az, At — 0. In
the following we investigate whether the triangular and/or the hexagonal discrete scheme
from above share this property.

The discrete momentum equation: We first consider the discrete momentum equa-
tion (2.62), where the edge averaged velocity is represented by %, := 1/l [ u with
u = ugdr + uydy € Q!(R?) and where the height field is given by h, at the vertices v.
Without restriction of generality, let the edge e = {z; < 0,22 > 0} be represented by
two points on the z-axis around a midpoint at = 0 such that [, = (g — z1) =: Az =
(Azy+Azx_);Axy := x9, Az_ := —x;. Using Def. 2.2.1, we find for the averaged velocity
in the limit Ax — 0:
1 [*  (ug(w)my —ug(x1)r1)  (up(2)Azy + ugp(1)Az_) Az—0

/ Ugdr = = ugo

Ax Ax

Ue = —
T Az 1
where u, | gives the z-coordinate of the one-form at the edge midpoint = 0. The same
argumentation is valid for the averaged velocities W auar of Eq. (2.69) on dual (hexagonal)

. _ Az—0
edges, i.e. Ugdua — Uz|o.
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Next, we expand the height field h along the z-axis around midpoint z = 0 into a
Taylor series and evaluate it on edge e, i.e.

oh 10%h 10%h
hae, = ho+ 2| Awy + 220 el
ATt 0= 9z lo xi+28m20 6 0x3 lo

The substitution of the expanded height field (2.72) in Eq. (2.62) leads to

Az + Az} +0(Az?) . (2.72)

h x —h x_
O+ g =0,
Oh| Axy + Az 10%h) Az — Az?2  103h) Azd + A3
O, _‘7 o= T o T T L O(ARR)] =0
t +g{6m0 Ax +28:U20 Ax +663:30 Ax +0(Az%) ’
_ Oh ; ) 1=1if Axy # Ax_
= O —‘ O(Az))] =0, with 2.73
v +g[8x0+ ( x)} s {i:Qifo+:Ax_ 2.73)

Expanding h along the dual edges e?"®! similarly to the Taylor series (2.72) and substitut-

ing it in Eq. (2.69), we find that both triangular and hexagonal schemes have the same
expanded momentum equation (2.73).

We deduce from Eq. (2.73) the order of accuracy of the tangential gradient (grad®, in
(2.62)) and of the normal gradient (grad”, in (2.69)). On uniform grids both operators
have second order accuracy because the edge midpoint bisects the primal (triangular) edge
e and the dual (hexagonal) edge ¢!, In case of non-uniform grids the primal edge is still
bisected by the dual edge maintaining the second order accuracy of grad®,. However, the
normal gradient has only first order accuracy, as the dual edge is in general not bisected
by the primal edge leading to Az # Az_, which is a consequence of the construction of
the dual (hexagonal) meshes using circumcenters (cf. Fig. 4.1).

In order to show consistency, we have to show that the discrete scheme agrees with
the continuous scheme as indicate in Eq. (2.71). With the assumption on edge e (or '@l
in case of the triangular scheme) being parallel to the z-axis, the continuous momentum
equation becomes

Ouyg oh
ot or
Using the notation of Eq. (2.71), we investigate the limit of the semi-discrete equation
Pa, of Eq. (2.73) toward the continuous equation P of (2.74) by

Oh 0 oh

9 i
PA:B@Am_PQS—aUHO‘Fga_x 0+O(A$) —au:v_gg

0. (2.74)

= O(Az') for i =1,2. (2.75)

Therefore, we find for the limit Az — 0 :

7 = Pagoas — P = O(Az") 222% 0 fori=1,2, (2.76)
which shows that Pa, is consistent with P as the truncation error vanishes when the grid
spacing goes to zero. This is true for both triangular and hexagonal schemes for uniform
and non-uniform meshes.

The discrete continuity equation: Next, we study the consistency properties of the
discrete continuity equation (2.66). We expand the continuous function for the height h
around vertex point v and evaluate it at a distance of Az around v, i.e. h(z, + Az) =
hy + B|,Ax + O(Ax?). Using again the notation of Eq. (2.71), we find for the truncation
error

T = Ppyodng — Po = Ohy + Hdiv,(u.) — dh — HV - i . (2.77)
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The error contribution by d;h,—0h = 0thy—0ih,+O(Ax) vanishes for Ax — 0. Therefore,
the investigation of the consistency properties of the discrete continuity equation reduces
to the investigation of the consistency and truncation error of the divergence operator
div,. The same is true for the discrete continuity equation of the triangular scheme and
for its divergence operator div,. of Eq. (2.70).

Truncation error of the divergence operator on hexagons: We investigate the
truncation error of the divergence operator defined in Eq. (2.66). Hereby, we rely on the
result of Heikes and Randall [49] who have performed a truncation error analysis for the
Laplace operator on hexagonal meshes. The authors investigated the Laplace operator
that have been defined by Gauss theorem on a twisted icosahedral grid (cf. [48]). As we
will see, the results obtained for the Laplace operator are also valid for the flux-divergence
operator for hexagonal cells defined in Eq. (2.66).

Following Heikes and Randall [49] the discrete divergence operator at vertex v can be

written as
#faces

i, = 1 2.
Vi, = A:}:IEOAAm Z /e N ndl (2.78)

7ul

where u!, is the normal velocity component® to the hexagonal cell edges e?ual. Apg is the
size and d; A, is the edge length of the hexagon with de, Az, Aar — 0if Az — 0. In case
the line integrals are approximated by one DoF per edge with u!, = 7,,, this formulation
agrees with our definition of the divergence operator in Eq. (2.66). Assuming that one
knows u!, along the entire side de; Az, One can expand such function into a Taylor series.
Analogously to [49], we expand this function around the edge midpoint and take into

. . . . ; mb —ax?
account that on non-uniform grids there exist a discrepancy r}, = gxiAM between the
e;, Az

edge midpoint mimC and the intersection point of primal and dual edge denoted with xiAx.
Consequently, when expressing the cell area Ax, = ¢ - (de,, Az)? with some constant ¢, we
find similarly to [49]

#faces z| ) 1
nxlx . . . 2 .
V-, = Jim { S i (0 |y, + denae(rhs) (%)"Mgﬁ---}- (279

For uniform grids, in which riAx = 0, the truncation error 7 vanishes in the limit of
Az — 0 leading to a consistent divergence operator and, by Eq. (2.77), to a consistent

discrete continuity equation. For non-uniform grids, there is in general r’, # 0. However,

we require that ri 2o, 0, which is in general not fulfilled. Heikes and Randell [49]

suggested a grid optimization method in order to minimize the value 7} ,. When increasing
the grid resolution in the grid generation process, newly introduced DoF are positioned
such that a cost functional defined as the sum of (r,,)* at all cell edges is minimized.
On such grids, the authors achieved even in the L*-norm consistency for the Laplace
operator.

Truncation error of the curl operator on triangles: We use the ideas of Heikes
and Randell [49] to evaluate the truncation error of the curl operator of Eq. (2.70), which
corresponds to the divergence operator on triangular meshes. Analogously to Eq. (2.78),

®In [49]: uj, equals 2% for a function a.
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we write for the curl operator at triangle cell centers cc:

F#faces
V X @lee = li Ej i-tdl, 2.80
u’cc A:}:IEO AA:): i /lei,Ax u' i ( )
=:uy

where u! is the tangential velocity component to the triangular edges e;. Aa, is the
size and l¢; A, is the edge length of the triangle with lo, Az, Aar, — 0 if Az — 0. The
expansion of Eq. (2.80) in Taylor series analogously to Eq. (2.78) leads to a truncation
error analogously to Eq. (2.79), including the dependency on the intersection point of
primal and dual edges riAx. However, in case of the curl operator, the positions of !
always coincide with the triangles’ edge midpoints by construction of Delaunay/Voronoi
grids leading to ’I“iA$ = 0 for all meshes. The truncation error of the curl operator is
therefore independent of whether we use uniform or non-uniform grids.

2.8.2 Numerical tests on consistency on uniform and non-uniform grids

The truncation error analysis performed in the previous section can be summarized as
following. On uniform meshes, all differential operators are consistent and hence also
the triangular and hexagonal C-grid schemes. However, on non-uniform grids that are
not optimized according to Heikes and Randall [49], the inconsistency of the divergence
operator leads to an inconsistent hexagonal scheme. This inconsistency also occurs for
the triangular model on non-uniform grids in case the curl operator is required, because
the triangular curl operator coincides with its dual hexagonal divergence operator (see
discussion at the end of Sect. 2.7).

This raises the question on how severe this inconsistency affects the quality of the
solutions. Therefore, we perform numerical tests, analogously to [49, 104], to investigate
the truncation errors of all differential operators introduced in the previous section, i.e.
grad®,, grad®,, div, and curle., and of the Laplace operator introduced further below.

We measure the truncation error as a function of resolution for uniform and non-
uniform grids with respect to the error measure L1, Lo and Ly:

1
Ly : Hxapprox B xtrueHl — A_ Z Ai‘x?ppmx . xgrue‘ ’
ien
1 1/2
L2 . ||xapprox _ xtrue||2 = |:A_ Z Ai(CC?pprOX _ x;rue)2 , (281)
Q EN
Loo . ||xapprox _ xtrueHOO = max{|$?19prox _ x;rue|’\v/i c N} ,

where Ag := Y. A; is the total area of the domain €, A; the area of a cell, z{PP"™ girue
are the calculated and the true solution at cell i, respectively.

In the following, we compare analytic solutions with numerically calculated ones. To
this end, we define analogously to Tomita et al. [104]:

2k
a(z,y) =sin(c-x) with ¢:= ; , (2.82)
x
2 2
B(z,y) = cos (c1 - &) - cos (ca - y)t, with ¢ := ﬂ—m, co 1= m , (2.83)
L, L,

where k, m, n are arbitrary integers and L, L, are the domain lengths in z and y-direction,
respectively. For the analytic first and second partial derivatives we find:
0 08 05

i ccos(cx), 5~ ¢l sin(c1x) cos(cay)?, 2y = —4cy cos(cy) cos(cay)?® sin(cay),
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0%
oy?

B

ok —c? cos(crz) cos(cay)?, = 12¢32 cos(c1x) cos(cay)? sin(coy)? — 4¢3 cos(crz) cos(cay)?t.
T

These partial derivatives are evaluated at the vertices, the edge midpoints or the tri-
angle cell centers, denoted with -, ¢, -cc, respectively, and are combined such that the
analytic gradient, divergence, curl and Laplace operators are represented. The numeri-
cally calculated values are then compared to the point-wise analytic solutions using (2.81).

For the calculation of the numerical values in order to determine the operators’ order
of accuracy, we use the discrete differential operators on uniform and non-uniform grids
for different resolution, which are similar to those shown in Figure 3.13. How to construct
such non-uniform (r-adapted) grids is topic of Chapter 4.

The gradient operator: We calculate for the normal gradient grad”, of Eq. (2.69),
for the tangential gradient grad®, of Eq. (2.62) and for the full gradient grad,(B) :=
grad®,(8,) + grad®,(Be), all positioned at edge midpoints e, the truncation errors 7 by
using the following analytic solution:

(08 03

with 5 of Eq. (2.83), m = 4 and n = 2. The full gradient grad, () can be directly compared
with the analytic solution. To test the tangential and normal gradients on consistency, we
project the analytic solution onto the tangential and normal direction of the triangular
edges, respectively.

The results are shown in Fig. 2.5 for the three different norms. As expected from
the truncation error analysis (cf. Eq. (2.73)), the tangential gradient is always second
order, also on non-uniform grids, because of Azy = Az_. Indeed, the tangential gradient
operator has second order accuracy (a slope of —2) on uniform and non-uniform meshes.
For the normal gradient on non-uniform grids there is in general Az # Az _, which leads
to a decrease in the order of accuracy between first and second order. This behavior is
visible in the plots for non-uniform meshes (right), where for higher resolution all three
error norms bend upwards, indicating a loss of accuracy. The same behavior is shared by
the full gradient operator, inheriting this property from the normal gradient operator.

The hexagonal curl operator: The triangular divergence operator of Eq. (2.70) is,
by the duality property, the hexagonal curl operator curl... For this operator, positioned
at the triangle cell centers cc, we determine the truncation error 7 by using the following
analytic solution:

Oa 06
o O’

with k = (0,0,1), 8 of Eq. (2.83) with m =4 and n = 2 and « of Eq. (2.82) with k = 1.
This analytic solution is compared to the numerical result of curl..(aegrad®.(3,)). As
grad®, is second order on both uniform and non-uniform grids, a comparison of the order
of convergence of the curl operator between uniform and non-uniform grids is possible.

Figure 2.6 illustrates the truncation error for the curl operator for all three norm
on uniform and non-uniform grids. As theoretically expected, the truncation error is
independent of the deformation of the grid. For both uniform and non-uniform meshes
the curl operator is of first order accuracy.

k-V x (aVg) = (2.85)
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Figure 2.5: Truncation errors in the Li, Lo, Loo-norm of the full gradient (full), of the
normal gradient (nor) and of the tangential gradient (tan) on uniform (left) and on non-
uniform (right) meshes.

The hexagonal divergence operator: We determine for the divergence operator of
Eq. (2.66), positioned at hexagonal cell centers v, the truncation error 7 by using the
following analytic solution:

V- (aVp) = g—i% +a(V2B), (2.86)
using [ of Eq. (2.83), with m = 4, n = 2 and « of Eq. (2.82) with £ = 1. This analytic
solution is compared with the discrete solution of div,(a - grad®,(53,)).

Figure 2.7 (left) illustrates the truncation errors for the three different norms. The
divergence operator has second order accuracy on uniform grids. On non-uniform grids
with low resolution up to approximately 1282 cells, the operator shows almost second order
accuracy. For non-uniform meshes with larger resolution, the accuracy, however, drops
significantly leading even to an inconsistent operator, indicated by the upward bending
of the curves. This inconsistency can be explained theoretically by Eq. (2.79), because
with increasing grid resolution our adapted meshes show increased values for riAx #0. By
the duality of the differential operators, these properties are shared by the triangular curl
operator.

Consistency of the Laplace operator: We investigate the consistency property of the
discrete Laplace operator at vertices v that is a combination of the above introduced diver-
gence and gradient operators, i.e. V2(-) = div, o grad®,(-). We determine the truncation
error 7 of the discrete Laplace operator by using the following analytic solution:

V33, (2.87)

using 3 of Eq. (2.83) with m = 4 and n = 2. We calculate the numerical Laplace operator
with V2(8,) and compare it with the analytic solution. Moreover, a comparison of the an-
alytic solutions of (2.86) and (2.87) suggest that Laplace and divergence operators should
behave similarly because the first term on the right hand side of (2.86) is comparably
small.
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Figure 2.6: Truncation errors in the Ly, Ly, Loo-norm of the curl operator on uniform (solid
lines) and non-uniform (dashed lines) grids.

Figure 2.7 (right) illustrates the truncation errors in the three norms of the discrete
Laplace operator applied on the function (3, for uniform and non-uniform grids. The
truncation errors and the (in)consistency properties agree very well with those of the
divergence operator applied to the function V3, shown in Fig. 2.7 (left). This can be
expected as the influence of the second term on the right hand side of Eq. (2.86) is one
order of magnitude larger than the first term, leading to the similar truncation errors of
Laplace and divergence operators.
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Figure 2.7: Truncation errors in the L, Lo, Lo-norm of the divergence operator (left) and
of the Laplace operator (right) on uniform (solid) and non-uniform (dashed) grids.

2.8.3 Stability and symmetry for the non-rotating linear schemes

Finally, we study the stability properties of the hexagonal C-grid scheme. Based on the
method developed by Espelid et al. [37] we investigate the eigenvalues of the propagation
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matrix of the semi-discretized equations. By this we evaluate whether there exist real
eigenvalues that cause instabilities.

The method by Espelid et al. [37] has been used to develop stable shallow-water models
with varying background depth (see for instance [46, 105]). We will apply this method
in Chapter 3 to put constraints on the vector reconstruction in order to obtain a stable
model. Here, we use the method to investigate the eigenvalues of the system matrix of
the hexagonal scheme to discuss its stability properties. The same argumentation is valid
for the triangular scheme, as presented by Ham et al. [46].

Matrix formulation of the discrete linear shallow-water equations

For the following stability analysis it is useful to present the non-rotating linear shallow-
water equations in matrix form. Given U, the vector of all edge velocities u, and hy the
vector of all surface elevations h,, the set of linear equations can be written in matrix

form:
o[E1-18 9)[%)

with G := G of Eq. (2.62) and D := HA—‘ieDdual of Eq. (2.66). g¢ is the gravity, I,
the triangular edge length and d. its dual edge length (hexagonal cell edge), H is the
background height and A, is the area of the hexagonal cell. The system matrix shall be
denoted with A. We denote the solution vector with

s(t) = ( Ejg ) : (2.89)

then, the non-rotating semi-discrete, i.e. only discretized in space, shallow-water equations
are given by

Zs(t) = (A+F)s(t) , (2.90)

where A + F is the propagation matrix. Matrix F contains terms with the Coriolis pa-
rameter f. In Chapter 3 we investigate also terms with f = 0, but here we focus on the
non-rotating equations by setting F = 0.

We investigate the eigenvalues of the semi-discretized equations. Let z be an eigenvec-
tor of A with eigenvalue A, i.e. Az = Az. If the initial value is s(0) = z, than the solution
of Eq. (2.90) is

s(t) = ez . (2.91)

The continuous equation describes a system that conserves energy. To guarantee this also
for the discrete scheme, all eigenvalues A of the propagation matrices must be purely imag-
inary. If this holds, no growing and damping modes exist and the system is stable. This
property is shared by skew-symmetric matrices and similar to skew-symmetric matrices
(cf. [105]). In contrast, if the propagation matrices contain symmetric parts, growing and
damping computational modes exist.

The scaling matrix [46] for the system (2.88) can be written as

D= [ e DOC ] (2.92)

with (Dp)i; = Hd,le, and (D.)i; = gA.,, where the size of D is equal to the size of A.
Applying D on A gives the following matrix

0 +tHde,le, - 97— ]

DA = Hd (2.93)

:FgACk : sz 0
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DA is skew-symmetric and the matrix A is sign skew symmetric, i.e. for a; = 0V%, a;ja,; <
0if ¢ # j and a;; # 0. Consequently, the system is stable, because the system matrix A
has purely imaginary eigenvalues and does not support growing or damping modes. This
is valid for both uniform and non-uniform grids.

We verify this theoretical results by using the MATLAB eigenvalue function to de-
termine the eigenvalues of A for a uniform and a non-uniform grid with 322 cells on a
domain of 5000 km %4330 km (shown in Figure 3.13). Figure 2.8 illustrates the real and
the imaginary parts of the eigenvalues of A for the uniform (left) and the non-uniform
(right) grid. In both cases, the real parts of the eigenvalues are smaller than real\ < 10711,
This verifies that for any grid the method is stable. This is true also for the triangular
C-grid scheme introduced in the previous section, as shown by Ham et al. [46].
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Figure 2.8: Eigenvalues A of the propagation matrix A for 322 cells on a uniform grid
(left) and a non-uniform grid (right) shown in Fig. 3.13.

2.9 Summary and conclusions

The equations of geophysical fluid dynamics (GFD) written in vector-invariant form re-
main unchanged using different vector representations, but their form differs with different
dimensions, because of the change in the Coriolis term. Differential geometry allows for a
more general formulation of the equations of GFD. We have introduced an invariant form
of these equations including the Coriolis term by using differential forms for the prognostic
variables. This formulation is based on Abraham and Marsden [1].

Furthermore, we have developed an alternative invariant form by splitting the GFD
equations into topological and metric parts, which we could achieve by introducing auxil-
iary prognostic variables. Such formulation is similar to the invariant Maxwell’s equations
frequently used in computational electrodynamics (CED) [27]. In the literature the com-
parison of the two sets of equations is usually based on the similarity of potential vorticity
and electric charge [51, 94, 100]. In contrast, we have compared purely the form of the
invariant equations and have applied for the discretization of the fluid equations concepts
used in CED, in particular we used the method of discrete exterior calculus (DEC).

The invariant form, including the splitting of the equations, enables a systematic dis-
cretization method by applying chains and cochains to approximate manifolds and dif-
ferential forms, respectively, while assigning to every simplex (vertex, edge and face) one
degree of freedom. The chains represent the topological meshes used to discretize the mo-
mentum and continuity equations. The discrete metric equations, namely the Hodge-star
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operator connecting the topological meshes and the discrete representation of the contrac-
tion operator, are required to close the system of equations. The discrete scheme then
follows directly from the choice of the topological meshes and of the discrete representation
of the metric equations.

In formulating the invariant GFD equations in topological and metric parts, similarly
to Bossavit et al. [27], we were able to apply the method of DEC of Desbrun et al. [33]
and found a systematic discretization approach of the equations of GFD that incorporates
several finite difference schemes. We have illustrated that a certain choice of the topological
meshes and of the discrete operators, in particular of the Hodge-star operator, leads to a
certain finite difference scheme. On the example of the non-rotating linear shallow-water
equations, we have derived, by applying our discretization method, the triangular and
hexagonal C-grid schemes.

As these schemes are employed in the following chapters, we have performed numerical
tests concerning consistency and stability for uniform and non-uniform grids. For both
uniform and strongly deformed grids, the triangular and hexagonal models are stable.
Neither growing nor decreasing energy modes are present, because all eigenvalues of the
system matrices are purely imaginary. The consistency investigation for the schemes
reduces to the corresponding properties of the discrete differential operators. We have
shown that all operators are consistent with second order accuracy (except those defined
on triangles, having first order accuracy) on uniform grids, whereas, on non-uniform grids,
the order in accuracy decreases (except for those defined on triangles, keeping first order
accuracy), which may be caused by strongly deformed grid cells (cf. Chapter 4).

On the basis of the framework introduced in this chapter including the diagonal Hodge-
star operator, we study in the following chapter the representation of the linear Coriolis
term. We introduce an adequate representation of the contraction operator (interior prod-
uct) and of the Riemannian lift connecting one-form with its corresponding vector proxies.

As future work, one may investigate different Hodge-star operators leading to different
schemes. The diagonal barycentric Hodge-star operator connecting primal and dual mesh
via the barycentric coordinates instead of the triangles’ circumcenters would allow for
stronger grid deformation as the barycenters always lie within their triangles’ boundaries
unlike the circumcenters. This may lead to different consistency and stability properties,
or even to unstable schemes (cf. Ham et al. [46]). Moreover, one could use a non-diagonal
Hodge-star operator that connects one primal with several dual edges, for instance the
Galerkin Hodge-star operator introduced by Bossavit [27] used in CED. A systematic
investigation on which Hodge-star operator that gives a stable scheme in CED would also
give a stable scheme in GFD could provide a more solid understanding in the mutual
relations of the different set of equations and may suggest useful tools and methods to
discretize the equations of GFD.

Based on the similarity of the formulations of CED and GFD, a generalization of
our method toward higher order discretization schemes by using more degrees of freedom
per simplex seems also possible. Bossavit [27] introduced first steps in such direction by
using higher-order Whitney interpolation functions. Consequently, our reformulation of
the geophysical fluid equations provides both a generalization of the discretization method
and the possibility to use well-known concepts of other disciplines, while providing a deeper
geometrical understanding of the geophysical fluid equations.



Chapter 3

Consistent vector reconstruction
scheme based on exterior calculus

Abstract We present a consistent low-order vector reconstruction scheme based on the
representation of the Coriolis term by means of exterior calculus for a linear hexagonal
C-grid shallow-water model for rotating fluids. On rotating fluids the Coriolis force acts
perpendicularly to the flow field causing this field to be swept over a two-dimensional
manifold that is called extrusion. The concept of extrusion can be used in exterior calculus
to represent the Coriolis term. Based on extrusion, we develop a method for normal vector
reconstruction out of neighboring tangential vector components, in which the weights
are determined by the ability of the tangential vector component to contribute to the
extrusion. Using this approach we can successfully determine weights on a uniform grid
to obtain a stable model that adequately represents the geostrophic modes. In contrast,
spurious geostrophic modes emerge in case low-order Raviart-Thomas (RT0) interpolations
(suitable for triangular C-grids) are used for normal vector reconstruction for hexagonal C-
grids, as our study reveals. Our normal vector reconstruction based on extrusion does not
require, unlike analogous vector reconstruction schemes for uniform meshes from literature,
the use of the two-dimensional vorticity equation for the derivation and is therefore easier
generalizable to three dimensions. In case of non-uniform meshes, we extend our linear
model with existing techniques to a nonlinear hexagonal C-grid shallow-water model on
r-adapted grid, for which we show stability and proper wave representation on nonlinear
test cases.

3.1 Introduction

The simulation of many phenomena in geophysical fluid dynamics requires an adequate
representation of a broad range of scales. For simulations where high resolution is not
required over the entire domain, grid adaptation methods can contribute to high accuracy
of the solution while keeping the computational costs as low as possible. Among others,
mainly two approaches are frequently used in geophysical applications: either new grid
points are introduced to increase local resolution (h-adaptivity) or grid points are moved
to regions where higher resolution is required (r-adaptivity). In any case, the discretization
schemes have to be able to cope with non-uniform grids, for which, in case of r-adaptivity,
the geometrical properties of the cells change with adaptation or, in case of h-adaptivity,
the topology changes because of the added grid points.

The choice of suitable discretization schemes depends on the problem to be investi-
gated. Of particular interest in geophysical applications is the proper representation of
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waves and of their dispersion relations [76, 101]. As, in particular, staggered C-grids
do properly represent the wave dispersion relations, the staggering of mass and velocity
components is mostly used in simulations of geophysical fluids on different grid types, for
instance on quadrilateral, triangular and hexagonal meshes.

In order to find a smooth tessellation of the sphere while avoiding the pole problem of
lat-lon grids, triangular or hexagonal meshes based on the icosahedron are often investi-
gated [18, 89, 90]. However, in none of the approaches like lat-lon, cubed sphere, triangular
and hexagonal tessellation of the sphere (e.g. Weller et al. [115, 116]), one obtains a com-
pletely smooth mesh with uniform grid cells [49, 103]. Therefore, discretization methods
that are able to cope with the non-uniformity of the grids have been studied intensively, e.g.
in [46, 89, 88, 102]. A combination of a discretization scheme suitable for non-uniform
grid with r-adaptive grid refinement seems thus natural. In addition, the unchanged topol-
ogy of r-adapted grids makes load balancing in parallel computing easier (compared to
h-adaptivity) when the grid is adapted during runtime (dynamic grid adaptation).

The major difficulty with staggered finite difference schemes is to find a vector recon-
struction that leads to a consistent and stable model with proper wave representation.
Discretization methods for non-uniform grids have been widely investigated for triangu-
lar and quadrilateral meshes. For triangular C-grid models there are several consistent
reconstruction methods (e.g. [62, 78, 111, 113]) that are mostly based on the low-order
Raviart-Thomas (RTO0) interpolation [84]. These methods are also widely used in finite
element modeling. Hereby consistent means that a linear vector field is exactly represented
by the reconstruction method (cf. Ham et al. [46]).

For hexagonal models, however, such reconstructions are rare (apart from [89, 102]).
This is probably due to the fact that linear reconstructions within a hexagonal cell seem to
be not unique, in contrast to triangular cells, where all linear reconstructions reduce to the
low-order RT0 functions [46]. Methods suitable for triangular models are not automatically
suitable for hexagonal models, as we confirm in this chapter. In order to find suitable
normal vector reconstructions to obtain a stable model with proper representation of the
geostrophic modes, one may put some constraint on the equations. As an example, by
enforcing the geostrophic modes to be stationary, Thuburn et al. [102] found a suitable
normal vector reconstruction scheme for arbitrarily-structured C-grids.

Despite the problem of normal vector reconstruction, an important reason to pursue
the development of hexagonal models lies in their advantage of representing the diver-
gence field more accurately than triangular models, because in the latter case the discrete
divergence operator has only first order accuracy (cf. Chapter 2). In addition, the ve-
locity field is underrepresented on such grids, which may lead to a checkerboard pattern
in the divergence (cf. Gassmann [43]). This effect becomes even more pronounced when
extending the shallow-water model to a three-dimensional hydrostatic model [112].

In this chapter we suggest an approach to find an adequate normal vector reconstruc-
tion for hexagonal C-grid models on non-uniform meshes. Our approach differs from the
literature, in particular from the method proposed by Thuburn et al. [102], in which
the derivation of the weights for the vector reconstruction relies essentially on the two-
dimensional vorticity equation. We do not put a similar constraint on the equation.
Instead, we rely on the invariant form of the geophysical fluid equations introduced in
Chapter 2. In particular, we represent the Coriolis term by the concept of extrusion. The
Coriolis force acting perpendicularly on the flow field causes this flow field to be swept over
a two-dimensional manifold that is called the extrusion. Based on extrusion, we develop a
method for normal vector reconstruction out of neighboring tangential vector components
where the weights are determined by the ability of the tangential vector component to
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contribute to the extrusion.

The concept of extrusion has been developed in several studies [27, 75] to represent
vector fields on arbitrary meshes. In these studies extrusion has been used, for instance,
for advection schemes [52, 75] or to represent the Lorentz force in computational electro-
dynamics [25]. To our knowledge, we use extrusion in a novel way, namely to reconstruct
velocity values in a staggered grid environment, in particular, for a hexagonal C-grid. We
show how the concept of extrusion can be used to determine the weights of a vector recon-
struction such that the model is consistent, stable, and represents the geostrophic modes
adequately. We perform several numerical tests to verify these properties.

Having found an adequate formulation that equals for uniform grids the method pro-
posed by Thuburn et al. [102], we extend this hexagonal C-grid shallow-water model by
the normal vector reconstruction scheme of Thuburn et al. [102] and by the nonlinear
terms proposed by Ringler et al. [89] for arbitrarily-structured C-grids. This enables us
to investigate nonlinear phenomena with r-adapted grids, as done in Chapter 4. In order
to show stability and proper representation of the geostrophic balance, we perform in this
chapter numerical tests on nonlinear scenarios.

This chapter is structured in the following way. In Section 3.2 we introduce the shallow-
water equations in invariant form for rotating fluids and represent the Coriolis term by
means of extrusion. Conventional vector reconstructions are then introduced and it is
shown in numerical experiments that such reconstructions suitable for triangular models
are in general not suited for hexagonal models because some spurious geostrophic modes
may arise. In Section 3.3 we present the normal vector reconstruction based on extrusion
for a hexagonal C-grid discretization of the rotating linear shallow-water equations. In
Section 3.4 we extend the linear shallow-water model to a nonlinear model using tech-
niques from literature and present the numerical results for some nonlinear test cases. In
Section 3.5 we summarize the results and draw conclusions.

3.2 The rotating linear shallow-water equations

We aim at a discrete representation of the linear shallow-water equations in a rotating
coordinate system (rotating frame). As introduced in Chapter 2, the discretization is
done by integrating the invariant equations over chains. In this section, we deal with the
Coriolis effect that occurs in case of rotating fluids. We present a discretization of the
Coriolis term based on the tools developed in Chapter 2 and on the representation of the
interior product on meshes by the concept of extrusion introduced in this Chapter.

3.2.1 The equations in invariant form

Using the selection mechanism of section 2.4.2 for the invariant form of the equations, we
may choose the linear shallow-water equations on a rotating frame. Let be M C R? and
u: X(M) = R with u = uzdz + uydy € Q*(M) a one-form describing the velocity field.
The function h € Q°(M) describes the variation of the height field around a mean value
H. The two-form fo := fdx A dy € Q?(M) represents the Coriolis term with Coriolis
parameter f. We set the nonlinear terms to zero. The interior product iy : QF(M) —
QF1(M) acts thus only on the two-form fo, where ¥ is an auxiliary vector field being
determined in the following. This reduces the full shallow-water equations (2.30) and
(2.31) to:

/Btu+/i5fc+g/dh:0, /8JL+H/dﬁ:O, Ve, V, (3.1)
c c c Vv Vv
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with the following metric equations to close the system:
h=xh, Gda=xu, u'=7¢. (3.2)

The metric-dependent operator f : u — ¥ (cf. Def. A.4.1) connects the one-form u €
Q'(M) with the corresponding vector proxy ¢ and the Hodge-star operator x (cf. Propo-
sition A.2.1) connects the topological equations.

Analogously to Sect. 2.7 we restrict our investigation to the discrete diagonal Hodge-
star operator (2.55), although other choices are also possible in case of the rotating equa-
tions. By linearity, only the Coriolis term fc izfc remains to be investigated as the other
terms agree with those in Sect. 2.7. We denote the discretized Coriolis term with I(, f).
It will be thoroughly investigated in the following sections. In the notation introduced in
Chapter 2 we can write the semi-discretized equations by

ou+I(@, f)+9Gh=0, oh+ H-D™lg =0, (3.3)

with the discrete Hodge-star operator (2.55) for a Delaunay/Voronoi dual grid,

h= *Oh s ua= *1ua, (34)

where h and h are the discrete 0-form and two-form describing the height and the auxiliary
height fields, respectively. u and u are discrete one-forms to describe the velocity and the
auxiliary velocity fields, respectively. G and D" are the discrete gradient and divergence
operators, respectively, defined in Chapter 2.

3.2.2 The linear Coriolis term and its discretization

In this section we tackle the problem of discretizing the Coriolis term fc igzfc. As shown
in the proof to Theorem 2.3.1 the integrand of the Coriolis term corresponds to the linear
term of Eq. (2.23), i.e. for uf = 7, there follows

(igfo) = fhx ¥ . (3.5)

This equation illustrates how the Coriolis force acts on the velocity field of the fluid. In
case of a rotating frame, in which the Coriolis parameter f # 0, the Coriolis force acts
perpendicularly to the flow field causing this field to be swept over a two-dimensional
manifold called extrusion. We represent in our approach the Coriolis term by means of
extrusion and use the tools of discrete exterior calculus (DEC) [33] to find a discrete
representation.

From (3.5) we can infer that the discretization problem is twofold, i.e. we have to find
a discrete representation of Riemannian lift # and of the interior product iy : QF(M) —
Qk*I(M). However, as both operators are independent form each other, we elaborate how
the operators can be discretized separately, and how they combine finally to the discrete
Coriolis term.

Representation of the interior product: According to Eq. (3.5), the invariant form
allows to interpret the Coriolis term as the contraction of the two-form fo along the
one-dimensional surface ¢ by the vector field ¥. In order to clearly distinguish between
the interior product and the Riemannian lift §, we start with the definition of the interior
product of a general k-form using a general vector field X that is not necessarily connected
via f to the prognostic variable u € QY(M).
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Figure 3.1: Extrusion E¢(S,t) of a surface S by the vector field X (see text).

For a representation of the interior product we choose the concept of extrusion [27, 52],
in particular, we use the definition proposed by Mullen et al. [75]. Let M be an n-
dimensional smooth manifold and X a smooth vector field on the manifold. Let S be
a k-dimensional sub-manifold on M with £ < n. The vector field gives rise to a flow
@ : M xR — M such that ¢(o(S,1),s) = (p(S,s+1)), ¢(5,0) =S, Vs,t € R, which is a
one-parameter group. If S is carried by the flow ¢ for a time ¢, then we denote this sub-
manifold with S¢(t) := ¢(S,t), i.e. the image of S under the mapping . The advection
of S over the time ¢ to the final position S¢(t) is a (k+1)-dimensional sub-manifold called
extrusion E¢(S,t), and written formally as

Eg(S,t)= ) Sg(r). (3.6)

T€[0,t]

One can assign an orientation to £ ¢(S,t) and its boundary OF (cf. [75, 52]). Figure 3.1
illustrates the extrusion of a one-manifold S by a vector field X.

Let w € Q¥ (M) be a (k+1)-form and S a k-dimensional sub-manifold. By the notion
of extrusion, we define the contraction of the (k + 1)-form by the vector field X € X (M),
Le. ig : Q" (M) — QF(M), according to Bossavit [27]:

<w,Ez(5t) >
<igw,S>=lim Bz (51) .
t—0 t

(3.7)

With this definition we find a possibility to represent the interior product on a mesh.

Representation of the extrusion on a mesh: According to Bossavit [27], the extru-
sion E¢(S,t) can be represented as a chain. Recall the definition of a chain in Chapter 2,
where we write for a k-chain ch* over the mesh m for a simplicial complex S¥ :

ch* = Z ags, chfF e CHM(m), o= /Ws ) (3.8)

seSk,

where CH¥(m) is the set of k-chains on the mesh m. The coefficients a; of the cells are
determined by integration of the s-form w?® over the simplex s, i.e. < w,s >:= fs w®. Thus
a, describes the DoF associated to this cell. Following this idea, the extrusion can be
approximated by a weighted sum over all cells ¢ by

E;(S)t) ~ / w (3.9)
X CEZC E4(St)

where C denotes the set of all cells. By the definition of a chain (Eq. (3.8)) the weights
are given by

/ w =< w, Eg(S,t) >, (3.10)
Eg(St)
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where w® is a two-form associated to cell ¢, thus w = )  ,w. To guarantee that
Eq. (3.9) properly represents the extruded manifold £ ¢(S,t) by weighted face elements,
the interpolation function w® has to be a partition of unity [27], i.e. > .o c><w(z) =1,
which is a projection operator to obtain a representation of any surface S in the basis
of the faces ¢ of the mesh. This is similar to the representation of a scalar value by hat
functions based on the partition of unity 3 .\ n >< w"(x) = 1 for the nodes n of a
mesh.

Whitney interpolation functions have the property of partition of unity [27]. Based on
the barycentric coordinates A, these functions are linear interpolations suitable for triangles
(Fig. 3.3 right) similar to the linear RTO0 interpolation functions (Fig. 3.3 left). Whitney
interpolation functions allow to approximate differential k-forms by discrete linear k-forms.
For a tetrahedral mesh in n-dimensions, the Whitney forms can be presented for the nodes
n, edges e and cells ¢ in vector proxy form by:

W=\, (3.11)
W = NV — Am VA (3.12)
W = 2NV A X Vb 4 A Vs X VA + AV X V) - (3.13)

Also higher dimensional Whitney k-forms (k < n) exist (cf. [26, 53]). For all simplices,
the Whitney interpolation functions provide a partition of unity, i.e. Y, k >< wh(z) =1,
as required for Eq. (3.9).

In two-dimensions, there is w® = £1, where the orientation of every face has to be taken
into account (cf. Chapter 2). Therefore, the partition of unity reduces to the properties
fc, W€ = ¢ o1 if ¢ + 0 = ¢,c1,c0 € ¢, then fq w + fCQ w® = 1. This property will be
important when we represent the extrusion on the underlying mesh in Sect. 3.3.2.

According to Eq. (3.10), the weights of the extrusion represented as chain in Eq. (3.9)
are determined by the projection of the extrusion onto the underlying cells c¢. Let us
assume that the one-dimensional manifold S can be approximated by S ~ )" e. Then,
Eq. (3.7) reduces by linearity to the sum of cell contributions along e to

<w, Eg(et) >
t—0 t .

(3.14)

Given a vector field X and using the Whitney interpolation function w® as approximation
of the two-form w, Eq. (3.14) allows for a cell-wise representation of the interior product
by setting the time to a finite value, for instance ¢ = 1. This, in turn, enables us to
represent Eq. (3.14) by a projection of the extrusion onto the mesh, which corresponds to
a representation as chain according to Eq. (3.10).

Under the assumption that the velocity field X is given and with a representation of
the extrusion on the mesh — either by the representation in Sect. 3.3.2 or following Bossavit
[27] — the interior product can be evaluated. The next step is to look whether a suitable
discrete Riemannian lift § exists that is required to evaluate the Coriolis term of Eq. (3.5)
under the condition uf = 7.

Representation of the Riemannian lift on staggered C-grids: The invariant form
of the fluid equations (3.1) and (3.2) requires to connect the one-form u that describes the
velocity of the fluid with its corresponding vector field ¥ uniquely by the Riemannian lift
f. When defining an inner product <, > the unique relation between u and ¥ can easily
be found in the continuous case with § : u =< ¥,- >— ¥ (cf. Appendix A).

In the discrete case a point-wise definition of § is possible, if there is a point-wise
definition of the inner product available, and, in addition, if the velocity components are
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Figure 3.2: Continuity properties of the extrusion caused by a smooth RT0 reconstructed
velocity field for a triangular (left) and a hexagonal C-grid scheme (right).

collocated at these points, as in the case of A-grids. Then, there is a unique relation
between the components u;,u, of the one-form u and the velocity field ¥/, which in turn
allows to evaluate the Coriolis term at this points according to Eq. (3.5).

In the example elaborated in Chapter 2, the choices for the primal and dual grids and
the corresponding Hodge-star operator resulted in a discretization based on the triangular
and hexagonal C-grid staggering. In case of staggered C-grids the velocity components
are positioned at the cell edges and not collocated at some grid points. This does not
allow for a point-wise definition of the § operator because there exist no points on the grid
where both vector components are located. Using vector reconstructions, for instance, the
Raviart-Thomas interpolation [84] or the Whitney interpolation [26], one may reconstruct
at every point the second vector component to obtain the full velocity field.

The pointwise and the full velocity fields allow to define a unique f operator in order
to associate the interpolated velocity field ¢ with the corresponding linear discrete form
u. Moreover, it allows to evaluate the Coriolis term of Eq. (3.5) without employing the
definition of extrusion in Eq. (3.14). However, we explain on the basis of the definition of
the interior product of Eq. (3.14) why such an approach can fail in case of a hexagonal
model

Continuity property of the extrusion: The extrusion of an edge by a vector field
X generates an area that has to be projected onto the underlying mesh. The extrusion
E¢(S,t) caused by a vector field X have to be smooth, i.e. small changes in the velocity
field in all directions must not lead to jumps of the extruded manifold. This can only
be guaranteed if all velocity components of those edges that are connected via the ver-
tex points to the extruded edge e contribute to the extrusion and finally to the vector
reconstruction.

Figure 3.2 illustrates two different examples of the extrusion by adjacent velocities. The
RTO vector reconstruction leads to a smooth linear vector field within the two triangles
adjacent to triangle edge e (indicated in light gray). In case of triangular schemes (left), the
normal velocity components of the triangles causes the hexagonal edge e?"?! to be extruded.
The smooth velocity field causes a smooth extrusion of e?"@! (dark gray) if it stays inside the
triangles. However, in case of the hexagonal scheme (right) where the tangential velocity
components of the triangular edges causes the extrusion of e, discontinuities occur if the
extrusion lies outside the two triangles with the smooth RTO0 vector field, because the RT0
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Figure 3.3: Linear Raviart-Thomas (left) and Whitney interpolation function of Eq. (3.12)
(right) — shown only for one of the three triangle edges. At the midpoint of edges the other
two interpolation function of the adjacent edges are zero by construction.

reconstruction does not consider all velocity components from the triangles adjacent to
the vertices of e.

In the literature several approaches that are based on the RT0 functions for the tangen-
tial vector reconstruction of triangular schemes have been investigated (e.g. in [18, 44]). In
the following, we use a method for triangular schemes proposed by Ham et al. [46], but for
normal vector reconstruction of a hexagonal C-grid. This transfer is based on results by
Perot et al. [79], who have compared several low-order face and edge elements. However,
on the basis of the discussion about continuity of the extruded manifold shown in Fig. 3.2,
we expect that using the RTO0 vector reconstruction in case of hexagonal C-grids may lead
to problems.

Therefore, we proceed as following. First, we introduce RT0 vector reconstructions
for both triangular and hexagonal models and we study consistency, stability and the
representation of geostrophic balance. Then, in Sect. 3.3, we extend the stencil for the
normal vector reconstruction in the hexagonal case in order to avoid the discontinuities of
the extrusion.

3.2.3 Consistent RTO0 vector reconstruction on triangles

We propose a normal vector reconstruction scheme on the basis of the RT0 basis functions,
where we use results of Ham et al. [46] for tangential RTO vector reconstruction and
of Perot et al. [79]. In the following, we denote this method with normal RTO vector
reconstruction.

General linear interpolation fields for triangles: Mainly two linear interpolation
fields that provide full velocity information at every triangle point T are used for triangles.
The lowest order Raviart-Thomas elements (RT0) [79, 84] are used to uniquely reconstruct
the full velocity field by three basis functions that are weighted by the normal velocity
values v1°, v2°, vi°. The velocity at location ¥ is given by

€;?7€e; ) Ve

T — Tejs

i) =Y 0¥, , ¥, = AL (3.15)
J

where IV, is the number of element sides. \ffe]. are the basis functions, with A. for cell area,
le; for the length of edge e; and Z, s for the position of the node s opposite to edge e;.
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By definition of the basis functions, the normal velocity components between neighboring
triangles are continuous. In Fig. 3.3 (left), one of the three weighted linear basis functions
is shown.

Another linear interpolation is based on the Whitney edge-element of Eq. (3.12) (cf.
[25, 79]). Analogously to the RT0 vector reconstruction, the full velocity field is recon-
structed by the linear combination of three basis functions &j;;, the Whitney edge-elements
(shown in Fig. 3.3 (right)), weighted by the tangential velocity values vfjg, vﬁ, v,tﬁ . We find
the velocity at location Z by

iU(7) = vi2@7 + o 4 uBaM G = M@V - N (@) VA (3.16)

Let pji = pr — pj and ﬁﬁ, be the orthogonal vector to pj, generated by simply rotating

=1

Djk by 7/2, then we can represent V; = % Here, the tangential velocity components
ij

between neighboring triangles are continuous.

Normal RTO0 vector reconstruction: We propose a normal RT0 vector reconstruction
for hexagonal schemes that is based on the tangential RT0 vector reconstruction suggested
by Ham et al. [46] for triangular models. On the basis of the results of Perot et al. [78, 79]
we transfer the tangential into a normal vector reconstruction. It is suitable to reconstruct
the full velocity at the triangles’ circumcenters.

Investigating first-order edge-elements (Whitney edge-elements), Perot et al. [79] pro-
posed a vector reconstruction scheme that is based on Stokes theorem — analogously to
reconstruction methods for face elements based on Gauss theorem. Assuming constant
vorticity in every cell, constant tangential velocity along the triangle edges e with length
l. and a linear velocity field, while using the tangential velocity components u, := 1/l fe U
(cf. Eq. (2.62)), the full velocity field at the circumcenters cc can be determined by the
linear interpolation formula

Ne
=3+ (fc - fc> Tel, | (3.17)
j=1

where Z¢¢ denotes the circumcenter of a triangle c, fgf the edges’ midpoints and where
4 indicates counterclockwise integration around the edges with respect to the tangential
vector t,. We put the origin at the point cc which allows to substitute the position vectors
by e Azt = (T — 75°), where 7, is the normal unit vector. We find
e AL (g AL, fie, + Tie, Azl e, +aekmg§zekﬁek) . (3.18)
C

This equation agrees with the reconstruction method for triangular schemes proposed
by Ham et al. [46] to obtain the full velocity component at cc out of normal velocity
components. Therefore, we proceed for the next steps according to their derivations.

To find the reconstructed normal values we project the full vector %.° onto the normal
direction of the corresponding edges, i.e. for edge e; it follows

U, Argle, . U Az, 2T (3.19)

no
' tei A €L €e;
C

uei = T?’Le
and analogous equations for edges e; and ej. For Whitney edge-elements only the tangen-
tial values are continuous, whereas the normal components are in general not continuous

(vise-versa for RT0 elements). Thus, some averaging is necessary:

ul® = 7 uglla + e uells (3.20)



56 Consistent vector reconstruction scheme based on exterior calculus

where 731_,721_ denote the weights and where a,b denote the triangles adjacent to edge e;.
These weights have to obey certain conditions that we will investigate in the following.

On the basis of Eq. (3.19) with the weights of Eq. (3.20) we have introduced a vector
reconstruction for hexagonal C-grid schemes. We will denote this reconstruction as normal
RTO vector reconstruction. The similarity with the tangential RT0 reconstruction of Ham
et al. [46] suggests to proceed analogously to their derivation of the weights for triangular
schemes.

Stability conditions on the weights: The weights 72,72 of Eq. (3.20) have to be
such that the Coriolis term does not contribute to the kinetic energy. In order to find
the corresponding constraint on these weights we investigate analogously to Sect. 2.8.3
the properties of the system matrix S, which consists of the linear part A investigated in
Chapter 2 and of the Coriolis part F to be investigated in the following (see more about
this method in Espelid et al. [37] and Ham et al. [46]).

Let A be the system matrix of Eq. (2.88) that is similar to a skew-symmetric matrix
(sign-skew-symmetric), i.e. by applying the scaling matrix D of Eq. (2.92) on the matrix
A, the latter becomes skew-symmetric. The fact that A fulfills these properties guarantees
that there are only purely imaginary eigenvalues without growing or descending energy
modes leading to a stable system. The scaling matrix introduced in Eq. (2.92) is

D-— [ 13? DO} , (3.21)

with (Dp)ii = Hde,le, and (D;)ii = gA,,, with g for gravity, H for the background fluid
depth, [, for the triangular and d. for the hexagonal edge length and A, for the size of
the hexagonal cell a. Hereby, the size of D is equal to the size of A. The following matrix
F* multiplied with f for cell a is a sub-matrix of the Coriolis matrix F:

All?g.le N — A{L’e le N —
0 ’Ygi A]a J Te; - te; ’yez ’Z knek t
Az le; g Azl le;, _, N
e S AT 0 o Sk E | (3.22)
Axg le, - Axg le; N
’ng A; nei . tek 'ng Aa = nej tek 0
with Az := Ax¢,. To obtain a skew symmetric matrix DF, the following equations
have to hold
Axl .. R Az, o
Hde,le,ve, ZJ ! Te; “te; = —Hdejlejygj ffl < Te; * te; (3.23)
a a
Ax? 1 - Azl . o
H de,le,vel%e’“nek ey = —He, Lo, 76— “ e, to, (3.24)
a a
Azlle, . - Azl le, . -
Hde le, V2, A‘fl ey Ty, = —Hdejlejfygj%eknek o, (3.25)
a a
Hereby, the identities 7., -f;j = —ﬁe]. f;l and similar ones for the other pairs e;, e, and
ej, e hold. One possibility to guarantee equality for all equations is to take the weights
Az
Yo, = — (3.26)

de,

and analogous weights for e; and ey, where we assume a constant bottom topography H
(cf. [46, 62] for varying H). With Az? + Azb = d.,, the weights sum up to one, i.e.

b
Ve, + Wle’i = dx dtei = 1, which is also fulfilled for the weights of edges e; and ey.
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The upper block of the scaling matrix, (D,); = Hde,l,,, coincides with the upper
block matrix of the triangular scheme of Ham et al. [46] leading to the fact that the
therein introduced tangential RT0 vector reconstruction equals our normal RT0 vector
reconstruction of Eq. (3.19). Both schemes should thus show similar properties concerning
consistency and stability.

In the following section we numerically test consistency and stability for both the
tangential RT0 reconstruction for triangular schemes and the normal RTO0 vector recon-
struction for hexagonal schemes. Moreover, we study whether these schemes maintain
geostrophic balance on both uniform and non-uniform grids. We expect for both schemes
similar behavior on stability and consistency. However, when using the normal RT0 vector
reconstruction of Eq. (3.19) in the hexagonal scheme, we expect problems to arise based
on the discontinuous extrusion (cf. discussion to Fig. 3.2).

3.2.4 Numerical results of the normal RT0 vector reconstruction

We investigate in this section convergence — consistency and stability — and geostrophic
balance of the discrete scheme consisting of the linear parts derived in Chapter 2 and of
the vector reconstruction of Eq. (3.19). For the linear parts, such an investigation has
already been performed in Chapter 2. Therefore, we focus here on a comparison between
the normal and the tangential RT0 vector reconstructions.

Matrix representation: Let be U, the vector of all edge velocities u,. and hy the vector
of all surface elevations h,. We use the linear parts of Eq. (2.88) and extend it by the linear
Coriolis term including the normal RT0 vector reconstruction of Eq. (3.19) to obtain a
discrete representation of the linear rotating shallow-water equations (3.3) in matrix form.
According to Eq. (2.88), the system matrix for the linear non-rotating equations is given

by
A:[g ﬂ (3.27)

with G := £G of Eq. (2.62) and D := Hd" Dl of Eq. (2.66). The semi-discrete form of
the rotatlng linear shallow-water equatlons in matrix formulation is given by

0 | de F G Ue

sl =10 5] ] 629
with F' = fF of Eq. (3.22). We denote this matrix as extended system matrix A + F, in
which the Coriolis matrix F is extended with zeros to match the dimension of A.

According to Ham et al. [46], the tangential RTO vector reconstruction used for the

triangular model is consistent and stable for uniform and non-uniform grids. In the follow-
ing we investigate whether this is also valid for the hexagonal C-grid discretization of the
rotating linear shallow-water equations using the normal RT0 vector reconstruction (3.19)
for the Coriolis term and the linear parts derived in Section 2.7.

Consistency: In the following we test consistency for this scheme with system matrix
A + F. With respect to Eq. (3.28) the semi-discrete momentum equation per edge e =
{v1,v9} is given by
_ hy, — h
Oftle + f - u™ + g% =0, (3.29)
e

with ulo = ReCRTOIHn(ﬂe), where RecP10,_,,. denotes the normal RT0 vector reconstruc-
tion of (3.19) and (3.20) with weights (3.26). To show consistency of the momentum
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Figure 3.4: Truncation errors in the Li, Lo, Loo-norm of the normal RT0 vector recon-
struction Rec®T%; ., for uniform grids (solid) and for non-uniform grids (dashed lines)
similar to the meshes in Fig. 3.13.

equation (3.29), it is sufficient by linearity to show consistency for ReclTY,_, . because for
the remainder parts this has already been studied in Sect. 2.8.

Analogously to Sect. 2.8.2, we investigate whether the vector reconstruction RecRT0,
is consistent and converges with increasing resolution toward the true solution. We take
the analytic vector field

- op 9B
v-aVﬂ-a(ax,ay> , (3.30)
with the analytic values given in Eqn. (2.82) and (2.83) and the corresponding derivations.
For the numerical calculation, we project the analytic vector ¢’ onto the tangential direction
t. of edge e, i.e. v = ¥ -t,. To obtain the normal vector coefficient v2© to edge e we
use the vector reconstruction, i.e. vJ° = ReCRTOt_m(vgg). The numerically reconstructed
vector TR = o8 .1, +01°. i, is then compared to the analytic vector 7], evaluated at edge
midpoints. With respect to the error measures Ly, Lo, Lo, defined in (2.81), the truncation
error

TR = G — 4, (3.31)

gives information about the consistency properties of the vector reconstruction method.

Figure 3.4 shows the consistency property of Rec®T0,_,, with respect to the error norms
L1, Ly, Ly for uniform and non-uniform grids similar to the meshes shown in Fig. 3.13.
On uniform grids the normal RT0 vector reconstruction scheme has second order accuracy
in all three norms. On non-uniform grids, the vector reconstruction is almost second order
accurate for lower numbers of grid cells. However, with increasing resolution the order of
convergence decreases, in particular in the L.,-norm. This may lie in the fact that our
grid adaptation process, presented in Chapter 4, constructs grids in which some grid cells
are possibly strongly stretched. The problem of deformed cells increases with resolution,
which may lead to the decrease in accuracy (cf. Chapter 4).

Stability: In order to investigate stability we analyze the properties of the system matrix
A + F of Eq. (3.28) analogously to Sect. 2.8.3. Let z be an eigenvector of A + F with
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Figure 3.5: Eigenvalues A of the propagation matrix A + F including the linear Coriolis
term for 322 grid cells on a uniform grid (left) and on a non-uniform grid (right) shown in
Fig. 3.13.

eigenvalue A, i.e. (A + F)z = Az. With initial values s(0) = z, the solutions to the linear
rotating equations are

s(t) = ez . (3.32)

Therefore, only purely imaginary eigenvalues guarantee a stable model as only those lead
to solutions s(t) that neither grow nor decrease with time. Calculating the eigenvalues by
using the MATLAB eigenvalue function delivers the required information.

Figure 3.5 shows the eigenvalues of A + F for uniform and non-uniform grids. As we
can infer from this figure, the extended system with A + F has solutions s(t) with purely
imaginary eigenvalues A with real parts real\ < 1072 on both uniform and non-uniform
grids. The system have thus no growing nor decreasing solutions and is therefore stable.

Concerning consistency (Fig. 3.4) and stability (Fig. 3.5), we can conclude for the
system A + F that the normal RT0 vector reconstruction (3.19) is consistent and leads to
a stable model, in agreement to the tangential RT0 vector reconstruction for the triangular
model of Ham et al. [46].

Tests on geostrophic balance: The Coriolis term influences linearly the solutions of
the shallow-water equations as we infer from Eq. (3.1). In the following, we perform test
cases where an adequate representation of the Coriolis term is expected to be essential,
namely in vorticity dominated scenarios. On such scenarios, we study for uniform grids,
whether the hexagonal/triangular C-grid scheme with normal/tangential RT0 vector re-
construction properly represents the geostrophic balance.

We use the version of a triangular shallow-water model introduced in Giorgetta et
al. [44] that agrees with the model of Ham et al. [46] on a uniform grid including the
tangential RT0 vector reconstruction. From the results of Ham and colleagues and our
results introduced above, both reconstructions provide consistent vector reconstructions
(Fig. 3.4) and stable schemes (Fig. 3.5) for uniform and non-uniform grids.

To study whether the schemes maintain the geostrophic balance, we use a test case
introduced in Giorgetta et al. [44]. We initialize the height distribution by

_ 4o oy

h(z,y,0) = Hy — H' |~ 2@ 017 4 o3 (057405
s Y LxLy ,

(3.33)
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Figure 3.6: Initial surface elevation [m] (left) and initial potential vorticity distribution
[1/days/km)] (right) for a uniform grid with 322 cells on a domain with double periodic
boundaries.

with

L, . T L, . T
x,1,2 = - S1I (L_(x - xc1,2)> ) yi,Z =t Sin <L_(y - yc1,2)> . (3'34)

TO g T

The centers of the vortices and o are given by

1 1 3
Ty = (_ - O)an Leyg = (_ + O)an 0p = —Lg,
2 2 40 3.35
1 1 3 (3.35)
Yoy = (5 —0)Ly, Yo, = (5 +o)L,, oy,= 4—0Ly.

Analogously to Giorgetta et al. [44] we take the height distribution hg = H + dhy over
a domain of 5000km x 4330km with double periodic boundaries and the parameters of
0=0.1 and H' = 75m. We initialize the velocity distribution for the hexagonal model by
imposing geostrophic balance:

§= = VR S E(0) = —Larad”, (heo(0)) (3.36)
where g is the gravity and f is the Coriolis parameter. h.. is the height field sampled at the
triangular cell centers cc, grad”, is the gradient operator of (2.69) and vi8 the prognostic
tangential velocity values. Figure 3.6 illustrates the initial surface elevation (left) and

the initial vorticity distribution (right) on a grid with 322 cells, in which the potential

vorticity ¢ is determined by the tangential velocities, i.e. ¢ =V x U dise., Qv = curlcc(vgg).

We perform low resolution runs in order to test the maintaining of geostrophic balance.
As our experiments have shown, low resolution favors the growth of spurious geostrophic
modes, if present.

In Fig. 3.7 we compare the ability of the different schemes to maintain the geostrophic
balance. In principle, both the height distribution and the initially balanced vorticity
distribution should not change during the integration time. In Fig. 3.7 A and B we
present the height and vorticity distribution after 10 days for the triangular and in C and
D for the hexagonal model on a uniform grid with 322 vertices. The triangular model
maintains the geostrophic balance. For the hexagonal version, using the normal RTO
vector reconstruction of Eq. (3.19), appears a hexagonal pattern that spoils the vortex
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distribution. The balance is thus not maintained as some spurious geostrophic modes
emerge (see discussion below). The negative surface elevation decreases significantly for
both schemes. This is caused by the linearized continuity equation, as we conclude from
the fact that the use of the nonlinear continuity equation avoids such decrease (cf. the
height field after an integration of 100 days using the nonlinear equations in Fig. 3.14).
In order to understand the occurrence of the spurious geostrophic modes, we compare in
the following the representation of the wave dispersion relation for both triangular and
hexagonal C-grids.

Wave representation and dispersion relation: Let us regard the linear rotating
shallow-water equations (3.1). Written in vector calculus, the equations take the form:

T+ fkxT+gVh=0, 8h+HV-7=0, (3.37)

where ¥ denotes the fluid velocity, h the surface elevation with background height H, g the
gravity and f the Coriolis parameter. According to an analysis of LeRoux et al. [65] with
the assumption of wave solutions (u,v, h) = (ug, vo, ho)e*** %) — subindex 0 indicates the
initial conditions, k£ and [ are wave numbers along the Cartesian coordinates x and y —
inserted into Eq. (3.37), one obtains the following frequencies in the continuous case:

Vest =0, vy = £/ f2+ gH (K2 +12) , (3.38)

where vgg relates to the geostrophic and vy, relates to the two branches of the gravity-
inertia wave solutions.

Among others, Nickovic et al. [76] investigated the discrete wave frequencies of a hexag-
onal C-grid model that coincides with our scheme. The authors found that the gravity-
inertia waves are well presented. However, the discrete representation of the geostrophic
waves have non-zero frequencies (cf. [76, 101]) that are called spurious geostrophic modes.
These frequencies develop in time and spoils the geostrophic balance of Fig. 3.7 C and D.

In the triangular case, the low-order RT0 vector reconstruction introduced in Eq. (3.19)
has been used. In LeRoux et al. [65, 66], the wave spectra of several finite element pairs
for the shallow-water equations have been studied. Among those, the finite element pair
(RT0-PO0) that corresponds to the triangular model used for our experiments. The authors
found for this pair that the geostrophic waves frequencies are zero, i.e. v, = 0, leading
to the stationarity of the geostrophic modes. In this case, the geostrophic balance is
adequately satisfied, cf. Fig. 3.7 A and B.

The triangular C-grid discretization of the shallow-water equations thus properly rep-
resent the geostrophic modes. However, as theoretically elaborated by Gassmann [43],
it supports a checkerboard pattern in the divergence field. Numerical experiments per-
formed therein or by Wan [112] for the triangular C-grid discretization of the shallow-water
equations confirm this analysis.

Discussion of the numerical results: Both normal and tangential RT0 vector re-
construction schemes give consistent and stable models on uniform grids, but the models
differ strongly concerning geostrophic balance. In particular, the hexagonal scheme has
non-stationary geostrophic wave solutions v # 0 leading to spurious geostrophic modes
that destroy the geostrophic balance. In contrast, the triangular model with geostrophic
modes with zero frequency maintains the geostrophic balance.

As discussed in Section 3.2.2 the discrete representations of the extrusion on the trian-
gular and hexagonal models differ. In case of triangular models, the continuous extrusion
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Figure 3.7: Surface elevation [m] (left) and vorticity distribution [1/days/km] (right) after
a model integration of 10 days for the triangular model (A and B) with tangential RT0
vector reconstruction and for the hexagonal model (C and D) with normal RTO vector
reconstruction. In the latter case spurious geostrophic modes (visible as hexagonal pattern)
occur. Please notice the modified color bars in C and D.

(Fig. 3.2 left) is caused by the hexagonal edges equa being swept over an area, where
the full RTO0 reconstructed vector field is smooth. In contrast, using the same smooth
RTO vector field, the extruded triangular edge e may partly lie outside the area of the
two triangles defining the RTO vector field. This may lead to jumps in the extrusion
(Fig. 3.2 right). A study on whether a theoretically solid connection between a proper
wave representation and the continuity properties of extrusion can be established has to
be postponed, however, to future work.

The question arises whether we can avoid the development of the spurious modes
by extending the stencil for the vector reconstruction such that we obtain a smooth ex-
trusion for the triangular edge e. Examples in literature, e.g. Nickovic et al. [76] and
Thuburn et al. [101], reveal that an extended stencil for normal vector reconstruction with
equal weights, for instance in Perot [78] and Wang et al. [113], can also lead to spurious
geostrophic modes.

To obtain a continuous value for the extrusion of the vertices of edge e in any direction
that is consistent with the geometrical properties of extrusion, all connected velocities
have to be taken into account. Thus, the normal velocity component has to be a weighted
sum of all tangential velocity components of edges ¢ adjacent to the vertices of edge e.
According to the idea of extrusion, the weights represent the influence of the tangential
velocity component to contribute to the extrusion of edge e. In the following section we
derive a normal vector reconstruction under the conditions of continuous extrusion.
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3.3 Normal vector reconstruction based on extrusion

In this section we develop a method for normal vector reconstruction based on the idea of
representing the Coriolis term by means of extrusion, which puts geometrical constraints
on the derivation of the normal velocity components. The reconstructed velocity field
will lead to a smooth extrusion of the triangular edges in any direction. The extrusion is
hereby caused by a smooth velocity field positioned at the vertices of the triangular edges
e. This is similar to the case of the tangential RT0 reconstruction, in which a smooth
velocity field at the circumcenters causes a smooth extrusion of the hexagonal edges ed"?!
(cf. Fig. 3.2 left).

We proceed as follows. First, we explain how a nodal velocity field can be represented
on a general mesh as a linear one-chain. On the basis of such one-chain, the normal vector
reconstruction can be represented as a weighted sum, where the weights are determined
by the ability of every single edge to contribute to the total extrusion.

3.3.1 Nodal vector representation

In order to represent a known vector field #(x), where = denotes the position vector,
on an underlying mesh, one can use the concept of chains, as introduced in Bossavit [27].
Positioning the discrete vector field at the vertices by v, and using barycentric coordinates
for linear interpolation, one can represent the linear vector field by

U(z) ~ Y AM(@)va (3.39)

neN

where \"(z) are the barycentric coordinates associated to the nodes n with support within
the corresponding triangles. Using the nodal velocity components in Cartesian coordinates
it is possible to represent those also as edge values, i.e. the Cartesian coordinates associated
to the basis (€, €,) are projected to the edges adjacent to node n. We denote those values
with v]. To represent the vector, two edges that are not parallel are enough. However, in
order to present any vector v and —/, the information of the projection of ¢ on all edges
is required (cf. Bossavit [28]). Knowing v/’e, one is able to represent vy in terms of the
edges e by

vam > GHvle, (3.40)

where G is the incident matrix of Chapter 2 and e = [, - t. stands for the edge vector
with length [, and unit vector t, tangent to e. Combining this two equations, we find
an expression for the vector-valued velocity field as a position dependent, affine in =,
one-chain by

i(x)~ Y > A(x)Grupe . (3.41)

neN e

Figure 3.8 shows how the nodal velocity values are interpolated by barycentric coordinates
to obtain a continuous vector field, affine in z.

We use the concept of extrusion, to our best knowledge for the first time here, in
order to determine the weights of a vector reconstruction. Studies in literature [27, 52,
75] use this concepts to represent known vector fields and calculate the influence on the
acceleration along the triangle edges. We differ from such approaches in the sense that
the values v’ are unknown in our study.
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Figure 3.8: Vector representation with nodal values o:°¢ at the vertex points n on a

triangular mesh with barycentric coordinates. The edge values v} for the linear one-chain
are indicated with bold triangular edges.

General nodal vector reconstructions: Based on the vector representation for a
linear affine vector field on a mesh of Eqn. (3.40) and (3.41), we derive the following
vector reconstruction. We substitute in Eq. (3.41) the known values for v} (2 DoF) with
the weighted tangential velocity components vff of all edges €’ adjacent to node n, i.e.

. t
gRec ~ E Glweev e, (3.42)
e'e€

where the properties of the weights we. are discussed further below. Hence, the affine
one-chain with weights is given by

B(a)~ ) ) A(2)Glhweevge . (3.43)

neN e'c&

By this approach we do not recover the values for v’ of Eq. (3.41). Instead, we aim to
reconstruct the normal velocity value at edge midpoint e that is consistent with extrusion.
Clearly, the vector reconstruction of Eq. (3.43) is not unique. Different weights wee can
be used to find the nodal reconstructed full vector 7/, (as, for instance, in Wang et al.
[113] and Perot et al. [78]). However, such reconstruction may lead to a scheme that
shows spurious geostrophic modes (cf. Thuburn [101]).

We have to specify in more detail the requirements the reconstruction scheme should
satisfy. When considering Eq. (3.7) we can derive additional constraints, for instance,
that the weights should properly represent the extrusion of a manifold S and thus the
acceleration along S.

3.3.2 Determining the weights by the extrusion of manifolds

In this section we introduce our idea to determine weights wee for normal vector recon-
struction by the concept of extrusion, i.e. the sought-after vector field is an affine in x
one-chain that acts on k-dimensional simplices to extrude these to (k + 1)-dimensional
simplices. Therefore, we first represent the extrusion by a weighted linear combination of
contributions of edges €' adjacent to edge e to the total extrusion of e that leads to an
acceleration of the fluid along e. Then, we show that the weights w,.s that determine the
contributions of the different edges to the total extrusion coincide with the weights of our
ansatz for a normal vector reconstruction.

The linear discrete interior product defined by extrusion

We use the concept of extrusion of Eq. (3.7) to determine the influence of different edges
¢ on the extrusion and thus to the Coriolis acceleration along edge e. For every single
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edge e adjacent to node n, we define the interior product via the extrusion of Eq. (3.14)

by

I(e )\nel C) — lim < wC’E)\ne/(e7t) >

t—0 t ' (344)

with I(e, \"¢/,¢) = 0 if e = €/, e Nde’ = & or dcNe = &, where w® is the Whitney
interpolation function of Eq. (3.13). Hereby, the barycentric coordinate A\"(x) linearly
interpolates between the nodes of e to obtain a linear vector field X = A" (z)e’ that
extrudes e (cf. Fig. 3.9).

The interior product of Eq. (3.44) is linear in all three arguments. This is based on
the definition of the extrusion — a manifold that is spanned by the linear extrusion of a
surface S during the time ¢ and by its projection to the underlying mesh — and on the
fact that w® is continuous on the domain. For discontinuous forms w€®, the linearity in
¢/ is in general not fulfilled (cf. Heumann and Hiptmair [52]). The Coriolis two-form
fo = fdx Ady € Q*(M) has constant Coriolis parameter f and its discrete representation
using Whitney-forms w® is continuous on the entire domain and given by fo = > f fuwl.

The linear interior product: To determine the weights for the vector reconstruction,
the weights will be determined by the ability of every single edge to contribute to the total
extrusion of the edge e, i.e. analogously to the linear ansatz of Eq. (3.43) we set for the
interior product for n € de N Oe’:

n /! n

13, fo)e = Cnl I(e, Y A"GLo%e fo) = Y %vg& f, (3.45)
norm 77/7€l7C 77/7€l,C norm

which corresponds to the Coriolis term [ izfc ~ I(7,fc)e of Eq. (3.3). In Eq. (3.45), all
adjacent edges to node n can contribute to the extrusion of the manifold. To obtain a
consistent formulation, the sum of extrusions should never be larger than over the area
caused by the vector field itself (cf. Fig. 3.9). To guarantee this, we normalize every
edges’ contribution to the total extrusion by a constant ¢ ... We define the weights for
the contribution of a single edge to the entire extrusion by

_ I(e, A€, )G,

n
cnorm

Wi

, (3.46)

with the normalizing constant

Qom = Y e, X" c), (3.47)

elvcleeac

where we sum over all edges € and over the cells ¢ adjacent to edge e, i.e ¢|ecge-

Representation of the interior product on the mesh: In order to derive the weights
of Eq. (3.46), a concrete representation of the definition of the interior product (3.44) on
the mesh is required. Let us assume that ¢ is such that during t = 1 the edge ey is
extruded by ey such that it coincides with the cell a, thus @ = I, /t - t.,. Then, node n = 1
is advected during t = 1 along ey by the length #(z) -t = l, /t-tu, -t = ey with t,, = e /le,.
Therefore, there is ¥(z)|., = €2 and we find for the linear vector field within cell a

(x)]a = AL(z)es . (3.48)
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€5

Figure 3.9: Contribution of every edge e;,i = 2, ..., 6, adjacent to node n = 1, to the total
extrusion caused by the vector field ¥(z)|, ~ Al(x)ey within triangle a that acts on e
(with T(x)]p ~ A}(z)eg within triangle b).

Here, \!(x) is the barycentric coordinate of triangle a associated to vertex n = 1. Fig-
ure 3.9 illustrates this vector field. For the barycentric coordinate follows AL(z(n = 1)) = 1
and A\l (z(n = 2)) = 0. Therefore, ¥/()|, is a linear vector field within the triangle.

Now the question arises, how strong every single tangential velocity component 02;5
associated to edge e; can contribute to the extrusion of e; caused by the prescribed velocity
field of Eq. (3.48) during the time t = 1. e; denotes all edges adjacent to node n = 1,
except edge e;. The relative orientation and the direction of the edges e; with respect to
edge e; lead to different contributions to the extrusion of e;. To determine the weights
We,e; Dy the pure geometrical influence of edge e; on the extrusion of e, we set the absolute
velocity values of edge e; equal to the absolute value of Eq. (3.48), i.e. [v¥| = |#(z)|a].
Thus, during the time ¢t = 1, v&‘f extrudes node n = 1 the distance l., = [.,, whereas the
remaining edges should not contribute to the extrusion, i.e v;. = 0Vj # i. Consequently,
the velocity 02;5 of edge e; that extrudes e; can be written as

v (2) = Aa(@)er = Ag(2)le,fe (3.49)

7 )

where [, = l., has to be fulfilled. Thus, the right hand side of Eq. (3.45) is reduced to
one term, i.e.

I(e, A (w)ei, a) G,

L(¥(2)]a, fc)e = “f. (3.50)

C:ILOI'm
With the definition of the interior product I(,, ) via extrusion and by the projection of the
extrusion on the underlying mesh, cf. Eq. (3.44), we see different influences of different
edges ;. Taking i = 2, for instance, the extruded manifold v (z) equals those of ()|,
which leads to I(,,) = 1. However, for i« = 3 the extruded manifold projected on the
underlying mesh leads to a weight with I(,,) < 1, but also in this case the normalizing
constant guarantees the equality in Eq. (3.50).

In the following, we represent the values I(e, \"¢’, ¢) of Eq. (3.44) on a two-dimensional
triangular mesh more quantitatively. We have to take two possible cases into consideration:

1. With the coincident matrices' of Chapter 2 and for n € de N d¢’ there is:

i) for e, ¢’ € dc: 1(e,\"¢,c) = RS (3.51)
ii) for all ¢ #c: I(e, A", ) =0. (3.52)

'Tn Chapter 2 we denoted cells with f instead of ¢ to be consistent with literature (cf. Bossavit [25]).
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The fact that the extrusion of e by €' for t = 1 is exactly ¢ leads to i) and from
< we, ¢ >=0 follows ii).

2. For n € 9e N de’, e € dc and €’ ¢ dc, there is:
(e, "¢/, ¢) = ()RS | (3.53)

where y is the intersection point of the edge opposite to node n of the triangle spanned
by e and ¢’ with one edge of the boundary dc. There follows A\*~¢(y) = A\*(y) when
defining A = X' 4+ )\ for edge e = {i,j} and A° = X' + X + \* for cell ¢ = {i, ], k}
(cf. Bossavit [25, 27]). This definition takes the orientation of the tangential vector
t. of every extruding edge ¢/ with respect to the normal direction 7, of the extruded
edge e into account.

With the representation of I(e, €', ¢) on the mesh we can calculate the weights wees in
Eq. (3.46). According to the definition of the interior product in Eq. (3.45), these weights
determine how strong every single edge contributes by pure geometrical factors to the
acceleration along edge e.

Connection between extrusion and normal vector reconstruction

Based on the weights w,.s describing the edges’ contribution to the total extrusion and on
the formulation of a vector field as a one-chain, defined in Eq. (3.43), we present in the
following a normal vector reconstruction scheme.

In the above derivation, an edge velocity may have any direction, only its contribution
to the extrusion is included in the corresponding weight. According to the definition of
extrusion, the same extrusion is caused by the normal vector component emanating form
the projection of the edge velocity to the normal direction. In Eq. (3.43) the velocity ¥
is presented as a one-chain by the edge vectors ¢ = l.f,,. Integrations of the one-form
u € QY(M) of Eq. (3.1) along curves ¢ with lengths I, give the components of a one-chain,
ie. fcu = [, where u. describe the averaged velocity components. Therefore, we can
interpret the terms fe/ vg‘/gf;/ = vzﬁgle/ as coefficients associated to edges €’ of the veloc-
ity one-chain of the invariant fluid equations. Analogously, we interpret the coefficients
v2%edual i e the product of the reconstructed normal velocity component v2° and of the
dual edge e1"! with edge length d,, as the coefficient of a velocity one-chain associated to
edual - Consequently, we approximate the extruding velocity field (z)|P¥* acting on edge
e by

T(x) B a2 ppoedual — (y1oq,), . (3.54)

In our derivation of the weights, the directions of the edges described by ., and fi.
are only important for the magnitude of the extrusion, as only the extrusion contributes
to the Coriolis acceleration along e. The different influence of the direction of every single
edge e is taken into account by the weights (cf. calculation in Eq. (3.68)). Based on this
knowledge, we can reformulate Eq. (3.43) by associating ¥ as extruding velocity field, i.e.

¥ = ¥(z)|P**", and projecting it onto the normal edge direction i, in the following way:
(0R°de)iie e = > Y N(2)GlhWeerile  tor (V5 1er) - (3.55)
neN e’ e€

With the coefficients of Eq. (3.46) we substitute here \"(2)G"Weeriic -t by w”,. The
normal vector reconstruction to edge €’ using all edges adjacent to the vertices of edge e
can be calculated with

v°d, = Z Wl (3.56)
neN e'€E(n(e))
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where F(n(e)) stands for the set of all edges that are connected to the two nodes n(e). Such
reconstruction has already been suggested in the literature, for instance by Arakawa and
Lamb [3] or more recently by Thuburn [101]. This is of advantage for our investigation, as
we intend to compare it later with the method for arbitrarily-structured C-grids developed
by Thuburn and Ringler et al. [89, 102].

The extrusion caused by v2° is a weighted linear combination of extrusions caused by
the edge velocities adjacent to edge e. Therefore, the weights are derived by the influence
that the different edges have on the extrusion and thus on the acceleration represented by
the interior product iz ~ I(, -).

In the following we show that the normal vector reconstruction of Eq. (3.56) is indeed
a reasonable choice. In addition, we find an additional constraint to be imposed onto the
weights for the sake of stability.

Stability requirements for the normal vector reconstruction: The weights w[,,
for the normal vector reconstruction of Eq. (3.56) have to be such that the model is stable.
Analogously to Eq. (3.22), we investigate stability by investigating the eigenvalues of the
system matrix A + F and its properties concerning skew-symmetry.

With respect to the normal vector reconstruction of Eq. (3.56), the extended Coriolis
matriz at a single vertex n is given by

leg n l€3 mn
0 del ei1es ale1 w€1€3
le; n le n
w O 3 w e
sttend — | dey Te€2€1 dey €263 , (3.57)
ley om0 leg oy 0

deg —€3€1  deq  €3€2

0

where the five edges e;,i = 2, ..., 6, are connected to edge e; via vertex n = 1 (cf. Fig. 3.9).
Analogously to the derivation of the weights of Eq. (3.26), the weights w!., have to be cho-
sen such that the matrix DFe¥*d ig skew-symmetric, where F<*"d denotes the extended
Coriolis matrix including all vertices. Thus, the following equations

le,

e;
7 d,

L,
Hde,le,~wl, = —Hd,,l

eig We, w;‘jei (3.58)
e;

have to hold for all e;, e; and for all vertices n. Therefore, the weights have to satisfy the
antisymmetric condition

Vei,ej € E(n): wie = —wg. , wie =0. (3.59)
If the weights we"iej fulfill these requirements, the model is stable. These weights have
no unit, as we can infer from Eq. (3.58). Thus, even on non-uniform grids, antisymmet-
ric weights ensure stability, which justifies a posteriori the ansatz for the normal vector
reconstruction of Eq. (3.56).

3.3.3 Determine the weights for a uniform hexagonal mesh

As an example, we derive the weights (3.46) for a uniform hexagonal mesh. We regard,
for instance, edge e as edge that extrudes e;, and we denote such edge as extruding edge.
Let the tangential velocity be vﬁ%, the extruding velocity is thus UEQ = Al (z)es. During
the time ¢ = 1 the edge e is extruded to the area that coincides with the triangle a. By
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Eq. (3.46) and with the representation of the interior product on the mesh by Eqn. (3.51)
and (3.52) we find the weight

1 1 1
wiy = 1—1(61,)\162,61)(;‘%2 = —

norm norm

e 1
ROG., = : (3.60)

1
Chorm

because R{'G], = 1 -1, as shown in Eq. (2.54) of Chapter 2. The extruding edge e3
contributes to the extrusion by Eq. (3.53) with the weight

1 1 -1 1
——I(e1, M e3,a)Gy, = —— A (YR G, = o a
Cnorm Cnorm Cnorm

wiz = (3.61)
with RE&'G}, = 1-(—1) = —1 and where y denotes the intersection point of the third edge
of the degenerated triangle — spanned by ej, es — with edge ey (cf. Fig. 3.9). On a regular
grid it follows A\l (y) = % Edge e leads to a one-dimensional extruded area of e;. Thus,
a projection onto a two-dimensional area gives zero leading to

wi, =0. (3.62)
The extrusion of e by edge e5 differs from that caused by es only in the sense that e is
extruded now over triangle b instead of a. This leads to the weight
1 1

2 ¢l ’

norm

1 1 .
wis = I(e1, Mes, b)G, = cl—)\zl;(y)RblGi5 = (3.63)

cl
norm norm

with R{*G., = (=1) - (—1). The extrusion caused by edge eg corresponds to edge e, and

we find 1 1
1(617)\16676)G26 - Cl Rzl Géﬁ = Cl ’

norm norm norm

with R;'G!, = (—1)-1. The normalizing constant can be calculated with definition (3.47):

1 1
cl o =1(er, Meg,a) +I(er, Mes,a) +I(er, Mes, b) + (e, Meg, b) =1+ 3 + 3 +1=3,
(3.65)
which leads to the weights for node n = 1:

1

1 1
’w%?::_é 1

Wl

1 1
wyp =0, wyy =

Based on the definition of I(e, €/, ¢) and of the coincident matrices, these weights change
sign when permuting the edges e with €’. This is in agreement with the requirement of
antisymmetry of the weights w!,, = —w,, of Eq. (3.59) in order to obtain stability. A
permutation of the edges for weights w}3 or w}5 requires a change of the related triangle
on which we project the extruded manifold. On regular grids the cells are equal, which
guarantees the antisymmetric property. On non-uniform grid, this is in general not ful-
filled. The study on how to modify our approach to guarantee antisymmetric weights also
on non-uniform grids has to be postponed to future work.

Is the normal vector reconstruction based on extrusion consistent? On the
basis of the weights (3.66) for uniform hexagonal grids, we investigate whether the normal
vector reconstruction of Eq. (3.56) does properly represents the extrusion and with this
also the tangential acceleration along e cause by the Coriolis term.

Let us assume, analogously to the derivation of the weights for the tangential velocities,
v = l‘F"TQ with ¢ = 1 and v£§ = 0Vj # 2. According to Eq. (3.56) and to the weights defined
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in Eq. (3.46), we find for the normal velocity component at edge midpoint for a uniform

mesh: 11
no __ t
Vg = 3 de:l v, (3.67)

using we,e, = 1/3 of Eq. (3.66). To check consistency of Eq. (3.67), we assume, analogousl
g Weyey q. y q. gously

to vtg = -, that vg? = 5}, i.e. during ¢ =1 the normal component vy extrudes e; along
that part of the dual edge e{"¥! (in direction of nel) that lies within trlangle a. Under this
assumption, where e{"/2 = 7, d., /2 = ii., v - t, while using Eq. (3.67), it follows for
the area of the extruded manifold:

e(liual no 1 [ e
L(er, —5—, a)|n=1 = I(e1, e, v, - t,a) = Z1(e1, My ley tey 5 Vs - £, )
2 3 de,
—2ii,
1 Lo - 2 5 2 2
= gl(el,Qnelnel tes vfg ctya) = =1(eg, teyle,,a) = =I(e1,e2,a) = =, (3.68)

=1 =l

with I(e;,e0,a) = 1 of Eq. (3.51). Hereby, the identity fl,, = cos(30°)t,, = %le te,
€1
describes the projection of the tangential unity vector t., of edge ez onto the normal
dey
2t

direction 7., of edge e;. On the other hand, for ¢ = 1 the normal component vg? =
leads to an area of extruded manifold:

etliual - . del . _ B
1(61, Taa)’nil - I(lelteN 2 n€17a) - lel T T o (369)

2:1/3

which is a fraction of the area spanned by e; and e{"# that lies within triangle a. As the

areas of the extruded manifolds caused directly by vgy = d2 + or via Eq. (3.67) by V8 l?
agree, we conclude that Eq. (3.67) consistently describes the normal velocity component
by the tangential one.

On a uniform grid the relation 77, = %ld%t_;/ is valid for all edges €’ that contribute
to the normal velocity component of e (in our example es,e5). Thus, for every term in
the normal vector reconstruction of Eq. (3.56) the above calculation can be repeated.
Using |We,e5| = |Weye5] = 1/6, the area of the extruded manifold caused by either es or
es is only half the size of I(e1, ez, a). This reflects the fact that the influences of edge e
and e; have to be weighted, according to Eq. (3.52), by the barycentric coordinate with
M (y) = 1/2. This shows, by linearity, that the weights determined by extrusion reflect
reasonably the influence of every single edge to the total extrusion. In agreement with
Eq. (3.56), the calculation in Eq. (3.68) shows that the edges’ contribution to the total
extrusion determines the weights. The edges’ direction is hereby included in the ability of
the edge to contribute to the extrusion. Consequently, the ansatz in Eq. (3.56) is justified.

In case of a uniform grid, the weights of Eq. (3.59) equal those derived in Thuburn
et al. [102]. Thereby, the authors derived a normal vector reconstruction for arbitrarily-
structured C-grids by using the two-dimensional vorticity equations, while requiring the
geostrophic modes to be stationary. In our approach, we do not put a similar constraint on
the equations. Besides the condition on stability (antisymmetric weights), our derivation
for a normal vector reconstruction relies on a geometrically adequate representation of the
extrusion (and alongside of the Coriolis term). In the following numerical tests we show
that such derivation leads to a stable and consistent model with adequate representation
of the geostrophic balance.
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3.3.4 Numerical results for the normal vector reconstruction based on
extrusion

For the hexagonal model with C-grid staggering and for the normal vector reconstruction
of Eq. (3.56) we perform numerical tests on consistency, stability and on whether the
model maintains geostrophic balance. We repeat the numerical experiments of Sect. 3.2.4
for the new normal vector reconstruction scheme based on extrusion.

On uniform grids, our normal vector reconstruction based on extrusion coincides with
the one introduced by Thuburn et al. [101]. For non-uniform grids we rely on the method
proposed by Thuburn et al. [102], in which the authors obtained a stable model with
stationary geostrophic modes. Therefore, we include in the following tests on consistency
and stability for the non-uniform grids shown below in Fig. 3.13 also Thuburn’s vector
reconstruction.

Consistency: We compare the analytic vector field 0], given in Eq. (3.30) with the
numerical solution v2°¢ obtained by projecting the analytic vector field to the tangential
direction of the edges and use the vector reconstruction of Eq. (3.56) to find the normal
vector values. The truncation error is given by 78¢¢ = R — 4|, analogously to Eq. (3.31).

Figure 3.10 illustrates for both uniform and non-uniform grids the convergence behavior
of the truncation error with increasing resolution. For the uniform grid the scheme shows
second order convergence. In case of non-uniform grids, the accuracy is almost second
order for coarser grids up to 642 cells, but decreases with increasing grid resolution. This
may be caused by strong stretching of the cells occurring in the grid adaption process,
in which some hexagons are almost deformed toward quadrangles (cf. Chapter 4). This

leads to a reduction in accuracy, in particular in the L., norm.
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Figure 3.10: Truncation errors in the L1, Lo, Lo-norm of the normal vector reconstruction
for uniform grids (solid) and for non-uniform grids (Thuburn’s method) similar to meshes
in Fig. 3.13 (dashed lines).

Stability: The system matrix Ft"d of Eq. (3.57) has to be skew-symmetric. This can
only be guaranteed if the weights w,.s satisfy the antisymmetric condition of Eq. (3.59).
Our method on a uniform grid fulfills this requirement per construction. The same is



72 Consistent vector reconstruction scheme based on exterior calculus

true for the method of Thuburn et al. [102] for both uniform and non-uniform grids. For
both grid types, we determine the eigenvalues A of the system matrix A + F using the
eigenvalue function of MATLAB. Figure 3.11 shows the results for the eigenvalue analysis
for uniform grids (left panel) and non-uniform grids (right panel). For both cases, the real
part of the eigenvalues is smaller then realA < 107!, Consequently, the normal vector
reconstruction scheme is stable for uniform and non-uniform grids (Thuburn’s method),
because it shows no growing or decreasing energy modes that cause instabilities.
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Figure 3.11: Eigenvalues X of the propagation matrix S using the normal vector reconstruc-
tion for 322 grid cells on a uniform grid (left-panel) and on non-uniform grids (Thuburn’s
method) (right panel).

Test on geostrophic balance: We perform the test case introduced in Sect. 3.2.4
for our normal vector reconstruction scheme based on extrusion to investigate whether
the model maintains geostrophic balance. On a uniform grid with 322 cells, the vortex
distribution shown in Fig. 3.6 should not change during the model integrations. Figure
3.12 shows the results after a model integration of 60 days. The vortex pair remains in
balance and no spurious geostrophic modes appear. Our new methods properly represent
the Coriolis term on a hexagonal mesh, without the growth of spurious geostrophic modes.
This is in contrast to the normal RT0 vector reconstruction scheme (3.19), for which after
10 days the spurious modes are strongly developed (cf. Fig. 3.7 C and D). As in case of the
triangular model, the linearized continuity equation leads also in case of the hexagonal
model to a decrease in the negative surface elevation of comparable magnitude to the
height field shown in Fig. 3.7 A.

Wave representation on hexagonal meshes: The agreement of our scheme for nor-
mal vector reconstruction based on extrusion with the one proposed by Thuburn [101] for
uniform hexagonal C-grids underpins our approach of using geometrical constraints for
vector reconstruction. In addition, we instantly know the wave dispersion relation from
investigations in literature. The wave frequencies of the linear shallow-water equations
for geostrophic mode v,y and gravity-inertia modes vy; are given in Eq. (3.38). Thuburn
[101] and more recently Gassmann [43] studied the wave properties, in particular the wave
frequencies of geostrophic and gravity-inertia modes for the above discussed hexagonal C-
grid discretization of the shallow-water equations on a uniform mesh. They found that this
hexagonal C-grid scheme accurately represents the gravity-inertia frequencies of Eq. (3.38)
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Figure 3.12: Geostrophic balance test case: surface elevation [m] (left) and potential
vorticity [1/day/km] (right) after an integration of 60 days using the normal vector recon-
struction based on extrusion on uniform grids with 322 cells.

in the discrete case. Moreover, this scheme properly represents the geostrophic modes, i.e.
vgst ~ 0. Therefore, no spurious non-zero frequencies for the geostrophic modes occur,
unlike the case shown in Fig. 3.7, where the usage of the normal RTO0 reconstruction of
Eq. (3.19) for a hexagonal C-grid leads to geostrophic modes with non-zero frequencies.

Generalization to non-uniform grids: A generalization for normal vector reconstruc-
tion on arbitrarily-structured C-grids has been proposed by Thuburn et al. [102], in which
the authors could achieve a stable model with stationary geostrophic modes. Hereby, the
weights for vector reconstruction have to be antisymmetric with exchange of the contribut-
ing edges also for the non-uniform meshes. This property is shared for uniform meshes
also by our approach, as the eigenvalue analysis, shown in Fig. 3.11 (left), of the system
matrix Eq. (3.57) confirms. It seems thus possible to generalize our geometrical approach
of vector reconstructions also toward non-uniform hexagonal grids. However, as we could
not yet succeed in a consistent derivation, we use for the remainder of the thesis the nor-
mal vector reconstruction introduced by Thuburn et al. [102] for arbitrarily-structured
C-grids. Its consistency and stability properties have been tested already in Fig. 3.10 and
Fig. 3.11 (right), respectively.

3.4 The rotating nonlinear shallow-water equations

For the investigation of nonlinear phenomena, for instance, the interaction of tropical
cyclones (TCs), also the nonlinear parts of the equations have to be taken into account.
The linear parts have already been studied in the previous sections for a hexagonal C-
grid model. They ensure a stable and consistent scheme on uniform and non-uniform
meshes. Because the linear parts coincide with those used by Ringler et al. [89], we use
the therein proposed discretization methods for the nonlinear terms to extend our linear
shallow-water model toward a nonlinear hexagonal C-grid shallow-water model for uniform
and non-uniform grids. In order to test our implemented scheme concerning consistency,
stability, and geostrophic balance, we perform runs for nonlinear test cases.
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3.4.1 The nonlinear equations in invariant form

Based on the derivations in Chapter 2, we can write the rotating nonlinear shallow-water
equations in invariant form according to Theorem (2.4.1) as

/atu+/i5(du+fc)—|—/%digu—i—/gdh:0, / atﬁ+/ (/f;’l—t/) =0, (3.70)
c c c c \%4 ov

in which h instead of p has been used to describe the variation of the water height. ¢
and V denote arbitrary curves or volumes on the manifold M, respectively. To close the
system of equations, we include the metric equations:

x(hu) = (hu), xh=h, wu=7", (3.71)

(cf. Chapter 2 for notation). This general set of equations leads to different discrete
schemes dependent on the choice of topological meshes and metric equations.

Based on our method of discretization by integration over chains and cochains, we
have already discretized the linear parts in Chapter 2. We investigated a hexagonal C-grid
scheme, with circumcenters as dual vertices. With the definitions introduced in Chapter 2
and previously in this chapter, we write the discrete nonlinear shallow-water equations as

du+I(@Ru+f)+Gk+gGh=0, 9h+D"!(hu)=0, (3.72)

xoh=h, % (hu)= (hu), (3.73)
where the nonlinear parts are defined in the following. As previously, u = {u,,,i =
1,...,|K¢|} with ue = [ u is an array for the velocities at the edges and h = {hs i =
1,...,|K7|}, with ilf = fffz and the two-form h, is an array for the heights that are
averaged over the hexagonal cells f. With h = {h,,,i = 1,...,|K"|} for the heights at
v, there follows Gh ~ [ dh. The coincident matrices G,R, Ddual (¢f. Chapter 2) are
discrete analogs of the gradient, curl and divergence operators, respectively.

In the following, only the nonlinear terms in the equations are discussed. I(@, Ru+f) ~
fe izd(u + fo) is the discrete absolute vorticity and G k ~ fe %digu is the gradient of the

discrete kinetic energy k ~ lizu. With D9ul(hu) ~ [ s d(hu), where (hu) is a one-
form, we approximate the divergence of the mass-flux over cell f by the sum of averaged

mass-fluxes over the boundary 9f.

The discretization of the mass-flux one-form (hu) is done by averaging the heights h,
to the edge midpoints, i.e. he, := 1/2hy, + 1/2h,, for vi,v2 € e;. Then, the diagonal
Hodge-star operator *; of (2.55) can be applied to obtain a circumcenter scheme and,
according to Eq. (2.66), we result in the following discrete continuity equation:

1 F#edges B
Dby + - > ()de,heTe, =0, (3.74)
U
=divv(ﬁeﬂ6)

with 7. = §¢ of Eq. (2.62). The signs + are determined by the discrete exterior derivative
Ddual of Eq. (2.52) and describe the orientations of edges e with respect to vertices v.
The absolute vorticity n = k-V x 0+ f can be discretized at triangle cell centers cc
by using the operator curl.. (cf. Eq. (2.70)). Furthermore, the DoF for the height field h,
are averaged with area weighting to the triangle cell centers. Thus, the potential vorticity
Qec = Z—‘;‘; is positioned at triangular cell centers. In addition, the thickness flux F, = heTe
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is calculated at edge midpoints. According to Ringler et al. [89], the nonlinear Coriolis
term in the energy conserving form for a single edge e is given by

I(@ Ru + f), = H 3 wee,de,Fe,@e;%’)} , (3.75)
€ " e’'eEVP(e)

where d, is the hexagonal and [, the triangular edge length and EV P(e) is the set of all
edges €' which are connected to the pair of vertices of edge e and ¢, = %Z cccCE(e) decs
where C'E(e) is the pair of triangle cells that share edge e. The weights w,. are derived
in Thuburn et al. [102] for arbitrarily-structured C-grids and coincide with the weights
derived in Eq. (3.66) for uniform meshes.

For the term Gk, the discrete kinetic energy k ~ %i@u can be represented by

1
k=g Y tac @, (3.76)
e€EV (v)

where EV(v) is the set of edges meeting at vertex v, A, is the hexagonal cell area and
A = d.l. is the area related to edge e (cf. [89]).

An analysis of the convergence properties of this schemes by Ringler et al. [89, 88] re-
veals second order accuracy on uniform and almost second order accuracy on non-uniform
grids, where the shape and size of the grid cells varies only slightly.

To represent the viscosity term, required in the next chapter, we apply the discrete
differential operators defined in Eq. (2.62), Eq. (2.66) and Eq. (2.70). We assume for
almost all experiments in this thesis a background fluid depth H = 10 km leading to small
variations of the total depth A. In our model setup, we represented the viscosity term by

1
—vV - (hVT) = vV - (VU) = V(VT) =V x V x T

h (3.77)

~ grad®, - curl..(%.) + grad®, - div,(7.)

where the parameter v describes the viscosity of the fluid.

3.4.2 Numerical results

On the basis of numerical tests that we perform in the following on the nonlinear rotating
shallow-water model, we study whether our model setup performs properly in terms of
conservation properties. We investigate cases, in which the non-uniform grids, constructed
with the adaptation method introduced in Chapter 4 (grid parameters: v = 4, d = 550 km,
b = 1%), are strongly deformed in the sense that a significant amount of the originally
hexagonal cells is almost degenerated to quadrangles. We want to assure that the model
remains stable also in case of strongly deformed grids. In the following we perform the
model integrations on both uniform and non-uniform grids similar to the ones of Fig. 3.13.

Geostrophic balance and conservation properties

In order to investigate the model performance with respect to geostrophic balance, we
introduce a test case where one vortex core positioned at the domain center is initialized
such that it is in geostrophic balance. When integrating over long time periods with
the nonlinear model, the shape of the vortex core should remain in balance even in the
case when nonlinear effects are present. A second test case considers two vorticity cores,
in which the nonlinear effect will lead to a movement of the two vortices into opposite
directions (see nonlinear test cases below).
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Figure 3.13: Illustration of the computational uniform (left) and non-uniform (right)
meshes on a domain of 5000 km x 4330 km for 322 grid cells.

For the experiment of a single vortex core positioned in the center of the domain, we
initialize the height field according to Eq. (3.33) on a double periodic f-plane with 5000 km
x 4330km, where we set 0 = 0 to omit the terms for the second vortex. For the height
we set H = 10km and H' = 75m. Analogously to Sect. 3.2.4 we initialize the velocity
distribution by imposing the geostrophic balance and determine the relative potential
vorticity PV;el := q— f/h = |V x @] /h, with Coriolis parameter f = 6.147-10~°s~!, which
corresponds to a latitude of 25°. In order to guarantee nonlinear balance we recalculate
the surface elevation h — H with the nonlinear balance equation (4.19). The initial surface
elevation h — H and the relative potential vorticity are illustrated in Figure 3.14 A and
D, respectively. We perform model integrations of 100 days on uniform and non-uniform
grids that are similar to those illustrated in Fig. 3.13, but use 642 grid cells.

Figure 3.14 illustrates the results for the model integration on uniform (B and E) and
non-uniform grids (C and F). After a model integration of 100 days on a uniform mesh,
the surface elevation (B) and the potential vorticity distribution (E) are relatively similar
to the initial conditions. The expected conservation of the geostrophic balance is very
well met. However, for the non-uniform mesh (C and F), the strongly stretched cells
influences the results significantly. As the vortex is partly positioned in regions where the
grid is strongly stretched, containing cells with varying sizes, the initial PV, distribution
is strongly smeared out over the whole domain after an integration of 100 days. The
negative surface evaluation does not stay within the domain center, it even crosses the
periodic domain boundary during the integration time. The irregularly deformed cells
lead to an effective acceleration of the vortex core away from the center. However, the
model remains stable and, for shorter integration times of up to 40 days, the balance is
sufficiently well maintained, as we can infer from the energy and enstrophy properties.

We diagnose the energy according to

o 1/2/9(h|a|2 + gh)dx . (3.78)

Based on the definition of the absolute potential vorticity, with PV = (V x ¢+ f)/h, we
can define the potential enstrophy as

€= 1/2/Qh(PV)2dx . (3.79)

Analytically, the quantities E, PV, e are conserved in shallow-water equations. Our nu-
merical scheme should thus conserve the discrete analogs of these conservative quantities.
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Figure 3.14: Test case for geostrophic balance. (A and D): initial surface elevation [m]
h — H and relative potential vorticity [1/days/km]|, respectively. Surface elevation and
relative potential vorticity calculated on the uniform grid (B and D, respectively) and on
the non-uniform grid (C and F, respectively) with 642 cells similar to those in Fig. 3.13.

We evaluate the solution concerning relative error in total energy, (E — Ey)/Ey, relative
error in potential enstrophy, (€ — €g)/€yp and relative error in relative potential vorticity

(PV — PVo)/ PV,

Figure 3.15 illustrates the energy, potential enstrophy and potential vorticity evolution
for an integration of 100 days for the uniform (upper row) and for the non-uniform grid
(middle, lower row) with 642 cells similar to those in Fig. 3.13. For the uniform mesh
(upper row), the relative energy decreases constantly with time. As we use a leap-frog
scheme for time discretization, this loss in energy is mainly caused by the Asselin-filter
needed to keep the time scheme stable, because this filter acts like a diffusion. However,
the magnitude in energy loss is small, i.e. in the order of 1078, For the potential vorticity
and potential enstrophy, the conservation properties are not as good as for the energy,
but still in the order of 10=* or 107> for the relative enstrophy error (middle column)
and relative potential vorticity error (right column). For the non-uniform meshes (middle
and lower rows) and during the first 40 days, the energy is quite well conserved within an
error of about 1078, During that time, both potential enstrophy and potential vorticity
are also quite well conserved. Figure 3.15 (lower row) shows the order of the relative error
during the first 40 days for the non-uniform grid with a relative error of about 102 for
e and of 107° for PV,q. Up to 40 days of integration, the vortex is properly represented
on the mesh. Later, however, the vortex does not maintain in balance and is distributed
over the entire domain, which may lead in a redistribution of energy of the large scale flow
into small scales. This, in turn, may cause a drop in energy and an increase in potential
enstrophy.

The results show that strongly deformed cells lying in the region where the vortex is
positioned, can compromise on the long run the balanced flow (see more about a reasonable
choice of r-adapted (non-uniform) grids in Chapter 4).
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Figure 3.15: Relative errors in energy (left column), relative potential enstrophy (middle
column) and potential vorticity (right column) for an integration of 100 days on the uni-
form hexagonal mesh (upper row) and the non-uniform hexagonal mesh (middle and lower
rows) with 642 cells. The order of errors for the non-uniform mesh for the first 40 days of
integration is shown in the lower row using modified y-axis scales.

Vortex pair interaction and shear flow evolution

For the test cases of vortex pair interaction and of shear flow evolution we compare our
hexagonal C-grid shallow-water model with a version of the triangular C-grid model intro-
duced in Giorgetta et al. [44] that uses the differential operators and the tangential RT0
vector reconstruction discussed in Chapter 2. For the implementation of the nonlinear
parts, see the derivations in Giorgetta et al. [44]. For both models we use a leap-frog time
discretization with Asselin-filter & = 0.03 in order to reduce the differences between the
models to the differences in the spatial discretizations. We aim at a qualitative comparison
of the model solutions between the triangular and the hexagonal schemes to assure that
the nonlinear parts, implemented in our setup, perform well.

Vortex pair interaction: The test case of vortex pair interaction has already been
introduced in Sect. 3.2.4, in particular in Eq. (3.33), where the initial surface elevation
is given (see also [85, 86, 99]). Based on the height distribution, the initialization for
the relative potential vorticity PV, field is done by first ensuring geostrophic balance for
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Figure 3.16: Vortex pair interaction for 10 days of integration. (A and D): solutions
of the triangular model for surface elevation [m] h — H and relative potential vorticity
[1/days/km], respectively. (B, C, E, F): solutions of the hexagonal model for surface
elevation and relative potential vorticity calculated on the uniform grid (B and D, respec-
tively) and on the non-uniform grid (C and F, respectively).

the velocity field and then recalculating the surface elevation h — H with the nonlinear
balance equation (4.19). In this section effects caused by nonlinear interactions are taken
into account by using the nonlinear equations.

The time evolution of two interacting co-rotating vortices is studied in the inviscid
case over an integration time of 10 days. For the surface elevation of Eq. (3.33) we take
the parameters Hy = 10km, H' = 75m and o = 0.1 on a double periodic domain with
5000km x 4330km and f = 6.147 - 107°s~!, which corresponds to a latitude of 25° (cf.
Fig. 3.6 for the initialization on a grid with 322 cells). In this experiment we use 2562
cells in order to minimize the errors caused by a too low grid resolution and in order to
compare our results with those of Giorgetta et al. [44].

For the uniform triangular grid we use 22562 triangles corresponding to 2562 vertices,
which coincides with the number of vertices of the hexagonal mesh with 2562 cells. Both
meshes are thus comparable in terms of computational costs and not directly by resolution.
We use the same number of prognostic velocity components, as in both cases the number
of edges are similar. However, both grids differ in the number of prognostic values for the
surface elevation, namely 2 * 2562 for the triangular and 2562 for the hexagonal model,
which corresponds to the respective number of cells. In addition, we compare the results
calculated with the hexagonal model on the uniform grid with 2562 cells and on the non-
uniform grid with 1282 cells similar to those shown in Fig. 3.13, since in this case the size
of the cells of the uniform grid and of the cells within the high resolution region of the
non-uniform grid agree.

Figure 3.16 illustrates the results for an integration of 10 days for the triangular mesh
(A and D) and for the hexagonal uniform (B and E) and non-uniform (C and F) meshes.
The upper row shows the surface elevation, the lower row the relative potential vorticity.
The results for the triangular and hexagonal models are very similar. The end positions
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Figure 3.17: Vortex pair interaction: relative errors in energy (left column), potential
enstrophy (middle column) and potential vorticity (right column), for the triangular model
with 2 x 2562 cells (upper row), for the hexagonal model on the uniform grid with 2562
cells (middle row) and on the non-uniform grid with 1282 cells (lower row).

of the vortices and of the negative surface elevations are quite similar in both triangle and
hexagonal model, although the shape of the vortex cores differs slightly. The intensities
of the vortex cores and of the negative surface elevations agree also very well. The results
for the strongly stretched grid (C and F) are also very similar to those of the uniform
triangular and hexagonal grids. The shape of the vortex cores is very similar to cases B
and E, although the grid shows strong deformations in the area of vorticity interaction.
The end positions of the two vortices agree quite well for all three different grid types.

The good performance of the non-uniform grid also in case of strong cell deformation
is in agreement with the test case on geostrophic balance, for which during an integration
time of up to 40 days the results are sufficiently close to the uniform runs. Here, with a
integration of 10 days we stay within a regime, where the potential vorticity is properly
represented also on the strongly deformed grid.

Figure 3.17 shows relative errors of energy E (left column), potential enstrophy e
(middle column) and potential vorticity PV;¢ (right column) of the solutions calculated on
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Figure 3.18: Test case for shear flow evolution: initial surface elevation h — H [m] (left)
and relative potential vorticity [1/day/km] (right) on a hexagonal grid with 2562 cells.

the triangular uniform mesh (upper row) and on the hexagonal uniform (middle row) and
non-uniform meshes (lower row) for an integration of 10 days. For such short integration
period, the energy conservation is for all three model configurations in the order of 1078.
In case of the non-uniform grid, the potential enstrophy and potential vorticity are worse
conserved staying within the order of 1073 and 1074, respectively. This is one order of
magnitude worse than in the uniform hexagonal case. The best results are obtained by
the triangular model. This is not surprising, as the numerical scheme conserves those
quantities by construction (cf. [44]).

Shear flow evolution: For the test case of shear flow evolution we proceed for initial-
ization as done in the previous experiments, namely we prescribe the surface elevation,
solve the geostrophic balance to obtain the velocity field and then solve the nonlinear
balance equation (4.19) to obtain the balanced surface elevation. The prescribed surface
elevation is given by

2

" _y_+l 2 /
h(xz,y,0) = Hy — oY e g (1 + K sin < ;m: >> ; (3.80)
T

, , 1 T L, " 1 . (2« L,
— —— SR (P = S yp—— . 3.81
v L.’ vy <Ly <y 2 >> i o o L, Y75 (3:81)

We refer to Giorgetta et al. [44] to learn more about the characteristics of this flow.
Analogously to the authors, we set the initial conditions for Hy = 1076 km and H' = 30 m,
to obtain an inviscid flow in quasi-geostrophic regime. In Fig. 3.18 the initial surface
elevation (left) and the potential vorticity (right) are shown for a uniform hexagonal mesh
with 2562 cells.

Analogously to the investigation of the vortex pair interaction, we compare solutions
calculated on the triangular uniform grid using 2 * 2562 cells with the hexagonal uniform
(2562 cells) and the hexagonal non-uniform (128 cells) grid, described in detail previously.
We integrate up to 10 days: within this time scale the evolving instabilities consisting
of two couples of counter-rotating vortices are already very advanced and the evolving

vorticity filaments have already reached scales beyond the spatial resolution (cf. Giorgetta
et al. [44]).
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Figure 3.19: Shear flow evolution integrated over 10 days. (A and D): solutions of the trian-
gular model for relative potential vorticity [1/days/km]| for day 6 and day 10, respectively.
(B, C, E, F): solutions of the hexagonal model for relative potential vorticity calculated
on the uniform grid for day 6 and 10 (B and D, respectively) and on the non-uniform grid
for day 6 and 10 (C and F, respectively).

Figure 3.19 illustrates the results of the model integration for the triangular mesh
(A and D) and for the hexagonal uniform (B and E) and non-uniform meshes (C and
F). As in the case of vortex pair interaction, the results of the uniform triangular and
hexagonal models are qualitatively very similar. Only in the case of the non-uniform grid
a significant difference is visible. The evolution of the two counter-rotating vortex pairs
has a different speed in vertical direction leading to a different distance from the domain
center. In addition, much more small-scale features have been evolved that are beyond
spatial resolution. For this test case, the difference between uniform and non-uniform
grids is more pronounced than in case of the vortex pair interaction of Fig. 3.16. The
reason for this discrepancy may lie in the deformed grid cells that cause disturbances of
different magnitude on the shear flow and may therefore influence the time at which the
instabilities, in form of the two couples of counter-rotating vortices, are triggered.

Figure 3.20 illustrates that for short integration times up to 5 days the errors in relative
energy (left column), relative potential enstrophy (middle column) and relative potential
vorticity (right column) are very similar to those presented for the vortex pair interaction.
From day 5 on, the potential enstrophy strongly increases for uniform (middle row) and for
non-uniform grids (lower row) on the hexagonal scheme, whereas the triangular scheme
(upper row) conserves the potential enstrophy with an accuracy of 107%. However, all
simulations on the three different grids give comparable results concerning energy and
potential vorticity properties.

3.5 Conclusions

The usage of staggered C-grids for geophysical applications is in particular favorable for
an adequate representation of waves and of their dispersion relations. However, the stag-
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Figure 3.20: Shear flow evolution: relative errors in energy (left column), potential en-
strophy (middle column) and potential vorticity (right column), for the triangular model
with 2 % 2562 cells (upper row), for the hexagonal model on the uniform grid with 2562
cells (middle row) and on the non-uniform grid with 1282 cells (lower row).

gering of mass points and velocity components requires to reconstruct the missing vector
components to represent the Coriolis term. In particular, for hexagonal C-grid models on
non-uniform meshes this is more difficult than for triangular ones. All linear tangential
vector reconstructions for triangular cells reduce to the low-order Raviart-Thomas inter-
polation [46]. In contrast, there seems to be no similar unique linear normal vector field
reconstruction for hexagonal cells.

In order to find a suitable vector reconstruction for hexagonal models, one may put
some constraints on the momentum equations to derive normal vector components that
lead to a stable scheme with proper wave representation. A normal vector reconstruction
for arbitrarily-structured C-grids has been successfully presented in Thuburn et al. [102].
Using the two-dimensional vorticity equation, the authors have derived weights for normal
vector reconstruction out of tangential components for the hexagonal C-grid discretization
of the linear shallow-water equations. These weights ensure stability of the model and lead
to stationary geostrophic modes similar to the continuous equations.

We do not restrict our momentum equation to the two-dimensional case. Based on
the invariant form of the geophysical fluid equations derived in Chapter 2, we have repre-
sented instead the Coriolis term by means of exterior calculus and, in particular, by the
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concept of extrusion. Based on extrusion, we have introduced a method for normal vec-
tor reconstruction out of neighboring tangential vector components, in which the weights
are determined by the ability of the tangential vector components to contribute to the
extrusion.

We have derived a normal vector reconstruction scheme with weights that guarantee
stability and lead to an adequate wave representation without spurious geostrophic modes
on uniform grids. The vector reconstruction agrees on uniform meshes with the method
introduced by Thuburn et al. [102]. This agreement underpins our strategy of using
geometrical constraints on the equations to derive the weights. For both approaches, the
weights have to be antisymmetric with exchange of the contributing edges for uniform and
non-uniform meshes to guarantee stability. Our method provides such weights for uniform
meshes as an eigenvalue analysis of the system matrix has confirmed. Using the constraint
of antisymmetric weights, it seems very likely that our approach can also be generalized
to non-uniform grids.

Furthermore, we have shown that a vector reconstruction based on the Raviart-Thomas
interpolation suitable for triangular models may lead to spurious geostrophic modes in
the hexagonal case, although the model is consistent and stable. Hereby, the continu-
ity properties of the extrusion may give information about the differences in using RTO0
interpolations for triangular and for hexagonal models and about the size of the stencil
required to guarantee continuous representation of the extrusion on the mesh. In case of
triangular cells, the RT0 interpolation led to a tangential vector field causing a smooth
extrusion. In contrast, when using the RT0 interpolation for normal vector reconstruction,
the extrusion was discontinuous. A smooth extrusion can be achieved with a larger stencil
using more neighboring velocity components. Our normal vector reconstruction method
fulfills such continuity requirement.

To proceed toward a nonlinear hexagonal C-grid shallow-water model with the abil-
ity of grid adaptation, we used the general weights for normal vector reconstruction for
arbitrarily-structured C-grids by Thuburn et al. [102] and extended our model setup by
the nonlinear parts for the same kind of non-uniform meshes by Ringler et al. [89]. In
order to guarantee a proper model performance including grid adaptation also within
our software environment, we performed several nonlinear test cases on uniform and on
strongly deformed grids. We have shown stability, consistency and proper representation
of the geostrophic balance and of the geostrophic modes.

In addition, a comparison to the triangular shallow-water version of ICON on a uniform
grid, introduced by Giorgetta et al. [44], has been performed. Both models performed
very similar in most cases except for the potential enstrophy conservation, for which the
triangular model performed better. However, as thoroughly elaborated in Wan [112] and
theoretically elaborated in Gassmann [43], the triangular shallow-water model shows a
checkerboard pattern in the divergence field. Moreover, the models differ in the wave
representation and their dispersion relation [43].

Lastly, the usage of methods of exterior calculus to discretize the invariant equations
seems to be a promising approach in the sense that it can provide new insight into the
properties of staggered grid schemes and into the geometrical nature of the Coriolis term
and of its behavior on the mesh. A generalized discretization method for the equations of
GFD on meshes based on general polytopes could help to find, for instance, a consistent
and stable scheme on a barycentric mesh, higher order schemes or vector reconstruction
schemes for three-dimensional models. For the latter, the method of exterior calculus,
which is by definition independent of the dimension, is particularly suitable.



Chapter 4

Simulation of tropical-cyclone-like
vortices in shallow-water
ICON-hex using goal-oriented
r-adaptivity

Abstract We demonstrate how efficient r-adapted grids for the prediction of tropical
cyclone (TC) tracks can be constructed with the help of goal-oriented error estimates.
The binary interaction of TCs in a barotropic model is used as a test case. We perform
a linear sensitivity analysis for this problem to evaluate the contribution of each grid
cell to an error measure correlated with the cyclone positions. This information allows
us to estimate the local grid resolution required to minimize the TC position error. An
algorithm involving the solution of a Poisson problem is employed to compute how grid
points should be moved such that the desired local resolution is achieved. A hexagonal
shallow-water version of the next-generation numerical weather prediction and climate
model ICON is used to perform model runs on these adapted grids. The results show that
for adequately chosen grid adaptation parameters, the accuracy of the track prediction
can be maintained even when a coarser grid is used in regions for which the estimated
error contribution is low. Accurate track predictions are obtained only when a grid with
high resolution consisting of cells with nearly constant size and regular shape covers the
part of the domain where the estimated error contribution is large. The number of grid
points required to achieve a certain accuracy in the track prediction can be decreased
substantially with our approach. !

4.1 Introduction

The adequate representation of tropical cyclones (TCs) in numerical weather prediction
(NWP) models and climate models is a challenging problem. One of the main difficulties
is related to the multiscale nature of these storms. Processes in the inner core of a TC
proceed on convective scales, determine the intensity evolution and thus the influence of
the storm on the large-scale flow [35]. The large-scale flow causes the advection of the TC
[55] and thus influences its environment, which in turn affects the processes in the inner
core (cf. [73]). Due to these scale-interactions, a large range of scales has to be included

IThis chapter has been submitted to the Journal of Theoretical and Computational Fluid Dynamics
(TCFD) as Bauer et al. [9].
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to model TCs adequately. NWP and climate models cover only a part of this scale range
and rely on parameterizations to model processes on subgrid scales. The representation
of TCs in climate models and the quality of TC forecasts in NWP could be improved
by resolving a larger range of scales. However, using uniform grids with sufficiently high
resolution for this purpose would lead to extremely high computational cost.

A promising solution for this problem is to adapt the grid such that the resolution
is high only where it is required to resolve essential features. In the rest of the domain
a lower grid resolution is used, thus making the overall computational costs affordable.
Grid adaptation methods can be categorized as static or dynamic approaches. In methods
using dynamic adaptation the grid is adapted to the solution during runtime according
to a local refinement criterion. This method is, however, not yet used operationally in
atmospheric and ocean applications (except for the OMEGA model [6, 29]), but has been
investigated for idealized models in several studies (e.g. [14, 15, 50, 64, 98]). Static grid
refinement approaches are more frequently used in global atmosphere and ocean models
(e.g. in [8, 39, 45, 87, 88, 110, 116]), for which the grid remains unchanged during the
model integration. The locations of high-resolution areas are usually chosen such that they
include certain atmospheric or orographic features of interest or cover regions in which
predictions with higher accuracy are required. Outside of this high-resolution regions the
error might be high and, consequently, also errors measured in some global error norms.
Based on such refined grids, several global shallow-water models (e.g. [31, 83, 98, 116])
have been investigated with the standard test set of Williamson et al. [118], in particular
with test cases 2 and 5 described therein. The numerical results of these investigations
have been summarized by Ringler et al. [88]. The authors observe that the global error
of the solution depends on the resolution of the coarse mesh regions. Investigating the
test case of baroclinic instability [58], where the storm-track region is within a highly
resolved northern hemisphere, Jablonowski et al. [57] confirmed that also in such case the
global error is determined by the globally coarsest grid cells. However, higher resolution
at the regions of storm-tracks can slow down the error growth when the baroclinic wave
contributes to the error. A suitable local error norm confined to the highly resolved
storm-track region shows with increasing local resolution in this region a decreasing error.

Often application-specific error measures are more useful in assessing the quality of a
numerical solution than a global error. For tropical cyclones, errors in the cyclone position
and the cyclone intensity are such important error measures. Goal-oriented adaptivity
methods allow for an automatic optimization of the grid for cyclone track prediction. In
this approach the grid is adapted such that the error with respect to a goal functional,
which represents, for instance, the error in the TC position, is minimized. These methods,
e.g. the dual-weighted residual (DWR) method [7, 10, 11, 36], are often based on a
posteriori error estimators that allow to assign to every cell a local contribution to the
estimated error in the goal functional. The error distribution is used to control the grid
adaptation process towards efficient grids that minimize the estimated error.

In this manuscript we present a method for goal-oriented static grid adaptation for
a hexagonal C-grid shallow-water model. This model is based on ICON (ICOsahedral
Non-hydrostatic model), the next generation numerical weather prediction and general
circulation model, developed in cooperation with the Max Planck Institute for Meteorology
and the German Weather Service [18, 112]. In the following, we refer to this model version
as [CON-hex shallow-water.

We use the interaction of two tropical cyclones in a barotropic model as a test case
for grid adaptation. Binary TC interaction is a process for which the track prediction
is known to be difficult [30, 59]. The high sensitivity of the solution with respect to the
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initial conditions for this problem is also found in strongly idealized models, in which
the intensity evolution is not modeled adequately. Consequently, we focus on the track
prediction and use the error in the final vortex position as an error norm.

In our approach the grid is adapted by moving grid points to regions where higher
resolution is required, a method generally known as r-adaptivity. We use the discretization
scheme of Ringler et al. [89] that shows conservation of mass, energy and potential vorticity
[88]. However, for this numerical scheme there is, to our knowledge, no adequate goal-
oriented error estimator available. In recent literature [82, 83] an automatic differentiation
tool has been applied on a triangular C-grid ICON shallow-water model to derive an
adjoint model which allows the estimation of the error of the solution with respect to a
goal functional. As the triangular C-grid model shows grid scale noise [112], which can
be avoided by using a hexagonal C-grid model [43, 110], the latter has been chosen for
this study. In addition, such choice makes a comparison with the results of Ringler et al.
[88, 89] easier.

In order to allow goal-oriented grid adaptivity within the ICON-hex model, we adopt
the following approach as an intermediate step until an adequate error estimator is avail-
able for this model. We estimate the error distribution with a goal-oriented error estimator
that is implemented in the finite element package HiFlow? [2]. The error information con-
tains the discretization error weighted by the dual solution. The dual solution represents
the sensitivity of the goal functional with respect to perturbations of the solution (inde-
pendent of the discretization). We assume that for our test scenario, the discretization
errors of the HiFlow? finite element discretization are sufficiently well correlated with the
discretization errors of the ICON-hex discretization such that the indicated errors are
meaningful for adapting the ICON-hex grid. Cellwise error indicators calculated based
on the finite element model are then used to define an adequate monitor function that
controls the r-adaptive grid optimization of the ICON-hex model. In this step, it must be
ensured, that the deformation of the cells is not too strong. Several parameters control
the grid adaptation and we investigate their impact on the grid quality and the resulting
accuracy in track prediction.

The paper is structured in the following way. In Sect. 4.2 we introduce the ICON-
hex shallow-water model. In Sect. 4.3 our method of goal-oriented r-adaptivity for the
ICON-hex model is presented in detail and the connection between the error distribution
of the finite element model and the grid adaptation of the ICON-hex model is established.
In Sect. 4.4 we introduce the scenario of binary tropical-cyclone-like vortex interaction as
a test case for the proposed adaptive method. In Sect. 4.5 we present and discuss the
numerical results. In Sect. 4.6 we present a summary and conclusion.

4.2 The hexagonal C-grid shallow-water model ICON-hex

Within the framework of ICON [18, 43, 90], we develop ICON-hex, a shallow-water model
with static grid adaptation. Based on a suitable discretization scheme of Thuburn et al.
[102] and Ringler et al. [89], the geophysical shallow-water equations are discretized by
using the hexagonal C-grid staggering. The discretization scheme allows for an r-adaptive
grid refinement, i.e. grid points are moved to regions where higher resolution is required.

As no grid points are added and thus the neighborhood relations do not change, only
geometric properties as cell sizes or edge lengths of the adapted grid have to be recalculated
in order to update the operators. Such unvarying topology eases the problem of load-
balancing in parallel computing, which may be advantageous in particular for models with
dynamic grid adaptation.
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Figure 4.1: Position of the prognostic variables fluid depth A and normal velocity com-
ponent v, on the grid. lnex and dA denote edge lengths and cell areas of the hexagonal
cells, respectively. With x; € Q7 = 1,2, 3, we denote the triangular vertex points that are
moved during the grid adaptation process (cf. Sect. 4.3.4).

4.2.1 The continuous equations

As basic system of equations we use the nonlinear geophysical shallow-water equations,
written in vector-invariant form:

A _(g+f)kxv—V(1v2) —gVh —vV - (Vv),
g}i 2 (4.1)
i -V - (hv),

where v = (vg,vy,0) is the velocity vector, h is the fluid depth, ( = k -V x v is the
vorticity, f is the Coriolis parameter, k = (0,0,1), V = (9;,0y,0), v is the viscosity and
g the gravity.

4.2.2 Discretization in space and time

The ICON-hex model provides discrete approximations for the differential operators of
Eq. (4.1) according to the definitions in Chapter 2.7 for a grid based on the Voronoi-
Delaunay tessellation of the computational domain 2. The prognostic variables fluid
depth A and normal component v, of the velocity v are positioned at the Voronoi cell cen-
ters, in the following denoted with x, and at the intersection of hexagonal and triangular
cell edges, respectively (cf. Fig. 4.1). This hexagonal C-grid staggering allows for favor-
able wave dispersion relations. However, the C-grid staggering requires a reconstruction
of the missing tangential velocity component in order to determine the Coriolis-term in
Eq. (4.1). In this study, we exploit the reconstruction and interpolation methods suggested
by Thuburn et al. [102] and Ringler et al. [89].

For the time discretization, we use a leap-frog scheme with an Asselin-filter coefficient
a = 0.03. The diffusion introduced by this filter is small compared to the diffusion caused
by the viscosity for the investigated scenario (cf. Sect. 4.4).

The definitions of the differential operators [18, 90| and of the reconstruction and
interpolation methods [89, 102] guarantee conservation of mass, total energy, potential
vorticity and geostrophic balance for the spatial semi-discretization even on an r-refined
grid [88]. However, with increasingly deformed grid cells we expect a decrease in the order
of the operators.
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For this combined finite difference and finite volume method there exists to our knowl-
edge no goal-oriented error estimator. Therefore, we suggest a method that allows, despite
the lack of an error estimator, a goal-oriented grid adaptation in ICON-hex.

4.3 Goal-oriented r-adaptivity for the ICON-hex model

The goal-oriented adaptive methods investigated in this study allow to construct efficient
discretizations by grid adaptation for the determination of certain physical quantities of
interest definable as functionals, in this context denoted as goal functionals.

In the following, we present an a posteriori error estimator based on which each grid
cell’s contribution to the error in the goal functional can be quantified. This calculation
requires information about the sensitivity of the functional with respect to perturbations,
which is given by a dual problem. The error estimator is described in the context of an
abstract parabolic problem and an adequate finite element discretization.

Based on such error estimates, an adequate monitor function that controls the r-
adaptive grid refinement can be defined. The aim is to adapt the ICON-hex grid such
that the error in the quantity of interest is minimized for shallow-water runs. In the
following, we introduce the necessary steps in more detail.

4.3.1 Goal-oriented error estimation

The error estimator presented in this section requires solutions that are Galerkin ap-
proximations. In case of time-dependent problems, space-time finite element methods
provide adequate discretizations. Consider the following initial value problem in the
domain Q@ C R? and the time horizon (0,T) given as variational formulation: Find
u€W :={ucL*0,T;V)|0u € L?(0,T;V*)} such that

T
plu, ) == /0 (O ) + alu, 9)) dt + (u(0) — g, p(0))q = 0, (42)

for all ¢ € L := L%*(0,T;V). Here, a: V x V — R denotes a continuous operator on the
Hilbert space V' with dual space V*, and (a,b)q := fQ a - bdx denotes the inner product
on the space of square-integrable functions on €2, i.e. L?(£2). Details about existence and
uniqueness of solutions as well as details on the related function spaces can be found, for
instance, in [120]. The operator a(-, -) and the function spaces W and L can be chosen such
that problem (4.2) represents, for instance, the time-dependent two-dimensional Navier-
Stokes equations. A discrete approximate solution of problem (4.2) can be calculated
by replacing the function spaces W and L by finite dimensional subspaces L; C L and
W, € W. To this end, a space-time mesh with a partitioning of the interval (0,7") in Ngjpe
sub-intervals and a triangulation of the domain € consisting of Nyp.ee cells is assumed.
The discrete functions are defined as piecewise polynomials.

Let the user-defined goal functional be denoted by J, then J(u) denotes the quantity
of interest. The sensitivity of the goal functional with respect to perturbations of v can
be determined by a dual problem, which is defined as linearization of (4.2) — referred to as
primal problem in this context — and depends on the solution v and on the goal functional
J: Find z € W such that

T
pu(z, ) = /0 (— (0ez,0) o + as (2, w)sz) dt + (2(T), o(T)) o = J'(u)e, (4.3)

for all ¢ € L. a’(z,-)q denotes the adjoint of the linearization of a(-, z), evaluated at w.
J'(u)¢ denotes the directional derivative of J at u in direction . The negative sign of
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0z indicates that the dual problem is posed backward in time, with initial condition at
time t = T, which depends on the goal functional. An approximate solution z, € W}, of
problem (4.3) can be calculated using the same finite dimensional spaces W}, and Ly as
before.

Since we choose different trial space W} and test space Ly, the discrete variational
problems (4.2) and (4.3) belong to the class of Petrov-Galerkin methods. For an approxi-
mate solution uy € W}, of the primal problem, the error with respect to the goal functional
J can be estimated by [10]:

J(u)—J (up) =~ E(up) = %(p(uh,Z+zh—Ih(Z+zh))+pzh(zh, U—uh—Ih(U—uh))). (4.4)
Here, I}, : W — Lj, denotes an interpolation operator that maps into the discrete space of
the test functions. The functions U, Z € W denote approximations of the exact primal and
dual solutions u and z, respectively. We defined these approximations by a projection of
the calculated solutions uj, and zj, into a finite element space of higher order by patch-wise
interpolation, cf. [7].

The error estimation E(uj) is defined in terms of the residuals p(-,-) and pf (-,-),
which represent integrals in space and time. These can equivalently be formulated as sum
of space-time integrals over all cells in the space-time mesh. By the triangle inequality,
error indicators 7;; > 0 that denote the contribution of cell j € {1,..., Ngpace} in the time
interval ¢ € {1,..., Nyime} of the time partitioning can be introduced by

Ntime Nspace

E(up) < Z Z Mij- (4.5)

Further details on the calculation of these error indicators can be found in [10]. Since the
adapted grid should be fixed in time, only the maximal error contribution over time for
each of the Ngpqce grid cells is of interest. This leads to the final error indicators

Nime .
n; = Iii_alX Mg, J = 1,... aNspace- (46)

Based on these error indicators, we describe in the following how a monitor function that
controls the r-adaptive grid optimization can be defined.

4.3.2 Definition of the monitor function

For a numerical scheme that is of second order in space on a uniform grid, the error
€ o 12 is proportional to the squared grid length. The scheme used for the ICON-hex
shallow-water model shows this property.

When investigating global flow phenomena with adapted grids, the error is determined
by the grid length of the coarsest cells, as shown by Ringler et al. [88]. Local errors might
be distributed with the flow field across long distances. Increasing the resolution only in
certain grid areas would therefore not reduce the global error.

In contrast, when investigating non-global phenomena with localized features, as for
instance the scenario of binary TC interaction (see Sect. 4.4), we expect more accurate
solutions when using adequately adapted grids. For the estimated local error contributions,
denoted by €qst in the following, we assume €5y = clgst, where leg is the grid length of
the uniform grid that is used in the error estimation process. c¢ is an unknown factor
independent of l.; that will cancel out in the following argumentation.
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The adaptation of an initially uniform grid in correspondence to the local errors aims
at an equal distribution of the local error contributions and a reduction of the error in
the goal functional. When the local error has to be reduced below €target = clgarget, the
corresponding grid length liareet is related to the estimated local error ee; by

€target
ltarget - lest . (4 7)
€est

To estimate the local error contributions €es of the single cells of a uniform ICON-hex grid,
we interpolate the error indicators 7; from the grid cells of the finite element discretization
to the ICON-hex grid cells. The interpolated error indicators are denoted with 7(x), where
x € () are coordinates of the cell centers (see Fig. 4.1).

Our grid adaptation method uses a monitor function f(x) that controls the distribution
of the size of the grid cells over the entire domain by the relation f(x) o liarget(X)?,V x € Q
(cf. Eqn. (4.13) and (4.14) further below). If we assume to constrain the local error
contributions below a globally valid error threshold €garget, we find the desired relation
between error indicators and the monitor function by

f(x) o« —, Vxe (4.8)

In general, n(x) contains error information that span over a range too large to be
used directly as monitor function. Bounding the error values and smoothing the monitor
function are therefore necessary steps as the pure error information can lead to strongly
deformed and thus possibly unusable grids.

4.3.3 Bounding and smoothing of the monitor function

Ill-defined geometrical properties on strongly deformed grids: By definition of
the Voronoi-Delaunay tessellation, as used in ICON-hex, the cell edges of the hexagonal
and triangular grids are always perpendicular to each other. This is due to the fact that the
circumcenters of the triangles are vertices of the hexagonal cells also in case of deformed
grids. During the grid adaptation, the grid point transformation moves the vertices of
the triangular cells (cf. Fig. 4.1). However, problems arise when the circumcenter of
a strongly deformed triangle lies outside its own boundaries. This fact translates into
ill-defined geometrical properties, for instance negative edge lengths and grid sizes of
the hexagonal cells. As the differential operators rely on well-defined geometrical cell
properties, numerical simulations cannot be carried out on such grids. In the following we
call this geometrical restriction to grids with circumcenters lying within their own triangle
boundaries the grid duality constraint.

Grids that use the barycenters, instead of the circumcenters, as vertices of the hexag-
onal cells do not show this limitation. For instance, the finite volume model OLAM
[108, 109] is based on such grids. However, as in such case the primal and dual cell
edges are in general not perpendicular to each other, the use of these grids demands for a
different numerical scheme and is thus not an option for our investigations.

The grid duality constraint imposes, besides the error distribution itself, a second
condition on the grid adaptation process. This condition restricts the possibility to adapt
the grid in an arbitrary manner. However, strongly deformed grid cells that violate the
grid duality constraint can be avoided by limiting the range of cell areas in the grid and
by ensuring that cell areas vary smoothly rather than abruptly.
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Bounding of the values of the error indicators: To obtain adapted grids that obey
the grid duality constraint, the monitor function has to be restricted such that the ratio
of the cell area of the uniform grid to the area of the smallest cells of the adapted grid,
dA(x)/ mingcq dA'(x) (cf. Eq. (4.14) for notation), does not exceed a constant ~y, which
we will call the refinement level. Based on Eq. (4.8), this bounding can be accomplished
by setting

Lmy  for m(x) >
VxeN:  f(x):= Chorm- 1/n(x) for mp/v < n(x) <mn (4.9)
v/ for n(x) <my/v.

If Ag is the total area of the domain Q, and A(n,) is the area of the region of 2 where
n(x) > n, we can define an area fraction b(ny) = A(m)/Aq that is a monotonically
decreasing function of the error bound 7. According to Eq. (4.9), b is the fraction of the
area where the grid will have the finest resolution, with cell sizes that are a factor v smaller
than for the cells of the uniform grid. In the following we specify for all model runs the
area fraction b instead of the error bound 7;,. The normalization constant, Chorm > 0, will
be defined further below.

Smoothing of the monitor function: If the error indicators 7n(x) vary strongly on
small scales, even the bounded monitor function of Eq. (4.9) may result in grids that
violate the grid duality constraint. This problem can be avoided by using a smoothed
version of the monitor function, which results in smooth transitions between regions with
coarse and fine cells. Smooth transitions and a high homogeneity of the shape of the cells
guarantee well-defined geometrical properties.

For this purpose we suggest a smoothing method in two steps. In the first step, for
each grid point x € Q the value of the function f(x) is replaced by the minimum of f
within the neighborhood Uy(x) := {x’ € Q | |x’ — x|/, < d} with a smoothing length
d € R in km, i.e.

ext(X) == mi ), VxeQ. 4.10
fex(x):= min f(x'), vx (4.10)

Ixl[s == V&% + s*y* (4.11)

with a scaling factor s = 2/v/3 ~ 1.15 that equals the ratio of the zonal to the meridional
sizes of the hexagonal grid cells. Thus, regions with small values of f are extended by the
same number of cells in zonal and meridional direction.

In the second step, the extended function is convolved with a Gauss function, i.e.

Here we use a norm

1

) = = [ foalxhexp(= " = x| /)x" e = [ exp([x’[B/d)ax
? ? (4.12)
This leads to a smoother monitor function fg,, while maintaining the minimum of the
original function. Furthermore, the area fraction b to be covered by the finest grid cells
changes only slightly due to this smoothing method. In contrast, omitting the step for
expanding the function and applying thus only the Gaussian convolution on the original
monitor function f would lead to a function with changed minimum f,4. An illustration
of the bounding and smoothing method is given in Fig. 4.2.
Compared to approaches in the literature, for instance the mesh generation algorithm
based on gradient limited monitor functions of Persson [80], our adaptation method, in
which the grid parameters are chosen manually, does not generate automatically high

csm
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Figure 4.2: The bounding and smoothing method of monitor functions is illustrated on

a one-dimensional periodic domain. f denotes the original monitor function, fex the ex-

tended function and fg, the smoothed function. With f.q we denote the monitor function

with reduced minimum.

quality grids where the homogeneity of cell shapes and a smooth transition of cell sizes is
automatically guaranteed. To obtain nevertheless optimal grids, we address in Sect. 4.5.3
the grid quality issue to find optimal values for area fraction b and smoothing length d.

4.3.4 Grid adaptation controlled by a monitor function

Relation between monitor function and cell size distribution: Let f € C1(Q)
be a monitor function with (i) f > 0 in Q and (ii) [,(f — 1)dA = 0, where dA is the
two-dimensional area measure and  C R? is a bounded domain with smooth boundary.
Then, an injective transformation ¢ : Q — €2, which describes the movement of all points
(x,y) € Q exists [74, 68], and it is given by

detVo(z,y) = f(z,y) in Q and ¢(z,y) = (z,y) on 0. (4.13)

The left-hand side of Eq. (4.13) is the Jacobian determinant J of the mapping ¢ and can
be written as

44/ (a.y)

J(¢) = detVo(x,y) dA(z,y)| (4.14)
where dA’ is the image of the area element dA under the mapping ¢ [69]. As f > 0 there
is also J(¢) > 0.

For the deformation of grids, dA(x) denotes for every grid point x the cell sizes of the
original uniform grid (cf. Fig. 4.1) and dA’(x) the cell sizes after applying the transfor-
mation ¢ to the original grid. Taking, for instance, the monitor function f(x) derived in
Eq. (4.9), we find, based on Eqn. (4.13) and (4.14), a relation that allows to control the

cell size distribution of an adapted grid by a point-wise defined monitor function.

Numerical method for r-adaptation: The grid is adapted by moving the grid points
x in  with respect to the monitor function of Eq. (4.9). To guarantee that the monitor
function fulfills conditions (i) and (ii), the normalization constant, Cyorm > 0, must be
chosen such that the integral value over the domain equals 1, i.e. [, f(x)dA(x) = 1. With
nj > 0 (cf. Sect. 4.3.1) and the conditions imposed on 7(x) by Eq. (4.9), f > 0 is also
guaranteed.

In order to find the corresponding transformation ¢, a solution to problem (4.13) has
to be found. This can be achieved by an algorithm of Semper and Liao [95] that consists
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of two steps. First, the conditions (i) and (ii) on f(x) of Eq. (4.9) guarantee a solution to
the following Poisson problem

—Aw(x) = f(x)—1 inQ,

4.15
B_w =0 ondN, ( )
on
with v(x) := —Vw(x). w is an auxiliary scalar function that is no more needed in the

following. The vector function v(x) of Eq. (4.15) describes the direction and degree of
movement of every grid point x with respect to the monitor function f(x). The so-called
deformation vector 6 : {2 x R — {2 can be introduced by

,_ v(x)
0(x,s) = ST A—5700 s €[0,1]. (4.16)

Then, for every grid point x € ) the transformation ¢ can be determined by solving a
system of ODEs

dis?/)(s,x) = 0(¢(s,x%), ), 0<s<l1,s€R, (4.17)

with the initial condition 1(0,x) = x. The auxiliary function ¥(s,x) € Q, Vs € [0,1],
moves every grid point x = ¢(0,x) in steps of increments ds to the desired new position
¥(1,x). Then ¢(x) := 1(1,x) defines the desired grid point transformation. To guarantee
a smooth transformation, ds has to be reasonably small (for our experiments ds = 0.1).

Based on the definition of the monitor function in Eq. (4.9) that fulfills conditions
(i) and (ii) of Eq. (4.13), we have thus found a grid point transformation ¢ that adapts
the ICON-hex grid with respect to the error indicators n; provided by the finite element
model.

4.4 Binary tropical-cyclone-like vortex experiment

4.4.1 Binary tropical cyclone interaction

When two tropical cyclones come sufficiently close to each other they interact. In the
course of the interaction process the circulation of the first vortex advects the second
and vice versa. Due to the horizontal shear of the circulations also the structure of the
TCs can be modified. These processes may also result in a merger of the cyclones. The
binary tropical cyclone interaction often leads to complex tracks [63] and can increase the
forecast error significantly [30, 59]. The interaction process was first studied by Fujiwhara
[40, 41, 42], who showed in laboratory experiments that two vortices of the same rotation
with sufficiently small initial separation approach each other in a spiral orbit and eventually
merge. Binary TC interaction was also investigated using idealized models (e.g. [34,
56, 72, 81, 91]). Shin et al. [96] and Holland et al. [56] developed estimates for the
maximum initial separation that leads to a merger of the cyclones in a barotropic model.
Several studies used vortex profiles with a core of positive relative vorticity surrounded
by a ring of negative relative vorticity, mimicking the anticyclonic outflow of tropical
cyclones. For these profiles solutions exist, in which two anticyclone-cyclone pairs form
and propagate away from each other rapidly [12, 106]. As will be shown below, in such cases
the cyclone tracks depend very sensitively on the initial conditions and thus presumably
also on numerical errors caused by too coarse grids.
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4.4.2 Setup of the test case

In the following we restrict our study to the symmetric case, i.e. the interaction of two
identical vortices. We use a vortex defined by [97] with a wind profile resembling the one
of a mature tropical cyclone. The tangential wind of the vortex is given by

s(1 + (6b/2a)s*)
(14 as? + bs)? ’

vr(s) = vg (4.18)
where s = r/ry. For a =0.3398, b = 5.377 x 1074, vo = 71.521 ms~! and ry = 100km, the
maximum wind is 40ms~! (at r = rg). The total circulation of this vortex is zero and the
relative vorticity is negative for r > 180km. As initial condition, two of these vortices are
placed 200 km east and west of the center of a domain with a size of 4620 km x 4000 km.
We employ doubly periodic boundary conditions and use the f-plane approximation with
a Coriolis parameter f = 0.62 * 10~4s71.

While the velocity or vorticity distribution of the two vortices is sufficient to fully define
the initial conditions for non-divergent barotropic models, shallow-water models require,
in addition, an initial fluid depth distribution hg(x). The variation dhg of the initial fluid
depth distribution hg : £ — R is the solution of the nonlinear balance equation

A 6to) = 39 (~cr+ Dicxva - V() (4.19)

derived by applying the divergence-operator V- on both sides of Eq. (4.1) and assuming
a divergence-free velocity field. The initial fluid depth is given by adding the variation
to a constant background fluid depth H, i.e. hg = H + dhg. For a sufficient geostrophic
adjustment, the fluid depth h of the shallow-water equations of Eq. (4.1) has to be large
enough to properly resolve the Rossby deformation radius. To achieve this, we choose a
background fluid depth of H = 10km to obtain a Rossby deformation radius of 5096 km
that is well resolved also in case of very coarse resolution, e.g. 82 cells (6een ~ 578 km).
For the test problem considered in this study, the variation of the fluid depth dh is small
compared to H, so that solutions of non-divergent barotropic and shallow-water models
are expected to be very similar.

In order to study the properties of the scenario, we performed high-resolution ref-
erence runs on uniform grids with the non-divergent barotropic model HiFlow® [2] (the
finite element model that provides the error indicators, cf. Sect 4.4.4) with a resolution
that corresponds to 10242 cells (approximate cell diameter d.q ~ 4.85km) and with the
shallow-water version of ICON-hex with 10242 cells (dce =~ 4.5km). The evolution of the
vortices is followed for 4 days. We use a viscosity v = 5000m? /s, which is sufficient to
suppress numerical noise to an acceptable level, in both models.

4.4.3 Nonlinear evolution and sensitivity to initial conditions

For an initial distance of 400 km, i.e. four times the radius of maximum winds, the cyclones
are too far apart to allow for a merger, but sufficiently close together for the two negative
vorticity regions to overlap (Fig. 4.3, t = Oh). During the first 12 hours of the evolution,
the zones of positive vorticity forming the vortex cores are strongly deformed and even
connected to each other (see Fig. 4.3, ¢ = 6h). In the initial phase the fluid with negative
vorticity is advected into the regions behind the orbiting positive cores, thereby forming
two cyclone-anticyclone pairs (Fig. 4.3, ¢ < 12h). In each pair the circulation of the cyclone
causes an advection of the anticyclone and the circulation of the anticyclone causes an
advection of the cyclone in the same direction, leading to a rapid propagation of the pair.
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Figure 4.3: Evolution of the vorticity distribution with an initial TC separation of 400 km
for a high-resolution ICON-hex shallow-water run with 10242 grid cells. The black contour
lines denote ¢ = =5 x 10771, ( = =5 x 107 s L and ¢ =7 x 10745~ L.

Due to this process, the orbiting motion of the positive cores that dominates the dynamics
of the initial phase is replaced by a propagation of the two pairs into opposite directions.
After 48 hours, the pairs follow straight tracks, indicating that their mutual influence
has become negligible. A similar behavior of interacting vortices has been observed in
simulations by Valcke and Verron [106] and in laboratory experiments by Beckers et al.
[12].

Additional model runs show that this scenario is very sensitive to variations of the
initial separation. If the initial separation is reduced to 390 km, the direction of the cyclone
propagation in the final phase changes by 140°. For values below 380km the solution
changes completely and the cyclones merge. The high sensitivity to the initial conditions
suggests that there is also a high sensitivity to numerical errors. This is a desirable
property for a test case for adaptive methods, as the effect of insufficient resolution, in
particular in the initial orbiting phase, should be clearly visible as track errors.
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Figure 4.4: Error indicators (Eq. 4.6) corresponding to the goal functional defined in
Eq. (4.20) determined by HiFlow® on a uniform mesh with 1282 cells. Blue zones indicate
low error contributions, red zones indicate high contributions to the error in the goal
functional.

4.4.4 Error estimation using the finite element package HiFlow?

We performed the goal-oriented error estimation described in Sect. 4.3.1 for the scenario
discussed above using a non-divergent barotropic model, implemented in the general-
purpose finite element package HiFlow® [2]. The discretization in space consists of stable
Taylor-Hood elements on a uniform mesh with 1282 cells. Hence, the cell’s diameter is
approx. 36km and the distance between nodal points of the velocity discretization is
ddof ~ 18km. The time discretization is defined by the cGP(1) method [93], for further
details see [10].

The estimation of errors requires the specification of a goal functional. In this study
we focus on the correct prediction of the cyclone tracks. Therefore, we use the error
in the final cyclone position to quantify the quality of numerical solutions. The cyclone
position is characterized by the location of the maximal vorticity. However, the position
determined in this way cannot be used directly as goal functional, since the latter must
be differentiable. Instead we make use of a smooth functional that is strongly correlated
with the position of the cyclones, defined as integrated kinetic energy over the storm cores
at the final time T,

J(v) := /Q x(x,T) ||v(x,T)||* dady, (4.20)

where the cores are defined as the regions where the vorticity ¢ exceeds half of its maximum
value,

(1) = {1 , C(x,t) > 0.5 % max,eq ((x,1) . (4.21)

0, else

The velocity varies strongly within the cyclone cores, and thus for a fixed region selected
by x, J is very sensitive to a displacement of the cyclones. The error indicators n; com-
puted for this goal functional (Fig. 4.4) thus indicate, which regions of the grid contribute
significantly to the position error of the cyclones.

The error indicator distribution is symmetric, since both the initial conditions and the
chosen goal functional are symmetric. The zones with the highest error contributions (red)
are located between the initial positions of the two storms. This indicates that reducing the
error in the initial phase, when the mutual interaction of cyclones is most pronounced, is
decisive for improving the accuracy of the final storm position. The contributions along the
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storm tracks, especially once the storms have started to diverge, are significantly smaller.
Far from the storm tracks the error contributions are almost vanishing (dark blue). These
error indicators are used to control the grid adaptation for the adaptive ICON-hex runs
discussed in the following section.

4.5 Numerical results

4.5.1 Non-divergent barotropic and shallow-water solutions on uniform
grids

Before we discuss the results of model runs on r-adapted grids, we will first discuss how
for uniform grids the numerical solutions for our binary TC interaction test case depends
on the resolution. For this purpose we consider runs with the ICON-hex shallow-water
model on uniform grids with 642 (0 ~ 72km) to 10242 (den ~ 4.5km) grid cells and
compare the results with the reference solution obtained with the non-divergent barotropic
model HiFlow? on a uniform grid with dgof ~ 4.5km. The cyclone positions X(¢) in these
experiments are determined by computing the area-weighted center of the vortex core,

X(t) = / x x(x,t)dA/ X(x,t)dA , (4.22)
Qr Qr

where we use the function x of Eq. (4.21) to identify the vortex cores. This method allows

us to measure the cyclone position with sub-grid precision. The integration region Qg is

chosen such that it contains only the vortex that is located to the right of the origin in

the initial state. Due to the symmetry of the solution the position of the cyclone located

originally to the left of the origin is given by —X().

Figure 4.5 displays the cyclone tracks calculated on uniform ICON-hex grids (solid
lines) for different resolutions (adapted runs are discussed further below). As expected
due to the high sensitivity of the solutions to the initial conditions (cf. Sect. 4.4.3), the
cyclone tracks depend strongly on the grid resolution. With increasing resolution the
shallow-water ICON-hex tracks converge towards a solution that is very similar to the
non-divergent barotropic HiFlow? reference track (black). This agreement supports our
assumption that the error indicators from HiFlow® could be a reasonable approximation
for the actual errors arising in the shallow-water runs.

The errors in the final vortex position X (7" = 96 h) of the shallow-water runs, compared
to the reference run, decrease from 690km for a uniform ICON-hex grid with 642 cells to
less than 4 km for a uniform grid with 10242 cells, an error which is comparable to the cell
diameter of this grid, deen ~ 4.5 km.

4.5.2 Simulations on r-adapted grids

In the following we present the results of model runs on grids adapted with the methods
described in the previous sections. In all of these cases the grid adaptation is based on
the error indicators displayed in Fig. 4.4. Furthermore, in all cases the adapted grids are
constructed with an area fraction of b = 1% and a smoothing length of d = 550 km. This
choice of parameters results in well-suited grids similar to the grid shown in Fig. 4.8A,
as will be discussed in Sect. 4.5.3. We consider refinement levels v between 2 and 4, and
grids with n = 642 to n = 10242 cells.

Using the error in the final cyclone position for a comparison of solutions on adapted
and uniform grids turned out to be problematic. When evaluating the accuracy of the
predicted cyclone tracks on uniform grids, the error of the final cyclone position X (7") with
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Figure 4.5: Cyclone tracks calculated with the ICON-hex shallow-water model for different
resolutions. The numbers displayed in the plot for each line indicate the square root of the
number of grid cells used in the model run. The black line is the track for the reference
solution of the non-divergent barotropic model HiFlow? with d40¢ ~ 4.5km. Tracks for
r-adapted ICON-hex runs are shown in dashed lines.

respect to the reference track is an adequate and reliable measure. However, on adapted
grids where the grid cells differ in shape and size along the cyclone tracks, we find cases
where final vortex positions are relatively close to the correct position, although at earlier
times the tracks show significant differences to the reference tracks. To assess the quality
of the solution it seems thus more useful to consider the time-averaged position error with
respect to the reference run,

1 T
Ean = 7 [ IXO) = Xan 0]t (1.23)
0

as an error measure. Here X (t) € € is the cyclone position at time ¢ (defined anal-
ogously to Eq. (4.22)) for the shallow-water reference track calculated on the highest
resolved ICON-hex grid with 10242 cells (cf. Fig. 4.3). We denote Egy, as mean position
error. All errors presented in the following are meant as mean position errors, unless
otherwise stated.

The evaluation of mean position errors for the adapted runs shows that for all re-
finement levels, the tracks of adaptive runs converge with increasing number of grid cells
towards the track of the reference solution (Fig. 4.6). In all cases the mean position errors
can be reduced to less than Eg,y, < 3km, which is already smaller than the cell diameter
of dcen & 4.5km in the reference solution. The runs on adapted grids predict cyclone
tracks thus comparably accurate as runs on uniform grids. However, for a given maximum
error significantly fewer grid cells are required for runs on adaptive grids, compared to the
uniform grid runs (black line in Fig. 4.6). To obtain an error of less than Fg, < 3km,
5122 grid cells are required on uniform grids. For grids with refinement level v = 2, we
achieve the same accuracy using only 3622 grid cells. With v = 3, the number of grid cells
can be further reduced to 2402 cells and 2222 grid cells are sufficient for v = 4.

The local resolution of an adapted grid with refinement level v and n grid cells does
not exceed the resolution of a uniform grid with yn cells. Therefore, the best result one
can expect for the error of the adaptive run is, that it is close to the error of the uniform
grid run using a factor of v more cells. This is the case for our adaptive runs, as indicated
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Figure 4.6: Mean position errors of shallow-water solutions with respect to a high-
resolution reference run as a function of the number of grid cells n = N? for adapted
grids with v = 2,3,4. All adapted grids share the parameters b = 1% and d = 550 km.
The error for uniform grids, Egny(n), is displayed as a black line. The dashed lines corre-
spond to errors of uniform grids using yn cells, i.e. the best results that can be expected
for adapted grids with n cells and v = 2, 3,4 (see text).

by the agreement of colored and dashed lines in Fig. 4.6. An example for this relation
between solutions on adaptive and uniform grids is also shown in Fig. 4.5. The cyclone
tracks calculated on adapted ICON-hex grids with 642 and 1282 grid cells with a refinement
level of v = 4 (dashed lines) are very similar to the tracks obtained for uniform grids with
1282 and 2562 cells, respectively.

These results can be summarized as follows: Coarser grids can be used outside of the
region where the error indicators are large without affecting the accuracy of the track
prediction significantly. Grids adapted in this way allow for a substantial reduction of
the number of grid cells required to achieve a certain accuracy. However, this approach
requires an adequate choice of the grid adaptation parameters and is not possible for
arbitrarily large refinement levels, as we will discuss in the next section.

4.5.3 Influence of the grid adaptation parameters on the accuracy in
track prediction

The grid adaptation parameters v (refinement level), b (area fraction), and d (smooth-
ing length) determine, how the DWR error indicators are used to adapt the grid (see
Sect. 4.3.3). Only parameter combinations from a certain part of the parameter space
lead to adapted grids that allow for accurate track predictions. By means of additional
adaptive model runs for a wide range of parameters, we investigate the relations between
adaptation parameters, grid quality and the error in the track prediction.

Taking the discussion in the previous section into account, the quality of a solution
obtained for a refinement level v using n grid cells should be assessed by a comparison
with the solution on a uniform grid with vyn grid cells. In the following, we will therefore
use the mean position error with respect to this solution, instead of the high-resolution
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Figure 4.7: Mean position errors E. (b, d) [km] for v = 2, 3,4 as a function of area fraction
b and smoothing length d for adapted grids with 1282 cells, with red for high and blue for
low errors. Black dots represent individual adaptive runs. The values between these runs
are obtained by quadratic interpolation. White areas indicate regions, where no grids
exist that fulfill the grid duality constraint. The arrows indicate parameter pairs that
correspond to the meshes shown in Fig. 4.8A - 4.8D.

reference solution. Analogously to Eq. (4.23) we define

1

Efy(b, d) = ?

T
/0 ||Xadapt (t) — Xuni (t)| |dt ) (424)
where Xagapt (t) and Xypi(t) denote the position of one of the two cyclones at time ¢ for
solutions calculated on an adapted ICON-hex with n cells and a uniform ICON-hex grid
with yn cells, respectively.

The evaluation of E. (b, d) for runs on adapted grids with different parameter combina-
tions shows that for each refinement level v = 2, 3,4 a region in the b—d plane can be found
where the error is small (blueish areas in Fig. 4.7). The parameter combination b = 1%
and d = 550km used for the adaptive runs discussed in Sect. 4.5.2 is located in these
regions for all considered refinement levels. For the white areas in Fig. 4.7, the parameters
lead to adapted grids that do not fulfill the grid duality constraint (see Sect. 4.3.3) and are
therefore not suitable for integrations. The usable region in the b — d plane shrinks with
increasing . For v = 5 no valid grid could be found. Within the regions that correspond
to valid grids, the error varies strongly. In particular, for small area fractions b and small
smoothing lengths d high errors up to £, ~ 60km result for all three refinement levels.
The results displayed in Fig. 4.7 are obtained for 1282 grid cells. Other numbers of grid
cells n lead to similar results. In particular, small errors are found in the same parts of
the b — d plane for all grid cell numbers n investigated.

For four examples of (v, b, d) parameter combinations marked with labels A, B, C, and
D in Fig. 4.7, we discuss the properties of the corresponding grids and their influence on
the mean position errors E. (b, d). The cell area distributions for these cases are displayed
in Fig. 4.8 for grids with 1282 cells. The shape and size of the high-resolution regions
(dark blue) varies significantly for different parameter combinations. For a quantitative
description of the deformation of grid cells we consider also the edge length ratio
max lpex(x)

Alpex(x) 1= (4.25)

min lpey(x)

where lpex(x) describes the edge lengths of the hexagonal cell at point x (cf. Fig. 4.1).
High values of Al indicate strongly deformed cells. Contour lines for Alyey are included
in Fig. 4.8.
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Figure 4.8: Cell area and deformation distributions resulting for different combinations of
grid adaptation parameters b, d, v. The colors indicate the cell areas, with blue for the
finest and red for the coarsest cells on meshes with 1282 grid cells. The gray lines are the
shallow-water reference tracks. The black contour lines correspond to Alpex = [2, 3, 10, 25]
and allow for an identification of regions with deformed cells. The inset in D) shows the
strongly deformed grid cells in a region with high Aljex.

In the grid for the parameters combination v = 3, b = 2% and d = 550km (case A
in Fig. 4.7) the high-resolution area (dark blue) completely covers the region, in which
the initial orbiting of the cyclones takes place and where the largest values for the error
indicators are found (Fig. 4.4). This region contains cells with quite regular shapes, which
can be inferred by the fact that it is not intersected by the contour lines for Alpey. Only in
the end phase of the model run the cyclones encounter regions where the grid resolution
becomes lower and the deformation increases. However, according to the error indicators
(Fig. 4.4), the errors in the early phase are much more important for the accuracy of the
final cyclone position. This grid leads to a low mean position error of E,—3(2%, 550km) ~
7km compared to the corresponding reference solution (cf. Eq. (4.24)).

In case B a smaller smoothing length d and in case C a smaller area fraction b yield grids
with smaller high-resolution areas. Also the regions with highly deformed grid cells are
located at smaller distances to the origin. In both cases, the cyclones therefore encounter
increasing cell sizes and deformed cells already in the initial orbiting phase, earlier than in
case A. On both grids the solutions show higher errors than in case A, E,—3(2%,270km) ~
20km for case B and E,—3(0.01%,550km) ~ 16 km for case C. These increased errors are
probably related to a reduced order of differential operators on non-uniform grids (see
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(88, 89]). In case A also non-uniform grid regions exist, but they have an influence on the
cyclone motion only at later times, so that the impact on the mean position error is much
weaker.

The highly deformed cells in cases A, B, C are generated at strong gradients of the
cell area distribution. When the smoothing length is reduced further, these gradients are
enhanced and the cell deformations become too large to allow for grids fulfilling the grid
duality constraint. Also larger refinement levels increase the cell area gradients. For this
reason, no valid grids with small errors could be found for v > 2 and small smoothing
lengths. If b or d is increased from the values of case A, the high-resolution area grows
and the high-deformation regions move further away from the origin. In general, the mean
position error remains therefore low. However, when the high-resolution area is enlarged,
the number of grid points in the rest of the domain decreases and the cell areas grow. If
there are too few grid points left, the resulting grid cells outside of the high-resolution
area are so strongly deformed that they do not fulfill the grid duality constraint any more.
Thus, no valid grids exist for large values of b and d. Also this effect becomes enhanced
when ~ is increased. This explains why the part of the b — d parameter space leading to
valid grids shrinks with increasing vy (Fig. 4.8) and vanishes for v > 4.

Even for relatively large values of b and d and within the region of valid grids unfavor-
able parameter combinations exist, as case D demonstrates. For parameters b > 4% and
d > 550km, we could not construct grids that fulfill the grid duality constraint for the
refinement levels v = 3,4. However, for grids with v = 2 we find valid adapted grids, for
example the one shown in Fig. 4.8D with b = 4% and d = 550km. This grid shows very
smooth transitions between coarse and fine resolved grid areas and due to the relatively
large value of b the full tracks are contained in the high-resolution region. Therefore, one
would expect very accurate solutions. However, compared to Fig. 4.8A, this grid shows a
higher error of about E,—5 ~ 14km, as indicated by the green region in the leftmost panel
of Fig. 4.7. The reason for this result is that the high-resolution region spans over a large
fraction of the width of the domain and comes relatively close to the domain boundary.
This causes a band of strongly deformed cells to spread over the full width of the domain,
including the initial orbiting region in the center. The strongest deformations are found
where the high-resolution area is closest to the boundary. Here, the hexagonal cells are
almost degenerated to quadrangles, as the inset in Fig. 4.8D shows. As in cases B and C,
the mean position error is probably increased because the cyclone encounters in a early
phase grid regions with deformed cells, where the order of the operators is decreased.

These examples show that too strong grid cell deformations have to be avoided to
obtain suitable grids. Deformed cells in regions where the error indicators are large cause
an increase in the mean position error that is probably related to the reduced order of the
operators on non-uniform grids. In regions where the error indicator is low deformed grid
cells should not have a large impact on the track prediction. However, they can also become
problematic, if the cell deformation there is so strong that the grid duality constraint
cannot be fulfilled any more. These problems can be avoided, when the transition zones
between areas of high and low grid resolutions are sufficiently wide and contain enough grid
points. In particular, a certain minimum domain size is required to allow for a sufficiently
smooth transition from the coarse grid at the domain boundary to high resolution regions
in the inner part of the domain. As the grid deformation is stronger for higher refinement
levels, the maximum achievable refinement level, for our setup v = 4, is thus limited by
the domain size.
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4.6 Summary and conclusion

Modeling the motion and evolution of tropical cyclones accurately is an important and
challenging problem. Interacting processes on a large range of scales need to be represented
adequately in the numerical model, so that both a large domain and high resolution are
required. Adaptive grid refinement is a promising method to deal with such multiscale
problems, as long as high resolution is not required throughout the whole domain. In this
case local grid refinement has the potential to reduce the computational effort required to
obtain a solution with a given accuracy substantially.

The quality of numerical solutions if often measured by a global error norm. However,
in many cases high accuracy in certain properties of the solution is more important. For
tropical cyclones mainly the location and intensity of the storm are of interest and the
error in these quantities can be used to assess the quality of a solution. By means of the
dual-weighted residual method (DWR) it is possible to estimate the contribution of each
grid cell (in time and space) to the error in a user-defined quantity, which is formulated
as a goal functional and can e.g. be related to the storm position. By increasing the
resolution in regions with high error contributions, e.g. by subdividing cells (h-adaptivity)
or moving grid points into these regions (r-adaptivity) the error in the goal functional can
be minimized.

In this work we have demonstrated for an idealized TC scenario how DWR-based error
estimates can be used to generate r-adaptive grids that allow for an efficient prediction
of cyclone tracks. ICON-hex, the r-adaptive hexagonal C-grid shallow-water version of
the next generation NWP and climate model ICON, was used to perform model runs on
these static grids. As a DWR-based error estimator is not yet available for ICON-hex,
we computed error information based on the non-divergent barotropic equations using the
finite element code HiFlow?®.

The test case considered in this work is an example for the interaction of two tropical
cyclones in a barotropic model. In our setup the cyclones orbit each other initially, be-
fore they separate and propagate in opposite directions. The numerical solution for this
problem depends sensitively on the initial conditions and numerical errors in the initial
orbiting phase, as a resolution study using uniform grids has shown. Furthermore, for
this test case shallow-water and non-divergent barotropic results converge with increasing
resolution towards very similar solutions, which motivated our approach of using error
estimates from HiFlow® to control the adaptation of ICON-hex grids.

The goal functional chosen for this study, the integral of kinetic energy over the cyclone
cores, is strongly correlated with the cyclone positions. The error contributions computed
for each cell using this goal functional thus indicate, where the resolution should be in-
creased to minimize the error in the cyclone positions. From these error indicators we
estimated the local resolution required to bring the local error below a chosen threshold.
Following Semper and Liao [95] an algorithm involving the solution of an Poisson problem
was used to move grid points such that the desired local cell sizes were realized. Several
parameters influenced this grid adaptation process: The refinement level used to adjust
the minimum cell area, the area fraction that determines the part of the domain covered
by the smallest grid cells and the smoothing length that controls the minimum width of
transition zones between the fine and coarse grid regions.

The results of ICON-hex runs on adapted grids show that for reasonably chosen grid
refinement parameters, the number of degrees of freedom (DoFs) can be decreased signif-
icantly while maintaining high accuracy in the cyclone track prediction. For these runs
the time-averaged error in the cyclone position is determined by the size of the smallest
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grid cells and comparable to the error for a uniform grid with the same grid cell size.
For a domain size of 4620 km x4000km we were able to reduce the number of DoF's by
a factor of 4 while constraining the mean position error to less than 3km. Even stronger
reductions should be possible for larger domains. These results demonstrate that coarser
grids can be used outside of the region where the error indicators are large without loosing
precision in the track prediction.

To achieve a high accuracy in the track prediction the parameters controlling the grid
adaptation have to be chosen adequately. In particular, our results indicate that it is
necessary that a grid with high resolution consisting of cells with nearly constant size and
regular shape covers the part of the domain where the initial orbiting of the two cyclones
takes place. Grids for which the cell sizes vary too strongly or the deformation of the cells
is too pronounced in this region lead to larger errors, which may be related to a reduced
order of differential operators on non-uniform grids (see [88]). When the high-resolution
area is made too large, grids with strongly deformed cells (e.g. hexagons that are nearly
degenerated to quadrangles) result or the grid duality constraint (the circumcenters of
the triangles must lie within its triangular boundaries) is not fulfilled any more. These
problems arise when not enough grid points are left outside of the high resolution area.
For a given maximum error of the solution the ratio of maximum to minimum cell area
that can be achieved is thus limited by the size of the domain.

We plan to develop our grid adaptation method further in a way that reduces the
number of parameters required to control the adaptation. Similar to the approach of [87],
the adaptation should automatically lead to well-suited grids. For this purpose the DWR
error information could be used to determine for which grid cells it is important to minimize
the deformation. Furthermore, we plan to compare the goal-oriented grid adaptation
approach with methods based on the minimization of global norms and methods that use
gradient-based criteria to determine in which regions the resolution has to be increased.
Such a comparison should prove helpful in assessing whether a higher efficiency for grids
adapted with goal-oriented methods justifies the additional effort required to compute
DWR-based error information.

The error indicators used to control the grid adaptation in this work were computed
with HiFlow? using different numerical methods for a different set of equations than in the
adaptive runs performed with ICON-hex. Nevertheless, runs on the adapted grids showed
the desired high accuracy of the predicted tracks. In future studies it should be investigated
if this result is generalizable to other scenarios and different model combinations. This
approach could be very useful for complex GCMs, for which the calculation of DWR error
information is rather expensive. If it should turn out that computationally cheaper models
(e.g. with reduced resolution or simplified physics) can provide sufficiently accurate error
indicators, the computational cost of goal-oriented grid adaptation for GCMs could be
reduced substantially.
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Chapter 5

Conclusions and Outlook

This work dealt with the problem of developing suitable finite difference schemes for r-
adaptive grid refinement on the basis of a generalized discretization approach for the
equations of geophysical fluid dynamics (GFD). We also discussed applications of such
r-adaptive models to investigate geophysical phenomena. In particular, we have proposed
the following, to our best knowledge new, approaches:

e a formulation of the invariant equations of GFD that consists in splitting them into
topological and metric parts, enabled by the introduction of additional auxiliary
prognostic variables;

e a systematic discretization method, in which the discrete scheme descends directly
from the choice of the topological meshes and from the discrete metric equations;

e a normal vector reconstruction approach for hexagonal C-grid shallow-water models
based on the representation of the Coriolis terms by means of the extrusion;

e a method for goal-oriented grid adaptation, in which the computationally expensive
sensitivity analysis and the model runs are not necessarily to be performed by the
same model.

We used these methods to derive a hexagonal C-grid discretization of the nonlinear
rotating shallow-water equations with goal-oriented grid adaptation, for which we per-
formed the following steps. Applying the systematic discretization method on the lin-
ear non-rotating shallow-water equations in topological and metric form, we developed
a hexagonal C-grid discretization of these equations with adequate consistency, stability
and wave properties on uniform and r-adapted grids. We applied our vector reconstruc-
tion approach based on extrusion to obtain the normal vector component required for
the discrete hexagonal C-grid scheme of the linear rotating shallow-water equations. An
extension toward an hexagonal C-grid scheme for the nonlinear rotating shallow-water
equations has been achieved by using methods from literature.

Using our method, we have provided for this model goal-oriented r-adaptivity. By a
linear sensitivity analysis, the contribution of each grid cell to the error in a user-defined
quantity can be evaluated and the required local resolution to minimize this error can be
estimated. As mentioned, the model performing the sensitivity analysis and the model
running the experiment are not necessarily the same. Using two different models, we could
demonstrate, for the scenario of two interacting tropical cyclones (TC), that the number
of grid points required to achieve a certain accuracy in the cyclone track prediction could
be substantially reduced.
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5.1 Addressing the research questions
Based on the results of this work, we return to the research questions posed in Sect. 1.1:

1.) How can we derive suitable finite difference schemes for r-adaptive grid refinement
using a generalized discretization approach?

On the basis of an invariant formulation of the geophysical fluid equations, we split the
equations into topological and metric parts by introducing auxiliary prognostic variables.
This new set of equations allows a systematic discretization by applying the tools of discrete
exterior calculus (DEC). The discrete momentum and continuity equations are represented
on purely topological meshes using the concept of chains and cochains. The discrete
metric equations are represented by a discrete Hodge-star operator and by an interior
product connecting the topological meshes. By the choice of the topological meshes and
of the discrete representation of the metric equations, the discrete finite difference scheme
follows directly. In particular, both, a triangular and a hexagonal C-grid discretization of
the linear non-rotating shallow-water equations, show stability and consistency on uniform
and r-adapted grids.

2.) Could such general approach provide new knowledge about the equations of GFD?
What practical benefit do we gain in the process of discretization?

Using the invariant set of equations, we have introduced a representation of the Coriolis
term by means of exterior calculus, in particular, we employed the concept of extrusion.
This provides a geometrical explanation on how the Coriolis force acts on the flow field.

Based on the discrete representation of extrusion, we have introduced a new method for
consistent normal vector reconstruction out of neighboring tangential vector components.
The weights are determined by the ability of the tangential vector components to con-
tribute to the extrusion. On uniform grids, we have obtained a stable scheme, with proper
wave representation, comparable to others from literature, but without imposing similar
constraints. This would make the scheme easier to generalize to the three-dimensional
case.

3.) What kind of scenarios in geophysical applications profit from grid adaptation? How
do we actually adapt the grid to increase the accuracy of model solutions?

For scenarios in which high resolution is not required throughout the entire domain,
adaptive grid refinement contributes to an accurate solution while reducing the computa-
tional costs. An example of such scenarios is the interaction of two tropical cyclones, in
which the cyclones orbit each other initially before they separate and propagate in oppo-
site directions. For an accurate prediction of the cyclone tracks, high resolution is mainly
required in the region where the initial orbiting takes place.

When adapting the grid, the automatic optimization of the mesh with respect to some
application-specific error measures (goal-oriented adaptivity) is a promising approach.
Such error measures (goal functionals), for instance, the error in the track prediction of the
TCs, are often more useful in assessing the quality of a numerical solution than global error
norms. By a linear sensitivity analysis, the contribution of each grid cell to the error in the
goal functional can be estimated and, in turn, the required local resolution to minimize
this error. We used for the T'C scenario such error estimates to generate r-adaptive grids
that efficiently predict the cyclone tracks. Hereby, we innovatively combined two different
models with different numerics and complexity; a finite element model provided the error
estimates and a finite difference model performed the test runs on the r-adapted grids.
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5.2 Outlook

The research questions of this thesis mirror some challenges arising in the process of de-
veloping and using models with r-adapted grid refinement. With respect to the available
literature, we suggest a new approach for each research question, which may be followed
in future research independently from the others. This could lead to a better understand-
ing of finite difference schemes on meshes based on general polytopes and could provide
indications on how to reasonably choose geophysical scenarios that profit from r-adaptive
grid refinement.

For our formulation of the geophysical fluid equations, consisting in a topological and in
a metric part, one may investigate different discrete Hodge-star operators translating into
different discrete schemes. The barycentric Hodge-star operator, leading to a barycentric
dual mesh, would allow a grid deformation stronger than in case of circumcenter duals. The
non-diagonal Hodge-star operator (Galerkin-Hodge) [25, 23], leading to stable schemes in
computational electrodynamics (CED), could be used for GFD. How the properties of such
discrete schemes would look like and whether some properties present in CED transfer to
GFD, for instance, whether the stability of the Galerkin-Hodge would lead to a stable
model in GFD, could be content of future studies. Based on the similarity in form of
the invariant geophysical fluid equations and of Maxwell’s equations it seems possible to
generalize our new discretization method toward higher-order schemes by using more than
one degree of freedom per edge, face or cell, similarly to the concepts developed for CED
by Bossavit [26].

The suggested vector reconstruction approach by using extrusion to describe the Cori-
olis term should be generalized to non-uniform grids. The similarity with the method
suggested by Thuburn et al. [102] on uniform grids underpins our strategy of using ge-
ometrical constraints on the equations to derive the weights. Knowing, by an eigenvalue
analysis, that those weights have to be antisymmetric with exchange of the contributing
edges also on non-uniform grids, the extrusion gives us a strong hint on the properties of
the weights. Therefore, a consistent derivation of those antisymmetric weights seems to
be achievable but have to be subject of future work.

In this work we used the error indicators computed with the finite element model
HiFlow? [2] to control the grid adaptation of the ICON-hex model, although both models
use different numerical methods for a different set of equations. Nevertheless, runs on
the adapted grids showed high accuracy of the predicted cyclone tracks. In future studies
it should be investigated whether such results also hold for other scenarios and different
model combinations. This approach could be very useful for complex general circulation
models (GCMs), for which the calculation of error information is rather expensive. Rea-
sonably accurate error indicators could in fact be provided by computationally cheaper
models (e.g. with coarser resolution or simplified physics), abating thus substantially the
costs of goal-oriented grid adaptation for GCMs.
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Appendix A

Operators of exterior calculus and
differential geometry

In this chapter we provide the general definitions and theorems of exterior calculus and
differential geometry that are required for a comprehensive derivation of the invariant fluid
equations, presented in Appendix B, and for the derivation of the invariant geophysical
fluid equations, presented in Chapter 2. The definitions and theorem are taken from
Abraham and Marsden [1] and, in Section A.3, of Kambe [60].

A.1 Differential forms

To define differential forms, one usually defines first an exterior algebra. The linear space
of k-forms is then extended fiberwise to the tangential bundle 7 M.

Exterior algebra

Let V be a vector space over R and V* its dual space, i.e. the space of all linear maps
with V' — R. Then, a k-form on V is a multi-linear and skew-symmetric mapping
WiV X xV SR (A1)
—_——
k
The space of all k-forms is a real vector space and denoted with A¥V*.

If a € A*V* and 8 € A'V*, we define the exterior (or wedge) product o A f € A by
(k+1)!
k!
where AFV* is a tensor with & multi-linear maps, ® the tensor product and A an alter-

nating map, i.e. if two entries of A are exchanged, the sign changes. This product has
the following properties:

Proposition A.1.1. For a € AFV*, 3 € A'V* and v € A™V*, we have
(i) aAnB=AaNnB=aNAp,
(ii) A is bilinear
(iii) a A B = (—1)*"*B A,
(iv) an(BAy) = (anB) Ay .
The direct sum of the spaces A¥V*(k =1,2,...,n), i.e. A(V*) := ®Z:0AkV*, together
with its structure as a real vector space and multiplication induced by the wedge product
A is called the exterior algebra of V*, or the Grassmann algebra of V*.

alf=

Ala®p), (A.2)
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Differential forms

We put this structure of the linear algebra fiberwise on the bundle 7M. Using the differ-
entiable atlas, the k-forms (see e.g. Eq. (2.3)), can be extended to differential forms on
the manifold M. We denote the space of differential k-form with QF(M).

A.2 Operations on differential forms

Let E be an oriented n-dimensional vector space. The isomorphism % : A¥(E) — A"~*(E)
of the following proposition is called the Hodge-star operator, dependent on the metric g
and the volume-form pu.

Volume-form Let Q = dax!A---Adz™ € Q"(R") be a standard volume-form on R™ with
Q(x) # 0Vx € R™. Using the atlas, this can be generalized to a volume-form u € Q"(M)
on M with pu(z) # 0Vx € M.

Hodge-star operator

Proposition A.2.1 (Abraham and Marsden [1]). Let E be an oriented n-dimensional
vector space and g =<,>€ TQO(E) a given symmetric and non-degenerate tensor. Let
i be the corresponding volume element of EE. Then there exists a unique isomorphism
x: A¥(E) — A" F(E) satisfying

ansB=<a,f>p for apBeA¥E). (A.3)

If (€1,...,€,) is a positively oriented g-orthonormal basis of E and (€%, ...,é™) its dual
basis, then

(€W N AETE)) = ¢, q)co(iysign(o) (E7F T AL A TR (A.4)
where o(1) < ... < o(k) and o(k+1) < ... < o(k+n).

Remark. c,1)...Coary is defined in Prop. 6.2.11 in Abraham and Marsden [1]. For the
permutation group o we get sign(o) = 1 for even permutation and sign(o) = —1 for odd
permutation.

Proposition A.2.2. Let E be an oriented n-dimensional vector space, g =<,>€ TY(E)
symmetric and nondegenerate of signature s, and p the associated g-volume of E. The
Hodge-star operator satisfies the following, for o, B € A¥(E):

(i) aA*B =B A a=<a,>pu,

(ii) *1 = g, 4pp = (—=1)nd(®)

(iif) ** a = (—1)dE) (—1)kr=k)q |

(iv) < a, B >= (=1)E) < xa,+8 >,

where Ind(g) is the number of minus-ones in the canonical form of <,>.

Example A.2.1. We discuss examples of A.2.1 in R? with ¢; = ¢y = ¢35 = 1:

x el =sign(o)(@? A3, (A.5)
=1

%2 = sign(a)(€3 A €1) = Sign(a)(€1 A 53) , (A.6)
=1 =—1

* &% = sign(o) (et A e?) . (A7)

——
=1



A.2. Operations on differential forms 113

The signs ¢y, ..., ¢, are defined in Proposition 6.2.9, Abraham and Marsden, p. 342. For
example, for an Lorenzian manifold we define ¢ = —1, co = ¢c3 = ¢4 = 1.

Exterior derivative on forms

The following operations are define on differential forms (M) on manifolds M and require
a differentiable structure of M. First, we define the exterior product.

Theorem A.2.3. Let M be a finite-dimensional manifold. Then there is a unique family
of mappings d* : QF(M) — QF1 (M) (k =0,1,2,---n, and U is open in M), which we
merely denote by d, called the exterior derivative on M, such that

(i) d is a A-anti-derivation, i.e. d is R-linear and for a € QF(M) and B € Q4 (M),

dlanp)=danB+an(-=D)fandB (product rule);

(it ) If f € F(M), df is the total differential of f, i.e. (df); = ggﬂ and i =1,...,n are
local coordinates;

(iii) d> =d od = 0 (that is, d**1(U)d*(U) = 0);

(iv) d is a local operator, i.e. d is natural with respect to restrictions; that is, if U CV C

M are open and o € QF(V), then d(a|U) = da|U.

We find a representation of the exterior derivative d : A¥(M) — A*1(M) of a form
@ € A*(M) in local coordinates in general form:

da = %dwi Adx o ANda i <L < (A.8)
X

Be aware of the different notation between d and d, where d denote the exterior derivative.

Interior product (contraction) on forms

The interior product, also called contraction, ix on M is represented by following Defini-
tion.

Definition A.2.1. Let M be a manifold, X € X(M), and w € Q¥1(M). Then define
ixw € Qk(M) by
ixw(Xl,...,Xk) :w(X,Xl,...,Xk) . (Ag)

If w € QY(M), we put ixw = 0. We call ixw the interior product or contraction of X and
w.

The interior product has the following properties:

Theorem A.2.4. We have ix : Q¥(M) — Q1 ( M),k =1,...,n, and if a € Q¥(M), B €
QYM) and f € QO(M), then

(i) ix is a A-antiderivation, i.e. ix is R-linear and
ix(aAB) = (ixa) A B+ (=1)Fa A (ixB) ,

(ii ionc = fixa s

(iil) ixdf = Lx [ ,

(iV) Lxa =ixda + dixa ,

(v) Lyxa = fLxa+df Nixa .
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Lie-derivative

There are different approaches to define the Lie-derivative. The Lie-derivative determines
the change of a tensor along a vector field. It is define in either an algebraic or dynamic
approach.

Theorem A.2.5. Let X € X*¥(M),t € TV (M) be of class C* and Fy be the flow of X.
Then the Lie-derivative is defined by

d
S Fit = Filxt (A.10)

in which A is used for the time variable, and in which * denotes the pull back.
Corollary A.2.6. Let X, Y € X(M) . Then

[Lx,iy] =ix,y] and Lx, Ly] = Lx,y] (A.11)
and, in particular, ix o Lx = Lx oix.

Proposition A.2.7. Let X € X(M). Then d is natural with respect to Lx. That is, for
w € QM)* we have Lxw € QM)* and

dlxw = Lxdw . (A.12)

In R? we find with o = dz A dy A dz: dixa = d * X” = (divX®)dz A dy A dz. (The
first equation follows with ixdz A dy Adz = X'dy A dz 4+ X2dz Adz + X3dx A dy = «X°,
for the second, see Prop. B.1.1. Because of Cartan’s formula (cf. Theorem A.2.4 (iv)) we
find a metric free formulation of the divergence:

Lxp=ix dp +dixp = (divX)p . (A.13)
=0

General theorems for fluid dynamics

An generalization of Eq. (A.13) is summarized in the following Definition.

Definition A.2.2. Let (M, u) be a volume manifold, i.e. M is an orientable manifold
with a volume-form p. Let X be a vector field on M. The unique function div,X € X'(M),
such that Lxp = (div,X)p is called the divergence of X. We say X is incompressible
(with respect to ) if div,X = 0.

Proposition A.2.8. Let (M, u) be a volume manifold and X a vector field on M.
(i) If f € F(M) and f(m) # 0 for all m € M, then

divy, X = div, X + % (A.14)

(ii) If g € F(M), then
div,gX = gdiv, X + Lxg. (A.15)
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Change of variable theorems: The change of variable theorem in R" states [1] that
if ¢ is integrable and f : R™ — R" is a diffeomorphism then ¢ o f is integrable with

(z',. .. a™)dat ... da" = / |Jaf(zt, ... a™)|(Co £, ... a™)dat .. da™ |

" (A.16)
where = dx! A--- A dx” is the standard volume-form on R” and Jqof is the Jacobian
determinate of f relative to 2. With the atlas, this definition can be transfered to the
manifold. Therefore, the definition of an integral for n-forms on an n-manifold in Def. 2.2.1
has the following global property:

¢
Rn

Theorem A.2.9 (Change of variable theorem). Suppose M and N are oriented n-
manifolds and f : M — N is an orientation-preserving diffeomorphism. If w € Q™(N)
has compact support, then f*w € Q"(M) has compact support and

/N w— /M P, (A.17)

where * denotes the pullback of w by f (cf. Abraham and Marsden [1]).

By the Riesz representation theorem [1], the volume-form p provides a unique measure
dp. This measure is required in the following transport theorem, which is, in turn, required
to derive the invariant fluid equations.

Theorem A.2.10 (Transport theorem with mass density p). Let f be a time dependent
smooth function on M. Then, if W is any (nice) open set of M,

Df

d
pfdu =/ prdn (A.18)
(W)

b Jouw)
where % = % + Laf (cf. Abraham and Marsden [1]).

¢ is the evolution operator that obeys the following relation with the velocity field @
of the fluid: d“’é—gm) = U(p(x),t).

A.3 Covariant derivative and time dependent vector fields

Covariant derivative (connection) on manifolds

According to Kambe [60], we introduce the connection VxY € X(M) that describes in
every point p € M the change of ¥ in direction of X,:

Definition A.3.1. A connection on M is a map V : X(M) x X(M) = X (M) with:
() Vi (aX +bY) = aVp X +bVyY

(ii)) Vauapy X = aVpX +bVy X

(i) Vo (f(2)X) = (U)X + f(2) V0 X | |

where f(x) is a smooth function, a,b € R, and U f = df[U] = U’0; f.

Local representation: Using the following local representation of the vector fields

X =X'0; and Y =X0;, (A.19)
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applying the properties of the connection in Def. A.3.1, and defining Vy,0; := I‘fj@k, where
I’fj are the Christoffel symbols, the local representation of the connection is given by
Yk 9 o 0
VxY = X' "— — + X'YITFE — . A.20
X 07 ok Y Ok ( )
The connection is thus defined by its Christoffel symbols, and the Christoffel symbols in
turn can be represented with the metric tensor g = (g;;) by

1
Tt = 59" (0igja + 0i9ai — Dagi) - (A.21)
Connection one-form In Kampe [60] we find an alternative form of the connection
given by

(VxY)Foy, = (X S+ X Yﬂrgrfj) O = (dYk(X) +TEYIda (X)) O,  (A.22)

where the definitions of one-forms are used to rewrite the local representation. With the
definition of a connection one-form VY*(X) := dY*(X) + F%Yj dz'(X)0, one finds the
following representation of the connection:

(VxY) = (VY)(X) . (A.23)

The covariant derivative along a curve For a given curve x(t) € M, where X (z(t))
denotes the vector fields along z(t), we denote the tangent vector at point p with & = ©¥0.
Let Y € X(x(t)) be a tangent vector field along x(t), then we can calculate the change of
Y along the curve:

VY (&) = (dyk(j;) + rggyjdxi@)) O (A.24)
OYF ki
ayk o VY
= —— Y It e —
( -+ ThY x>3k e (A.26)

Y is a function of x(t) so that % = OYFdr' Thig is used from the second to the third

Azt dt -
line. We call V—}; the covariant derivative that describes the derivation of Y along the

curve z(t) (cf. [60]).

Time dependent vector fields

In most dynamical systems, the velocity fields are time-dependent, i.e. the velocity field
X depends on t and on the spatial coordinates, i.e.

X = X'9; = 9, + X9, , (A.27)

with X0 = 1, where the index a denotes the spatial components 1,...,n. Regarding the
change of the time dependent vector field Y = 9y + Y0, along X:

VY =V, (0 +Y°0) + Vxag, (0 + Y0) (A.28)

=Vp,0: + Vpy, (Y"@b) + XV,0: + Vxag, (Ybﬁb) (A.29)

=&Y +VxY , (A.30)
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where we have used the properties Def. A.3.1 for the derivation. The first term in (A.29)
vanishes. With the assumption of a straight time axis, i.e. V5,0, = 0 and Vy,0; = 0,
the third term also vanishes. With (iii) of Def. A.3.1 and 9,Y := %aa, the second term
follows, where the non-tilded values denotes vectors dependend only on spatial components

(cf. [60]).

The flat connection on R"

For the R”, all Christoffel symbols are zero, i.e. I’fj = 0V, j, k. Thus, we find for the flat
connection: i
0Y" 0
VxY =X'——=(X-V)Y A.31
X al'j 8$k ( ) ’ ( )
where the last term is written in the notations of vector calculus.

Regarding fluid dynamics, we are usually interested in the covariant derivative along
the parameter curve z(t), where we denote the tangential vector & = () as the velocity
field. As all Christoffel symbols are zero, we find for the covariant derivative on flat
manifolds with Eqn. (A.25) and (A.26):

. da  Ou dxt a0 L _,
Vet = I d (z* aﬂUZ.)u =(u-V)u, (A.32)

which corresponds to the well known advection term of fluid dynamics.

In the case of time dependent velocity fields @(t,z"), where @ denotes the time de-
pendent and @ the spatial dependent velocity field, the combination of Eqn. (A.30) with
(A.31) or (A.32) reduces the covariant derivative to the total derivative, i.e.

d

Vil = Oyt + (- V)i = Zi (A.33)

Lie-derivative and connection

The Lie-derivative can by expressed with the Riemannian connection of a manifold M by
_b b Lops
L,0° = (Vgu)’ + §d(u (1)) , (A.34)

where b denotes the inverse Riemannian lift that connects vector fields and forms (cf.
definition A.4.1). Here, @ describes again only the spacial components of the velocity field
(cf. [1]).

The results of Eqn. (A.32) and (A.33) show that for flat manifolds, for instance R", n =
2,3, the formulation in invariant form corresponds to the equations written in vector
calculus. However, the Lie-derivative has the advantage of an invariant and metric-free
form.

A.4 DMetric dependent definitions and representations

In the following, we represent the abstract formulations from above on a local coordinate
system in R". We take:

(i) (é1,...,€) as basic vectors in V = R",

(ii) (€1,...&") as dual basis of the dual vector space V*, defined by €*(¢;) = 53-, and
(iii) the metric tensor g : V x V — R, defined by g = Zij 9i;€* ® &7 with the coefficient
gij =< €;,€; >,1=1,2,3,...,n.
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Flat- and Sharp-Operator

For the derivations of the invariant fluid equations in Chapter B, operators that combine
vectors with one-forms are required.

Definition A.4.1. Let V be a finite-dimensional vector space with a real-valued inner
product <, >. The basis of V is given by (€1, ..., €, ). The corresponding dual basis of dual
space V* is (€1,...,é™), defined by €'(¢;) = 51] There exists an isomorphism, called the
flat b, that is given by

—

Vo osve
m{ -V (A.35)
T o <T, >,

and the inverse of the flat, the sharp f, given by

v v
ﬁ:{ 3 Y (A.36)
<T, > =7,

with V 2 0= 3", v'¢;.

With the above definition we find the following matrix-representation for the flat and
sharp maps:

Proposition A.4.1. The representation of b is given with the matriz g;;, i.e. it is a
lowering index operation acting on the coefficients of a vector V > v =) v'é€; with

(27b)2 = Zgijvj . (A37)

The resulting coefficients are those of a one-form V* 3 ¢ = 3 (#°),é".

Proof. We start with the above definition of the flat operator: b : V — V*; 0 =< ¥, >=
<> v'é; ,- > by applying it on a vector ¥:

bt vl <E >4 U<y, >, (A.38)
bt (T8t + .+ (TP, (A.39)

Equation (A.38) follows directly from Definition A.4.1. Equation (A.39) follows by defining
the dual vector V* > 4% = .(5%);&" using the dual basis (€',...,e") defined by the
relation €*(€;) = 6ij.

We can compare the coefficients by applying both Equations (A.38) and (A.39) on a
vector €. Technically, we project the coefficient of both definitions of a one-form onto the
basis vector €; and compare both real-valued numbers, i.e.

<Y G 8 >=) v <&, >=) gy, with g =<&,& >, (A40)

S @k (@) = Y36 = (5°); - (A1)

% %

A comparison of the coefficients gives (); = Y, vig;;. O
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Proposition A.4.2. The representation of § is given with matriz g, i.e. it is a index
raising operation acting on the coefficients of a one-form V* 3 & =Y, ;€" with:

Af) = Zgijaj . (A.42)
J

The resulting coefficients are those of a vector V > af = zi(dﬁ)ié;.

Proof. The t operator of Definition A.4.1,  : V* — V; < ¥, >— ¥, can be written as:

<Zvel, >= Zv <€ ,- >»—>Zvel, (A.43)
<Zd Z <@, >»—>Z Ve (A.44)

with the identification V 3 ¥ = a* = >, (a*)¢;, the notation already used in Proposition
A.4.2. We have to compare Eq. (A.44) with a general definition of a one-form a = >, a;é®
on which f acts:

a=> ae—at =) (ah)e . (A.45)

i

To compare the relationship between the coefficients a; and (af)?, we apply the two dif-
ferent representation of a one-form in Equations (A.44) and (A.45) on a vector €:

Zaz (€}) Zaﬁi» =qj, (A.46)
Z( ﬁ) < €; ,6] >= Z gij . (A.47)

7

Comparing the coefficient leads to the equation a; = Zi(dﬁ)igl-j and, using the inverse
metric g*, we can reformulate this to

D agg T =3 (@h)igug’ =0 (af)6 e, (A.48)
5’ iy iy

= Zajgij = (aF)?, (A.49)
because i = 7/, j = j' due to 1= 8,0, = 31 gizg"7'. 0

Gradient operator

Let X (M) be the space of smooth vector fields in M. According to Abraham and Marsden
[1], we define the gradient operator as following:

Definition A.4.2. Let M be a pseudo-Riemannian n-manifold with metric g. We call
gradf := (df)* € X(M) the gradient of the function f € Q°(M).

By using local coordinates, the gradient of f € Q°(IR") of Definition A.4.2 is given in
the following way:
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Proposition A.4.3. In local coordinates with the basis of tangential vectors (%, e 8%) €

Tp(M) for the tangential space and the dual basis (dzt, ..., dz") € T, (M) for its dual space,
the gradient (gradf) € X(M) takes the following form:

. Of 0 : o Of
gradf = Zgjaxi@ or (gradf)' = Zg]@ . (A.50)
i.j j

Proof. Let a € X*(M) be given in local coordinates: & = Y, a;dz’. Using the operator
of Def. A.4.1 and Proposition A.4.2 gives

9
o I PS5 B
t(a)=a" = Zalgjaxj ;o afeXM) . (A.51)
7]
Setdf =a= >, ggﬂ dz' =Y, pda’ = o; = g:{i. With definition A.4.2 it follows:
(adf) = (@) = #df) =30 22 g¥ 0 (@pfex(m),  (AR)
— Oz’ Ol ’ ’ '

which proofs the above representation of the gradient in local coordinates (cf. [1]). O



Appendix B

Derivation of the fluid equations
in invariant form

In this chapter we present Euler’s equations for ideal fluids in invariant form according to
the derivations of Abraham and Marsden [1]. In the following all definitions, theorems, etc.
required for this derivation are taken from [1], unless otherwise stated. The aim here is to
present this derivation in a concise way. Starting from the principles of mass, momentum
and energy conservation, the incompressible and the barotropic fluid equations shall be
derived using tools of differential geometry.

B.1 The principle of mass conservation

Let W C M be a subregion of M. Then we assume that the mass of the fluid in W at
time ¢t = 0 is given by

m(W,t) = /W pudyt (B.1)

where pi(z) € F(M) describes the mass-density of the fluid at time ¢ and where du is
the volume element of the volume-form p € Q"(M) (cf. Sect. (A.2)). F(M) denotes the
space of smooth functions on M.

One of the most important properties of fluid dynamics is the principle of mass con-
servation, which states that mass is neither created nor destroyed. Thus, the total mass
of the fluid at time ¢t = 0 occupied in a region W is maintained with time, i.e.

/ pe dp = / po di (B.2)
et (W) w

where (; is the evolution operator with respect to the fluid’s velocity field ¥ defined within
the transport theorem A.2.10. Using this transport theorem, one can reformulate (B.2) to

/ o (pep) = / por = pi(peh) = popt (B.3)
w w

using the pullback * (see e.g. [1]) of ¢, where ¢} is a unique map between the fluid density
at time 0 and t. Assuming mass conservation with time, we find the relationship:

d , . dp e (g o Op
0= —¢i(pn) = i (Ea(ptu) + 5) = ¢ KdW(ptu) + g) ﬂ] , (B4



122 Derivation of the fluid equations in invariant form

where the Lie-derivative formula of Theorem A.2.5 and Proposition A.2.8 have been used.
Thus, the differential form of the law of conservation of mass is given by

dp

div(p0) + i 0. (B.5)

It is interesting to notice that no metric has been required for this derivation, only the
volume-form on M.

Continuity equation using exterior calculus

According to an example presented in Abraham and Marsden [1], the divergence operator
can be written as introduced in the following Proposition for R3. A more general definition
of the divergence on any manifold M can be found in Def. A.2.2.

Proposition B.1.1. Let M C R3?, @ € X(M) and p € F(M). Then, the divergence
operator div can be written in the following way:

d x (pi)’ = div(pd) - dz* A da® A da® or (B.6)
*d % (p)’ = div(pi) , (B.7)

with the definitions of x and b from above.

Proof. We proof this statement by comparing the right and the left hand side of Eq. (B.6)
in local coordinates. Using the basis (€1, ...,€3) with dual basis (€!,...,&3) the vector

U=y, u'€; is given. By apply the flat operator on @ one finds

(pii) = S ((piy)ie" | (B.8)

7

according to Proposition A.4.1. Moreover, using local coordinates in R3, i.e. a?ci and dx’

for i = 1,2,3, and g;; = &;j, it follows ((pi@)"); = 3, gij(pu)’ = pu?, so we can write!:
(pi0)® = putde' + pulda? + pudx® . (B.9)
Applying the Hodge-star operator x of Proposition A.2.1 gives

*(pit) b = pul x dz' + pu® « dz? + pu® % da® (B.10)
= pulda?® A da® — puldat A da® + puddat A da? (B.11)

where the results of Example A.2.1 have been used. Finally, we apply the exterior deriva-
tion d of Definition A.8 on Eq. (B.11):

d* (pi)) " = d (pu'da® A da® — pulda’ A da® + pudda’ A da?)

1 2
= %pul da' A da® A dx® — %qu dx® A dxt A dx?
iy T
3
+ ?—idm‘?’ Adzt A da? (B.12)
T

opu'  Opu?  Opu?
_<8x1 T T as

=div(p)

) dz' A dx? A da? (B.13)

Tt remains to investigate the general case of general g;;.
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where the wedge products da? Adz? Adz¥ i # j # k, have been permuted once in the second
and twice in the third term of Eq. (B.12). All terms with ...dz* A...Ad2’... =0, i = 1,2,3,
disappear. Using x x a = (+)a and *u = * (dazl A dx? A d:vg) = 1 of Proposition A.2.2,
Eq. (B.7) is also verified. U

According to Proposition B.1.1 and by using the volume-form p, the Hodge-star x and
the exterior derivative d, we may replace in Eq. (B.5) the divergence operator to obtain

*%+**d*(pﬁ)":0, ueM,peFM),
@ +dx(pi) =0. (B.14)

The continuity equation (B.5) describes the evolution of the density function p € Q°(R?),
whereas Eq. (B.14) describes the time evolution of the three-form xp € Q3(RR3).

Remark. The entropy s € Q°(M) or tracer equations look very similar to the continuity
equation but have an additional source term Ay (cf. Blender [17]):
O(xs)
ot

+d*(si)’ = A, . (B.15)

B.2 Principle of Balance of momentum

On the basis of Newton’s second law assessing that the rate of change of momentum
of a portion of the fluid equals the total force applied to it, Abraham and Marsden [1]
derived the momentum equation. We concisely present the major steps of their derivation.
Applying this principle on a manifold in R? allows to formulate the balance of momentum:

d o
— pﬁd,u:/ pbd,u—i—/ o-ida, (B.16)
dt Jo(w) pr(W) Dpr(W)

where (W) is a volume preserving fluid flow with evolution operator ¢;, where b is the
body force density, e.g. the gravitational force, where & is the Cauchy stress tensor and
where dp is the volume element inducing the surface element da.

Applying Gauss’ theorem on the second term of the right hand side of Eq. (B.16) and
using the change-of-variable formula (A.2.9) for the left hand side lead to the following
componentwise equation for ¢ = 1,2, 3:

d . 4 N
| Geted dn = [ o dps [ div@)du, (B.17)
w dt er(W) (W)

using the vector div(a) := (div(c1), div(c%),div(c¥)) that describes componentwise the
divergence (cf. [1]). Applying the Lie-derivative of Theorem A.2.5 one gets

« |0 u' i i i
/ o [ (gt ) + (Lap)u’ + pLgu" + pu Eau)} dp =
W .

/ [@uz + p@u + (dp - D)u’ + pLau’ + pu'div ﬁ] dp = / (pb" + div(5)") dps -
(W) LO ot 7
(B.18)

The following identities are valid: Lz = divd (Def. A.2.2), Lzp = dp - @ ((iii) of Theo-
rem A.2.4), dp - @+ pdivi = div(pa) ((ii) of Prop. A.2.8), % + div(pu) = 0 (conservation
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of mass (B.5)) and Lzu® = (@ - V)u’ according to Eq. (A.32) or discussions further below.
Summarizing all term into a vector equation leads to the following differential form of the
law of balance of momentum for fluids:

ou

E—F(U-V)u:b—

divo . (B.19)

D =

Assumption of an ideal fluid An ideal fluid is by definition a fluid whose Cauchy
stress tensor & is given in terms of a function p(Z,t) called the pressure [1], i.e.

o = —pg . (B.20)
Then, the momentum equations for an ideal fluid is given by
ou - 1
B_Itb + (@ -V)i=0b-— ;grad p. (B.21)

Let S be any fluid surface in M with outward unit normal 7i. Then, the assumption on
0 to obtain an ideal fluid means that the force of stress per unit area exerted across a
surface element S at x with normal 7 is given by —p(z, )7 (cf. [1]).

According to Abraham and Marsden [1], there are some problems with the integral
form of the balance of momentum in Eq. (B.16) for general Riemannian manifold M.
First, it is not clear what the notion of vector-valued integrals should mean on general M.
Second, this integral form is not covariant, i.e. if the coordinates are changed, the balance
of momentum changes its appearance. Therefore, in the following differential forms are
used to describe the motion of an ideal fluid.

Momentum equation using exterior calculus

We present Abraham and Marsden’s [1] derivation of the fluid equations by using differ-
ential forms to result in an invariant (covariant) form of the equations. We begin the
derivation from the momentum equation (B.21) in vector calculus form.

Let @ = Y, u'e;, b= Yo, bie € X(M) with basis (€1, ..,€,) of X(M). The density
p(Z,t) and the pressure p(#,t) are smooth functions in F(M). For the coefficients of
Eq. (B.21) in the basis vectors {€};};=1, n it follows:

ou’
ot
We take the flat b of these coefficient equations to derive the coefficients of the correspond-
ing one-forms, i.e. @ or b”. Recall that the flat-operator b of Definition A.4.1 acts on a

vector ¥ € V like
Vs V*
% S e (B.23)
v=>,v'e 10" =) (V)€

with (7°); = Zj gijv’ according to Proposition A.4.1. This proposes the derivation of

| :
+ (- V) = + —(grad p)! =0 ; j=1,..,n. (B.22)
p

the coefficients for the dual basis vectors €% by simply multiplying the metric-term ; 9ij
onto the coefficient equations (B.22). This actually relates to a index lowering operation
of Proposition A.4.1. We find for the coefficients of the dual vectors &* for i = 1, ..., n:

>, giw?) : o1 :
jaitj + (@ V)Y g =Y gyt + ;Zgz‘j(grad p)y =0,
j j j
o@@®); _p 2oy L :
5 T @ V)@ — (%) + p Zgij(grad p)=0. (B.24)

J
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The first and the third term of Eq. (B.24) are already coefficients of a dual basis vector
and therefore in an invariant form. The following proposition states that the advection
term (second term) can be written in terms of a Lie-derivative.

Proposition B.2.1. The advection term can be written in terms of a Lie-derivative acting

on the one-form, (i®); € QY (M) by (i - V)(i®); = (La(i@®)); — 552 (i@’ (@0)).

To proof this proposition we need the following definition of a Lie-derivative acting
on differential forms. Hereby, we take the algebraic definition of the Lie-derivative as
introduced in [1]. As shown therein, such algebraic definition is equivalent to the dynamical
definition of Theorem A.2.5. We shall give here the coefficient of a Lie-derivative of a one-
form in local coordinate, i.e. the tangential vectors %, ceey a% € Tp,M and the dual
vectors dx', ..., dx" € T, M:

Definition B.2.1 (Abraham and Marsden [1]). The coefficient of a Lie-derivative of a
one-form & with a =Y, ;" = >, ayda’ and X =, X° ‘il are given by

_ »60&2‘ 8Xj
(Lxa)i =Y (X ot ) (B.25)

J

With Equation (B.25) we calculate the variation of the coefficient of the one-form
& along the flow field of X. It follows (Lxa) = > .(Lx@);dz’, where (Lx@) is also a
one-form.

Proof of Proposition B.2.1. We modify the advection term (i - V)(@®); by adding a zero:

(9 b o 8(1‘[")1 b au] b 6u]
(Zj:w%)(u )i+o_zj:u1 o +Zj:(u )i g0 —Zj:(u iz (B.26)

/

(Ca(@): R

0. (a* ()

N

Representing @ = >, u' a(zi and @” = 3, (@°);d2’ in local coordinates, the coefficients for

vectors w/ = X7 and one-forms (i”); = ; of Eqn. (B.25) and (B.26) agree. Therefore, the
first two term of the right hand side (B.26) can be summarize to (Lg(i”));. The third term
in (B.26) can be reformulated as indicated. To see this, we resubstitute (#”); = 3", gjxu”
in Eq. (B.26). gi; in M shall be constant with respect to partial derivatives So we
can write for the i-th component:

oxt”

O ol 10k gmuid) 19
. —b v ok __ 7,k JI __ - b
with @°(@) = ik giruuk. O

That the last equality is true is a consequence of the following proposition:

Proposition B.2.2. @’(%) =< @, >= Dk gjpudu®



126 Derivation of the fluid equations in invariant form

Proof. If we compare the two definitions of a dual vector (compare proof to Proposition
A.4.1) we find the equality of both formulations by the following calculation

a’(i) =Y (@)t (WFep) =) (@)F el er) =) (@) (B.28)

iyk Z7k :(S’L 1
—Zu <e,,2u]e] >= ZZUJU <el,ej (B.29)
*gz]
=< ) Wi,y ule; >=<i,i> . (B.30)
{ J
|

The remaining term in Eq. (B.24) can be written in local form according to Def. A.4.2
and Prop. A.4.3. The j—th component of the gradient is thus given by

Op 10p
Zgw (grad p)! ) = Zgugjkamk =—==. (B.31)

p@x’
EZng’“;p
T

The second equality holds because of the equality ik gijgjk = 5ik of the metric terms
(cf. Abraham and Marsden [1]).

The results of Eq. (B.31) and Prop. B.2.1 allow to reformulate the momentum equation
of (B.24) in invariant form. For the i-th component, with ¢ = 1,...,n, we find

(i) . 19 - 1 dp
o+ (Lal@))i — 5o @ (@) = ()i + -

p Oxt
or, by multiplying these coefficients with the dual basis vectors dz?,i = 1, ...,n, we find

ﬁb . .%'i ) ﬁ’b N .
W + 3 (La(@”))ida’ - % > 8(5795@))61 T=Y (07)dat

[ 7 7

=0, (B.32)

(B.33)

Be aware that @°(i7) € F(M) is a function, i.e. @’(@) =< , u >= |i|? and that for the
total derivative of a function f € F (M) we write df = ZZ D Ldz'. Moreover, the dual
vectors €* are represented in local coordinates dx*. This leads to the invariant formulation
of Euler’s equations:

o(i”)
ot

1 1 -
+ La(@%) — 5cl(zzb(ﬁ)) + ;dp —b>=0. (B.34)

According to property (iii) of Theorem A.2.1 (also called Cartan’s magic formula) the
Lie-derivative applied to a one-form @’ may be written as

La(@°) = doig(@®) + iz o di” . (B.35)
Using d o iz(@”) = d(@’(#@)), we find the alternative invariant formulation of Euler’s
equations:
o(u’ 1 1 -
(gt ) +igodd’ + 5cl(zzb(ﬁ)) +=dp—b"=0. (B.36)
p

This two formulations are equivalent in the continuous case. Whether the one or the other
formulation is more suitable for discretization has to be investigated in further studies. In
many application there is b* = 0, thus we assume this in the following.
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B.3 Principle of energy-conservation

Regarding the momentum equation (B.34)/(B.36) together with the continuity equation
(B.14), the unknowns are %’ (or its vector proxy ¥), p and p giving thus n + 2 scalar
unknowns. However, we have only n + 1 equations. In order to close the system of
equations we required an additional constraint.

We present in the following the derivation of Abraham and Marsden [1] to find the
closure conditions by assuming energy conservation. For a fluid moving in M with velocity
field u, the kinetic energy of the fluid is given by

1 o
Fign = 1 / ol 2 | (B.37)
M

with ||@||> =< @, 4 >. The total energy consists in a sum of internal energy Fi,; and the
kinetic energy:
Etot - Ekin + Eint . (B38)

Case 1) of incompressible flows: The main assumption is that Ei,, = constant. If no
energy is pumped into the system, or if the fluid does not perform work, the kinetic energy
Eyiy, should be constant, too, according to Eq. (B.38). There is the following equation [1]:

=5 (5 [ o) = [ vy (B.39)

with the volume-form p. This has to hold for all conceivable motions. Thus to fulfill this
equation we need either

div(@) =0 or p=0 (B.40)

to hold. p = 0 is possible but not further regarded. If we require div(#) = 0, we regard
the case of incompressible fluids with the boundary condition iz = 0 on OM.

Proof. of B.39: The following equations hold:

call? £ £q (@) £ (La) @ 2 a (v(@) @) ; (B.A1)
.2;
iz

i) |[i]]? =< @, 1 >= b(u) according to Def. A.4.1 and Prop. B.2
ii) With «’ (@) = iyu” and Corollary A.2.6 it follows: Lz (izu’) = (Lau ),

iii) Using Eq. (B.35) it follows: £ (v’(%0)) = doiz < > +igod (v (@) = d (u’(1)) (a).
—_———

=0
Therefore, we find for Eq. (B.39):

_d (1 -2 _ 1 o] |]|* 2
0= o <2 /Mp||u|| d,u> =3 Mp( 5 + Lz||d]| (Theorem A.2.10)
3ub 5 1 b o . .

= p—— - udp + = p (ﬁﬁu ) - udp (use relation in Eq. (B.41))

MmOt 2 Jm
b

= / p@_u - ddp —|—/ p <£gub> - udp — 1 / pd <ub(ﬁ)> udp  (replace Eq. (B.34))
MmOt M 2 Jm

= —/ dp - udp a2 / [(div(@))pp — Lz(pp)] (with Leibniz rule for £)

M M

& [ iv@)pn - dliap) [ (aivia)pm (with boundary iz: = 0);
M M
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iv) Leibniz rule: Lz(pp) = Lz(p)p+pLap = dp - dp+ pdiv,dp with A.2.4 (iii) for the first
and Def. A.2.2 for the second term;

v) La(pp) = dig(pp) + izd(pp) = d(igpp) due to 0 = d(pp) € Q" (M);

vi) Due to Stokes theorem and A.2.4 (i): [, d(igpp) = [, (ap)p + (=1)° [, Pian =
IBM pigp as p € Q9 and thus 0 = igp. Setting the boundary condition on OM : (i-7i)da =
iz = 0 (this describes the case where the flux through the boundary is zero), we find the
above equality. O

Case 2) of barotropic or ideal isentropic flows: The main assumption is that the
internal energy (here not constant) over a region W is a function of the internal energy
density per unit mass, denoted with w, and can be written as

Eint :/ pwdps . (B.42)
w

The energy should be balanced such that the rate of change of energy within a region W
equals the work done on it:

d 1
— </ p=||a|Pdp + pwdu) = —/ pu - fida . (B.43)
dt\ S w2 Dpi(W)

Taking the result of Case 1) for the first term on the left, using the transport theo-
rem A.2.10 for the second term on the left, and applying Gauss theorem on the right of
Eq. (B.43) lead to

D
—/ dp - tdp +/ p—wdu = —/ div(pd@) - du . (B.44)
M o) dt pe(W)

According to Prop. A.2.8 (ii), the identity div(p) - du = dp - ddp + pdiv,(@)dp leads to

D

0= / <pdivu(ﬁ) + p—w> dp (B.45)
(W) dt

= pdiv, (@) + p <((39_ut) + £5w> , (B.46)

since W is arbitrary and using Theorem A.2.10 to evaluate %.

Barotropic assumptions: The internal energy w = w(p) € Q°(M) only depends on
how much the fluid is compressed. Such fluids are called ideal isentropic or barotropic. We
find with Theorem A.2.4 (iii) and the continuity equation B.5 with Prop. A.2.8 (ii):

L ow N\ Oowdp  Ow R
0 = pdiv, (@) + p <E —i—dw-u) = pdiv, (@) + p <8p 5 + 5 d u>
ow ow
= pdiv,, (@) + p—— (—pdiv, (@) = [ p— p* o= | div, (@) . B.4
i () + 95 (=i (@) = (= 257 ) civ, (@ (B.47)

As the value for the divergence div, () is not restricted, the following identity has to be
fulfilled for barotropic flows:

= . B.4
P=ry, (B.48)

This equation is called an equation of state.
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A common assumption for barotropic flows is that p = p(p) € F(M) is a function of
the density alone [1]. With this assumption we can find an expression for the internal
energy w by

w=— /pd(l/p). (B.49)

This can be found by integrating both sides of Eq. (B.48) over p, using the separation of

the variables and substitute /—1) =p= d(cll—f)p) = —p%, thus

/]%dp:/—&g(pp)dp = —/pd(l/p) :/82—?@- (B.50)

Using the integrand dw = —pd (1/p) of Eq. (B.49) we find
1
d(p/p) =1/pdp+pd(1/p) =1/pdp —dw = ;dp =d(w+p/p)=:dh, (B.51)

which can be substituted in the momentum equations (B.34) and (B.36). The quantity
h:=w+p/p is called the enthalpy.

Comparison to thermodynamics: Let be dU = W +§Q, where U denotes the inner
energy, W the work done on the fluid and @ the heat added to the fluid (see e.g. [38]).
With the assumptions of an isentropic (i.e. adiabatic and reversible) or barotropic flow (see
above), where the internal energy depends only on how much the fluid is compressed, 6W =
—pdV, and where no heat is added, 6QQ = 0, the following relation holds: dU = —pdV.
This is in agreement with the change in inner energy dw = —pd (1/p) of Eq. (B.49), as
d (1/p) is equivalent to changes in the volume dV (recall: lower case letters denote energy
density per unit mass).

Using this interpreting, the definition of enthalpy h := w + p/p equals also those used
frequently in thermodynamics [38], H := U + pV. For thermodynamical systems, the
enthalpy H is a measure for the total energy of the thermodynamical system, including
the internal energy as well as the energy that is required to establish the systems volume
and its pressure. The change in enthalpy is given by dH = dU + pdV + dpV = —pdV +
pdV + dpV = Vdp, which agrees with Eq. (B.51).

B.4 Incompressible and barotropic invariant fluid equations

On the basis of the results of Abraham and Marsden [1] that we presented in detail above,
we summarize in the following the fluid equations for incompressible and for barotropic
flows. These sets of equations are valid on a general Riemannian manifold M endowed
with a metric g.

B.4.1 Incompressible fluid equations in invariant form

Let the one-form @° € Q'(M) describe the velocity, p,p € Q°(M) describe the density
and pressure of the fluid, respectively on a general Riemannian manifold M. Then the
incompressible flow is described by the invariant fluid equations:

(") 1oy o1
o + Lg(u’) — gd(u (7)) + ;dp =0, (B.52)
@ +dx*(pi)’ =0, (B.53)

*dx (@) =0, (B.54)



130 Derivation of the fluid equations in invariant form

with the initial conditions #(z,0) = @y(z) on M and the boundary condition on OM :
(u-n)da = iyu = 0.

B.4.2 Barotropic fluid equations in invariant form

Let the one-form @” € Q'(M) describe the velocity, p,p € Q9(M) describe the density
and pressure of the fluid, respectively on a general Riemannian manifold M. Moreover,
let the inner energy be w = w(p) € Q°(M) and the pressure be a function of the density,
i.e. p=p(p). Then the barotropic flow is described by the invariant fluid equations:

o(i” 1

(6ut ) + La(@”) — §d(ﬁb(ﬁ)) +d(w+p/p) =0, (B.55)
@ +d*(pi) =0, (B.56)
p= pQZ—up) (equation of state), (B.57)

with the initial conditions u(x,0) = wp(z) on M and the boundary conditions @ - 77 = 0

on OM.

B.5 Vorticity stream function and conservation properties

On the basis of the momentum equation (B.52) we show conservation of vorticity w =
dii® € Q*(M). As the Lie-derivative and the exterior calculus commute (cf. Prop. A.2.7),
we derive the following equation:

o(da?)
ot

1 1 1
+ Lg(da®) — 5dd(ﬁ"(ﬁ)) +d <;> Adp + ;ddp =0. (B.58)

All terms with dd = 0 vanish. In case of incompressible or barotropic flows also the fourth
term vanishes as either p is constant or dd(w + p/p) = 0, which leads to the so called
vorticity-stream equation:

Oow
- ~w=20". B.

This proves the conservation of vorticity. This fact becomes more clear on a flat manifold.
If we present the Lie-derivative by Eq. (A.34) with a connection V of Def. A.3.1 on a flat
manifold and if we use Eq. (A.33), then we find % = 0y + U - V leading to %w =0.



Appendix C

Geophysical fluid equations in
invariant form

In Appendix C.1, we present the geophysical fluid equations for rotating fluids in vector
invariant form according to White et al. [117] and Marshall and Plumb [70].

In Appendix C.2 we introduce an invariant form of the shallow-water equations. This
equations are derived on basis of the invariant fluid equations of Appendix B in combina-
tion with result of Chapter 2.

C.1 Governing equations in vector invariant form

In this section we present the geophysical fluid equations in vector invariant form according
to the derivations of White et al. [117] and Marshall and Plumb [70]. In vector invariant
form the equations do not change for different three-dimensional vectors on any coordinate
system.

A general vector invariant form of the momentum equation on a rotating frame R with
an angular velocity O relative to an inertial frame is given by

Dii R O, 1 .
E.:(a—l—u-V)u-—Qqu—Qx(QXF)—V@N—;Vp—FF. (C.1)

Dgt is the material derivative in the rotating frame R and V the three-dimensional gradient

operator. With 7 we denote the position of the fluid parcel relative to any fixed origin on
the rotational axis of R, @y is the Newtonian gravitational potential, p the density, p the
pressure and F some other forces. With the continuity equation % + pV -4 =0 and an
additional constraint on energy, for instance, incompressibility V - @ = 0 (cf. Sect. B.3),
the system of equations is closed.

The centrifugal force -0 x (ﬁ X 7) =V <Q|;ri>, where 7, is the perpendicular

distance of the parcel from the rotation axis, and the Newtonian gravity, —V®y, are
(2.2
usually combined to the apparent gravity, —V® 4, with &4 = (P — M%) Omitting the
influence of additional forces, i.e. F= 0, the momentum equation can be written as
Di  0u = 1
— =—+4u4-Vu=-20xu—-Vdy——-Vp. C.2
Dt Bt AT LVP (€.2)
This equation holds irrespective of the coordinate system. The construction of a numer-

ical scheme demands for a representation in a certain coordinate system and a separation
into components.
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C.1.1 Representation of the vector invariant form

The choice of the coordinate system is an important step in solving the equations numer-
ically. As the vector has to be represented in components, this choice has influence on the
complexity of the equations given in vector components. Here, we summaries shortly the
properties of the two most frequently used representations.

Spherical representation

With the definition of an apparent gravity potential 4 = &y — % one finds surfaces
of constant ® 4. Such surfaces are called geopotentials and are, in general, no spheres. The
apparent gravity —V® 4 is by definition normal to this surfaces. A separation of Eq. (C.2)
into components tangential and perpendicular to the geopotential surfaces is desired, be-
cause in such case ® 4 appears only in the terms perpendicular to the geopotentials. As the
differences of geopotentials to spheres are sufficiently small, one may apply the spherical
geopotential approximation, with components of Eq. (C.2) separated tangential and nor-
mal to geopotentials, where the geopotentials after the separation are treated as spheres
(cf. White et al. [117]).

Using this assumption, the spherical polar coordinates are an adequate coordinate
system, where A\ describes the longitude, ¢ the latitude and r the mean earth radius plus
distance form earth surface. Then ® 4(r) is a function of  only.

Such choice of coordinate system including the spherical geopotential approximation
leads to a system of equations that takes the earth’s curvature into account.

Cartesian representation

More frequently used is, however, the representation of Eq. (C.2) by a rotating Cartesian
frame in R3. Hereby, the earth’s curvature is not taken into account. With such approach,
the equations are representation on flat geometry, thus the approximations for a flat ge-
ometry introduced in Section A.3 are valid. However, the effect of rotating coordinate
system has to be taken into account, as elaborated in the following.

C.1.2 Fluid equations in R? on a rotating sphere

We aim for a representation that is mostly used in geophysical science, namely the repre-
sentation of the fluid equations on a rotating Cartesian frame in R3. The rotating system
leads to additional effects, i.e. the Coriolis force that have to be taken into account.
Hereby, we follow in this subsection the argumentation of Marshall and Plumb [70].

The geophysical fluid equations are represented on a rotating Cartesian coordinate
system in R3 that is positioned on the earth surface as following: The local coordinate
system is positioned at latitude ¢ and longitude A such that the z,y, z direction points
eastward, northward and upward, respectively. With respect to spherical coordinates, the
line elements are dx = r cos @d\, dy = rdp and dz = rdr, where r is the distance for earth
midpoint.

With an earth rotation velocity € the rotational vector for this choice of local co-
ordinate system is 0= (0,Qcos p, Qsinp). With the representation of the velocity
@ = (u,v,w) the Coriolis acceleration reads

Quw cos p — Qusin
Qxu= Qusin . (C.3)
—Qucosp
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The vertical components of the Coriolis term act in opposite direction to gravity, how-

ever, with negligible strength, as Qu < g. Therefore, we drop its influence. An additional
approximation, called the shallow-atmosphere approximation, is based on the assumption
that the atmosphere is very thin compared to the earth radius a, i.e. » = a+ 2 = a, where
r is the radial distance of the parcel to the origin and z the vertical coordinate of the local
coordinate system: )
(i) The apparent gravity potential ® 4 of Eq. (C.2) reduces to @jlw*atm = (@N—W);
(ii) Because of the thinness of the atmosphere and ocean, vertical velocity are much less
than horizontal velocity. Thus, we omit the term including w in the x-component of the
Coriolis-term.

With this assumptions we can approximate the Coriolis term by

—2Qusin @
20 x U~ 2Qu sin ¢ =fkxu, (C.4)
0

with k = (0,0,1) and where f = 2Qsing is known as the Coriolis parameter. Both
Eq. (C.3) and Eq. (C.4) are component representations in R3 that can be used for a
component wise representation of Eq.(C.2).

C.2 The shallow-water equations

In this section we present a sketch of the derivation for the shallow-water equations accord-
ing to McWilliams [71] on the basis of the full equations of Eq. (C.2). Then, based on this
derivation, we introduce the invariant shallow-water equations, which are also discussed
in Chapter 2.

C.2.1 The shallow-water equations in vector calculus

Based on the usual assumptions in order to derive the shallow-water equations, we describe
the configuration for a shallow-water flow in this subsection according to McWilliams [71].
Hereby, let the horizontal velocity @ be depth independent. The fluid layer is of uniform
density po, with an upper free surface p,,. The layer has a thickness of h = H +n — B,
with B the bottom elevation, and 7 the free surface elevation and H the averaged surface
depth.

H also characterizes the vertical scale of the motion. The length scale of the char-
acteristic horizontal motion is denoted with L. The equation § = % < 1 denotes the
fundamental characteristic of shallow-water motion. Thus, the shallow-water equations
describe flows where the horizontal scale L is much greater than the mean layer depth
H. For this assumption, also the hydrostatic balance approximation (cf. Eq. (C.8)) is
justified, which is an important assumption for the following derivation.

The thickness equation in vector calculus: The assumption of a uniform and con-
stant density p leads to the incompressibility condition div(#) = 0. This can be seen as
following: p = const. < ap = 0 and Vp = 0. Based on the continuity equation (B.5) we
find

dp

N + pdiv(d) + 4 Vp =0 < div(d) =0 . (C.5)

The degenerated continuity equation div(#) = 0 can be formulated independently of the
height by vertical integration. Assuming 5) Upor = 0 and a flat bottom topography, B = 0,
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the integration over each water column gives

h

o auz o

0= / <Vhor : (uhor) + E) dz = hvhor : (uhor) + uz’h - uz‘O 5 (06)
0

where we use the notation Upe = (uz,uy) and Ve = (0x,0y). By imposing kinematic
boundary conditions on () the lower boundary by u.|p = 0, and (ii) on the free surface at
height h by u,|, = dt = Bt h 4 Ghor Viorh there follows

Oh
N + Vhor * (htipor) =0, (C.7)

which is called the height or thickness equation. This equation is also valid for non-flat
bottom topography with B # 0 (cf. McWilliams [71]).

The height independent momentum equation in vector calculus: Let the total
pressure p be described by the function p(z,y,z,t) = —gpz + op(x,y,2,t). The scale
analysis for shallow flows with § = £ « 1 (cf. Pedlowsky [77]) reveals that the vertical
pressure variation dp can be neglected leading to

% = —gp+0(8%) . (C.8)
This balance between the vertical pressure gradient and the buoyancy force is called the
hydrostatic approximation.

The pressure at the height z is determined by the water column over that point and by
the constant pressure at the surface p,, = p(x,y, h,t). This can by found by integrating
Eq. (C.8) from z to the free surface h with constant density p = po:

h
/ —dz = p(z,y,h,t) —p(z,y,2,t) = —/ gpodz = —pog(h — 2) , (C.9)
p(z,y,2,t) = pup + pog(h — 2) . (C.10)

Based on this function for the pressure, we calculate the horizontal gradient, plovhorp, and

find
10p Oh 10p Oh

por Jox poy oy

As p,,, is constant, we find that the horizontal partial derivatives are independent of z and
only dependent on the absolute water depth h.

The typical vertical velocity is at most of the order of W < O(8U), where W is the

typical vertical and U the typical horizontal scale of velocity [71]. Omitting the vertical

velocity, the horizontal momentum equation is independent of the height z and given by

(C.11)

aﬁhor
ot

+ ﬁhor : vhorﬁhor = _fE X ﬁhor - gvhorh . (012)

We use the shallow atmosphere approximation for the Coriolis term in Eq. (C.2) with the
Coriolis parameter f = 2Qsin . In contrast to Eq. (C.2), the gravitational acceleration
V&, is caused by the weight of the water column, which in turn causes a pressure at
height z, i.e. ®4 ~ gz. Therefore, the pressure term takes over the role of gravity in this
formulation.



C.2. The shallow-water equations 135

C.2.2 The shallow-water equations in invariant form

On the basis of the results of the previous section, we derive the shallow-water equations
in invariant form. To our best knowledge there exists no such formulation for the shallow-
water equations in the literature. Therefore, we include this derivation in the present
section.

The invariant form of Euler’s equation in Eq. (B.4) allows for a representation of the
equations on any Riemannian manifold M by the choice of the coordinate representation,
for instance, the spherical coordinates (7,9, ¢) or Cartesian coordinate (x,y,z). Hereby,
the earth rotating, i.e. the fact of an rotating Coordinate system, has to be included to
represent the Coriolis effect adequately.

The general formulation of the Lie-derivative allows for time dependent coordinates
and vector fields (cf. Section A.3). Thus, the time dependency of the invariant equations
is contains in the choice of an adequate coordinate representation. In order to apply the
shallow-atmosphere approximation of Section C.1.2, we use the therein introduced rotating
Cartesian frame to represent the invariant equations. Under this prerequisites, we derive
the following invariant shallow-water equations.

The thickness equation in invariant form: Analogously to Proposition B.1.1 the
divergence in two dimensions can be written using operators of exterior calculus by
divior (pUhor) = *d* (pt7”) for any vector field Thor = (vz,vy) € X (M), as the following cal-
culation shows. Let the vector pv' be represented as one-form by (p@')b = pugdx + puydy €
QL (M), then

*(p0)° = *(pvyda + puydy) = puydy — pvydx | (C.13)

. opv dpv opv opv
d P = T lde Ndy — —Ldy Adr = [ 2=+ 2 ) de Ady . 14
* (p?v) 5y A dy a9 y A dx < o + a9 x A dy (C.14)

With x(dx A dy) = 1 we find the horizontal divergence, analogously to Vi, which leads
to the following thickness equation
Oxh
ot

+d * (hiper)” =0 . (C.15)

The momentum equation in invariant form: Let us regard the momentum equation
of the incompressible fluid equations of Eq. (B.52) for a vector field @ b — Ugpdr+uydy+u.dz
in three dimensions. As shown in the previous section, the momentum equation in vector
calculus can be formulated such to be independent of the height z.

To find an analogous representation of the invariant momentum equation, we represent
the flow with the two-dimensional one-form ﬁﬁor = uzdz + uydy € QY(M), whereas the
vertical velocity u, is neglected because it is small compared to the horizontal velocity.
This assumption is valid with the shallow-atmosphere approximation (cf. Sect. C.1.2).
Using this assumption, we find an expression for the Coriolis term in exterior calculus
with fE X Unor = i, f (this identity is given in the proof to Theorem 2.3.1), where the
two-form feor = fodz Ady € Q(M) describes the Coriolis effect in the horizontal direction
taking the earth rotation into account.

As the vector component u, is neglected, the Lie-derivative £ of Def. B.2.1 acting on
z‘[ﬁor only accounts for terms in the horizontal direction. Using the gradient operator
of Prop. (A.4.3) and the hydrostatic approximation (C.11) the horizontal momentum
equation in invariant form on a two-dimensional manifolds M is given by

O(tiy)

— 1 — — O
at + Eﬁhor(ullior) - §d( }Eor(uhor)) + lﬁhor o f + gdh = O . (C'16)
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Using Cartan’s formula (B.35) and exploiting the linearity of the interior product, we find

a(ﬁll’)lOr )

: ” |
9+ (i, © (Ao + £)) + 5@ (Thor)) + 9dh =0 . (C.17)

On a flat manifold, the term Ly, (@) — 4d (@}, (ihor)) reduces to the conventional
advection term oy + Viorlhor according to Prop. B.2.1 and Eq. (A.34).

Summary: Let be M a two-dimensional manifold on a rotating frame, ﬂ%or € QY(M)
the velocity one-form and h € Q°(M) the surface height function. Then, the rotating
shallow-water equations in invariant form are given by

i) | s b L (= _
ot + (lﬁhor ° (duhor + f)) + 2d(uhor(uh01")) + gdh =0 ’ (018)
h
8(; +d x (hithor)’ =0, (C.19)
> d x (lipe,)’ =0, (C.20)

with the initial conditions her(2,0) = Upero(z) on M and the boundary condition on
OM : (Uper - )da = ig,p = 0.
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