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Large-eddy simulation (LES) refers to a class of calculations in which the large energy-rich eddies are

simulated directly and are insensitive to errors in the modeling of sub-grid scale processes. Flows represented

by LES are often driven by radiative heating and therefore require the calculation of radiative transfer along

with the fluid-dynamical simulation. Current methods for detailed radiation calculations, even those using

simple one-dimensional radiative transfer, are far too expensive for routine use, while popular shortcuts are

either of limited applicability or run the risk of introducing errors on time and space scales that might affect

the overall simulation.

A new approximate method is described that relies on Monte Carlo sampling of the spectral integration in

the heating rate calculation and is applicable to any problem. The error introduced when using this method

is substantial for individual samples (single columns at single times) but is uncorrelated in time and space

and so does not bias the statistics of scales that are well resolved by the LES. The method is evaluated

through simulation of two test problems; these behave as expected. A scaling analysis shows that the errors

introduced by the method diminish as flow features become well resolved. Errors introduced by the

approximation increase with decreasing spatial scale but the spurious energy introduced by the approxi-

mation is less than the energy expected in the unperturbed flow, i.e. the energy associated with the spectral

cascade from the large scale, even on the grid scale.

DOI:10.3894/JAMES.2009.1.1

1. How much approximation is acceptable in
radiative transfer treatments for large eddy
simulation?

The term ‘‘large-eddy simulation’’ (LES) is sometimes used

to describe a class of numerical models with high spatial

resolution, but it more properly refers to a class of calcula-

tions: those in which the large energy-rich eddies are directly

simulated, as opposed to being modeled (meaning repre-

sented in the abstract), and which are not biased by errors

introduced through the modeling of the small scales. This

modeling is required for flows whose Reynolds numbers are

too large to allow for an explicit, or direct, representation of

all the scales of motion. One expects LES to converge to such

direct representations (i.e., direct numerical simulation) in

the limit of sufficiently small grid-spacing. In practice,

imperfect parameterizations of physical processes such as

radiative transfer, cloud microphysical processes, boundary

processes, etc. make this limit difficult to realize, even in

principle. Current computational capabilities limit LES to

domain sizes of order 10 km and grid spacings of order 10 m.

Radiative transfer is the best understood of the subgrid

scale processes in that a well-established theory allows

radiative fluxes to be computed to arbitrary accuracy given

a well-characterized medium and unbounded computa-

tional resources. Radiative transfer can be quite important;

many flows of interest (e.g., stratocumulus) are driven

directly by local heating resulting from the divergence of

radiative fluxes. The computational costs of the most

detailed calculations are far too high for use in LES,

however. Given the computational burden of exact treat-

ments of radiative transfer, and the interest in how such

fluxes couple and co-evolve with the flow, there is a long

tradition of defining approximate methods for estimating

radiative heating rates.
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Nearly all existing methods start with a gross simplifica-

tion, namely the assumption of one-dimensional radiative

transfer, wherein radiation is assumed to travel within, but

not among, model columns. This assumption is known to

be poor if the grid spacing is less than the radiative

smoothing scale (Marshak et al., 1995), as is usually the

case in LES. Neglecting three-dimensional radiative transfer

certainly leads to errors in local flux and intensity (radiance)

calculations. But errors in these quantities are irrelevant for

LES, which responds most directly to heating rates on

resolved space and time scales. Heating rate errors caused

by the 1D assumption are small in stratocumulus clouds in

the domain mean (see, e.g., Zuidema and Evans, 1998;

DiGiuseppe and Tompkins, 2003) though they may be

larger in cumulus. In a general sense, one-dimensional

radiative transfer can be thought of as an approximation

producing heating rate errors that are small in stratiform

clouds, somewhat larger in cumuliform clouds, and short-

lived in both cases.

But it turns out that even detailed one-dimensional

radiative transfer calculations are so prohibitively expensive

that they are rarely employed in LES. As one example, when

we coupled one reasonably efficient one-dimensional radi-

ative transfer code to a hydrodynamic code and used it to

compute heating rates in every column at every time step,

our solution time increased by a factor of about fifty. One

strategy for avoiding this high computational cost is to

simply specify the radiative heating rates, perhaps in com-

bination with other large-scale forcing (e.g., Siebesma et al.,

2003). This approach is most useful when radiation drives

the flow indirectly, for instance by helping sustain surface

fluxes, but makes it impossible to study the coupling of the

flow with the radiation. Some amount of interactivity can be

gained for individual case studies by developing a paramet-

ric fit to detailed radiative calculations (e.g., Stevens et al.,

2005). Fits can be quite fast but necessarily introduce some

amount of bias. More importantly, they are most successful

if their range of applicability can be limited a priori. This

means they must be revisited when new situations are to be

simulated, which may occur on the timescale of the evolu-

tion of the flow itself. As LES is applied to a wider range of

problems and to increasingly large-scale and heterogeneous

environments (see, e.g., Khairoutdinov and Randall, 2006)

such parameterizations of radiative transfer become increas-

ingly unattractive.

An alternative is to do a full (one-dimensional) radiation

calculation at reduced temporal and/or spatial resolution

relative to the rest of the calculation (e.g., Ackerman et al.,

2004). Although spatial and temporal sampling may be

implemented independently, they are fundamentally equi-

valent: in a flow with grid spacing dx and time step dt related

by a characteristic velocity u1 / dx/dt, computing radiation

every N time steps amounts to averaging over a spatial scale

proportional to Ndx, with the size of the averaging errors

correlated with the local velocity. If N is large enough,

heating rate errors can be introduced at scales approaching

those being explicitly simulated. Because the heating rates

are sampled in a manner that depends on the flow itself such

approaches can introduce unwelcome biases (e.g., Xu and

Randall, 1995; Pauluis and Emanuel, 2004).

Here we introduce an approximate method that is fast

enough to be practical, unbiased, and has numerical con-

vergence properties consistent with the philosophy of large-

eddy simulation. The method is demonstrated using a

benchmark of one-dimensional radiative transfer but should

apply more generally. An example implementation is shown

to introduce noise at levels and on scales that does not affect

the simulation of large eddies. We then consider the general

question of how errors introduced by approximate radiative

treatments can be expected to influence LES, concentrating

on the class of methods that are unbiased but introduce

uncorrelated random noise.

2. Monte Carlo spectral integration

Full radiative transfer calculations are computationally

expensive because they integrate over a large portion of

the electromagnetic spectrum. The main challenge in per-

forming spectral integration is that the absorption cross-

section of gases can change by orders of magnitude over very

small spectral intervals. The current state-of-the-art solution

is to use a ‘‘correlated k-distribution’’ (Lacis and Oinas,

1991; Fu, 1992) to calculate radiative fluxes, whose spatial

divergence then provides the local heating rate. To build a

single-layer k-distribution one chooses a set of B relatively

broad spectral bands within which Rayleigh scattering by

molecules and the optical properties of aerosols and clouds

can be considered uniform. Within each band similar values

of absorption coefficient k are grouped into G ‘‘g-points’’

within which k < k(g). The broadband flux F(x, y, t) within

the column centered at the point (x, y) and at time t can

then be computed as

F x,y,tð Þ~
XB

b

wb

XG bð Þ

g

wg bð ÞFb, g x,y,tð Þ ð2:1Þ

where the g-point weights wg are the fraction of each band

accounted for by each g-point, so that
P

wg~1 for all b. In

practice, (2.1) is usually applied separately to the visible and

infrared portions of the spectrum. For infrared bands wb 5

1, because all radiation is emitted within the domain, while

for solar bands wb denotes the amount of solar energy

within band b. In most implementations B and G are both

O(10) so a broadband calculation requires as many as

several hundred pseudo-monochromatic calculations. A

‘‘correlated k-distribution’’ extends this single-layer idea

by further assuming that the relative strengths of absorption

lines within a band are correlated with height in the

atmosphere so that the mapping between k and g derived

for one level of the atmosphere can be applied to all levels.
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This mapping the technique to be used for multiple levels in

a vertically inhomogeneous atmosphere.

We propose using the flux computed for a single ran-

domly-chosen band and g-point as a proxy for the full

calculation, choosing a different band and g-point for each

column and at each dynamical time step. That is, we

approximate (2.1) using randomly-chosen values of b9 and

g9 as

F x,y,tð Þ&FMC x,y,tð Þ~Bwb’Fb’, g ’ x,y,tð Þ ð2:2Þ

where the probability of choosing a given value of b9 and g9

is given by the weight with which the spectral interval

contributes to the overall sum, i.e.,

p b’ð Þ~1=B and p g ’ð Þ~wg ’ b’ð Þ: ð2:3Þ

Formally, FMC is a single-sample Monte Carlo estimate of

the complete spectral integration F; repeated application of

(2.2) might be called ‘‘Monte Carlo spectral integration.’’

Individual estimates using (2.2) will contain substantial

random error relative to (2.1) but this noise decreases as

1=
ffiffiffi
n
p

where n is the number of samples. The two estimates

converge as the number of samples increases whether those

estimates are accumulated in space (i.e., across an LES

domain), in time (i.e., over the course of a simulation), or

both. In addition, given the frequency with which radiation

is typically calculated (every 30–50 time steps) and the total

number of g-points in correlated k-distribution schemes (of

order 100–300), (2.2) represents even less computational

work than infrequent radiation calculations using (2.1).

3. Example large eddy simulations using Monte
Carlo spectral integration

3.1. An example implementation

We have implemented Monte Carlo spectral integration in a

radiative transfer code and coupled this radiation solver to a

large eddy simulation code. Our treatment of radiative

transfer follows Fu (1992) and Fu et al. (1997). The

spectrum is divided into 6 bands in the solar (50000 to

2500 cm21) and 12 in the infrared (2500 to 0 cm21). The

code includes parameterizations for the optical properties of

cloud water and ice and a model for absorption by the water

vapor continuum within each band. A k-distribution

accounts for the effects of water vapor, ozone, methane,

and nitrous oxide using as many as 12 g-points per each

band. Radiative transfer is computed with a d-scaled four-

stream solver. In our implementation (2.2) is applied

separately to the solar and thermal infrared portions of

the spectrum. This treatment increases the total computa-

tional cost by about 50% relative to simulations that use a

parametric fit designed to capture the sensitivity of radiative

heating rates to cloud water.

The code used to perform the large-eddy simulation is the

most recent version of the UCLA LES (Stevens et al., 2005).

For these simulations the model is configured with 192 grid-

points in each horizontal direction and 131 points in the

vertical. The horizontal grid spacing dx is 35 m; the vertical

grid varies from 10 m near the surface to 5 m in a zone that

spans the inversion. The model time step varies so as to

maintain the peak CFL (Courant-Friedrichs-Lewy) number

within a fixed range and is typically 1–2 s. Sub-grid scalar

fluxes are carried by the numerics using a method (i.e.,

UCLA-1) shown to yield realistic results in Stevens et al.

(2005).

3.2. Simulations of stratocumulus

We use the LES and radiation package to simulate nocturnal

stratocumulus based on the first research flight (RF01) of

DYCOMS-II (Stevens et al., 2003). This is a challenging case

because the large-scale flow is sensitive to biases on the small

scales (Stevens et al., 2005).

Initial profiles, surface specifications, and large-scale

forcing follow Stevens et al. (2005), with two exceptions.

First, because the profiles of subsidence in Stevens et al.

(2005) were tailored to the parametric representation of

radiative transfer, subsidence is simply left out of the current

simulations. This allows cloud top to deepen by about an

additional 10 m hr21 relative to simulations with subsidence

but does not affect the simulation’s sensitivity to errors in

radiative heating rates. Secondly, during the radiative trans-

fer calculation a summer subtropical sounding is grafted

onto the state of the lower atmosphere as represented by the

LES.

We simulate four hours of evolution starting from qui-

escent initial conditions with a horizontally uniform cloud

whose water content increases adiabatically from cloud base

at about 600 m to cloud top near 840 m. We show results

from nocturnal simulations but we have performed simula-

tions centered on local noon and find no important differ-

ences.

The noise introduced by Monte Carlo spectral integration

has one unintended but desirable result: model fields spin

up from a cold start somewhat more quickly and gently in

the presence of noise in the radiative heating rates. It is

standard practice to initialize LES with uncorrelated ran-

dom noise in the temperature and/or humidity fields in

order to break the symmetry of the initial conditions and

allow the flow to develop. Using (2.2) to compute radiative

heating rates provides a continuous source of small scale

variability. The flow spins up somewhat more rapidly as a

result, leading to the accumulation of less instability and a

less violent initial overturning of the flow. Similar but more

pronounced effects are associated with the addition of a

stochastic perturbation to the sub-grid flux (e.g., Mason and

Thomson, 1992; Weinbrecht and Mason, 2008).

Once the flow is spun up, however, noise in the radiation

field does not affect the simulation noticeably. The dashed

Monte Carlo spectral integration 3

JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS



blue lines in Fig. 1 show results from the last 110 min of a 4

h simulation made using (2.2), while the black lines show a

simulation that uses (2.1) to compute the heating rates (at

each gridpoint and timestep) starting at t 5 2.5 h. The

evolution of the boundary layer in the two simulations is,

statistically speaking, indistinguishable.

Profiles accumulated over the last half-hour of the simu-

lation (Fig. 2) show a similar insensitivity. Spatial and

temporal variability in cloud structure causes some variabil-

ity in radiative fluxes, but this is dwarfed by the noise

introduced by Monte Carlo sampling (see the bottom two

panels of Fig. 2). Nonetheless, profiles of properties dynamic

and thermodynamic properties (shown in the top three

rows of Fig. 2) are essentially identical. The single exception

is the third moment of vertical velocity, which increases in

the presence of Monte Carlo noise. This increase, however,

is of the order of sampling errors (as measured, for example,

by the difference between independent realizations of

identically forced flows), so we conclude that no quan-

tity is affected significantly by the noise introduced by

(2.2).

3.3. Simulations with small net forcing and large
noise

Results in section 4, particularly (4.10), suggest that random

noise might affect the flow simulated by LES when the mean

forcing is small relative to the amount of noise.

To assess this possibility we make two simulations of a

weakly-driven flow. The problem specification follows the

DYCOMS-II RF01 case, as above, but without the mean

radiative driving. Figures 3 and 4 mirror Figs. 1 and 2 in

showing time series and profiles from the last half-hour of

the simulations, respectively. Here, however, the black lines

show simulations in which no radiation is calculated at all,

so that the flow is driven entirely by the weak surface fluxes

and evaporative cooling at cloud top, while the dashed blue

lines show a calculation in which radiative driving is first

computed in each column using (2.2), then modified by

removing the domain-mean radiative flux, leaving only the

column-by-column noise. (We omit profiles of radiative

flux and its variability since these are identically zero with

one exception: the standard deviation of radiative flux for

the Monte Carlo spectral integration, which follows the

bottom right panel of Fig. 2.) In this case the noise has a

barely noticeable effect on the spin-up, most likely because

the evolution is driven by the (unperturbed) surface forcing.

In the absence of strong driving the circulations are weak

(compare, for example, the variance of vertical velocity in

Fig. 4 with the values in Fig. 2) but, despite the fact that

perturbations in radiative heating rates are very large relative

to the small mean forcing, the noisy simulation does not

substantially depart from its noise-less counterpart. Hence,

even in a situation constructed to be as sensitive as possible,

the deleterious effects of the grid-scale noise that arises from

sampling of the radiative fluxes are minor.

4. Error, scale, and evolution in large eddy
simulations

The results in Section 3 demonstrate that the radiative

transfer approximation described in Section 2 allows for

realistic large eddy simulations in two very different regimes.

In this section we seek to understand more deeply why the

approximation works, in part so that we may understand

any limits of applicability.

What degree of error is acceptable in an approximate

treatment of radiative transfer? The answer depends on the

application; for an LES we might insist that the approxi-

mation does not change the simulation of the large eddies

relative to some expensive benchmark calculation. In this

section we first estimate the amount of error that might be

tolerated by an LES by comparing the amount of energy in

eddies expected at a given spatial scale with the perturbation

introduced by some error arising from an approximate

treatment of radiative transfer. We then apply this analysis

to the particular case of heating rate errors which, like those

introduced by Monte Carlo spectral integration, are uncor-

related in space and time. As in Section 3 we use the

simulation of nocturnal stratocumulus as a prototype

problem. The simple nature of the flow (i.e., its stationarity,

homogeneity, and the dominance of a single underly-

ql [g/kg]

e [m2/s2] Full radiation

Monte Carlo sampling

Time [hr]

0.7

0.64

0.6

0.89

0.7

910

888

870
2.5 3.5 4

1.0

Cloud top [m]

Figure 1. Evolution of a nocturnal cloud-topped boundary layer
computed using fully-resolved (black lines) and Monte Carlo-
sampled (dashed blue lines) one-dimensional radiation calcula-
tions. Bulk properties of the flow, including domain-averaged
turbulence kinetic energy (top panel), liquid water path (mid-
dle), and cloud top height (bottom) are essentially indistinguish-
able in the two simulations, despite the large amount of
uncorrelated noise introduced in radiation calculations by the
Monte Carlo sampling.
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ing length-scale) facilitate scaling estimates of the effects of

noise.

4.1. How sensitive is the flow to approximation error?

Consider a boundary layer of depth h driven by radiative

cooling of net magnitude DF at cloud top. Cooling occurs

over a length scale l % h. The cooling rate may be expressed

as a buoyancy flux Bh

Bh~
g

rcpH0

DF ð4:1Þ

where r is the air density, H{1
0 the coefficient of thermal

expansion, g gravity and cp the isobaric specific heat capa-

city.

If there are no other sources of turbulence kinetic energy

one expects this cooling to drive convective circulations

with large eddies of spatial scale h (hence the subscript on

the left hand side of (4.1)). By balancing the production of

turbulence kinetic energy with its dissipation on the grid

scale one can estimate that the vigor, or specific turbulence

energy, of boundary layer scale eddies following Deardorff

(1970), i.e.,

�eeh! Bhhð Þ2=3: ð4:2Þ

Similarly, energy in eddies of arbitrary, but bounded, size ,
% h (yet still much larger than the Kolmogorov scale)

should conform to an inertial cascade of turbulence, such

that

�ee‘!�eeh

‘

h

� �2=3

: ð4:3Þ

The eddy velocity scale w1 is related to the turbulence kinetic

energy density as w�,‘!
ffiffiffiffi
�eel

p
so that eddies at scale , have a

turn-over time of

t‘!‘w{1
�,‘ !‘�ee

{1=2
l : ð4:4Þ

Next consider an approximate estimate for DF which,

compared to some accurate but computationally expensive

benchmark estimate, introduces a gradient of magnitude

DF ’‘ at scale ,. This is equivalent to introducing a spurious

perturbation forcing B’‘ so that the net forcing becomes

B‘~B‘zB’‘ : ð4:5Þ

1000

856

625

1000

856

625

1000

856

625

1000

856

625

Rad flux [W/m2] σrad [W/m2]

7.2 22 90.3 0 25.7 161.5

w2 [m2/s2] w3 [m3/s3]

0 0.3 0.6 0-0.9 0.4

B x 103

[m2/s3]cloud water [g/kg]

total water [g/kg]
liquid water potential 

temperature [K]

0 0.195 0.39 0-0.55 1.35

0 1.5 8.91 289.24 301.24

Figure 2. Profiles of dynamic, thermodynamic, and radiative
properties averaged over the last half hour of a four-hour
simulation of a nocturnal cloud-topped boundary layer using
fully-resolved (black lines) and Monte Carlo-sampled (dashed
blue lines) radiation calculations. All the dynamic and ther-
modynamic profiles are essentially the same, indicating that

using sparse radiation calculations does not affect the simu-
lation. The one exception is the third moment of vertical velocity
which is subject to large sampling errors. The mean radiative
flux profiles are likewise identical, as they must be subject to
sampling error and systematic differences in cloud structure,
and the variability caused by Monte Carlo sampling is much
larger than the variability introduced by spatial variability in
cloud structure.
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This spurious forcing will introduce an energy perturbation

at scale ,. If the perturbations are to organize eddies on this

scale and systematically change the flow being simulated,

two conditions must be met:

1. the perturbations must persist for time t,, and

2. they must be large enough so that perturbations to the

energy density at scale , are commensurate to the

nominal value, i.e., e’‘=�ee‘ is O(1) or larger.

4.2. The impact of random noise

The magnitude and scaling behavior of B’‘ depend, in

general, on the approximation used to compute radiative

transfer. In the case of Monte Carlo estimates of DF (or any

estimate which is unbiased but contains uncorrelated ran-

dom noise of magnitude sF), the scaling behavior is known:

B’‘ decreases as 1=
ffiffiffi
n
p

, where n is the number of independ-

ent samples. This number is determined by the scale ,, the

grid spacing dx (which we assume to be isotropic in the

horizontal) and time step dt, as well as the amount of noise

in individual estimates of DF. The numbers of samples on

scale , can be determined as

n‘~n‘,xy n‘,t&
‘

dx

� �2
t‘
dt

&
‘

dx

� �3
h

‘

� �1=3

ð4:6Þ

where we have employed (4.4) and assumed that the time

step is determined by the CFL condition dt&dx=
ffiffiffiffiffi
�eeh

p
. Note

that dt scales with the vigor of the large eddies.

If we further assume that the magnitude of the random

error in each estimate of DF and hence B is proportional to

the benchmark (expected) value then the perturbation to

the buoyancy flux can be expressed as

B’‘~sB=
ffiffiffiffiffi
n‘
p ð4:7Þ

Time [hr]

Cloud top [m]

ql [g/kg]

e [m2/s2]

0.6
0.51

0.3

0.38

858

846

836

1

0.82

2 3

Full radiation

Monte Carlo sampling

0

Figure 3. Evolution of a cloud-topped boundary layer com-
puted in the absence of any radiative driving (black lines) and
driven only by uncorrelated random noise in radiative heating
rates with zero mean (dashed blue lines). Surface fluxes and
evaporative cooling drive very gentle circulations that should, in
principle, be more susceptible to noise in radiative heating rates.
The noise, shown in blue dashed lines, is much larger than the
mean forcing but nonetheless does not degrade the simulation.

1000
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625

1000

856

625

1000

856

625

w2 [m2/s2] w3 [m3/s3]

B x 103

[m2/s3]cloud water [g/kg]

total water [g/kg]
liquid water potential 

temperature [K]

0 1.5 4.32 289.23 301.23

0 0.17 0.34 -0.21 0.55

0 0.25 0 0.11

Figure 4. Profiles of dynamic and thermodynamic properties
averaged over the second hour of simulations of a cloud-topped
boundary layer with no net radiative forcing. Black lines show a
simulation forced only by weak surface fluxes, while dashed blue
lines show a simulation in which only the noise from Monte
Carlo spectral integration is applied in each grid column at each
time step. Turbulence in the noisy simulation is reduced because
the layer deepens slightly more quickly; this stabilizes the flow
more than the radiative perturbations destabilizes it. Even in this
weakly-forced flow, however, large amounts of noise applied at
small time and space scales do not fundamentally disrupt the
simulation.
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where s2
B measures the sample variance of Bh. Although our

analysis is not restricted to this limit, we envision scenarios

where the ratio a:sB
�
Bh is of order unity.

In the limit of
ffiffiffiffiffi
n‘
p

&1 we say that the radiation field is

‘‘well-sampled’’. But for an inertial range within which B, 5

Bh, this limit also implies that

B’‘%B‘ ð4:8Þ

which is to say that systematic perturbations to the buoy-

ancy flux are also small. In this limit the specific energy

attributable to the spurious forcing is

e’‘~ B’‘‘ð Þ2=3
~

sBffiffiffiffiffi
n‘
p ‘

� �2=3

~ sB‘ð Þ2=3dx

‘

‘

h

� �1=9

ð4:9Þ

so the standard error in the specific energy of an eddy of

scale , is

e’‘
�ee‘

!a2=3 dx

‘

‘

h

� �1=9

: ð4:10Þ

Thus, even when unbiased noise in individual radiative flux

estimates is as large as the net cooling rate, the turbulence

kinetic energy introduced at resolved spatial scales (i.e.,

those for which , . Ndx, where N is roughly in the range

4–10) is a small fraction of the energy expected due to the

downscale cascade of energy from the largest eddies.

Let us examine this result at two limiting values of ,: the

scale of the largest eddies h and the grid scale dx. For the

former , 5 h and (4.10) reduces to

e’h
�eeh

!a2=3 dx

h
: ð4:11Þ

In LES h & dx by definition, so that the velocity error at

scale h is much less than one even if a is of order unity. This

implies that sampling noise will have a negligible effect on

the simulation of large eddies.

For the latter, , 5 dx, we expect

e’dx

�eedx

! 1za
dx

h

� �1=6
" #2=3

{1, ð4:12Þ

where, because we expect a larger bias, we have not made the

small perturbation assumption in our scaling. Indeed, the

amount of noise introduced into the smallest scales is not

necessarily negligible. On the other hand, spurious energy

introduced on these scales is efficiently dissipated. Based on

the behavior at these two limits, we suggest that even large

amounts of random noise in radiative heating rate calcula-

tions are unlikely to systematically affect large eddy simula-

tions.

Approximations introducing uncorrelated random noise

have errors that diminish with increasing grid resolution:

regardless of scale, the anomalous energy introduced into the

flow is proportional to dx to some power, and approaches 0

as dx R 0 (albeit slowly at the smallest scales). In the

language of numerical analysis this property means that the

approximation embodied in (2.2) is a consistent one.

In two-dimensional simulations the sampling introduces

somewhat more noise, both because the flow is less efficient

at transporting large-scale energy to small scales, and

because an eddy of a given physical size encompasses fewer

grid elements, and hence fewer samples of the radiative flux.

Even so, experiments using (2.2) in two dimensions (not

shown) evince little effect of the sampling noise on the large-

scale statistics.

Finally we note that these estimates may also be applied to

flows whose turbulence is also forced by non-radiative

processes such as surface heat fluxes by defining a as the

ratio of the random radiative driving relative to the mean

driving by the sum of well sampled processes.

5. Matching tools to tasks

Monte Carlo spectral integration (McSI), as embodied by

the approximation in (2.2), is particularly attractive for use

in hydrodynamic calculations because the sampling of

radiative heating rates is done in a space orthogonal to the

phase space of the flow. This ensures that errors it intro-

duces will not systematically correlate with the flow, and will

therefore remain unbiased. While errors may arise due to

the spurious behaviors of the small scale, our analysis

suggests that such errors are unlikely to be any larger than

those already associated with biases introduced by the sub-

grid scale model, local truncation error, or the uncertain

representation of physical processes.

When implemented in LES, (2.2) has the further advant-

age of being a consistent approximation, in that errors scale

with the size of the grid and so can be made arbitrarily small

as the mesh is arbitrarily refined. This means that using

Monte Carlo spectral integration as the radiative transfer

method for LES is both practical, because it is computa-

tionally efficient, and correct, because it is consistent with

the principles underlying large-eddy simulation. We expect

the radiative transfer approximation to be useful for coarser

resolution cloud-resolving models even if the formal jus-

tification for such calculations is less refined.

McSI is similar in spirit to the Monte Carlo Independent

Column Approximation (McICA; Pincus et al., 2003) used

in global modeling. There are two key differences. First,

McICA is used to account for subgrid-scale spatial structure

within each model column, including horizontal variability

and cloud overlap, rather than operating on homogeneous

columns as we do here. Secondly, McICA introduces sub-

stantially less noise than does (2.2). Experiments with a

range of global models (e.g., Räisänen et al., 2005; Pincus et

al., 2006; Barker et al., 2008) have shown that model

evolution is unaffected by uncorrelated high-frequency,

small-scale perturbations. To date the justification for

McICA has simply been that the models don’t respond to

Monte Carlo spectral integration 7
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sampling noise; we suspect that an extension of the reason-

ing in section 4 helps explain why this is so. But the success

of both McICA and the present method illustrate that

hydrodynamic simulations are far more sensitive to system-

atic errors in radiative calculations than to random noise.

McSI can also be thought of as a special case of a full

three-dimensional broadband Monte Carlo radiative trans-

fer calculation with two very large simplifications: 1) deter-

ministic spatio-temporal sampling (i.e. one calculation per

grid column), as opposed to randomly-selected samples,

and 2) the use of the one-dimensional, as opposed to three-

dimensional, radiative transfer equation. One can imagine

various levels of approximation between one-dimensional

and fully three-dimensional radiative transfer, and Monte

Carlo spectral integration is independent of how the

pseudo-monochromatic radiative transfer equations are

solved. In particular, (2.2) could be applied to solution

methods that adjust fluxes computed in one dimension to

account for three-dimensional radiative transfer effects

including first-order shadowing (Várnai and Davies,

1999), higher-order radiative smoothing (Marshak et al.,

1998), or both (Wapler and Mayer, 2008).

Based on the reasoning in Section 4, however, we argue

that three-dimensional radiative transfer is warranted only if

local heating rate anomalies relative to one-dimensional

radiative transfer are large enough and persist for long

enough to affect the flow. It would be straightforward to

assess the magnitude and time scale of these differences

using a high-frequency sequence of snapshots from an LES.

This seems an important check to perform before coupling a

three-dimensional solver to an LES, especially given results

in two dimensions showing an insensitivity of flow char-

acteristics to multidimensional radiative transfer (Mechem

et al., 2008). One-dimensional radiative transfer is known to

be a poor approximation at LES scales, but it may turn out

to be a perfectly useful approximation for large-eddy simu-

lations.
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