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[1] Radiative transfer is sufficiently well understood that its parameterization in
atmospheric models is primarily an effort to balance computational cost and accuracy.
The most common approach is to compute radiative transfer with the highest practical
spectral accuracy but infrequently in time and/or space, though errors introduced by
this approximation are difficult to quantify. An alternative is to perform spectrally
sparse calculations frequently in time using randomly chosen spectral quadrature
points. Here we show that purely random quadrature points, though effective in some
large-eddy simulations, are not a good choice for models in which the land surface
responds to radiative fluxes because surface temperature perturbations can be large
enough, and persistent long enough, to affect model evolution. These errors may be
mitigated by choosing teams of spectral points designed to limit the maximum surface
flux error; teams, rather than individual quadrature points, are then chosen randomly.
The approach is implemented in the ECHAMSG6 global model and the results are exam-
ined using “perfect-model” experiments on time scales ranging from a day to a month.

In this application the approach introduces errors commensurate with the infrequent
calculation of broadband calculations for the same computational cost. But because
teams need not increase with size, and indeed may become better and more balanced
with increased spectral density, improvements in radiative transfer may not need to be

traded off against spatiotemporal sampling.
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1. What Does it Mean for a Parameterization to
be Accurate?

[2] Unlike many closure problems faced in models of
the atmosphere, the environmental factors that control the
distribution of radiation in the atmosphere are very well
understood, so the solution to fully specified problems is
known to great accuracy. Radiation parameterizations
therefore seek primarily to find an acceptable compromise
between accuracy and computational cost. The accuracy
of radiative transfer calculations may be measured via
comparison to benchmark models [Oreopoulos et al., 2012]
which are themselves known to be in excellent agreement
with observations [Mlawer et al., 2000; Turner et al.,
2004]. Comparisons are normally made for clear-sky con-
ditions, consistent with the way the parameterizations of
absorption by gases are developed.
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[3] State-of-the-art radiation parameterizations can
reproduce benchmark calculations to within 1% for
shortwave fluxes and fractions of a percent for long-
wave fluxes [Oreopoulos et al., 2012] but this accuracy is
so computationally expensive that radiation parameter-
izations cannot be applied at every time step of the
model. Instead, radiative heating and cooling rates are
normally updated less frequently than are model dy-
namics and, in most cases, other physical parameteriza-
tions. The choice to update radiative heating rates less
frequently than other fields is an approximation made,
not in the radiation parameterization, but in the cou-
pling to the rest of the model. The simulation errors
caused by this approximation may range from modest
changes in temperature fields [Xu and Randall, 1995;
Morcrette, 2000] to the introduction of more dramatic
instabilities [Pauluis and Emanuel, 2004] but are gener-
ally difficult to quantify. To minimize simulation errors
prudence dictates that the radiation time step be as
close to the dynamical time step as can be afforded,
although precisely how close is a subjective choice.

[4] Several approaches have been developed to accel-
erate the calculation of radiative fluxes to allow for
more frequent calculation. One is to use physically
based radiative transfer models to train fast statistical
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models (normally artificial neural networks) to emulate
fluxes based on the state of the atmosphere [e.g., Che-
vallier et al., 1998; Krasnopolsky et al., 2008]. An inter-
mediate tactic is to apply physical models sparsely in
space and/or time, use simple statistical models (e.g.,
regression) to predict changes since the last radiation
time step, and selectively update calculations based on
the expected error [Venema et al., 2007]. A third alterna-
tive exploits two facts, that cloud properties vary much
more quickly in the atmosphere than does the concen-
tration of gases, and that variations in clouds and gases
affect fluxes in different, roughly disjoint spectral
regions, to motivate updating only the cloud-affected
portions of the spectrum at high frequency [Manners
et al., 2009]. (Raisanen and Barker [2004] and Hill et al.
[2011] take a similar approach to the related problem of
representing cloud variability.) The calculation of cloud-
affected fluxes can be further accelerated by reducing
the spectral detail used to treat absorption by gases
[Manners et al., 2009].

[5] Each of these methods, including infrequent radi-
ation calculations, represent approximations which
introduce errors in radiative heating rates. These errors
depend on many factors including how quickly the opti-
cal properties of the atmosphere are changing. But the
error characteristics of an approximation can be cru-
cially important in determining whether the approxima-
tion affects model evolution. Since radiative fluxes at
the top of the atmosphere are essentially in balance (af-
ter accounting for ocean heat storage), for example,
even small (1<W/m?) biases in radiative fluxes affect
multidecadal simulations and must be “tuned” away
[Mauritsen et al., 2012] and/or balanced by compensat-
ing errors. Random, uncorrelated noise, on the other
hand, does not affect the statistical evolution of most
models, whether that noise comes from parameteriza-
tions of gravity wave drag [Eckermann, 2012; Lott et al.,
2012] or radiation [Pincus et al., 2003] or is externally
applied in an effort to diversify ensembles of medium-
range forecasts [Buizza et al., 1999]. For the purposes of
parameterization development this implies that unbiased
algorithms, even if they introduce even quite substantial
noise in heating rates, can be more accurate, in the sense
of introducing smaller changes in model evolution, than
other approximations including detailed algorithms
used infrequently.

[] Here we describe an approach to radiative trans-
fer parameterization that emphasizes the accuracy rele-
vant for hydrodynamic models, including both the
radiation calculations and the ways those calculations
are coupled to the rest of the model. The approach
takes advantage of the local homogenization of heating
rates arising from small-scale fluid dynamical processes.
We have implemented these ideas in a new radiation
package, PSrad (named because it is a postscript to the
RRTMG package from which it descends), and initially
implemented in the ECHAM climate model. PSrad is
unique in that it allows only a small sample of the full
broadband spectral integration to be performed, with
the idea that these calculations should be performed
at each time step. This spectral sampling introduces

grid-scale noise in radiative fluxes, as does the more
common use of stochastic samples to represent the sub-
grid-scale distribution of cloud properties [Pincus et al.,
2003]. Experiments show that ECHAM is insensitive to
even large grid-scale perturbations to radiative heating
rates within the atmosphere, but that significant pertur-
bations in surface fluxes can introduce systematic biases
in the model trajectory. Simulation bias can be limited
by bounding errors in surface fluxes using carefully
selected subsets of the broadband calculation. The
approach is applicable to dynamical models at all scales
even as significant noise is introduced into individual
calculations.

[7] The next section details several strategies for cou-
pling radiation calculations to model integrations, includ-
ing infrequent radiation calculations and spectral subsets
computed at higher frequency. Section 3 describes the
code we have developed to implement these strategies
and section 4 the impact of two classes of approxima-
tions on forecasting and quasi-climatological time scales
in climate model integrations. Section 5 discusses impli-
cations for weather forecasting and climate projection
applications.

2. Strategies for Spectral Integration

[8] Models of the atmosphere require broadband
radiation calculations, i.e., those that account for all
wavelengths of radiation emitted by the sun or the earth
and its atmosphere. In parameterizations of radiative
transfer this spectral integration is accomplished using
weighted sums

G
F(x,y,2,0)= Y  weFy(x,y,2,1), (1
g

where the individual fluxes F, are computed using opti-
cal properties and boundary conditions appropriate to
each pseudospectral interval (quadrature point). These
quadrature points are frequently determined using k-
distributions [Fu and Liou, 1992; Lacis and Oinas, 1991];
following this nomenclature we refer to these intervals
as “g-points”. In the shortwave the weights w, are deter-
mined by the spectral distribution of incoming solar
energy while in the longwave they depend on local tem-
perature through the Stefan-Boltzmann relation.

[9] In most models of the atmosphere radiative fields
are updated less frequently than other variables, i.e.,

F(x’y7z7 l) ~

& (2)
C(X,y, t)z WgFg(x7y>Z7 lrad (l)llrad (l)_t S Al‘rad )a
g

where ¢ represents correction factors that may be
applied to account for time-varying solar zenith angles,
surface temperatures, etc. In some implementations
[e.g., Morcrette, 2000] spatial resolution may also be
reduced.
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2.1.

[10] Infrequent broadband calculations (e.g., equa-
tion (2)) can be described as a “spectrally dense, tempo-
rally sparse” approach to computing radiation transfer.
Monte Carlo Spectral Integration [MCSI; see Pincus
and Stevens, 2009] reverses these densities:

Monte Carlo Spectral Integration

G/
F(x,y,z,t)%G/G’ Z WgFg(x,y,z,t), (3)
g€(1..G]

where each of the G’ samples is chosen randomly with
replacement at each location and time step.

[11] MCSI was initially introduced for large-eddy
simulation where it has the advantages of being consist-
ent (i.e., converging with increasing temporal and/or
spatial resolution, as do the other approximations used
in LES) and in explicitly sampling temporal variability,
especially in cloud optical properties. It takes advantage
of the fact that local fluid instabilities homogenize sam-
pling noise on small scales while, on the larger spatial
and temporal scales where heating rates can effect the
overall evolution of the flow, sampling noise is small. In
several applications, including purely radiatively driven
flow, LES using MCSI is statistically indistinguishable
from LES using benchmark radiation calculations (e.g.,
equation (1)) [Pincus and Stevens, 2009].

[12] MCSI implemented similarly in a global model
introduces much larger and more systematic errors. The
green line in Figure 1 shows the global root-mean-
square (RMS) difference in 2 m air temperature as a
function of forecast lead time between a reference calcu-
lation that computes broadband radiation at every time
step and every grid point and one using the same radia-
tion code (described in section 3) but applying equation
(3) with G’ = 1. The figure shows the average over 29 in-
dependent forecasts (see section 4). RMS differences
with respect to the reference forecast exceed 1.5 K after
the first day and grow over time. A ~ 0.5 K diurnal
cycle tracks the diurnal variation in global mean 2 m
temperature and occurs because the land surface is not
homogeneously distributed over Earth’s surface.

[13] Why is the MCSI approximation accurate (in the
sense of not disturbing the flow) in large-eddy simula-
tions but not in a global model? There are at least two
significant distinctions. First, the parameterizations used
in global models, especially those for deep and shallow
convection, depend more nonlinearly on the atmospheric
state than do the simple subgrid-scale models for turbu-
lence and microphysics used in LES, so even unbiased
random sampling noise can bias the flow through nonli-
nearities. More importantly, surface properties are fre-
quently fixed in large-eddy simulations, while global
models almost always include land surfaces whose tem-
perature changes in response to surface fluxes. Perturba-
tions to the surface temperature caused by sampling
errors are not homogenized by mixing with neighboring
columns, while errors within the atmosphere are mixed
by the fluid flow. The impact of surface temperature per-
turbations dominates: on an aquaplanet with globally
specified sea surface temperatures (Figure 1, purple line),
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Figure 1. The impact of randomly sampling a single

spectral interval at every time step (Monte Carlo Spec-
tral Integration, equation (3)). RMS differences are
computed with respect to reference forecasts (green) in
which the land temperature responds to surface fluxes,
and an aquaplanet with fixed sea surface temperatures
(purple). The diurnal variation in RMSE for the earth-
like planet tracks the diurnal variation in global 2 m air
temperature caused by the asymmetric distribution of
land. Sampling noise in radiative heating rates within
the atmosphere drives modest differences, while noise
can persist and modify the simulation when the surface
temperature can change in response to surface radiation
fluxes, both because heating rates are substantially
larger at the surface than in the atmosphere and because
sampling errors at the surface are not mixed by the flow
as they are in the atmosphere. This implies that accu-
racy in radiation parameterizations depends in part on
limiting perturbations to downwelling fluxes at the
surface.

differences between simulations using equation (3) and
simulations using equation (1) are small.

2.2. Bounding Errors in Surface Fluxes Using Teams of
Spectral Points

[14] Figure 1 implies that the magnitude of instantane-
ous surface flux errors must be bounded if a radiation
parameterization is to be useful in models including land
surfaces. One approach would be to simply increase the
numbers of samples, G, chosen at each time step but
this is painfully slow: like all Monte Carlo estimates the
RMS error, for example, decreases as 1/ VG (see, e.g.,
section 4.2.5 of Evans and Marshak, 2005]. A more effi-
cient strategy is to generate sets of g-point “teams” con-
structed to minimize some measure of sampling error,
and to sample these teams randomly.

[15] Assume a set of A representative atmospheres
and define a cost function C as some measure of the
error accumulated over L possible estimates F}' of the
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true flux F* in each atmosphere. The number of teams,
M, may be chosen to be small divisor of the total num-
ber of g-points G so that each team has the same num-
ber m = G/M of quadrature points. The members of
these teams may then be chosen to minimize C.

[16] We have computed teams for several values of M
using the radiative transfer code described in section 3.
Our set of representative atmospheres is obtained from
four snapshots taken over the course of a single day from
a free run of ECHAMG6 (4 ~ 73000). We optimize over
L= MA clear-sky fluxes consistent with the way k-distri-
butions are normally constructed. Since our goal is to
minimize the possibility of very large errors in surface
fluxes we use the 95% error in surface fluxes EJ; as our
cost function C. Our minimization of C is informal: we
compute fluxes for each g-point individually and choose
the M g-points which make the worst proxies as that first
member of each team. For each remaining team member
we process teams randomly and choose the remaining g-
point that minimizes the cost function for the provisional
team. It is likely that the balance of teams could be mod-
estly improved though further optimization (by simulated
annealing following Kirkpatrick et al. [1983], for example).

[17] Fluxes can then be computed by choosing one of
the teams at random:

m
F(X,y7Z,Z)%M Z WgFg(X,y,Z,l)- (4)
g(ie[l..M])

[18] Because each g-point is included in exactly one
team equation (4), like equation (3), is an unbiased esti-
mate of the true flux given by equation (1).

[19] Using teams of g-points is effective in limiting the
error for a given computational cost (Figure 2). Though
the teams are chosen to minimize errors in clear-sky
surface fluxes the errors for all skies are commensurate,
slightly lower in the shortwave where the presence of
clouds simply reduces downwelling flux and slightly
larger in the longwave where clouds both increase and
change the spectral distribution of downwelling flux.

[20] Teams constructed in this way are more efficient
in reducing error as team size increases. Figure 3 shows
the ratio of errors obtained using teams of a given size
(equation (4)) to those using Monte Carlo samples (equa-
tion (3)). The ratio is small in both the shortwave and
longwave for m =2 but increases at four or more sam-
ples, such that random sampling using equation (3) can
achieve commensurate accuracy only by increasing sam-
ple sizes by a factor of 10 or greater—in other words, by
increasing computational cost to nearly that of broad-
band integration using equation (1).

3. PSrad/RRTMG: A New Radiation Code for
Climate Models

[21] We have developed a new radiation package,
PSrad/RRTMG (so named because it is a postscript to
the RRTMG package), designed for use in models of
the atmosphere. The longwave and shortwave compo-
nents are organized along parallel lines: driver modules
call routines to compute the optical properties of gases,
aerosols, and clouds, then combine these to compute
fluxes at the boundaries and the interfaces between
model layers. The codes are modeled after the RRTMG
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Figure 2. Errors in shortwave (blue) and longwave (red) surface fluxes for various spectral sampling strategies as
a function of the number of quadrature points used. Errors are accumulated over roughly 73000 sample columns
representing four snapshots from a single day of ECHAM. (right) RMS error decreases as 1/y/n when samples are
chosen randomly (equation (3), squares) though (left) £°° does not, but both decrease much more quickly using

“teams” of g-points chosen to minimize

(equation (4), circles) than as compared to calculations using the same

number of quadrature points, but chosen at random. Errors for all-sky fluxes (closed circles) are marginally smaller
in the shortwave and larger in the longwave than for the clear skies used to optimize the team members because

clouds decrease SW surface and increase LW fluxes.
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Figure 3. Ratio of 95th percentile error £ in downw-
elling surface flux using teams of spectral intervals,
compared to Monte Carlo sampling of spectral inter-
vals, as a function of the number of samples. Improve-
ments for clear-sky fluxes (open circles) and all-sky
fluxes (closed circles) are commensurate. At small sam-
ple sizes error in the longwave fluxes (red) is reduced
more dramatically by using teams than are shortwave
fluxes (blue). The error reduction provided by teams
increases with the number of samples but even teams of
modest sizes (~8 members) provide accuracy compara-
ble to ~10 times as many random samples.

package [Mlawer et al., 1997; lacono et al., 2008] and
use the k-distribution from this package to determine
gas optical thickness from concentrations, temperature,
and humidity. (These k-distributions are well validated
and among the most accurate available; see Oreopoulos
et al. [2012].) We follow the original RRTMG codes in
using the two-stream approximation [after Meador and
Weaver, 1980] to compute layer reflectance and trans-
mittance and adding [after Oreopoulos and Barker,
1999] to compute flux profiles in the shortwave; we use
the linear-in-tau approximation for the thermal source
function [Mlawer et al., 1997] and consider only emis-
sion and absorption in the longwave. Cloud and aerosol
optical properties are determined from custom-built
lookup tables (S. Kinne, et al., A new global aerosol cli-

matology for climate studies, submitted to Journal of

Advances in Modeling Earth Systems, 2013).

[22] Subgrid-scale variability is treated using “subcol-
umns” [see, e.g., Raisanen et al., 2004; Pincus et al.,
2006]: discrete random samples, each treated as inter-
nally homogeneous, that are consistent with the distribu-
tions of possible cloud states within each column,
including fractional cloudiness in each layer and assump-
tions about the vertical correlations between layers
(“cloud overlap”). This treatment is a generalization of
the Monte Carlo Independent Column Approximation
[MCcICA, see Pincus et al., 2003] and may be further gen-
eralized to include other kinds of variability, including

the distribution of cloud liquid or ice water content as
implied by, for example, the Tompkins [2002] cloud
scheme.

[23] PSrad supports a range of choices for spectral
sampling, including broadband integration (all G quad-
rature points in order), arbitrary numbers of randomly
chosen quadrature points for application of equation
(3), and a number of predetermined “leagues” of g-point
teams as described in section 2.

[24] Though PSrad is currently intended as a drop-in
replacement for RRTMG it was implemented almost
entirely from scratch (of the original code, only the sub-
routine that computes longwave gas optical properties
remains). The most important technical difference lies in
the organization: each subroutine is vectorized over
model columns, which increases computational efficiency
on a wide range of platforms even when relatively few
spectral intervals are used. Operational centers such as
the European Centre for Medium-Range Weather Fore-
casts have often modified RRTMG in this way [Morcr-
ette et al., 2008].

4. Assessing Approximation Impacts in a Global
Model

[2s] We have implemented PSrad in ECHAMG6 [Ste-
vens et al., 2013], a state-of-the-art atmospheric model
used for climate simulations. We perform simulations
with a version of the model differing modestly from the
version used to produce data for the Fifth Coupled
Model Intercomparison Project [Taylor et al., 2012].
The model is run at a horizontal resolution of T63 using
47 levels that extend to 1 hPa. These experiments use a
7.5 min time step.

[26] We consider an ensemble of 29 month-long inte-
grations starting from initial conditions valid at 0Z on
1 April of the years 1976-2004 as simulated by the model
in a long integration using specified, time-varying sea-
surface temperatures. The benchmark is an integration
in which broadband radiation fields are calculated just as
frequently as the tendencies from other physical parame-
terizations (i.e the radiation and physics time steps are
the same). We use this reference forecast to assess the
error introduced by increasing the interval between
broadband radiation calculations, on the one hand, and
by limiting the number of spectral quadrature points
used at each time, on the other.

[271] RMS differences with the reference forecast grow
with time (Figure 4), but can be divided into roughly
three regimes: slow but accelerating error growth in the
first 10 days, rapid error growth over the next 10 days,
and roughly saturated errors in the last 10 days. This
may be very loosely described as the transition from
weather (where individual trajectories are followed) to
climate (where the statistics of trajectories are of inter-
est), which leads us to examine errors in the first 10
days as one might evaluate forecasts, but to assess
errors in the last 10 days statistically, as one might
assess climatologies.

[28] The Monte Carlo sampling of fractional cloudi-
ness and overlap introduces noise into the fluxes and



PINCUS AND STEVENS: PATHS TO PARAMETERIZATION ACCURACY

m

o

. Predictable

= regime

o Climatological
= regime
& 8l
£

(o]

-

=

«

iy

o~

£

w

vy

=

4

n

pi

I I
10 21
Forecast time (d)

Figure 4. RMS difference in 2 m air temperature, rela-
tive to a reference forecast, as a function of forecast
lead time, for a simulation making broadband radiation
calculations every 2 h while all other physical processes
use a 7.5 min time step. The forecasts diverge slowly
during the first 10 days (the weather forecasting regime,
roughly), so that approximations can be judged by com-
puting point-by-point RMS differences with the refer-
ence. After roughly three weeks the forecasts are not
predictable in a deterministic sense, so parameterization
accuracy is judged by comparing distributions.

causes even a second independent reference forecast to
diverge from the benchmark over time: RMS differen-
ces between two sets of reference forecasts rise from
about 0.05 K during the first day to almost 1.5 K after
10 days (Figure 5, top, purple lines), which we take as
the rough limit of deterministic forecasts. Increasing the
sparsity of radiation calculations in either time (purple
lines, Atyg € [15min, 1h,2h,3h]) or spectral quadrature
points (green lines, mpw € [4,10] and mgsw € [7,16])
increases the error by modest amounts in an absolute
sense. No evidence has been found that such approxima-
tion trigger dramatic changes in the simulation [cf. Pauluis
and Emanuel, 2004], though even hourly radiation calls
increases the RMS difference by 50% of the difference
introduced by sampling noise (Figure 5, bottom). The
mean RMS difference over the first 10 days (Figure 6) is
quite tightly related to computational cost (here expressed
as the number of shortwave radiation computations per
day).

[29] On time scales where the climatology of the
model dominates the solution it is more informative to
assess the degree to which each approximation produces
a statistical distribution of temperatures consistent with
the reference forecast. We apply the two-sided Student’s
t-test, for each approximation at every grid point and
every time step during days 21-31, to compute the like-
lihood (p-value) that the distribution of 2 m tempera-
tures across the 29 ensemble members is statistically
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Figure 5. (top) RMS difference in 2 m air temperature,
relative to a reference forecast, as a function of forecast
lead time for two methods of coupling radiation and dy-
namics in a global model. Broadband computations
applied sparsely in time at intervals ranging from 3 h to
15 min are shown in purple and two examples of
“teams” of spectral intervals (as described in the text,
using (7, 16) points in the shortwave and (4, 10) in the
longwave) are in green. Differences between independ-
ent realizations of the reference forecast (in pink) show
the differences to be expected from sampling errors in
cloud state introduced by the Monte Carlo Independent
Pixel Approximation (McICA). (bottom) Ratio of
RMS difference of different coupling approximations
to the RMS difference due to finite sampling of cloud
states. All approximations change model evolution;
larger approximations (fewer team members or less fre-
quent sampling in time) degrade the sampling of the di-
urnal cycle.

indistinguishable at the 95% level between the reference
forecast and the forecast using the approximation.
Because we perform so many z-tests (~18,500 per time
step) roughly 5% have p-values corresponding to
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Figure 6. Time-mean error versus a rough measure of
computational cost for two methods of coupling radia-
tion and dynamics in a global model. Broadband com-
putations applied sparsely in time are shown in purple
and the “teams” of spectral intervals described in the
text are in green. Error is measured as the mean over 10
days of the global RMS difference in 2 m air tempera-
ture relative to a reference forecast, and computational
cost as the daily number of calls to the shortwave solver
(which dominates the overall cost). The pink line shows
the minimum achievable error (i.e., the error introduced
by another realization of cloud states sampled in the
Monte Carlo independent pixel approximation).
Approximation errors for the two sampling strategies
are commensurate for a given computational cost.

“significant” differences (at the 95% level) even if the
underlying distribution of 2 m temperatures is the same
in both experiments. The large number of false-positives
can be reduced using false discovery rate estimation
[e.g., Wilks, 2006] which exploits the known distribu-
tion of p-values expected under the null hypothesis to
estimate 7o, the proportion of uninteresting (or truly in-
significant) p-values [Strimmer, 2008a], at every time
step.

[30] Independent realizations of the reference run (i.e.,
two runs making broadband radiation calculations at ev-
ery time step, but using different random number sequen-
ces to sample cloud states with McICA) are statistically
indistinguishable: the time-mean value of 7, computed
from this pair of experiments is 1. This is almost but not
quite true when comparing the reference run to any of
the possible approximations (see Table 1). One interpre-
tation of 7, is as the average fraction of the planet over
which a given approximation does not change the simu-
lation significantly. This fraction is greater than 94% for
all approximations except MCSI (Table 1, line 1), indi-
cating that changes are detectable but modest. The test
statistic is not entirely robust: according to this measure
radiation time steps of 7'=1h=8Az are slightly more

Table 1. Time Mean Fraction of Statistically Insignificant 1,
Differences in 2 m Air Temperature Between a Reference Cal-
culation and Various Approximations for Coupling Radiation
to a Global Model®

Approximation SW calls/day im
msw =1, mLw =1 192 0.804
msw :7, mrw =4 1344 0943
mgw =16, mLw =10 3072 0.977
T=15m 10,752 0.971
T=1h 2688 0.985
T=2h 1344 0.955
T=3h 896 0.963

“The first three approximations are temporally dense, spectrally
sparse calculations using equation (4) (the first is the special case using
equation (3)). The latter four make spectrally dense broadband calcula-
tions at specified time intervals. All approximations change the simula-
tion of 2 m air temperature by detectable amounts; for a given
computational effort, frequent use of spectral teams introduces slightly
larger changes than less frequent broadband calculations.

consistent with reference calculations than are
T=15min =2A¢, which is physically implausible. Given
this caveat we note that, in this relatively coarse-resolu-
tion model, infrequent broadband radiation calculations
introduce slightly smaller changes compared to frequent
calls using spectral teams with the same computational
cost (cf. lines 2 and 6 of Table 1).

5. Conclusions: Parameterization Error,
Simulation Error, and the Coupling of Radiative
Transfer to Atmospheric Models

[31] Radiative fluxes respond nearly instantaneously
to changes in the optical properties of the atmosphere,
so the parameterization of radiation is normally consid-
ered a “one-way” problem in which the model provides
the state of the atmosphere and the parameterization
computes the heating rates and boundary fluxes. In the
absence of coupling between radiation and model dy-
namics one naturally seeks instantaneous radiation cal-
culations that are as accurate as is computationally
feasible. Focusing on the accuracy of the overall simula-
tion, including the way radiation calculations are
coupled to the model, may allow for other kinds of opti-
mization. As one example, the k-distribution developed
for RRTMG was designed, as are most parameteriza-
tions, to minimize broadband flux errors. RRTMG
aims to balance accuracy with computational cost pri-
marily by minimizing the number of g-points. It would
be possible, however, to construct k-distributions using
different cost functions, and distributions constructed
to minimize errors both across and among teams might
be able to achieve greater aggregate accuracy by using
more g-points while still limiting noise in surface fluxes.
This would open the door to resolving the tension
between overall accuracy, limited by of the number of
g-points, and computational cost.

[32] Similarly, using spectrally sparse, temporally
dense calculations provides a richer set choices in how
radiation may be coupled to dynamical models to mini-
mize biases. Both classes of approximations examined
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here appear to slightly modify the distribution of tem-
peratures, relative to a reference calculation, at quasi-
climatological time scales, in contrast to the introduc-
tion of sampling noise in cloud properties [Pincus et al.,
2006; Barker et al., 2008]. The modification is small but
undesirable, and we are seeking ways to reduce the
impact of noise. One promising approach is to sample
teams in equation (4) with replacement in time, rather
than entirely independently at each location and time.

[33] The results of section 4, especially Figure 6 sug-
gests that computational effort is the primary determi-
nant of accuracy in coupling these two radiative
approximations to short-term forecasting models. This
comparison is limited, however, since it does not account
for true model errors or how such errors might depend
on sampling strategy. Some real-life forecasts errors, such
as the damping of surface heating caused by convective
clouds forming in response to initial surface heating, may
well be due to under-sampled temporal variability. On
the other hand, even modest noise in surface fluxes may
lead to forecast errors when the coupling between radia-
tion and atmospheric state is strong, as in nocturnal sta-
ble boundary layers. Thus it remains to be seen whether
the statistical robustness of equation (4) will translate
into improved weather forecasts.

[34] Spectrally sparse, temporally dense radiation cal-
culations, at least as implemented here, disturb simula-
tions with ECHAMG6 at least as much as infrequent
broadband calculations of the same computational
cost. Time steps in ECHAM are relatively short so the
comparison may be worse in models with longer time
steps. Other considerations may make equation (4) de-
sirable, however, especially the convergence of spectral
teams with increasing resolution, more uniform distri-
bution of computation time, and the book-keeping sim-
plifications that arise when some estimate of radiation is
computed every time step. In ECHAM, for example,
shortwave fluxes are computed for all points (using a
very small minimum solar zenith angle for nighttime
points) so that temporal interpolation across the sunrise
boundary is smooth. Replacing infrequent broadband
calculations with frequent spectral samples makes this
transition smooth (in aggregate), so that shortwave
fluxes are not required at nighttime points, which alone
represents a substantial computational savings.

[35] Though radiation ultimately determines earth’s
climate the coupling between radiative fluxes and the
rest of the atmosphere is loose, such that radiation
strongly influences the flow only where its effects can
accumulate over time, as occurs in descending branches
of the general circulation or at the tops of stratocumulus
clouds. The approach to radiation calculations proposed
here exploits this loose coupling, trading instantaneous
accuracy at infrequent intervals for statistical accuracy
with more complete sampling of time variability. By tra-
ditional measures of error (e.g., the comparison of in-
stantancous fluxes to benchmark calculations, as in
Oreopoulos et al., [2012]], large instantaneous errors
make spectral sampling a poor idea. We argue that a
more appropriate benchmark is the accumulated effect
of approximation errors on the solution as a whole. By

this more holistic measure of accuracy, frequent but
sparse sampling becomes much more attractive because
the loose coupling of radiation to the flow means that
unbiased solutions with large local errors are more desir-
able than solutions with small biases, even if their local
errors are also small. The present work demonstrates a
new path toward accuracy that, in some situations, may
converge more quickly to the desired solution.
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