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Probing the precipitation life cycle by iterative rain cell tracking
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[1] Monitoring the life cycle of convective rain cells requires a Lagrangian viewpoint
where the observer moves with the dominant background flow. To adopt such a moving
reference frame, we design, validate, and apply a simple rain cell tracking
method—which we term iterative rain cell tracking (IRT)—for spatio-temporal
precipitation data. IRT iteratively identifies the formation and dissipation of rain cells and
determines the large-scale flow. The iteration is repeated until reaching convergence. As
validated using reanalysis wind speeds, repeated iterations lead to substantially increased
agreement of the background flow field and an increased number of complete tracks. Our
method is thereby able to monitor the growth and intensity profiles of rain cells and is
applied to a high-resolution (5 min and 1 x 1 km?) data set of radar-derived rainfall
intensities over Germany. We then combine this data set with surface temperature
observations and synoptic observations to group tracks according to convective and
stratiform conditions. Convective tracks show clear life cycles in intensity, with peaks
shifted off-center toward the beginning of the track, whereas stratiform tracks have
comparatively featureless intensity profiles. Our results show that the convective life
cycle can lead to convection-dominating precipitation extremes at short time scales, while
track-mean intensities may vary much less between the two types. The observed features
become more pronounced as surface temperature increases, and in the case of convection

even exceeded the rates expected from the Clausius-Clapeyron relation.
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1. Introduction

[2] Convection is a process of fundamental interest in
climate research due to its influence on the earth’s radia-
tion budget and precipitation. Observations [Lenderink and
van Meijgaard, 2008] and recent simulations [Singleton
and Toumi, 2012] have suggested that convective precipita-
tion intensity may react in a substantially different way to
temperature changes than is the case for stratiform precipita-
tion. This hypothesis was recently backed by observational
support for a midlatitude region by Berg et al. [2013].

[3] Specifically, precipitating convective systems have
been characterized in terms of a life cycle where updrafts
caused by surface heating lead to lifting and condensation
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of moist air, yielding further buoyancy and divergence aloft
[Chen et al., 2012]. Convective updrafts are balanced by
downdrafts away from the center. After onset of precip-
itation, evaporative cooling has been suggested to cause
downdrafts even in cell centers, counteracting further con-
vective activity, thus completing the life cycle. To monitor
convective structures, measurements made by a stationary
temporal observer (e.g., a rain gauge) or a spatial observer
(e.g., radar and satellite images at isolated times) may lead
to little insight into their dynamics, as they travel with the
prevailing flow field during their lifetime and only a section
of the actual life cycle can be observed. Proper characteriza-
tion of the dynamics of such systems demands a Lagrangian
view where the observer travels in the moving reference
frame of the cloud. The Lagrangian observer can be regarded
as a third alternative to a purely temporal or a purely
spatial observer.

[4] Various objective tracking methods have been devel-
oped and advanced during the last 2 decades, mainly for
the purpose of nowcasting strong convective events like
thunderstorms [Rosenfeld, 1987; Dixon and Wiener, 1993;
Wilson et al., 1998; Johnson et al., 1998; Handwerker, 2002;
Hering et al., 2005; Novo et al., 2013] but also the mean
life cycles of the cell size and statistics of tracked rain cells
have been studied [Kysnarova and Novak, 2009; Peleg and
Morin, 2012; Rigo et al., 2012]. Other tracking methods
have been applied not only to radar data but also to other
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high-resolution observational data sets such as satellite data
[Lakshmanan et al., 2009; Feng et al., 2012].

[s] The main obstacle of these methods is to define what
a rain cell is and how to segment it. Further, they have to
handle merging and splitting and determine the velocity of
the cells. The latter is used to improve tracking results by
projecting a given cell into the future to accomplish a better
match with the succeeding time step. Often the assumption is
made that the changes due to the turbulence of the flow field
from one time step to another is small compared to the dis-
placement by the mean flow—an approximation originally
known as Taylor’s hypothesis [ 7Taylor, 1938]. Most tracking
methods estimate the velocity of single individual cells by
following their trajectories from the previous time step to
the present one and extrapolating their movement to the next
time step.

[6] The iterative rain cell tracking (IRT) method fol-
lows a novel approach where the background atmospheric
flow is calculated from the tracks in an iterative proce-
dure. This simple method represents a coarse graining of
the horizontal advection field, where coarse-grained veloc-
ities represent the mean background flow. Convergence of
the procedure and comparison to reanalysis data serve as a
consistency check. The iterative method allows detection of
more, especially smaller, tracks.

[7] On a system level, convergence and divergence of
moist and dry air due to a given convective cell may affect
surrounding cells. In this sense, convective rain cells could
be considered as self-organized dynamical entities where
any cell by itself may not behave in the same way as
when embedded in a system of cells [Koren and Feingold,
2011; Feingold et al., 2010; Bretherton et al., 2005; Chen
et al., 2012]. As the coarse graining retains the small-scale
dynamics produced by the precipitation system, this method
could hence serve as a starting point for studies focusing
on the relative dynamics—i.e., interaction—of neighboring
rain cells.

[8] Convective precipitation events are traditionally dis-
tinguished from stratiform events. Some classification meth-
ods utilize the detection of a stratiform “bright band” in radar
reflectivity [Steiner et al., 1995; Smyth and Illingworth,
1998; Houze Jr, 1997], observed intensity distributions
[Llasat, 2001], or cluster analysis [Peleg and Morin, 2012],
allowing the identification of even more than two classes.
For our study, we use a methodology based on human synop-
tic cloud observations, previously employed to distinguish
the two precipitation types [Berg et al., 2013]. The IRT-
derived rain cell tracks are then grouped according to the two
categories and characteristics of the two types are extracted.

[v] The aim of the present paper is the study of the
response of the convective life cycle to near-surface temper-
atures, using the IRT method in combination with the con-
vective/stratiform separation as a tool. We describe the IRT
method of tracking cells, apply it to a high-resolution radar
data set over Germany, and validate the derived large-scale
flow with reanalysis data. Life cycle statistics are derived for
both convective and stratiform precipitation tracks. The data
sets used, and the IRT method are introduced in section 2.
Section 3 presents the results for the derivation of flow
velocities and sensitivity tests, and section 4 presents the
analysis of the track life cycles. The paper closes with
discussion and conclusions in section 5.

2. Data and Methods

[10] This study uses the RY radar data product provided
by the German Weather Service [Crewell et al., 2008]. This
isa 1 km x 1 km grid composite of 17 radar stations cov-
ering Germany for the 2 year time period 2007-2008. Note
that with the relatively stable climate of Germany and the
large number of rain cells within a year (on the order of
10°; see section 4.1), results from this study are not likely
to be sensitive to the particular years studied. Rainfall rates
were obtained from raindrop reflectivities using the Z-R rela-
tionship [Steiner et al., 2004]. The data set contains discrete
instantaneous precipitation intensities every 5 min. Areas
outside of the radar coverage change over time depending on
the number of active radar devices and data losses and are
marked with a code for missing values. The spatial extent of
the data set is 900 km x 900 km.

[11] The separation of convective and stratiform precipi-
tation types is performed by using 3-hourly synoptic cloud
observations over Germany [Berg et al., 2013]. To make
sure the classifications are as robust as possible in both
time and space, we aggregate observations over larger sub-
regions of the domain, i.e., quadrants defined by the 10°W
and 51°N lines of longitude and latitude, respectively. Sen-
sitivity tests of the classification were reported in Berg et al.
[2013, including supporting information]. For every 3 h
period centered on the time of the synoptic observation,
each quadrant is associated with either the class C for pre-
dominantly convective, class S for predominantly stratiform
cloud conditions, class M for co-existence of the two types at
a single location, or class N for cases with dominantly miss-
ing values. For sensitivity tests, two criteria O/ and Q2 were
used for the synoptic classification: Under O/, a quadrant is
classified as C (S) if all stations within the quadrant indicate
convective (stratiform) and/or mixed conditions, otherwise
the classification is M. In other words, classification C can-
not contain any stratiform observations within the quadrant,
however, observations of mixed convective and stratiform
clouds in single stations are allowed. An additional stricter
criterion is applied for Q2: there must be more numerous
observations of C (S) than observations of mixed charac-
ter. Thus, for 02 less than half of the observations in the
quadrant can be mixed conditions. Earlier sensitivity analy-
ses of QI and Q2 showed that there are cases where some
contamination of the other precipitation type occurs, but that
this is much reduced with the Q2 criterion [Berg et al.,
2013], however, QI is still useful due to its larger sample
size and thus more robust statistics. The daily mean temper-
ature has earlier been shown to be useful for studying the
relationship between precipitation intensity and temperature
[Lenderink and van Meijgaard, 2008; Berg et al., 2013], and
we therefore make use of the daily mean temperature from
the E-OBS observational data set [Haylock et al., 2008].

[12] The tracking algorithm is visualized in the flowchart
in Figure 1. In the first step (Figure la), rain cells are
detected for every radar image individually. A cell is defined
as a contiguous area of grid points above a lower threshold
(see section 3), such that directly neighbored precipitating
grid points belong to the same cell. Diagonal neighborhood
is excluded. Cells adjacent to the outer boundaries or to
missing values are removed (Figure 1b). For each cell, the
area, area-integrated intensity, the location of the intensity
weighted center of mass, and the daily mean temperature at
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Figure 1. Flowchart of iterative tracking procedure. (a—d) Algorithmic steps carried out only once. (e—g)
Steps carried out iteratively during the IRT method. Bold black (red) arrows between flow boxes denote
sequence of algorithm for single (iterative) procedures. Blue- and purple-shaded regions in schematics
are regions of rain. White squares are regions without rain. Yellow arrows (links) in Figures le and 1f
(Figure 1d) denote translation of rain areas (association of rain areas by overlap).

the center of mass are recorded (Figure 1c). Each cell at a
given time step ¢ is checked for overlaps (at least one pixel)
with cells of the consecutive time step ¢ + 1 and the pre-
ceding time step ¢ — 1 (Figure 1d). By this procedure, we
establish forward and backward links between cells in time:
Each cell can have either zero, one, or more than one for-
ward and backward connection. Sometimes it happens that
a cell overlaps with missing values or deleted cells from the
previous or the subsequent time step. These cases are flagged
in order to identify tracks which are corrupted by missing
values or boundary effects, so that they can be removed
from the statistics after the tracking. In the following step
(Figure le), tracks are formed: Cells with one and only one
forward and backward link are in the interior of a track life
cycle. A track is initiated by one of the following situations:
Either a new rain cell emerges, several cells merge, the track
splits from a breaking cell, or it has no regular backward link
because of missing values. Correspondingly, a track termi-
nates either by dissolving, by splitting up, by merging with
other cells, or it is interrupted by missing values. The states
at the beginning and end of each track are recorded. The

advection field is derived on a 5 x 5 grid of square grid boxes
of 180 km x 180 km size (Figure 1f), coarse graining the
full 900 km x 900 km study domain. This is performed by
calculating the velocity vectors of the center of masses and
determining their means and standard deviations within each
coarse grid box and 6 h time interval. If less than five tracks
are found within a coarse grid box or the standard deviation
exceeds the mean, the velocity vector is regarded as unclear
and marked as missing value. We choose a 6-hourly tem-
poral resolution which matches the temporal resolution of
wind fields provided by the ECMWF Re-Analysis (ERA)-
Interim reanalysis data set [Dee et al., 2011] which we use
for validation. Finally, the tracking is repeated in a second
iteration, by using the additional information of the advec-
tion field (Figure 1g): Each cell identified in the first step
is advected one time step into the future with the (spatially
and temporally interpolated) velocity vector at its center of
mass, before overlaps with cells of the successor time step
are checked. The second iteration is able to find tracks which
are not detected by the first iteration because some cells
do not overlap with the consecutive time step. This is the
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Figure 2. Tterative tracking procedure. (a) Rain cells during a specific predominantly convective situ-

ation on 10 May 2007, on a map showing the full

domain of the radar data. Areas where the intensity

exceeds the 0.6 m h™! at 12:00 A.M. are shown in red; blue areas show the exceedance one time step later
at 12:05 A.M. Overlapping areas, where the exceedance is found at both time steps are colored yellow.

Arrows indicate the advection vector field in m s™'.

(b) Zoom into the gray-shaded area in Figure 2a. (c)

Similar as Figure 2b but all cells of the previous time step (red) are shifted 5 min into the future by the
background flow. This results in a better overlap with the cells of the next time step (blue).

case if the cell diameter is smaller than its displacement by
the advection field. Figure 2 shows an example situation
for illustration. The iteration procedure is repeated until the
tracking result converges to a stable state as measured by
wind speed and correlations with reanalysis data.

3. Validation of the IRT Method

3.1. Flow Velocities

[13] To demonstrate the convergence of the iteration pro-
cess, we compare the background flow velocities of several
iteration steps with ERA-Interim reanalysis wind vectors,
using the threshold 0.6 mm h™!. As can be seen in Figure 3a,
the mean flow speed increases with the number of iterations
until approximately 12 m s after the fifth iteration, corre-
sponding to a height level of approximately 800 hPa in the
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ERA wind speed profile. The increase in flow speed with the
number of iterations can be explained by the fact that at the
carlier iterations, less fast-moving tracks are detected since
small and fast cells do not overlap between time steps. In the
consecutive iterations, more and more fast moving tracks are
detected. The mean flow speed nearly converges at the sixth
iteration, such that it is almost identical to the fifth one (only
approximately 0.11 % difference). The correlation R(p) of
the advection field v, with the ERA-Interim wind v,(p) at
pressure levels p is shown in Figure 3b and is calculated as
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where (---) denotes averaging over all defined grid boxes
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Figure 3. Validation of flow field detection. Comparison of flow velocities from six iterations (labeled
“17, ..., “6”) with ERA-Interim wind field (black points) on different pressure levels, averaged over the
full data set. (a) Mean flow speeds (vertical lines) and vertical profile of ERA-Interim mean wind speed.
(b) Correlation of flow vectors with ERA wind vectors.
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Figure 4. Flow field separated by precipitation type. Same as Figure 3 but separated for convective (C)
and stratiform (S) type, for the sixth iteration and the Q2 classification criterion. Black lines refer to the
mean over all data (All), i.e., including stratiform, convective, and mixed conditions.

is reached at the 700 hPa level, which is consistent with a
typical height for precipitating clouds. Similar as for the flow
speed, the correlation improves up to the fifth iteration and
then saturates (approximately 0.13 % difference between the
fifth and sixth iteration at 700 hPa).

[14] Figure 4 shows mean flow speed and correlation for
the sixth iteration tracking result only but separately for sit-
uations classified as stratiform and convective, respectively,
using the synoptic observations under the stricter Q2 crite-
rion. The ERA-Interim wind speed profile (Figure 4a) shows
lower values for convective situations, possibly due to weak
large-scale forcing. Interestingly, even though wind speeds
at stratiform conditions are higher, they are still lower than
the total mean wind speed including also the mixed condi-
tions. Therefore, it can be concluded that large wind speeds
are usually associated with conditions which cannot be clas-
sified as strictly stratiform or convective. The flow speeds
detected from the tracking show a similar behavior, with
lowest speed for convective and higher speed for stratiform
conditions. Again, the total mean is higher than both convec-
tive and stratiform, indicating that the highest wind speeds
are found at mixed conditions. The intersection of the track-
ing flow speeds with the wind speed profiles also differs: It
lies below 800 hPa for convective and approximately at the
700 hPa level for stratiform conditions. This is consistent
with the correlation (Figure 4b), which reaches its maximum
at a higher level for stratiform (approximately 650 hPa) than
for convective (approximately 700 hPa) conditions.

3.2. Sensitivity Tests

[15] For sensitivity tests, we repeated the tracking with
the higher threshold 1.2 mm h™!, which corresponds to the
typical measurement accuracy of rain gauges (0.1 mm per
5 min time interval). The total number of detected tracks
with threshold 0.6 mm h™! is almost 50% larger than with
the latter (Figure 5a). This is not surprising: Precipitation
intensity distributions are dominated by low intensity val-
ues. Therefore, much more rain cells are detected when the
threshold is lower. However, if the threshold is too low, cells
would grow too large with the side effect that distinct rain
events would become connected. Also, noise would be more
dominant in the detection procedure. After six iterations, a
good convergence of the cell number can be seen for the

threshold 0.6 mm h™'. In contrast, for 1.2 mm h™' the con-
vergence is much less homogeneous, and six iterations do
not seem to be sufficient. This behavior is also seen for
the correlation with the ERA-Interim wind field at 700 hPa
(Figure 5b): It is higher for the 0.6 mm h! threshold and
converges clearly faster. Only the convergence of the mean
flow speed is very similar in both cases (Figure 5c¢).

[16] Additionally, we tested the sensitivity of the tracking
method to reduced spatial and temporal resolution. In the
first case, we lowered the horizontal resolution of the radar
data from 1 km to 2 km, by averaging intensity over boxes of
2 x 2 pixels. In the second test, we increased the time interval
from 5 to 10 min by omitting every second radar image. Two
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Figure 5. Convergence of the iteration process. (a) Total
number of detected tracks, (b) correlation coefficient of flow
field with ERA-Interim wind at the 700 hPa level, and mean
(c) advection velocity, plotted against the number of itera-
tions 1-6. Blue (red) curves show iterations with intensity
threshold 0.6 (1.2) mm h™!.

13,365



MOSELEY ET AL.: CONVECTIVE RAIN IN LAGRANGIAN VIEW

V]

Height [hPa]
1000 800 600 400 200
L

o
o_
N
o
— O_
© <t
o
=3
= o |
L
5 ©
[
I o
o_
0]
o
8_
-— | [ [ | [ [

10

Wind speed [m/s]

I
15

|
20

04 05 0.6 0.7 08 0.9
Correlation coefficient R

Figure 6. Sensitivity tests. Same as Figure 3 but for different thresholds, horizontal, and temporal res-
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other. The same is the case for the solid black and blue lines.

iterations were performed for each test, using the thresh-
old. The resulting flow speed and correlation is shown in
Figure 6, together with the full-resolution tracking result
with the threshold 1.2 mm h™!. The highest correlation with
ERA-interim wind is reached with full spatial and temporal
resolution of the data set and the threshold 0.6 mm h™!. How-
ever, the tracking result with 2 km spatial resolution reaches
a comparable level of correlation, and an only slightly lower
mean wind speed. In contrast, the full-resolution result with
the higher threshold 1.2 mm h™! reaches the same mean wind
speed, but a lower correlation. To take full advantage of the
data, we decided to use the full resolution of the data for
the life cycle statistics, using the faster convergent threshold
0.6 mmh'.

[17] A clearly worse result is found with the 10 min
temporal resolution: Both mean flow speed and correlation
of the second iteration are still lower than the first itera-
tion result with the 5 min interval and the same threshold.
Especially for smaller cells, a 10 min time interval seems
to be too large to establish links between time steps for a
successful tracking.

4. Track Life Cycles

4.1. Track Detection and Mean Profiles

[18] Given the above discussion on convergence, we use
the tracking result of the sixth iteration, consisting of 3.54 x
10° detected tracks, to study track profiles. To obtain a clear
picture of the temporal behavior of rain cells from their onset
to their dissolution, we choose only the subset of tracks
which do not split or merge, and thus have a unique life
cycle. This means that all tracks which begin or terminate
by merging or splitting are removed from the statistics and
thus have no effect on the results. Further, all tracks which
are contaminated by missing values are removed. Approx-
imately 27% of all detected tracks satisfy this condition,
leaving the sample size large enough for a proper analysis.

[19] The distribution functions of these tracks as function
of duration (Figure 7) show an approximate power law dis-
tribution, especially for the stratiform tracks. We distinguish

the two classification criteria Q1 and Q2. The stricter cri-
terion Q2 diminishes the sample size by nearly an order of
magnitude in the case of stratiform tracks but considerably
less in the case of convective tracks. In fact, for the Q1 cri-
terion, there are more stratiform (2.1 x 10°) than convective
tracks (1.3 x 10%), while for Q2 the opposite is true (3.8 x 10*
versus 5.6 x 104, respectively). The stratiform classification
is more sensitive to contamination by embedded convection
in the systems. In the following, we will make frequent use
of these two criteria. Note that the analysis is constrained
to tracks with durations up to 60 min as the sample sizes
decrease strongly beyond this point.

4.2. Temporal Evolution

[20] In Figure 8 we show the average temporal devel-
opment of the mean track intensity for tracks classified
according to their duration. Each line in the panels cor-
responds to the average taken over all tracks of a given
duration and the conditions specified in the plot and caption.
To test for sensitivity on the strictness criteria, we com-
pare the Q2 criterion (Figures 8a and 8e) to the QI criterion
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Figure 7. Distribution of track durations. Red (blue) curves
show the distribution of all recorded stratiform (convective)
tracks using the Q1 criterion (circles) and the Q2 crite-
rion (diamonds). The dashed line represents a power law of
exponent —3. Note on the double logarithmic axes.
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of durations from 5 to 60 min, respectively. (a) Convec-
tive tracks for all temperatures for Q2 criterion. (b) Same as
Figure 8a but for Q1 criterion. (¢) Same as Figure 8a but for
T/°C=[9, 14]. (d) Same as Figure 8a but for 7/°C= [16, 22].
(e-h) Corresponding results for stratiform tracks. 7 is the
E-OBS daily mean temperature. Note on the logarithmic
vertical axes.

(Figures 8b and 8f). The stricter Q2 criterion leads to some-
what more pronounced peaks for convective precipitation,
but the qualitative behavior is very similar. Note also that the
curves for the stratiform type are more jumpy in the case of
the Q2 criterion, attributable to the smaller amount of data
for the stricter criterion especially for this type (compare
Figure 7). We therefore proceed by using the QI criterion
for conditional probabilities as this criterion allows for a
larger sample size. Generally, it is found that longer tracks
have generally larger average intensities for both convec-
tive (Figures 8a and 8b) and stratiform (Figures 8e and 8f)
tracks. To understand this behavior, we note that precipita-
tion is correlated over time [Berg et al., 2013]. Weak tracks
are more likely to be cut by the threshold used to define
onset and dissipation of the track, and are thereby viewed
as shorter tracks. However, in addition, intensities increase
much more strongly for convective tracks than for stratiform

tracks. Even more strikingly, convective tracks show a char-
acteristic temporal profile: During the first third of the track,
intensities steeply increase and produce a well-defined peak.
The tracks then decay relatively steadily. This behavior is
visible for both the low (Figure 8c) and high (Figure 8d)
temperature ranges, with the only difference that the peak
intensity increases more strongly for higher temperature. We
interpret these findings as the manifestation of a track life
cycle in the case of convective tracks, which is invigorated
with increasing temperature.

[21] Stratiform tracks show no clear structure as a func-
tion of time. Only at high temperatures (Figure 8h) there
is some visible structure. However, at these temperatures, a
mixing of types with convective activity could also be a pos-
sible cause of distortion, as noted above. Overall, the curves
for different track durations are rather horizontal, there is no
clear evidence of a life cycle. Here, generally similar fea-
tures are obtained, however with an even more pronounced
invigoration for the convective tracks.

[22] In Figure 9 we present a summary of results for
the peak timing and the corresponding intensities. For con-
vection (Figure 9a), peak intensities increase strongly with
temperature and are almost twice as high for the higher tem-
perature range. There is furthermore a tendency for the peak
to occur closer to the beginning of the tracks. For stratiform
tracks (Figure 9b), the timing of the peak is less clear, with
large differences for the different durations, but with a gen-
eral tendency to occur slightly shifted to the first half of the
track. The weak increase of peak intensities with tempera-
ture seems to occur right after the first third of the track,
indicating again that this might be due to sample contam-
ination from embedded convection. For stratiform tracks,
random scattering of data appears to be the most plausible
interpretation. No such asymmetry is visible in the mean
profiles of the cell area, which peaks at intermediate times
(plots not shown). Longer tracks generally produce larger
cell areas.

4.3. Extreme Tracks

[23] We now consider extremes as measured by tracks
with average intensity (as taken over their total duration)
above the 90th percentile of all tracks for each duration.
Figures 10a, 10b, 10e, and 10f show that there are no
substantial differences between the two criteria Q/ and
02 except for less noise and slightly weaker intensities
for Q1. We therefore again use the QI criterion—where
more data are available—for the analysis of the different
temperature ranges.

[24] Overall, the extreme tracks behave similar to the
average track profiles, i.e., with no clear structure for strat-
iform tracks, whereas convective tracks show a clear life
cycle with peak near 1/3 of the track, increasing intensi-
ties with duration and a strong temperature dependency.
However, the steep increase of intensities at the onset of
the tracks is even more clear than for the analysis of the
average profiles.

[25] When performing a direct comparison of the two
types (Figures 10b and 10f) it becomes apparent that the
life cycle of convective tracks yields extended periods
(especially near approximately 1/3 of the track duration)
where these tracks produce significantly heavier precipita-
tion than their stratiform counterpart, especially at higher
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lines indicate means. (a) Convective and (b) stratiform results, respectively. Note on the logarithmic

vertical axis.

temperatures (Figures 10d and 10h). This feature is impor-
tant for risk assessment for local flooding: When the track
passes over a stationary observer, the prevailing flow of
the atmosphere will typically translate the track across the
observer within less than 30 min [Berg et al., 2013], i.e., the
perceived duration of a track to an observer on the ground.
During this duration, a convective track will then have the
potential to produce much heavier rains than does a strati-
form track. Near the onset and decay of the track, convective
tracks often show lower intensities than stratiform tracks.
However, the mean intensities taken over the entire track
duration (crossed symbols) are only marginally higher for
convective than for stratiform tracks. An interesting obser-
vation is that in the case of convection, those temporal
means increase with duration for high temperatures, while
a decrease is visible for lower temperatures. No such obser-
vation can be made for the stratiform type. This observation
could again be seen as a reflection of the stronger tempo-
ral correlation present in the convective cell life cycle [Berg
et al., 2013]: Tracks that produce stronger extremes are
overall more powerful. The simple analysis shown in
Figure 10 makes clear that the existence of a life cycle per se
can imply a potential for more pronounced extreme tracks.

4.4. Temperature Response of Extremes

[26] The temperature response of precipitation extremes
has been discussed recently in the literature [Lenderink
and van Meijgaard, 2008]. Exceedance of the Clausius-
Clapeyron rate was observed for temperature ranges
between approximately 12 and 22°C, and it was later sug-
gested that this increase could be attributable mainly to con-
vective type precipitation for instantaneous and event-mean
precipitation intensities [Berg et al., 2013]. In Figure 11 we
perform an analogous analysis, but explicitly resolving the
track life cycle. We first extract the data corresponding to
the percentile range [0.7,0.975] and a given track duration
for the two temperature ranges [9,14]°C and [16,22]°C.
To test, in how far intensity increases with temperature are
described by the Clausius-Clapeyron relation—an approxi-
mately exponential increase of the form /(7)) o exp (a7 )—

we produce intensity ratios I(75)/I1(T;) « exp(a(T> — T})) =
r, with r being the ratio of two corresponding intensity per-
centiles (i.e., matching track duration and time step). Here,
T, and T, are taken as the means of all track temperatures
within the temperature ranges [9,14]°C and [16,22]°C,
respectively. Similarly, /(7,) and I(T}) are the corresponding
mean intensities, taken at a certain time step within the track
life cycle. To allow sufficient amounts of data, we require at
least 200 tracks for each category. All other tracks are left
out of the analysis. To obtain the coefficient o of tempera-
ture increase, we hence use o = log(r)/(T, — T). Collecting
all resulting ratios for different track durations and several
percentiles, to minimize noise, we rescale all tracks of dif-
ferent durations to length unity. Thereby, we are then able
to average over all track durations. The results (Figure 11)
show that o in the case of heavy convective precipitation
indeed exceeds the Clausius-Clapeyron rate of 7% for most
of the track duration. Our data show that during the first
third of the track duration, a general peak of exceedance is
observed. We however point out that detection of this peak
is somewhat obscured by the presence of noise and should
be verified using a larger data set. In comparison, using the
QI criterion, stratiform tracks show only a slight exceedance
of the Clausius-Clapeyron rate and no obvious structure as
a function of the relative track duration. The exceedance of
the Clausius-Clapeyron rate there may again be an artifact of
contamination by convective data in the stratiform category
and almost vanishes if the Q2 criterion is applied.

5. Discussion and Conclusion

[27] We have proposed a new iterative rain cell track-
ing method (IRT). By sensitivity analysis and comparison
to reanalysis wind fields, IRT has been shown to be suit-
able for obtaining a Lagrangian view in which the dominant
flow field is taken into account in order to follow precipi-
tation events throughout their life cycles. The new features
of IRT are the iterative improvement of cell detection and
the fact that it determines the large-scale background flow
while preserving the relative small-scale dynamics—these
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Figure 10. Comparison of extremes. Average precipitation
intensity as function of time after track initiation for all (a—d)
convective and (e-h) stratiform tracks above the 90th per-
centile of mean track intensities in the respective categories.
Figure 10a denotes Q2 criterion for all observed temper-
atures. Figure 10b shows Q1 criterion for all observed
temperatures. Figure 10c depicts Q1 criterion for low tem-
peratures 7/°C= [9, 14]. Figure 10d shows Q1 criterion for
high temperatures 7/°C= [16,22]. Similar criteria apply for
Figures 10e—10h for the stratiform tracks. The less strict 01
criterion is shown because there is relatively limited data
once the 90th percentile is extracted and further conditions
(temperature and type) are applied. Colored crosses indi-
cate temporal means taken over the track durations with
corresponding colors. Note on the logarithmic vertical axis.

may be produced by the cloud and could be used for further
analysis of intercloud dynamics [Koren and Feingold, 2011,
Feingold et al., 2010]. In the present article, however, we
make use of the tracks and the large-scale flow. The repeated
iteration process of the tracking yields a good correla-
tion with the wind field from ERA-Interim reanalysis data
after six iterations, especially at a height level of approx-
imately 700 hPa. We have shown that a reduction of the
horizontal resolution from 1 km to 2 km does not affect the
quality of tracking results. On the other hand, a high tem-
poral radar image frequency of 5 min is necessary for a

reasonable tracking of convective cells. This should be kept
in mind for modeling studies at convection permitting or
convection resolving scales, when the model output interval
has to be chosen adequately.

[28] Synoptic cloud observations allow a separation
between stratiform and convective track types and reveal
a clearly different behavior of their life cycles. Stratiform
tracks do not show characteristic life cycles, and therefore,
it might be invalid to speak of them as distinct entities.
Instead, they may be better described as randomly formed
contiguous structures embedded into the bulk of a larger-
scale precipitating field. On the other hand, convective cells
show a characteristic temporal behavior, indicating that they
are units which must be regarded as separate from their sur-
rounding but which however are in close contact to their
environment and compete for and exchange moisture and
energy. While our study cannot give direct insight into the
dynamical and thermodynamical 3-D structure of convec-
tive storms, it shows their impact on surface precipitation
and the sensitivity to surface air temperatures. For all track
durations, peak intensities strongly increase with tempera-
ture, reflecting the super-CC increase found for convective
rain intensities. A striking feature is the time asymmetry of
the mean intensity profiles, with a shift of the peak intensity
toward the beginning of the tracks. This shift is stronger for
higher temperatures. Note that the average time development
may somewhat deviate if merging cells were included into
the analysis. These were deliberately excluded in the present
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Figure 11. Change of heavy precipitation with tempera-
ture. (a) Large symbols denote averages for the coefficient
o, which is a measure for the temperature response of the
precipitation intensity. The relative time development of o
over a normalized track duration is shown for convective
(blue) and stratiform (red) precipitation intensity for the 01
criterion. The gray thick line marks the 7% CC increase. (b)
Similar to Figure 11a but for the Q2 criterion.
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study. To include them, the IRT method has to be extended
to handle merging cells.

[29] The steep increase in intensity at the beginning of
the track is even more obvious when extreme tracks are
considered. A comparison with the corresponding extreme
stratiform tracks shows a similar temporal mean. However,
there seems to be a typical time period of approximately
30 min, beginning shortly after the track initialization, in
which extreme convective event intensities strongly exceed
the mean. In contrast, average stratiform event intensities
fluctuate only weakly around their mean. This observa-
tion raises important concerns regarding risk assessment of
catastrophic, local downpours, such as flash floods.

[30] The analysis of the ratio between intensities at
low and high temperatures show a strong exceedance of
the Clausius-Clapeyron rate for convective precipitation.
The data suggest the presence of a peaked exceedance at the
onset of convective tracks, which could be indicative of the
strong dynamics leading to the super-Clausius-Clapeyron
behavior for higher temperatures, where invigorated moist
convection at the onset of the event can saturate the cloud
to a higher degree. However, we cannot provide robust
evidence for the existence of this peak within this study.

[31] Investigations of the 3-D behavior of the convec-
tive events are essential for a deeper understanding of
the changes in dynamics at increasing temperature. Such
analysis can be performed with volumetric radar data and
also by using large eddy simulations [Bretherton et al.,
2005; Tompkins and Craig, 1998] and convection resolv-
ing regional climate model simulations. We propose in-depth
studies using such tools to further explore the physical
processes leading to the invigoration of convection with
increasing temperature.
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