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AbstractWe establish the first intermodel comparison of seasonal to interannual predictability of
present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four
state-of-the-art global climate models. For Arctic sea ice extent and volume, there is potential predictive skill
for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes
across the models. Spatial patterns of potential prediction errors differ substantially between the models,
but some features are robust. Sea ice concentration errors are largest in the marginal ice zone, and in
winter they are almost zero away from the ice edge. Sea ice thickness errors are amplified along the coasts
of the Arctic Ocean, an effect that is dominated by sea ice advection. These results give an upper bound on
the ability of current global climate models to predict important aspects of Arctic climate.

1. Introduction

The Arctic environment has been experiencing rapid changes in the last few decades, despite the recent
slowdown in increasing global surface temperatures. However, natural variability in the Arctic is potentially
strong enough to mask or enhance these changes both on multiannual to decadal time scales [Kay et al.,
2011; Day et al., 2012] and on seasonal to interannual time scales. Reliable initial-value predictions of Arctic
sea ice on these shorter time scales are important for stakeholders in the Arctic [e.g., Smith and Stephenson,
2013] and have the potential to improve seasonal predictions in northern midlatitudes, as there is growing
evidence for the influence of Arctic sea ice anomalies on atmospheric circulation and precipitation pat-
terns [e.g., Balmaseda et al., 2010; Screen, 2013]. Here we conduct the first coordinated, multimodel suite of
so-called “perfect-model” ensemble prediction experiments to diagnose the inherent potential seasonal to
interannual predictability of Arctic sea ice in current global climate models (GCM).

Similar idealized prediction studies with individual GCMs have shown that there is little hope to predict
decadal pan-Arctic sea ice anomalies [Tietsche et al., 2013]. However, there might be potential to pre-
dict decadal anomalies along the ice edges of the North Atlantic [Koenigk et al., 2012]. On seasonal to
interannual time scales, there is growing evidence from idealized studies that skillful sea ice predictions
are possible [Koenigk and Mikolajewicz, 2008; Blanchard-Wrigglesworth et al., 2011; Holland et al., 2011].
Recently, progress has also been made in predicting observed sea ice extent/area on seasonal time scales:
Chevallier et al. [2013],Wang et al. [2013], and Sigmond et al. [2013] demonstrate skillful predictions up to a
few months ahead.

However, two questions remain unanswered: first, for lead times longer than a few months the seasonal
prediction studies mentioned above mostly show little skill beyond the secular trend. Has the limit of
initial-value predictability been reached already, or are insufficient knowledge of Arctic initial conditions and
model deficiencies impeding skillful predictions? Second, previous studies did not explicitly assess spatial
predictions of monthly resolved sea ice thickness and concentration, which are much more relevant both
for practical applications and theoretical understanding. Furthermore, the predictability of sea ice volume
and thickness has been discussed much less than the predictability of sea ice area and extent, due to a lack
of observations to date.

Here we address the questions raised above by performing a suite of idealized ensemble prediction exper-
iments with four state-of-the-art GCMs. The experimental design allows us to diagnose the predictability
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Table 1. Overview of Control (CTRL) and Prediction Ensemble
Runs Performed for This Study

Model HadGEM1.2MPI-ESM-LRGFDL CM3EC-Earth V2

CTRL years 249 200 200 200
Start dates 10 12 8 9
Ensemble size 16 9 16 7

inherent to the models. We analyze potential
prediction error growth of the integrated sea
ice properties volume and extent as well as the
spatial distribution of sea ice concentration and
thickness prediction errors and examine the
physical processes that cause error growth.

2. Models andMethods

We use four different coupled climate models: GFDL CM3 [Donner et al., 2011; Griffies et al., 2011],
HadGEM1.2 [Johns et al., 2006; Shaffrey et al., 2009], MPI-ESM-LR [Notz et al., 2013; Jungclaus et al., 2013], and
EC-Earth V2 [Hazeleger et al., 2012; Sterl et al., 2012]. All of the models have a fully prognostic sea ice compo-
nent, which accounts for changes in sea ice from both thermodynamic and advective processes that occur
in interaction with the atmosphere above and the ocean below. The sea ice model components have con-
ceptual differences in their treatment of important aspects of sea ice dynamics, like the local ice thickness
distribution, vertical heat flux through the ice, and heat exchange at the ice-ocean interface.

Except for HadGEM1.2, we use exactly the same model versions that have been used for the Coupled
Model Intercomparison Project Phase 5 (CMIP5). They have all been thoroughly evaluated against obser-
vations during the model development phase, and their weaknesses and strengths are well-documented
(see above references).

Our intent is to diagnose the limits of initial-value predictability of Arctic sea ice inherent to the GCMs. This
provides an upper bound for the predictive skill obtainable from predictions of observed climate with the
same models, because initial conditions are observed imperfectly and models are biased. To diagnose the
inherent predictability, we perform a suite of ensemble predictions and calculate skill measures by treating
each ensemble member in turn as hypothetical observations, following the methodology of Collins [2002].

The presence of strong secular trends in the observed Arctic sea ice cover complicates the analysis of ensem-
ble prediction studies for two reasons: (i) a significant fraction of the skill of any prediction system is due to
predicting the trend more or less correctly [Sigmond et al., 2013], which we are not interested in here, and
(ii) the properties of the system change over time, so that it is difficult to sample enough predictions with
the same baseline climate.

Therefore, as a baseline for the predictability experiments, we perform long present-day control simulations.
The radiative forcing is representative of the year 1990 for HadGEM1.2 and GFDL CM3, and for the year 2005
for MPI-ESM-LR and EC-Earth V2. After a spin-up phase of about 100 years, each model is integrated for at
least 200 more years to get a good estimate of the mean state, the remaining drift, and natural variability.

The modeled present-day sea ice mean state and variability in the control run differ considerably
between the models but encompass the observed state between 1983 and 2012 (see Figure S1 in the
supporting information).

During the 200 years of control simulation, we choose 8–12 individual years as start years for ensemble
predictions, deliberately sampling the range of natural variability in terms of pan-Arctic sea ice extent and
volume and ocean heat transport into the Arctic, while trying to have start years separated far enough to
consider them independent. Ensembles have 7–16 members, and the maximum lead time is 3 years. Refer
to Table 1 for details on the integrations performed.

Initial conditions for the ensembles are created by perturbing the sea surface temperature field in the
control run state randomly by a very small amount (spatially uncorrelated Gaussian noise with a standard
deviation of 10−4 K). The perturbation is so small that it is equivalent to assuming perfect knowledge of
the initial conditions, and the evolution of the ensemble is solely determined by the chaotic nature of
the climate system. Start date is always 1 July, which allows an assessment of seasonal predictions of the
late-summer sea ice minimum relevant for applications like operational shipping forecasts. Note that other
seasonal predictions are more commonly started in May, which might lead to a sharply decreased skill in
predicting the late-summer minimum (J. J. Day et al., Pan-Arctic and regional sea ice prediction: initialisation
month dependence, submitted to Journal of Climate, 2013).
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We characterize the ensemble predictions by their root-mean-square error (RMSE) and their anomaly cor-
relation coefficient (ACC), treating each ensemble member in turn as hypothetical observations. While the
former is a measure of forecast accuracy directly relevant to applications, the latter is a measure of predictive
skill. If xij is the value of the climate variable x for the ith ensemble member of the jth prediction ensemble,
then we calculate the RMSE as

RMSE =
√⟨

(xij − xkj)2
⟩
i, j,k≠i

, (1)

where ⟨⋅⟩i denotes the expectation value, to be calculated by summing over the specified index with
appropriate normalization. The ACC between any two ensemble members is calculated as

ACC =

⟨
(xij − 𝜇j)(xkj − 𝜇j)

⟩
i, j,k≠i⟨

(xij − 𝜇j)2
⟩
i, j

, (2)

where 𝜇j is the climatological mean at the time of the jth ensemble prediction, represented by the linear
fit to the control run time series (see Figures S2 and S3 in the supporting information). The ACC compares
the forecast accuracy of the ensemble predictions with the forecast accuracy of climatology as a trivial ref-
erence forecast. When ACC is above zero, there is at least some potential for skillful predictions. Note that,
in our idealized setup, prediction ensembles have neither unconditional nor conditional biases, and hence,
the ACC gives the same information as the mean-square-error skill score (see Goddard et al. [2013] and
supporting information).

It is important to keep in mind that the forecast errors defined here (RMSE) are potential forecast errors, i.e., a
lower bound for forecast errors achievable when predicting observations with the same GCMs. In the same
way, the predictive skill defined here (ACC) is potential predictive skill, i.e., an upper bound for predictive
skill achievable when predicting observations with the same GCMs.

3. Predictability Estimates
3.1. Growth of Ensemble Prediction Errors
We calculate RMSE and ACC of pan-Arctic sea ice extent (SIE) and sea ice volume (SIV) from monthly data
for lead times between 1 and 36 months, to characterize the growth of potential prediction errors and the
decay of potential predictability.

The SIE RMSE (Figure 1a) shows several distinct phases: during the first four lead months (July–October),
there is rapid error growth. With the onset of the first freezing season in October, the RMSE growth levels
off. RMSE then stays fairly constant throughout all freezing seasons (lead months 4–11, 16–23, and 28–36)
with the average across models only increasing from 0.3 ⋅ 106 km2 in the first freezing season to 0.4⋅ 106 km2

in the third freezing season. During the melting seasons, SIE RMSE shows very pronounced peaks up to
0.8 ⋅ 106 km2. This reflects the increased natural variability of SIE during summer as diagnosed from the con-
trol runs (see Figure S1 in the supporting information; note that the RMSE saturates at

√
2 of the control run

standard deviation, as pointed out by Collins [2002]).

The SIV RMSE (Figure 1b) shows a fairly linear initial growth throughout the first 10 lead months (until May)
up to values of 1000 km3. From May to July, error growth accelerates, and then levels off until the following
May, when the pattern repeats.

Despite obvious intermodel differences, the following features of RMSE growth for SIE and SIV seem to be
robust across models: (i) fast initial error growth for the first 4 (SIE) to 10 (SIV) lead months, (ii) subsequent
slow error growth with an initial drop of errors during freezing season, (iii) fast error growth during the next
melting season. A possible simple explanation for the faster error growth during the melting season is the
dominance of the positive ice-albedo feedback, which acts to amplify initial perturbations of the sea ice con-
ditions. Similarly, a possible simple explanation for the slower error growth during the freezing season is the
dominance of the negative ice thickness-growth rate feedback, which acts to dampen initial perturbations
of the sea ice conditions [cf. Tietsche et al., 2011].

As a measure for potential predictability, we now discuss the anomaly correlation coefficient (ACC). We test
the statistical significance of nonzero ACC at the 95% confidence level following Collins [2002] and find that,
except for the lowest three data points for SIE ACC, all ACC values shown in Figures 1c and 1d are statistically
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Figure 1. (a and b) Lead-time dependence of SIE RMSE and SIV RMSE for all models. (c and d) Lead-time dependence of
SIE ACC and SIV ACC for all models. September and March are marked by thin gray vertical lines. Dashed lines represent
the averages across models.

significant. For SIE (Figure 1c), the average across models decreases quickly during the first 12 lead months
to a value of about 0.5, with a subsequent slower decrease to 0.4 at 36 months lead time. However, there are
large intermodel differences beyond lead month 5, in both the magnitude and temporal evolution of ACC.

Comparing our findings of potential SIE ACC with the actual detrended SIE ACC reported by Sigmond et al.
[2013] suggests that there is a high potential to improve sea ice predictions in operational forecast systems.
For instance, predictions started in July shown by Sigmond et al. [2013] have no significant ACC after the
first October, whereas in our experiments at that time potential ACC still has a high value of 0.6 to 0.8
consistently in all models.

The SIV ACC (Figure 1d) shows a much smoother temporal evolution. A generic stepwise decrease in skill
over lead time is evident, as already discussed for the SIV RMSE (Figure 1b). At the maximum lead time of
36 months, all models have statistically significant ACC. However, differences between the models are con-
siderable: while HadGEM1.2 and MPI-ESM-LR have clearly expressed seasonal variations, and an ACC of
around 0.4 at the maximum lead time, GFDL CM3 and EC-Earth V2 show only a weak seasonal signal, and
even at the maximum lead time have high ACC of around 0.7.

The considerable intermodel differences in SIV ACC may be related to different amounts of low-frequency
SIV variability simulated by the models. The SIV control run time series has a larger fraction of the total
variability on decadal time scales for EC-Earth V2 and GFDL CM3 when compared to HadGEM1.2 and
MPI-ESM-LR (not shown). Therefore, once SIV in EC-Earth V2 or GFDL CM3 is initialized above or below the
climatological mean, it will tend to stay above or below the mean for longer, which would explain the higher
anomaly correlation between ensemble members. We note that for other possible measures of potential
predictability the intermodel differences are smaller. For instance, potential predictability based on RMSE
[Collins, 2002] gives a range of 0.2 to 0.4 for all models at 36 months lead time (not shown).

3.2. Spatial Patterns of Ensemble Prediction Errors
For practical applications of Arctic sea ice predictions, the spatial patterns of sea ice thickness (SIT) and sea
ice concentration (SIC), rather than the aggregated quantities SIV and SIE are relevant. Looking at spatial pat-
terns also avoids overconfidence in the predictions, as it excludes compensation of errors of opposite sign
in different locations. In this section, we concentrate on discussing the spatial patterns of potential errors for
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predictions of SIT and SIC. These spatial potential forecast errors, together with an estimate whether there is
potential skill, are essential information for forecast applications.

Figure 2a shows the SIC RMSE for all models at three different lead times. There is reasonable agreement
between the models that for the first September (lead month 3), highest forecast errors are to be expected
in the marginal ice zone in the Arctic Ocean, where natural variability is high (cf. Figures S4 and S5 in the
supporting information), whereas in the Arctic Basin forecast errors are lower.

In the first March after initialization (lead month 9), SIC RMSE is large in the vicinity of the climatological
ice edge in the North Atlantic / North Pacific, but very small (below 4%) in the Arctic Ocean. In the second
September (lead month 15), SIC RMSE is substantially larger than in the first September, and its pattern
is already similar to the pattern of SIC variability in the control run, which indicates low potential pre-
dictive skill (stippling in Figure 2 and Figure S6 in the supporting information). Here potential predictive
skill is calculated as 1 − RMSE∕(

√
2𝜎ref), with 𝜎ref the standard deviation of the detrended control run

[see Collins, 2002].

It is instructive to compare Figure 2a to Figure 1a: analyzing only SIE errors might give an overconfidence in
how well the models agree. For instance, although GFDL CM3 and MPI-ESM-LR have virtually the same SIE
RMSE for the first September, the corresponding SIC RMSE fields are quite different.

The spatial distribution of SIT RMSE (Figure 2b) shows that, for the first September, the largest potential
errors tend to occur in the marginal ice zone of the Arctic Ocean, but there are considerable intermodel dif-
ferences. Again, it is interesting to compare the SIT RMSE shown in Figure 2b with the SIV RMSE shown in
Figure 1b. Converting the SIV RMSE for the first September to an expected SIT RMSE by dividing over the
ice-covered surface area yields a value of about 3 cm. This is far lower than the actual average SIT RMSE
at a specific grid point, which is more than 30 cm. This discrepancy indicates that spatial error compen-
sation plays an important role and is certainly an important point to keep in mind when interpreting the
large-scale integrated quantity SIV.

Moving on to SIT prediction errors for the first March after initialization, we see that, despite obvious differ-
ences between the models, some consistent features emerge: while SIT errors are mainly low in the interior
of the Arctic and close to the ice edge (between 0.2 and 0.3 m), they are amplified along the Arctic coasts
(0.6 m and higher). This is simulated by all models, and it is hence likely that this will be a robust feature of
any future prediction system. It is not a trivial ice edge effect, because the errors are not amplified where the
ice edge is away from coasts (Labrador, Barents, and Kara Seas, and North Pacific). In the second September
(lead month 15), SIT errors are again quite model dependent, but much larger than in the first September,
by a factor of 2 to 3. For comparison of the SIV RMSE patterns in Figure 2b with the control run variability,
and for an estimate of potential predictive skill, refer to Figures S7–S9 in the supporting information.

3.3. Physical Processes
Sea ice thickness at a particular location can be changed by two classes of physical processes: (i) advec-
tive change from divergent thickness transport, and (ii) thermodynamic change from heat fluxes at the
interfaces of the ice that lead to freezing or melting. Both have different spatial and temporal characteris-
tics, so differentiating to what degree the potential prediction errors discussed above are caused by either
of the two process classes provides insight into pathways through which SIT predictability is lost. Further-
more, because advective processes conserve ice volume, predictions of pan-Arctic SIV are only affected by
thermodynamic processes. Thus, even if two given models have similar predictability of SIV, differences in
simulating advective processes could still lead to large differences in predictability of SIT.

We separate the SIT errors shown in Figure 2b into a thermodynamic and an advective contribution by diag-
nosing the respective cumulative thickness changes since initialization (also see Holland et al. [2011]) and
calculating their RMSE as in equation (1). We have this diagnostic available for only two models, HadGEM1.2
and MPI-ESM-LR. Note that the total (squared) RMSE shown in Figure 2b is not always the sum of thermody-
namic and advective (squared) RMSE, since the two often have a strong negative covariance (for details, see
supporting information).

Figure 3 suggests that—maybe somewhat surprisingly, cf. Holland et al. [2011]—advective processes are
more important for the potential SIT prediction errors than thermodynamic processes: nowhere is the
thermodynamic RMSE significantly larger than the advective RMSE. For the first September, thermody-
namic SIT RMSE is very similar in HadGEM1.2 and MPI-ESM-LR, whereas advective SIT RMSE is much larger
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Figure 2. (a) SIC RMSE and (b) SIT RMSE in lead months 3 (September), 9 (March), and 15 (September) for all mod-
els. Stippling indicates areas where potential predictive skill is below 10% (see Figures S6 and S9 in the supporting
information).
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a b

c d

e f

g h

Figure 3. RMSE of accumulated thickness change since initialization for (a–d) HadGEM1.2 and (e–h) MPI-ESM-LR. Thick-
ness change due to advective processes (Figures 3a, 3c, 3e, and 3g). Thickness change due to thermodynamic processes
(Figures 3b, 3d, 3f, and 3h). Upper row is for the end of September (lead month 3), lower row is for the end of March (lead
month 9).

in HadGEM1.2. Thus, the larger total SIT RMSE of HadGEM1.2 shown in Figure 2b is dominated by advective
processes. The higher advective SIT RMSE in HadGEM1.2 is readily explained by its thicker climatological ice
cover (see Figure S7 in the supporting information).

The coastal error amplification in March is dominated by advective processes in both models. Scale analysis
of the sea ice velocity equation reveals that the dominating force balance is between atmospheric drag and
internal sea ice forces [Tietsche, 2012, p.64]. Therefore, it is highly probable that the coastal amplification of
forecast errors is caused by forecast errors in surface winds. Due to the ubiquitous tendency of advective
and thermodynamic changes to counteract each other, the thermodynamic RMSE is also amplified at the
coasts, but not enough to fully compensate the advective RMSE. Around the winter ice edge in the North
Atlantic sector, where advected sea ice quickly melts, both thermodynamic and advective RMSE are each
much larger than the total RMSE, but compensate each other to give low total RMSE.

In summary, we find that (i) advective SIT errors are more important than thermodynamic SIT errors in deter-
mining the SIT RMSE pattern for the first September, (ii) the coastal error amplification is caused by advective
processes, and (iii) the importance of model-dependent advective errors might explain why models look
more similar in terms of SIV RMSE than in terms of SIT RMSE.

4. Summary and Conclusions

We perform idealized ensemble predictions with four state-of-the-art GCMs and establish the first inter-
model comparison of potential predictability of Arctic sea ice on seasonal to interannual time scales. The
simulated present-day mean state and variability of Arctic sea ice show considerable differences between
the models. Nevertheless, the models broadly agree on the growth rate and magnitude of potential forecast
errors. Initially, there is fast growth of forecast error and fast decline of potential predictive skill as mea-
sured by anomaly correlation (4 months for sea ice extent, 10 months for SIV). Over the remaining lead time,
forecast errors are close to the climatological saturation value and converge slowly to saturation, whereas
anomaly correlation is significantly larger than zero throughout. This demonstrates that, in these GCMs,
there is much potential for skillful initial-value predictions of Arctic sea ice on seasonal time scales, and some
potential on interannual time scales.

In general, spatial patterns of sea ice thickness and concentration are more difficult to predict than the often
used aggregated quantities of sea ice extent and sea ice volume: for each model, spatial error compensation
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causes local ice thickness to be less predictable than the average pan-Arctic ice thickness. Additionally, there
are large discrepancies between the patterns of sea ice thickness error between the models at least in some
months. However, all models consistently simulate an amplification of forecast error close to the coasts of
the Arctic Ocean in winter, a feature that we suggest to be related to advective sea ice processes. This finding
implies operational forecasts of ice thickness are particularly difficult in places where societal benefits would
be largest.

The results presented here represent the potential forecast errors and the potential predictive skill of Arctic
sea ice that are inherent to the GCMs used, by evaluating forecasts with model output instead of observa-
tions. This approach provides a lower bound of forecast errors and an upper bound of predictive skill that is
achievable with these GCMs and is therefore useful to determine where there is room for improvement in
recently performed predictions of observed Arctic sea ice. The approach also allows us to analyze potential
forecast errors and potential predictive skill of Arctic sea ice thickness, which receives much less attention
than sea ice concentration at present, simply because there are no reliable large-scale observations of it.
Nevertheless, sea ice thickness is directly relevant to shipping applications [Smith and Stephenson, 2013] and
arguably at least as important as sea ice concentration for understanding and predicting the dynamics of
the sea ice cover.

We see our results as a starting point and a resource for discussion about Arctic biases in coupled models,
and about how to best improve real forecasts of Arctic climate. A direct comparison of the potential skill
demonstrated here with the actual skill that the same models demonstrate when forecasting the observed
climate is currently the subject of further research.
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