
In constructing climate model data ensembles, an argument is made for defaulting to cross-

generational ensembles that use all available model data except when constrained by observations.

RETHINKING THE DEFAULT 
CONSTRUCTION OF MULTIMODEL 

CLIMATE ENSEMBLES
by Florian Rauser, Peter Gleckler, and Jochem Marotzke

I	n climate science, the use of an ensemble of simula- 
	tions from multiple models performing a common  
	experiment has become a traditional means to 

represent, estimate, and average model uncertain-
ties and errors. Climate model development and 
system understanding has been advanced by the 
series of Coupled Model Intercomparison Projects 
(CMIPs), init iated by the Working Group on 
Coupled Modeling of the World Climate Research 
Program (WCRP). The third-generation CMIP3 was 
tailored to answer scientific questions relevant to 
the scientific assessment for the Fourth Assessment 
Report of the International Panel on Climate Change 
(IPCC; Solomon et al. 2007). CMIP5 is the newest, 

most comprehensive set of experiments (Taylor et al. 
2012), helping in the assessment of current model 
capabilities and yielding results that are used in the 
IPCC’s Fifth Assessment Report (AR5; IPCC 2013). 
Throughout the history of the CMIP phases, it has 
been common practice to assume that the different 
phases deal with models sufficiently differently to 
separate existing model simulations into generational 
ensembles of opportunity. The climate research com-
munity is now in the process of discussing the next 
phase, CMIP6. In this article we argue, a probably 
well-known but inconvenient fact, that the ad hoc 
separation into generational ensembles is mostly 
due to historical and implementation convenience 
and has no physical meaning for the representation 
of key climate variables such as global-mean surface 
temperature and precipitation characteristics for 
CMIP3 and CMIP5. Our community must do better 
in constructing suitable and robust model ensembles 
than using arbitrarily sized ensembles of opportunity.

CMIP generational ensembles are currently per 
construction such ensembles of opportunity. Some 
institutions synchronize their model development 
cycle to the CMIP cycle and release newer versions of 
a given model for the next generational ensemble, for 
example, the Max Planck Institute for Meteorology’s 
ECHAM5 for CMIP3 and ECHAM6 for (Stevens et al. 
2013), formally indicating generational improvement 
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of the ensembles. At the same time, though, new 
institutes join the intercomparison projects with new 
models, which can be seen from 59 models for the 
historical runs in CMIP5 [the number of models that 
can be downloaded from the Program for Climate 
Model Diagnosis and Intercomparison (PCMDI) 
Earth System Grid (ESG) node as of 19 June 2014] 
as compared to 22 models for CMIP3 (Randall 
et al. 2007), while some others have used the same 
model version for multiple phases of CMIP. There 
are no minimum quality requirements to join the 
ensemble; the model has only to be documented and 
referenced in the peer-reviewed literature, to run, 
and to adhere to the experimental protocol data 
requirements (Taylor et al. 2012). Despite ongoing 
research (Knutti 2010; Knutti et al. 2010a,b), there is 
no consensus on how quality or skill measures could 
be used to reduce the ensemble size. Some work does 
suggest that dismissing the poorer performing models 
can improve overall ensemble quality (Matsueda 
and Palmer 2011), but an appropriate set of criteria 
is almost certainly application dependent. The most 
recent generational ensemble is typically the de 
facto choice for research, a consensus based mostly 
on practical reasons. The two most relevant practical 
reasons are that because of changes in experimental 
protocols, only members of the same generational 
ensemble share comparable—though not identical—
forcings, and that there are different computational 
archives for each generational ensemble. We believe 
that this shared practice of constructing generational 
ensembles is equivalent to the acceptance of an implied 
hypothesis: it is assumed that newer-generation 
models are automatically and systematically better 
than their predecessors, even though the CMIP 
process does not structurally necessitate this. In this 
article, we present an argument for a different default 
ensemble construction: use all CMIP models that 
exist for a given experiment, across generational and—
potentially—forcing differences, and then work hard 
to deliberately constrain these ensembles.

The CMIP process has been successful in har-
monizing global climate modeling efforts and 
facilitating intercomparison that has substantially 
improved understanding. But it has also some inherent 
deficiencies: the time frame of the CMIP phases is 
not synchronous with modeling development cycles, 
leading to problems with specific CMIP model versions 
not being ready yet or being rushed. Additionally, 
CMIP does not incorporate sufficiently standardized 
information on questions of calibration and evalua-
tion. It has also been suggested by the reviewers of this 
essay that the amount of harmonization between the 

modeling centers could even be seen as too successful 
to warrant a sufficient number of independent models. 
In this article, we present some arguments that support 
the process that led to the CMIP modeling community 
considering a shift in the way the project is imple-
mented (Meehl et al. 2014). In support of this initiated 
transition, we describe a rethinking of the Coupled 
Model Intercomparison Project that incorporates the 
long-term need for documentation, calibration, and 
evaluation, as well as the necessity of flexibility for 
scientific experiments and the ongoing incorpora-
tion of new scientific insights. Our suggestions are 
based on the way that we believe climate model data 
ensembles should be constructed, with our structural 
recommendations following naturally.

This essay reflects the authors’ experiences from 
handling the CMIP ensembles for AR5 and is meant 
to stimulate discussion. The discussions that led to this 
essay are not part of the official CMIP discussion within 
WCRP. In the following, we use some figures of model 
data to exemplify the quality of differences between 
CMIP3 and CMIP5. The main point of this essay is 
to use these simple plots to support our reformulated 
default ensemble construction and the corresponding 
implications for the CMIP process, not to discuss the 
exact size or cause for these differences. We hope that 
our opinion as outlined below enriches the ongoing 
discussion on how to create useful multimodel 
ensembles and is evaluated independently from the 
organizational suggestions. After all, CMIP is just an 
organizational framework of our community to make 
our underlying scientific work better and easier.

CMIP3 AND CMIP5 ARE QUALITATIVELY 
TOO SIMILAR IN MEAN STATE AND 
RESPONSE TO WARRANT AN AUTOMATIC 
GENERATIONAL SEPARATION. To show this, 
we use model data from the CMIP5 historical inte-
grations and the equilibrium climate sensitivities of 
CMIP5 (Andrews et al. 2012; Taylor et al. 2012) and 
CMIP3 (Solomon et al. 2007) models. The most basic if 
very challenging task of any climate model is to represent 
the current climate’s surface air temperature and precipi-
tation climatology, as both surface air temperature and 
precipitation dominate the impacts on ecology and 
society (IPCC 2007). A very basic quality measure of 
near-equilibrium capabilities of current climate mod-
els is therefore the mean climatology bias with respect 
to a chosen set of observations. We use the 1980–2005 
climatological reference period adopted for the IPCC 
AR5 Working Group 1 (WGI) model evaluation. We 
create additionally a fictitious cross-generational 
ensemble, which we call CMIP8 and which consists 
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of all corresponding model data of CMIP5 and CMIP3. 
All model data are interpolated onto a regular 1° × 1° 
grid. Figures 1a–c show the multimodel mean biases 
in surface air temperature for CMIP3, CMIP5, and 
CMIP8, respectively. We see that the bias pattern 
appears to be unchanged. As to how close the maps 
could be to zero remains an open question (Annan 
and Hargreaves 2010). For the 25-yr period, the role 
of natural variability is largely damped, and the biases 
shown mostly represent shared structural errors across 
both generational ensembles. We conclude one major 
fact from the similarity of the three panels: CMIP5 
is not qualitatively better in its ability to represent 
twentieth-century mean-state climatologies than 
CMIP3, in the sense that the location and structure 
of the bias is not fundamentally different, even though 
the absolute size of the bias is incrementally improved 

(e.g., Knutti et al. 2013). Figures 1g–i show a similar 
result for precipitation: CMIP8 and CMIP5 do not 
seem to be qualitatively better than CMIP3, CMIP5 
is better in some regions, and CMIP8 is in between 
CMIP3 and CMIP5. To put these results into context, 
in Fig. 2 we show that the remaining bias in CMIP5 is 
large compared to either the progress between CMIP3 
and CMIP5 or to the temperature reanalysis incon-
sistency as a measure of observational uncertainty 
(as the average difference between three reanalyses).

Pattern correlations between models and observa-
tions are another way of quantifying the capability 
of models to represent the climate system’s mean 
state. The mean pattern correlation of CMIP5 is 
again better for all quantities (Fig. 3) when compared 
with CMIP3, but, as we can see from the same, the 
best models of CMIP3 are better than the worst 

Fig. 1. (a)–(c) Annual-mean surface (2 m) air temperature (°C) for the period 1980–2005, multimodel-mean 
bias for CMIP3, CMIP5, and CMIP8 as the difference between the multimodel mean and the climatology from 
the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; Dee 
et al. 2011). (d)–(f) Absolute multimodel-mean biases for the same period. (g)–(i) Absolute multimodel-mean 
bias in annual-mean precipitation for the period 1980–2005 [observation updated from the Global Precipitation 
Climatology Project (GPCP; Adler et al. 2003)].
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from the full cross-generational ensemble with all 
available model data. A cross-generational CMIP8 
ensemble multimodel mean lies between CMIP3 and 
CMIP5, as is expected from overlapping ensembles, 
but has larger spread, which might be a benefit for 
uncertainty analysis in the sense that it covers more of 
the intrinsic uncertainty as long as we cannot dismiss 
specific models.

While the mean-state representation is a basic 
test of climate model performance, these models are 
used to project the response of the climate system 
to (anthropogenic) forcing changes. The most basic 
and yet very important measure of model response 
is equilibrium climate sensitivity (ECS), the mean 
surface warming per doubling of CO2. In Fig. 4, we 
show the absolute global-mean temperatures during 
a reference period in the twentieth century and the 
correlation with ECS for CMIP3, CMIP5, and CMIP8, 
similar to the CMIP3 results in Knutti et al. (2010b). 
We see a small difference in the spread of absolute 
mean surface temperatures between CMIP3 and 
CMIP5, with CMIP5 being slightly less diverse. At the 
same time, we observe that the spread of modeled 
climate sensitivity is similar. The main functional 
conclusion—that current global climate biases are 
not directly correlated to climate sensitivity—does 
not change between CMIP3 and CMIP5 either. For 
CMIP3, CMIP5, or CMIP8, if you view at all data 
points, there is no simple correlation between a 
warmer mean global historical state and a higher 
response to increased greenhouse gas concentrations. 
Additionally, it is easily seen, again, that CMIP3 
and CMIP5 are overlapping ensembles. Even if spe-
cific metrics exist that separate CMIP3 and CMIP5 to 
further detail, in their basic response properties and the 
relationship of those properties to basic representa-
tion properties both ensembles are not qualitatively 
different. We do not further discuss ongoing attempts 
to constrain climate sensitivities from physical con-
straints (Caldwell et al. 2014; Fasullo and Trenberth 
2012; Hall and Qu 2006; Sherwood et al. 2014) because 
this is not part of the argument of this essay: the spread 

Fig. 2. (a) Annual-mean surface (2 m) air temperature 
(°C) for the period 1980–2005, absolute multimodel-
mean bias for CMIP5 as the difference between the 
multimodel mean and the climatology from ERA-
Interim (Dee et al. 2011). (b) Absolute difference 
between CMIP5 and CMIP3 absolute biases. (c) Mean  
inconsistency between ERA-Interim, the 40-yr ECMWF 
Re-Analysis (ERA-40), and the Japanese 25-year 
Reanalysis Project (JRA-25) products as the mean of 
the absolute pairwise differences between those fields 
for their common period (1979–2001).

models of CMIP5. The overall ensemble is mostly 
better because it has lost the worst members of the 
CMIP3 ensemble. From Fig. 3, it seems more natural 
to create (arbitrarily sized) top 20 model ensembles 
from CMIP8 per quantity (called CMIP20 here) than 
to use only CMIP5. The exact construction of such 
constrained ensembles is difficult, but here our intent 
is simply to demonstrate the overlap in the quality of 
the generational ensembles. To create an effectively 
constrained ensemble, we argue that one should start 
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Fig. 3. Global annual-mean climatology (1980–99) centered pattern correla-
tions between models and observations. Results are shown for individual 
models from CMIP3 and CMIP5 (black dashes) and the average result for each 
(red for CMIP3, blue for CMIP5, brown for CMIP8, and green for CMIP20 as 
the top 20 models from all ensemble members). The four variables shown 
are surface air temperature (TAS), top-of-the-atmosphere (TOA) outgoing 
longwave radiation (RLUT), precipitation (PR), and TOA shortwave cloud 
radiative effect (SW CRE). The observations used for each variable are the 
default products and climatological periods identified in Flato et al. (2013, 
chapter 9, Table 9.2). The centered pattern correlations are computed at a 
resolution of 5° in longitude and latitude. Only one realization is used from 
each model from the CMIP3 20C3M and CMIP5 historical simulations.

of the most fundamental 
response property and its 
relationship with the most 
basic mean-state property 
seems to be basically un-
changed between CMIP3 
and CMIP5.

These findings do not 
contradict results that show 
that CMIP3 and CMIP5 
are not identical and that 
CMIP5 is the better gen-
erational ensemble. We 
acknowledge the wealth 
of ongoing research that 
shows improvements to 
CMIP5 in a variety of com-
ponents, regions, or metrics 
of the climate system (Flato 
et al. 2013). The missing 
qualitative separation of 
the full ensemble—the fact 
that there is large over-
lap—for some quanti-
ties between CMIP3 and 
CMIP5 implies, however, 
that our ability to model 
the climate system has not 
changed drastically in the 
last decade, even across 
different assumptions and 
with different models across 
different generations of 
high-performance computers. Unfortunately, 
we have not been able to tackle long-standing 
structural problems in representing the cou-
pling of wet processes and dynamics in our 
climate models, as is also reflected in the 
WCRP’s Grand Challenges for climate models 
(Bony and Stevens 2012). As a result, CMIP5 
and CMIP3 do not differ enough in their ba-
sic mean-state and response properties; they 
overlap too much to warrant an automatic 
generational separation.

C O N S T R A I N E D  C R O S S -
G E N E R ATI O N A L ENSEMBLES 
REFLECT A NATURAL ENSEMBLE 
CONSTRUCTION METHOD. To us, 
for ensemble construction, the natural default 
seems to use all available model data, that is, 
the maximum number of ensemble members 
for all research questions whenever there is no 

Fig. 4. ECS of the CMIP3 and CMIP5 ensembles against the 
simulated global-mean surface air temperatures from their 
respective historical runs (1961–90). Also indicated in black is 
the observed estimate of global-mean surface temperature 
for the same time period.
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consensus on evaluation-constrained ensembles. This 
approach is based in part on scientific–philosophical 
reasons: if we cannot constrain or cull one model or 
model–forcing combination on evaluation grounds, 
then we should not do it. Additionally, as long as we 
cannot constrain the full ensemble, we cover the under-
lying uncertainty better if we use all available models. 
If the underlying models share systematic biases as do 
the CMIP3 and CMIP5 models (see Fig. 1), then the 
increased ensemble size will most likely not be very effi-
cient in creating an ensemble spread that covers the full 
underlying uncertainty, but increasing ensemble size 
via a cross-generational ensemble could lead to an, at 
least slightly, increased number of independent model–
forcing combinations. Cross-generational ensembles 
will emphasize the influence of models that exist across 
different CMIP generations. It could be argued that it is 
reasonable to reward long model development experi-
ence, but if this is not a desired property, then it could 
be circumvented by creating the cross-generational 
ensemble with one member per institution, or filters 
could be developed according to current research on 
model independence (Knutti et al. 2013).

The twentieth-century simulations used above to 
create one cross-generational ensemble have been 
performed with differing forcings in CMIP3 and 
CMIP5. A priori, both sets of model–forcing com-
binations represent an equally likely measure of how 
well the models can represent the current state of the 
climate system: the forcing assumptions for newer 
CMIP generations might be more realistic in the 
number of represented processes, but we do not have 
a quantitative criterion for quantitatively assessing 
the likelihood of a given model–forcing combination. 
The default should therefore be to value all model–
forcing combinations as equally probable and not to 
arbitrarily weight old model–forcing combinations 
with a likelihood of zero as is implicitly done in gen-
erational ensembles. The difference in forcing can 
lead to bigger spread for some quantities, which can 
be seen as an advantage when the aim is to capture 
the full uncertainty of our modeling efforts. To 
calculate ECS, a similar approach to that underlying 
the twentieth-century simulations can be applied: the 
cross-generational ensemble is constructed from two 
different experiments (abrupt 4 × CO2 and abrupt 
2 × CO2) in CMIP5 and CMIP3, respectively, even 
using fundamentally different model setups with 
respect to the ocean model component. A way to 
estimate ECS comparable to the CMIP3 ECS values 
from the CMIP5 4 × CO2 experiment has been dis-
cussed in Andrews et al. (2012). A cross-generational 
ensemble of ECS estimates is after all still essentially 

an ensemble of estimates for a key quantity of the 
climate system that are comparable, even if the ensem-
bles of the simulations are not. For projections, dif-
ferent forcing can make cross-generational ensemble 
construction more difficult than for the evaluation 
experiments above, although there are approaches 
to do so (Knutti and Sedlacek 2013). We recognize 
that fundamental forcing differences/developments 
for some experiments will make the idea of fluid 
ensemble creation difficult and in some very specific 
cases impossible. We argue, though, that the resulting 
forcing–model combination is not a priori better and 
should be compared when possible to the full set of 
the cross-generational ensemble.

A new default cross-generational ensemble 
construction is the natural replacement for the old 
generational ensemble only if we cannot constrain 
the ensembles based on scientific arguments. We 
can think of three cases where there are scientific 
arguments to reduce the size of the ensembles. First, 
the analysis of model responses to a specific forcing 
experiment might still require an ensemble contrac-
tion of all available models to those that have been 
run with this exact set of forcings; for these types of 
experiments, ensembles will continue to be gener-
ated as generational ensembles. Second, if only a 
limited number of ensemble members represent a 
specific physical aspect of the earth system, the use 
of a full cross-generational ensemble does not make 
sense. An example for this case is the increase in high 
vertical resolution that allows for representation of 
the quasi-biennial oscillation (QBO). This problem 
also occurs in generational CMIP ensembles, such 
that only a handful of the new CMIP5 models can 
represent the QBO (Schmidt et al. 2013). Therefore, 
in these cases it is natural to create a subgroup of 
models with comparable features and to generate 
a target ensemble for the specific science question 
at hand. The model quality for the specific quality 
is “binary”: the model either represents the process 
or it does not, leading to a natural way to create the 
target ensemble. Third, and the most difficult case, 
it is rationally desired and possible that evaluation-
constrained target ensembles will be used where 
either a number of best models are selected from the 
cross-generational ensemble or a number of worst 
models are discarded. We have created a simple 
example in this article by creating an arbitrarily sized 
CMIP20 ensemble for specific quantities. The details 
of target-ensemble constructions are determined by 
relevant simulation quality criteria (e.g., a specific 
forcing or realistic QBO) or model properties that 
target a specific scientific question.
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T H E  C A S E  F O R  F L U I D, C R O S S -
G E N E R A T I O N A L  E N S E M B L E 
CONSTRUCTION AND CMIP6/DECK. 
Some of our arguments are so basic that they have 
been in discussion for years, and yet the generational 
ensemble has remained a default even in the IPCC 
process. We believe that a renewed explicit discussion 
of the types of ensembles that we use to do our work 
is highly relevant and that this discussion should also 
be directed toward the future of CMIP. The require-
ments of our suggested ensemble construction for a 
CMIP process boil down to two points: easy access 
and easy filtering via controlled experimentation for 
better science. The rest is the responsibility of the 
involved researchers. Concerning easy access, there 
should be one central portal to all CMIP data across all 
generations, sorted for a given scientific question, and 
technical and resource problems need to be overcome, 
particularly given that each new CMIP generation 
produces much more data than the one before (so far 
anyway). Concerning easy filtering, this requires the 
development of a standardized generic and broad set 
of qualities of a model that can be used to filter. These 
qualities should incorporate structural information 
on models and a list of quality parameters that enable 
target ensembles when scientific insight allows for it. 
The current discussion within the WCRP community 
has led to the paper by Meehl et al. (2014) describing 
an experiment design for a sixth phase of CMIP that 
is fundamentally different from all previous phases. 
This new setup is largely consistent with our recom-
mendations for a fluid, cross-generational ensemble 
construction with the establishment of an ongoing 
CMIP certification type of process, called Diagnosis, 
Evaluation, Characterization of Klima (DECK). A 
standardized CMIP documentation and evaluation 
framework could enable continuous evaluation and 
documentation of new model versions and could make 
it easier to redo model evaluation attempts with newer 
simulations and updated observational datasets. The 
evaluation experiments should incorporate most basic 
properties of a model to allow for an effective filtering 
in a broad variety of application cases (i.e., steady state 
for the atmosphere–ocean coupled system, as well as 
time-varying responses in twentieth-century and CO2 
change experiments). If the DECK framework could 
be established in a sustained manner, then the current 
problem of differences in time scale between model 
development and experiment requirements could be 
ameliorated. Additionally, the time scale and ensemble 
size of generational IPCC-related scenario runs would 
be completely independent of the default climate 
ensemble construction for other science questions. 

A word of caution: we do not believe that CMIP can 
or should prescribe scientific methods to the com-
munity, but it can help in avoiding and reducing the 
practical impediments that have hindered our science 
for some time. The transition toward the establish-
ment of the CMIP DECK experiments represents an 
opportunity to move beyond generational ensembles 
and establish a community-based capacity for appli-
cation-dependent filtering. The results presented in 
this article support the DECK approach, and we hope 
that our suggestions will be useful for this planning.

CONCLUSIONS. The climate modeling commu-
nity should not focus on constructing generational 
ensembles, neither from the current CMIP5 nor from 
a potential future CMIP6. We suggest eliminating the 
idea of generational ensembles because generational 
ensembles are not scientifically justified given the 
current rate of model development and progress. If 
quality-constrained ensembles result in generational 
ensembles in the future, then this might change again, 
but for now ensembles should be constrained by 
physical reasoning and uncertainty analysis or not at 
all. We suggest returning to the original idea of CMIP: 
to understand climate models, including their differ-
ences and properties, and to quantify uncertainty. We 
believe that, at this point, the CMIP process should 
lead to a continuous, iterative increase in ensemble 
size and quality to address scientific questions. The 
long-term aim of our community should be to replace 
the discrete steps of ad hoc generational ensembles 
with a fluid, scientifically more sound process of 
constrained target-ensemble generation for specific 
problems, based on results from a standardized set of 
documentation and evaluation experiments. As long 
as those constrained ensembles are not available or 
justified, the community should construct ensembles 
that incorporate all available model data. To us, the 
need for clear communication and explanation of 
why one uses a specific ensemble for a given task 
appears to be essential. We believe that a reformulated 
CMIP process could be an important organizational 
advancement toward achieving this more natural 
way of constructing multimodel climate ensembles. 
Even before we get to that reorganization of CMIP, 
we believe that we should start to spend more time 
and effort to construct carefully designed ensembles 
right now.
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