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Abstract ICON (ICOsahedral Nonhydrostatic) is a unified modeling system for global numerical weather
prediction (NWP) and climate studies. Validation of its dynamical core against a test suite for numerical
weather forecasting has been recently published by Z€angl et al. (2014). In the present work, an extension of
ICON is presented that enables it to perform as a large eddy simulation (LES) model. The details of the
implementation of the LES turbulence scheme in ICON are explained and test cases are performed to vali-
date it against two standard LES models. Despite the limitations that ICON inherits from being a unified
modeling system, it performs well in capturing the mean flow characteristics and the turbulent statistics of
two simulated flow configurations—one being a dry convective boundary layer and the other a cumulus-
topped planetary boundary layer.

1. Introduction

Understanding climate change requires clear understanding of feedbacks due to clouds, which are the lead-
ing source of uncertainty in the existing climate models [Bony et al., 2004; Stevens and Bony, 2013]. The
uncertainty in cloud fields in climate models is in turn due largely to the limitations of the shallow and deep
convective parameterization schemes. Different modeling approaches like single column models [Betts and
Miller, 1986; Randall et al., 1996; Ghan et al., 2000], cloud resolving modeling [Xu et al., 1992; Xu and Arakawa,
1992; Grabowski et al., 1996], and superparameterization [Grabowski, 2001; Khairoutdinov et al., 2005] have
been used in the past to understand convective parameterization in a climate model.

With the increasing availability of computing resources, efforts have been taken to perform global simulations
at even higher resolution to possibly reduce the uncertainty by explicitly resolving some of the scales involved
in the convective motion. A good example of this approach is the Japanese model NICAM, which has been
used in the recent years to perform global cloud resolving simulations [Miura et al., 2007; Satoh et al., 2014].
While one can argue about the deep convective scales that are resolved in a typical cloud resolving model
with grid resolution ranging from 1 to 4 km, the grid resolution used in such models is definitely too coarse to
resolve shallow convection [Miller, 1978; Bryan et al., 2003]. Moreover, the subgrid turbulence schemes used in
the aforementioned cloud resolving models are typically not even designed to work in these resolution ranges.
This motivated Wyngaard [2004] to refer to this range of scales, where convection is neither resolved nor so
unresolved as to be representable in terms of its ensemble effects, as ‘‘gray zone.’’

The only way to avoid this gray zone is by explicitly resolving shallow cumulus convection, which is defined
by the depth of the atmospheric boundary layer, which is typically of the order of a kilometer. Thus, simula-
tions on a O(100 m) grid largely obviate the need for special parameterization for organized turbulent
motions such as those that define the atmospheric boundary layer and the areas of shallow convection. By
crossing this threshold of O(100 m) grid resolution one can begin thinking of LES, wherein the subgrid-
scale parameterizations have a sounder theoretical foundation and matter less [Deardorff, 1970; Moeng,
1984; Bryan et al., 2003]. This motivated us to work toward simulations at O(100 m) horizontal resolution, on
a sufficiently large domain for sufficiently long time, which will help us to understand the parameterized
convection better, and possibly, to improve it.

To take this forward, the German Federal Ministry of Education and Research (BMBF) has initiated a project
named High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2), incorporating
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several institutes across Germany. The project targets limited-area LES at resolution O(100 m). There are
other groups across the world also moving in this direction of ultra-high resolved simulation in a quasi-
operational sense. Some of them, within our knowledge, are Chow et al. [2006], Moeng et al. [2007], and
Hanley et al. [2013], who have modified existing regional models to do LES. We use ICON as the host model
which is a new nonhydrostatic modeling system, developed in collaboration between the German Weather
Service (DWD) and the Max Planck Institute for Meteorology (MPI-M). ICON is different from the models
mentioned above because it is a unified modeling system suitable for global and limited-area applications
on one hand and for climate prediction and weather forecasting on the other. After the inclusion of LES
capabilities, ICON can now be refined to the spatial scales needed to resolve convection while interacting
with the evolving large-scale atmosphere.

Admittedly, ICON is not the only unified modeling system known in literature. The Advanced Research WRF
(AR-WRF) [Skamarock et al., 2008], for example, is a nonhydrostatic fully compressible modeling system
which also has capabilities to perform global as well as limited-area simulations with suite of physics pack-
ages relevant for climate predictions, NWP, and LES. There is however an important distinction between AR-
WRF and ICON in that ICON is an operational global NWP and climate model, which in this manuscript is
shown to be flexible enough to be run as a LES model.

The purpose of this paper is to describe the new physics package (LES physics) in the ICON framework
and compare its performance against well-established standard LES models for idealized boundary layer
flows. We do not present ICON as an alternative to standard LES models that are designed primarily for
boundary layer studies. Rather, we aim to utilize the unified nature of ICON by using its eddy-resolving
abilities to better understand the processes that are parameterized in the climate or numerical weather
forecast configurations of ICON. The model equations and the necessary changes made in ICON to get
the new LES physics package are described in the following section. It is important to realize that ICON
inherits some compromises from being a unified model that standard LES models do not. For example,
while standard LES models use structured orthogonal grids which easily allow to implement higher-
accuracy schemes, ICON uses an unstructured icosahedral grid, suitable for spherical geometry, which
puts a restriction on the use of a higher-accuracy scheme at a reasonable computational cost. These
challenges are apparent in section 3 where the conservative discretization of the three-dimensional tur-
bulence scheme on the ICON grid and its coupling to the model dynamics are explained. The model is
then validated against two standard LES models for the following boundary layer flow types: (a) dry con-
vective boundary layer in section 4.1, and (b) cloud topped boundary layer in section 4.2. Concluding
remarks are presented in section 5.

2. Model Description

ICON is a fully compressible model that uses geodesic Delaunay grids with C-type staggering, and has the
ability to locally refine a region using the classical nesting approach. Much effort has been put in designing
the code for high performance on massively parallel computing architectures. The model presently hosts
two basic physics packages: one for weather predictions (DWD package) and the second for climate model-
ing applications (MPI-M package). These two packages are designed for subgrid-scale processes operative
on scales of hundreds of kilometers to tens of kilometers. In order to use ICON at O(100 m) scales, a new
LES physics package has been added to ICON incorporating the following modifications.

Some of the parameterizations in the DWD and MPI-M packages are invalid at O(100 m) scales and must be
turned off. This pertains to the schemes for convection, subgrid-scale orographic effects (blocking and grav-
ity wave drag) and nonorographic gravity wave drag. On the other hand, new approaches for representing
the subgrid-scale turbulence and more complex microphysical process must be introduced. Therefore, a
new subgrid-scale turbulence scheme based on the classical Smagorinsky scheme has been implemented.
The scheme uses the modifications by Lilly [1962] to account for thermal stratification. A double-moment
microphysics scheme based on Seifert and Beheng [2001] has also been implemented for the LES package.
Furthermore, instead of the default diagnostic cloud fraction scheme, a simple all-or-nothing scheme [Som-
meria and Deardorff, 1977] is used that assumes that the cloud fraction within a grid box is either 1 or 0. The
default artificial numerical dissipation for LES studies is reduced to fourth order for the momentum
equations.
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Full details of the set of equations used in ICON and its numerical treatment are beyond the scope of the present
work and can be found in Z€angl et al. [2014] and Wan et al. [2013]. Only information relevant to the implementa-
tion of the turbulence scheme in ICON are discussed here. Information about the time integration scheme, the
spatial discretization schemes, and a few other numerical details are also given in section 4.

The equations employed in ICON are based on the prognostic variables suggested by Gassmann and Her-
zog [2008], and it uses a vector-invariant form for the nonlinear momentum advection terms. The prog-
nostic variables are the horizontal velocity component normal to the triangle edges vn, the vertical wind
component w, density q, the density potential temperature hq [Stevens, 2007] (also referred to as virtual
potential temperature hv [Z€angl et al., 2014]), and the specific masses and number densities of tracers qi

(i 5 1,2,3. . .,Nt). The tracers include water vapor (qv), liquid water (ql), snow (qs), ice (qi), etc. Nt is the total
number of tracers which depends on the microphysics scheme used. Here q is the full air density includ-
ing liquid and solid condensates, and

hq5Tq

�
p00

p

�Rd=cpd

5
Tq

p
: (1)

In the above equation, p00 is the reference pressure, p is the Exner function, and Tq 5 Ta is the density tem-
perature with

a5½11ðRv=Rd21Þqv2qc�; (2)

where qc5Ri2hydrometeors qi is the contribution due to liquid and solid condensates, Rd and Rv are the gas
constants for dry air and water vapor, respectively, and cpd is the isobaric specific heat capacity of dry air.

The turbulent fields in the model are filtered as

/5~/1/0 ; (3)

where ~/ is Favre-filtered [Hinze, 1975]

~/5
q/
�q
: (4)

The overbar ðÞ indicates the filtering in the traditional manner as used in incompressible flows [Sagaut,
1998, p. 16]. For better readability, we henceforth use xi and vi to indicate the three (i 2 ð1; 2; 3Þ) orthogonal
axes and the respective velocity components. Here x1 denotes the horizontal axis normal to the triangle
edge and x2 denotes the horizontal axis parallel to the triangle edge (see unit vectors 1, 2 in Figure 1). The
vertical coordinate is denoted by x3, which points in the upward direction as indicated by � in Figure 1. The
velocity vector (v1,v2,v3) forms a right-handed system. Following this convention, the Navier-Stokes equa-
tions used in the model can be written as:

@ ev1

@t
1
@ð evh : evh=2Þ

@x1
2ðf1f Þev2 1ev3

@ ev1

@x3
52cpd

ehq
@�p
@x1

1Qv1 ; (5)

@ ev3

@t
1 evh :rh ev3 1ev3

@ ev3

@x3
52cpd

ehq
@�p
@x3

2g1Qv3 ; (6)

@�q
@t

1r:ð~v�qÞ50 ; (7)

where, vh and v are the horizontal and full three-dimensional (3-D) velocity components, respectively, f is
the vertical vorticity component, f is the Coriolis parameter. It is to be noted that the model only solves for
v1, and the tangential velocity component (v2) is diagnosed using the radial basis function (RBF) reconstruc-
tion [Narcovich and Ward, 1994].

The turbulent parameterization terms, Qvk , are calculated as the divergence of the subgrid-scale stress ten-
sor skl

Qvk 5
@~v k

@t

� �
turb

5
1
�q
@skl

@xl
: (8)
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Herein, the Einstein summation convention applies to repeated indices. The subgrid-scale stress tensor is
then parameterized following Lilly [1962] as

skl5Km
~Skl2

1
3

~Smmdkl

� �
; (9)

where Km is the subgrid viscosity

Km52k2~qjSj 12
Ri
Prt

� �1=2

for 12
Ri
Prt

> 0: (10)

Here k is the subgrid length scale proportional to the grid volume, D 5 (D1D2D3)1=3, and the Smagorinsky
constant Cs. It is varied in vertical following Mason and Brown [1999] as

1

k2 5
1

ðCsDÞ2
1

1

ðjx3Þ2
: (11)

In the case that the grid is vertically stretched, the maximum grid volume in the first model level near the
surface is used for D. The other terms in equations (9–11) are the von Karman constant j, the turbulent
Prandtl number Prt, and jSj5ð~Smn

~SmnÞ1=2 where ~Skl is the Favre-filtered rate of strain tensor given by

~Skl5
1
2

@~v k

@xl
1
@~v l

@xk

� �
: (12)

The Richardson number, Ri, in equation (10) is calculated as

Ri5

N2
m

jSj2
for saturated air

N2

jSj2
for unsaturated air;

8>>>><>>>>: (13)

where N and Nm are the dry and the moist Brunt V€ais€al€a frequency defined, following Durran and Klemp
[1982], as

N25
g
h
@h
@x3

;

N2
m5 N21

g
T
ðCm2CdÞ

h i
11

Lv qsat

Rd T

� �
:

(14)

Figure 1. (left) Schematic showing the primal (black triangles) and dual (red hexagons) cells, and the associated local coordinate system used
in this manuscript. Unit vectors 1, 2, and 3 point in the direction of edge normal, tangent, and vertically upward (indicated by�), respectively.
(right) Schematic of two adjacent triangles in ICON grid identifying the various locations used to discretize the turbulent diffusion term. a; b; c;
d are the triangle vertices, e is the center of the edge cd about which all the strain rates are calculated, and p, q are the cell-centers.
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Here Cd and Cm are the dry and the moist adiabatic lapse rate, respectively, Lv is the latent heat of vaporiza-
tion, and h is the potential temperature.

The thermodynamic equation expressed in terms of the density potential temperature and the budget
equations for the tracers in ICON are expressed as

@�q~hq

@t
1r:ð~v�q~hqÞ5Qhq ; (15)

@�q~qi

@t
1r:ð~v�q~qiÞ5Qqi : (16)

Here Qhq and Qqi represent the forcing from the slow-physics (i.e., radiation) and the fast-physics parame-
terizations (i.e., saturation adjustment, cloud microphysics, and turbulence). Note that Qv1 and Qv2 in
equations (5–7) are also categorized as fast-physics. As the name suggests, the slow-physics are called
less frequently compared to the fast-physics and therefore their tendencies are stored to be integrated
with the governing equation. The fast-physics, on the other hand, are called every physics time step to
sequentially update the prognostic variables and therefore do not provide tendencies to the governing
equations. The sequential coupling between the turbulence parameterization and the dynamics is
explained in Appendix A.

Equations (5–7) and equation (15), together with the slow-physics tendencies, are integrated in time using
the two-time level predictor-corrector scheme except for the terms corresponding to the vertical sound-
wave propagation, which are integrated implicitly. Tracers in equation (16) are integrated using a flux-form
semi-Lagrangian scheme for its better conservation properties. As rather small time steps are required for
the dynamics to maintain numerical stability, it is substepped several times between successive calls to the
physical parameterizations. In the default configuration, physics time step is 5 times larger than the dynam-
ics time step.

Radiation and the cloud microphysics have been turned off because of the idealized nature of the test
cases. Therefore, Qhq and Qqi (for qi 2 ðqv ; qlÞ) only represent the effects of subgrid turbulent diffusion and
condensation. That is,

Qhq5
@~hq

@t

 !
turb

1
@~hq

@t

 !
cond

Qqi 5
@~qi

@t

� �
turb

1
@~qi

@t

� �
cond

:

Effects of condensation are calculated using the standard saturation adjustment scheme that assumes a
uniform distribution of temperature and humidity within a grid box [Sommeria, 1976]. Using equations (1)
and (2), the subgrid turbulent term can be expressed in terms of the prognostic variables as

@~hq

@t turb
5~a

@~h
@t

 !
turb

1~h ðRd=Rv21Þ @~qv

@t

� �
turb

2
@eql

@t

� �
turb

� �
;

@~qi

@t

� �
turb

5
@

@xk
Kh
@~qi

@xk

� �
;

where

@~h
@t

 !
turb

5
@

@xk
Kh
@~h
@xk

 !
: (17)

Here Kh5 Km
Prt

is the eddy diffusivity coefficient, which is assumed to be same for ~h and ~qi . Prt is set to 1/3.

We note that the governing equations in ICON differ from standard LES models in many ways. For example,
in ICON only one of the horizontal velocity components (v1) is prognosed while the other component (v2) is
diagnosed, and both the thermodynamic and the tracer equations use nonconservative variables. Standard
LES models, on the other hand, typically prognose both the horizontal velocity components and use
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conserved (in nonprecipitating convective motions [Deardorff, 1980]) thermodynamic variables like liquid
water potential temperature (hl) and total liquid water (qt). These differences are discussed in more detail in
section 4 when the other two LES models are introduced.

3. Numerical Implementation

In the following, we discuss in detail the implementation of the subgrid-scale turbulence term on the ICON
grid. Details on the coupling between the dynamics and the turbulence parameterization, and the time
integration of the turbulent diffusion terms are given in Appendix A. Note that the use of tilde eðÞ and over-
bar ðÞ on filtered variables are dropped henceforth for notational simplicity. The implementation of the dif-
fusion terms presented here assumes a flat surface that is suitable for the idealized runs discussed in this
paper. The full formulation over nonflat surfaces will be discussed in a subsequent work.

The local coordinate system used for the discretization is indicated in Figure 1 by the unit vectors 1, 2, and
3. The (right) schematic shows two triangles, adc and dbc with common edge cd, where e is the center of
the local axes. The (circum-) centers of the triangles are indicated by p and q. We follow the C-gridtype
arrangement of Arakawa [1966]: v1 is located at the edge-center e of the full (main) vertical levels; v2 is
located at the center of the dual-edge pq of the full levels, as indicated by the red line(s) in the figure, which
by design coincides with e; v3 is located at the cell-center p of the half (interface) vertical levels; and temper-
ature, density, and tracers are stored at the cell-centers of the full vertical levels. The cell-centers are also
referred to as mass points in the text.

The various interpolation operators, for an arbitrary variable /, used in this section are:

1. �/
ev

: a RBF reconstruction from edges to vertices.

2. �/
e
: a linear interpolation from mass points or vertices to edges.

3. �/
c
: a bilinear interpolation from edges to mass points.

4. �/
cv

: an area-weighted interpolation from mass points to vertices.

5. �/
i
: a linear interpolation from main levels to interface levels (quadratic extrapolation at the surface).

6. �/
m

: a linear interpolation from interface levels to main levels.

The letters next to the overbar ðÞ here indicate the location to which the interpolation is performed, except
for �/

ev
and �/

cv
, which indicate interpolation from edge-to-vertices and cells (mass points)-to-vertices,

respectively. RBF reconstruction in ICON uses the Gaussian basis function, e2ðr=bÞ2 , with shape parameter, b,
tuned for great circle distances r [Wan et al., 2013]. For the flat surfaces, the basis function uses the Cartesian
distance as r, which requires changing b for better performance. For now, it has been set to twice the length
of the dual-edge (pq), which gives reasonable accuracy but further investigation is required.

The discrete operators used in this section are

Dmn/5/n2/m; (18)

Dx3/ðx1; x2; x3Þ5/ðx1; x2; x31hÞ2/ðx1; x2; x32hÞ ; (19)

where h5 Dx3
2 is half of the vertical spacing at a given level. In the following, it will become clear that these

difference operators are intended for implementing a second-order central difference scheme. For spherical
triangles, however, the horizontal differences in the edge-normal direction may not be truly centered, espe-
cially when the triangles become distorted by the nonuniform tiling of the sphere. Errors because of this
are generally small, and they decrease as the resolution increases, but such distortion limits the order of the
discrete operators. For the idealized test cases presented in this paper, these difference operators are truly
centered because the mesh is on a plane with equilateral triangles.

3.1. Subgrid Viscosity
Different strategies are used to calculate strain rates for the subgrid viscosity (Km) and for the turbulent
fluxes. While they are estimated at their natural locations for the turbulent fluxes (shown in section 3.2), for
Km they are all estimated at the edge-center (e.g., e in Figure 1) of the full levels for coding convenience.
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S115
@v1

@x1
5

Dabv1
ev

Dabx1
; (20)

S125
1
2

@v1

@x2
1
@v2

@x1

� �
5

1
2

Ddcv1
ev

Ddcx2
1

Dabv2
ev

Dabx1

� �
; (21)

S135
1
2

@v1

@x3
1
@v3

@x1

� �
5

1
2

Dx3 v1
i

Dx3
1

Dqpv3
m

Dqpx1

� �
; (22)

S215S12; (23)

S225
@v2

@x2
5

Ddcv2
ev

Ddcx2
; (24)

S235
1
2

@v2

@x3
1
@v3

@x2

� �
5

1
2

Dx3 v2
i

Dx3
1

Ddcv3
cv m

Ddcx2

 !
; (25)

S315S13; (26)

S325S23; (27)

S335
@v3

@x3
5

Dx3 v3
e

Dx3
: (28)

The above set of equations give strain rates and subgrid viscosity at the edge-center on the full levels.
Therefore, interpolation is required to calculate Km and Kh at the interface levels for the diffusion of v1, h,
and all the tracers. The effectiveness of the diffusive transport is found to be very sensitive to this interpola-
tion [Stevens et al., 1999]. Some advocate the use of geometric interpolation over arithmetic interpolation
[Patankar, 1980, p. 197], but the observations by Stevens et al. [1999] suggest otherwise. We also performed
simulations to investigate the effect of arithmetic interpolation over geometric interpolation, and found
that the latter reduces the value of Km significantly, making the model unstable. In order to further under-
stand this sensitivity, we also calculated Km at the half level cell-centers by first interpolating |S| from edges-
to the cell- centers and then vertically to the half levels, which is normally done in LES models based on reg-
ular grids. The results obtained from both these approaches for the case in section 4.2 were almost indistin-
guishable from each other (not shown).

3.2. Turbulent Fluxes
The location of the stress terms s1l and s3l (same as that of S1l and S3l) used in the calculation of turbulent
fluxes are shown in Figure 2, which shows one of the triangles (acda) in Figure 1. It is advised to follow both
Figures 1 and 2 to understand the discretization explained below. Also, note that the location of a variable,
if required, is indicated by |() which should not be confused by the letters used as superscript indicating
interpolation scheme. Detailed derivation of some of the turbulent fluxes is given in Appendix B for
reference.

The subgrid diffusion term in equation (5) is calculated at the edge-center by discretizing the right-hand
side (RHS) of equation (8)

1
�qe

@s1l

@xl

����
e

5
1
�qe

@s11

@x1
1
@s12

@x2
1
@s13

@x3

� �����
e

; (29)

in flux-form as (see Appendix B for detailed derivation)

1
�qe

@s1l

@xl

����
e

5
1
�qe

� Km
cjpð

v1
ev jb2v1 je
Deb x1

2�DcjpÞ2Km
cjqð

v1je2v1
ev ja

Dae x1
2�DcjqÞ

Dqpx1

1
Km

cv jcð
v1

ev jc2v1je
Dec x2

1 Dab v2
ev

Dab x1
Þ2Km

cv jdð
v1je2v1

ev jd
Dde x2

1 Dab v2
ev

Dab x1
Þ

2Dgf x2
1

Dx3 K
i
mð

Dx3 v1

Dx3
1

Dqp v3

Dqp x1
Þ

2Dx3

�
:

(30)

Here D5 1
3 Smm that appears in equation (9), which is essentially one-third of the total divergence. All the

terms on the RHS of the above equation are integrated in time using Euler explicit except for the term
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Dx3 v1

Dx3
contributing to the vertical diffusion, which is integrated using Euler implicit (see Appendix A for

details).

The subgrid turbulence term for equation (6) can also be written in a similar manner at the v3 point as (writ-
ten without the density term)

@s3l

@xl

����
qk21=2

5
@s31

@x1

����
ek21=2

c

1
@s32

@x2

����
ek21=2

c

1
@s33

@x3

����
qk21=2

: (31)

It is important to note that the terms @s31
@x1

and @s32
@x2

are first calculated at edge-center of the half levels (see
Figure 2) and then interpolated to the cell-center as indicated by ðÞc

in the equation above. Fully discrete
set of equation reads as (dropping out k21=2 for clarity)

@s3l

@xl

����
q

5

Km
c i

jp

�
v3

v jb2v3
eje

Debx1
1

Dx3 v1

Dx3
jp
�

2Km
c i
jq
�

v3
eje2v3

v ja
Deax1

1
Dx3 v1

Dx3
jq
�

2Dqp x1

c

1

Km
v i

jc

�
v3

vjc2v3
eje

Decx2
1

Dx3

v21v2
cv jc

2
Dx3

�
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Once again, all the terms on the RHS of equation (31) are integrated in time using Euler explicit except for
the term @s33

@x3
, which is integrated using Euler implicit. The discretization for the turbulent diffusion of cell-

centered variables (h and qi) is straightforward. The formulation presented below is for equation (17) but
the same is applicable for tracers as well,

@~h
@t

 !
turb

5
1

ac

X
Kh

Dqph
Dqpx1

Dcd x1fo1
Dx3ðKh

i Dx3 h
Dx3
Þ

Dx3
: (32)

Here ac is the area of the triangle, fo is the orientation factor (61) indicating the orientation of the triangle
edge [Wan et al., 2013]. The first term on the RHS of equation (32) is the horizontal diffusion which is
obtained using the divergence theorem by summing the fluxes across the three edges of the triangle.

Figure 2. Schematic showing the locations at which the strain rates Sij are defined for (left) horizontal and (right) vertical turbulent diffu-
sion. The full and half vertical levels are indicated by k and k21=2, respectively, and the triangles at the half levels are marked by dashed
line. Naming convention same as that of Figure 1 is used. The direction vectors are also indicated in the middle.
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Similar to the momentum equations, the first term on the RHS of equation (32) is integrated explicitly in
time whereas the second term is integrated implicitly.

It is clear that the discretization of the turbulent diffusion terms is flux-conservative. Meeting this conservation
requirement on a triangular grid, while maintaining the overall computational performance, is not trivial. This is
primarily because of the several interpolations involved which are computationally expensive, and result in loss
of accuracy, and depending on the type of interpolation function, smoothening of the interpolant. For some
asymptotic descriptions this effectively implies an A-grid implementation [Gassmann and Herzog, 2008]. Despite
this overhead, the preliminary study revealed that the turbulence scheme in ICON takes about 20% of the over-
all computational time, which is comparable to the performance of the similar turbulence scheme imple-
mented in a structured grid in one of the standard LES model (UCLA-LES) used here.

3.3. Surface Boundary Condition
Surface fluxes in ICON are parameterized by the drag-law formulation. Surface fluxes of sensible and latent
heat in that formulation are written as:

ðw0h0 Þs52qCjvhðDx3Þj½hðDx3Þ2hs�; (33)

ðw0q0v Þs52qCjvhðDx3Þj½qvðDx3Þ2qv s�; (34)

where the subscript s indicate the value at the surface, C is the bulk-aerodynamical transfer coefficient for
turbulent heat exchange at the surface parameterized in ICON following Louis [1979], and vhðDx3Þ is the
horizontal velocity at the first model level. Surface temperature, hs, is required in equation (33) which is
either prescribed, for example, for the idealized simulations, or prognosed by the land-surface model.

Since the subgrid viscosity is calculated at the full levels in the present formulation, Brunt V€ais€al€a frequency
(N and Nm) is needed to be calculated at the first model level, which in turn requires hs. For the idealized
simulations, if not prescribed, it is obtained using the integrated form of the flux-profile relationships [Louis,
1979] that assumes logarithmic profile for mean quantities

hs5hðDx3Þ2R
h�
j
½lnðDx3=z0Þ2whðDx3=LÞ1whðz0=LÞ�; (35)

where the constant R (50.74) is the ratio of the drag coefficients for momentum and heat in the neutral
limit, z0 is the roughness length for momentum, h� is the surface layer temperature scale

h�52
ðw0h0 Þs

u�
; (36)

and L is the Monin-Obukhov-scale height

L5
hu2
�

jgh�
; (37)

where j is the von K�arman constant, and u� is the friction velocity. The functions w have the same form as
in Louis [1979] and are therefore not reproduced here.

3.4. Lateral Boundary Condition
Doubly periodic boundary conditions are required for the simulations performed in the present work. This
is achieved by treating the grid as a pseudo 2-D torus so that the boundaries in the respective coordinate
directions are joined to each other. In order to incorporate this geometry in ICON, modifications have been
made in the calculation of the interpolation coefficients and the discrete operators so that it uses Cartesian
coordinates instead of the default spherical coordinates. Option is also available to use open lateral bound-
ary conditions using data from the European Center for Medium-Range Weather Forecast (ECMWF), Consor-
tium for Small-Scale Modeling (COSMO) model, and the ICON model itself for limited-area simulations.

4. Benchmarking ICON-LES

Within the framework of HD(CP)2, two simulations are performed to benchmark ICON as a model capable of
doing large eddy simulations: the dry convective boundary layer (DCBL) and the cloud topped boundary
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layer (CTBL). Both simulations are performed in a doubly periodic domain with prescribed surface fluxes
and zero flux at the top. The model configuration of ICON capable of performing LES is termed as ICON-LES
(hereafter simply ICON). The setups used here have been studied extensively in the literature, both numeri-
cally and experimentally (see e.g., Deardorff [1972]; Willis and Deardorff [1974]; Moeng [1984]; Wyngaard
[1985]; Schmidt and Schumann [1989] and the references therein for DCBL, and Nitta and Esbensen [1974];
Sommeria [1976]; Nicholls and LeMone [1980]; Siebesma and Cuijpers [1995]; Stevens [2007], and the referen-
ces therein for CTBL). For this reason and because they test the representation of dry convective turbulence
and its coupling to the moist processes, they are good candidates for benchmarking LES models simulating
atmospheric boundary layer turbulence.

To further assist the benchmarking process, simulations are also performed using two well-established and
standard LES models: (a) UCLA-LES [Stevens et al., 2005] (hereafter simply UCLA) and (b) PALM [Raasch and
Schr€oter, 2001; Maronga et al., 2015]. The numerics in ICON and the standard LES models differ significantly
because of the differences in the underlying grid. Some of the major differences in the model dynamics,
which we think will be helpful in understanding the differences in the subsequent sections, are listed
below:

1. ICON uses the fully compressible set of equations whereas UCLA uses the anelastic approximation [Ogura
and Phillips, 1962] and PALM uses the Bousinessq approximation [Dutton and Fichtl, 1969]. Therefore,
ICON is forced to use a smaller time step allowing for the sound-wave propagation. For the simulations
performed here, the dynamical time step in ICON is about 0.02 times that of PALM and UCLA.

2. ICON solves the edge-normal velocity component, therefore it has three degrees of freedom in each grid
cell whereas it is four in the UCLA and PALM.

3. ICON uses hq as the prognostic variable for the thermodynamic equation, whereas UCLA and PALM use
hl as the prognostic variable.

4. ICON uses qv and ql as the prognostic variables to represent moist processes, whereas UCLA and PALM
use qt that is a conserved quantity in the absence of precipitation.

5. The advection scheme for momentum equations in ICON is second-order accurate in both vertical and
horizontal directions. In addition, ICON uses fourth-order artificial numerical dissipation for numerical sta-
bility in the momentum equations. In UCLA and PALM, the momentum advection schemes are fourth-
order central and fifth-order upwind, respectively.

6. The advection scheme for the thermodynamic equation in ICON uses the second-order upwind
[Miura, 2007] and central scheme for flux reconstruction in horizontal and vertical directions, respec-
tively. In addition, a Smagorinsky type second-order numerical dissipation is applied on temperature
fields for stability reasons. In UCLA and PALM, these are second-order (with flux limiter) and fifth-
order upwind, respectively.

7. The tracer advection scheme in ICON uses the second-order upwind scheme by Miura [2007] in horizon-
tal (there is an option for third-order upwind also) and third-order piecewise parabolic method by Colella
and Woodward [1984] in vertical direction with flux limiter. In UCLA and PALM, these are second-order
(with flux limiter) and fifth-order upwind, respectively.

8. ICON uses a second-order Predictor-Corrector time integration [Z€angl et al., 2014] scheme whereas UCLA
and PALM both use a third-order Runge-Kutta scheme.

9. ICON and UCLA use the classical Smagorinsky turbulence scheme whereas PALM uses the turbulent
kinetic energy based scheme of Deardorff [1980].

In addition to the artificial numerical dissipation, a three-dimensional divergence damping of fourth-
order is used in ICON to damp the acoustic waves. The damping coefficient is set to 0.0025Dt. It is advisa-
ble for LES simulations to minimize the use of dissipation so that it does not interfere with the subgrid dif-
fusion. However, the use of the artificial dissipation cannot be avoided for simulations with real
orography, therefore, we decided to switch it on to see its effect on the resolved scales in the benchmark
cases.

The points mentioned above clearly show the advantages that standard LES models (like UCLA and PALM)
have over the general purpose models like ICON, which must be kept in mind while analyzing the results
presented in the subsequent sections. A summary of the formal accuracy of the (advection) schemes used
in these models is provided in Table 1.
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4.1. Dry Convective Boundary Layer
4.1.1. Simulation Design
The dry convective boundary layer simulation
is initiated with a potential temperature profile
constantly increasing with height from a sur-
face temperature of hs 5 290 K at a constant
lapse rate of C 5 0.006 Km21. The initial wind
is set to zero and the turbulence is triggered
by adding random perturbations to the tem-

perature field up to a height of 300 m in ICON and up to 1600 m in UCLA and PALM. The boundary layer
then develops in time because of the fixed kinematic surface heat flux ðw0h0 Þs50:1 K ms21. Note that the
overbar ðÞ henceforth denotes spatial average over horizontal slabs of the computational domain and the
prime ðÞ0 is used to indicate the deviation from this slab average. Kinematic units are used to force the mod-
els with the same surface fluxes irrespective of the way density is handled by them individually.

Simulations are performed for 3 h on a domain of size 9.6 3 9.6 km2 in horizontal and 3.2 km in the vertical
with varying grid spacings to study grid convergence. Resolutions considered for the present case are
(Dx5Dy5Dz5D): (a) 100 m, (b) 50 m, and (c) 25 m. Ascribing similar grid resolution to a triangular mesh is
not possible. In practice, either the length between the two cell-centers or the length of the triangle edge
or the square root of the area of the triangle is used to identify the grid resolution. Following the latter, and
noting that the triangles in a doubly-periodic flat plane are equilateral, the triangle edge length (Dl) corre-
sponding to the resolution (Dx,Dy) of a regular grid cell is obtained by equating the area of the cells in the
two grids:

Dl � 1:5
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
: (38)

This definition ensures the same number of grid cells in both meshes. However, the spectral analysis of
the simulation data revealed that the actual grid resolution is lower than the present estimation. This is
discussed further in Appendix C. It is also worth noting that the same number of grid cells in both trian-
gular and rectangular meshes implies less degrees of freedom in ICON, which has three velocity
components per grid cell, compared to the rectangular mesh, which has four velocity components per
grid cell.

4.1.2. Time Evolution
We start by analyzing the time evolution of the horizontal mean of boundary layer height as simulated by
the three models in Figure 3. It is calculated as the height (zi) at which the vertical gradient of h is at maxi-
mum. Different model resolutions are indicated in each figure. The jumps in zi during the first 30–75 min
(progressively less for higher resolutions) indicate the spin-up phase during which turbulence is first estab-
lishing itself. The difference in UCLA and PALM as compared to ICON is because of differences in initializa-
tion (i.e., the height of initially prescribed random noise). ICON shows large oscillations for D 5 100 m while
keeping the (temporal) mean lower than the other LES models. One clear feature that is seen in these
results, which has been noted previously, e.g., by Sullivan and Patton [2011], is that the entrainment rate
(dzi/dt) decreases in all the models as the grid spacing D is reduced. The effect of the larger entrainment
rate at coarse resolution is seen as enhanced warming in Figure 4.

4.1.3. Vertical Structure
Vertical profiles of h, averaged spatially over the horizontal domain and temporally over the last 15 min of
the simulation (sampled every 30 s), are shown in Figure 4. For D 5 100 m, ICON captures the gross fea-
tures, like the superadiabatic layer near the surface and the interfacial layer, just like standard LES models.
The profile changes appreciably as the resolution is increased and ICON remains trustful to what are by
now familiar patterns, e.g., as shown by the UCLA and PALM. UCLA entrains more (see Figure 6 near zi),
the effect of which is more heating in the mixed layer and a deeper interfacial layer. At D 5 12.5 m, the h
profile in PALM and UCLA (not shown) does not change much indicating a nearly converged solution at
D 5 25 m. This can be also realized in Figure 5 where the convergence of horizontally averaged h at the
boundary layer height (calculated at the end of simulation) with increasing resolution is shown. From the

Table 1. Formal Order of Accuracy of the Schemes Used in the Discretiza-
tion of the Various Advective Terms in ICON, UCLA, and PALM

Model

Momentum
(Horizontal,

Vertical)

Thermodynamics
(Horizontal,

Vertical)

Tracer
(Horizontal,

Vertical)

ICON (2,2) (2,2) (2,3)
UCLA (4,4) (2,2) (2,2)
PALM (5,5) (5,5) (5,5)
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figure it is clear that all the models approach convergence at the same rate with ICON following PALM
more closely.

The subgrid contribution to the total flux should decrease with increasing resolution, so that the resolved
and the total flux coincide except near the surface and inversion. To study this, the total and subgrid part of
the mean vertical turbulent heat flux is plotted in Figure 6 for different resolution. The resolved flux in ICON
is obtained as

w0h05wh2�w�h ; (39)

which leads to some diagnostic error which is visible as a small bump near the surface in all the panels (e.g.,
at z 5 100 m in the middle panel). The other models avoid such errors by directly using the advective fluxes
as the resolved scale fluxes, because �w � 0 due to incompressibility and periodicity.
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Figure 3. Time evolution of boundary layer height at the indicated resolutions.
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At D 5 100 m, PALM has a small (posi-
tive) heat flux immediately above the
inversion which is not seen for the
other models. This is an artifact indica-
tive of insufficient numerical damping
in the PALM model. A similar pattern
was found in Moeng [1984] who used a
central difference scheme in the verti-
cal. The subgrid-scale flux in ICON is
almost the same as in UCLA because
they use the same turbulence scheme,
whereas it is slightly smaller in PALM,
at all resolutions. As expected, subgrid-
scale fluxes of ICON (and other models)

decrease, hence the resolved scale fluxes increase, as the resolution is increased. In general, PALM shows
the highest turbulent flux in the surface layer. At the inversion, w0h0 in ICON and PALM are about 10% of
the surface value (at all resolutions), whereas it is about 18% in UCLA. These values are within the expected
range of 10–30% [Stull, 1988, p. 478]. The deeper and (negative) stronger inversion in UCLA explains its
larger cooling rate in the inversion layer in Figure 4 [Garcia and Mellado, 2014].

Previous model intercomparison studies have shown that significant spread exists between models for ver-
tical velocity variance (w02 ) [Siebesma et al., 2003; Stevens et al., 2001]. In order to quantitatively assess w02 ,
we have used the DNS results of Garcia and Mellado [2014] for reference in Figure 7. Although the subgrid
contribution to w02 is missing in the LES models (because of its unavailability from ICON), we have noted
from UCLA and PALM that its contribution is fairly small to affect the discussions below. In order to dimen-
sionalize the DNS results, zi 5 700 m and a convective velocity scale w�5½ðg=hsÞðw0h0 Þszi�1=3

51:33 ms21

from ICON results at D 5 25 m are used.

w02 is somewhat underestimated by all the models at D 5 100 m, except for ICON and UCLA which overesti-
mate it above z 5 400 m and z 5 600 m, respectively. At D 5 50 m, all models underestimate the variance
below z � 200 m. Beyond z 5 400 m, ICON and UCLA overestimate the variance whereas PALM underesti-
mates it. At the highest resolution, PALM correctly captures the variance throughout the boundary layer,
except with an overestimation near the top. At this resolution, both ICON and UCLA show an improvement
for z< 200 m but they overestimate the DNS above 200 m. This consistent overestimation by ICON and
UCLA can be understood by noting that in the absence of mean (horizontal) wind and subsidence,

@w02

@t
5

2gw0h0q
hq

1other terms ; (40)

for the present case. By closely inspecting Figure 6, we note that w0h0 (5 w0h0q for DCBL) is also overesti-
mated by ICON and UCLA in a similar manner.

Results in this section suggest that ICON performs satisfactorily in comparison to UCLA and PALM. For
D 5 100 m, ICON captures the salient features of the boundary layer better than the models run at a few km
resolution without parameterized boundary layers (e.g., cloud resolving models). ICON also shows grid con-
vergence which is necessary to ensure the consistency of the discrete system. We focused on the vertical
heat flux to tune the value of the Smagorinsky constant, and Cs � 0:2 was found to give the best results.
The model became unstable for Cs < 0:11. We also performed simulations using 1

k 5 1
CsD

1 1
jx3

, instead of
equation (11), to get reduced values of Km and Kh near the surface. The fluxes did improve near the surface
but we also saw wiggles near the surface in the mean profile of temperature, so we decided to stay with
equation (11).

4.1.4. Spatial Structure
It is also instructive to look at the spatial structure of the flow field for better assessment of the model. The
most commonly known spatial feature in convective boundary layers is the presence of a spoke-like pattern
near the surface [Mason, 1989; Schmidt and Schumann, 1989]. In order to find out whether ICON can resolve
such a pattern on its triangular grid, contours of the fluctuations of the virtual potential temperature and
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Figure 5. Mean potential temperature at the boundary layer height with increas-
ing resolution.
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vertical velocity in a horizontal cross section are plotted in Figure 8 for D 5 25 m. The figures clearly show
those spoke-like patterns in both w0 and h0q contours. By visually inspecting the figure, we find that the typi-
cal length of the segments forming this pattern is about 1.3zi, similar to the value reported in Schmidt and
Schumann [1989]. As expected, w0 and h0q are strongly correlated as required by the sign of vertical heat
flux.

4.2. Cloud Topped Boundary Layer
4.2.1. Simulation Design
For the benchmarking of ICON as an LES model it is necessary to ensure that it correctly represents the
strong nonlinearity of moist processes. This is achieved by including (nonprecipitating) clouds in a setup
otherwise similar to that for the dry convective boundary layer. We follow the idealized setup of cumulus
convection described in Stevens [2007]. The simulation has been initialized with the same conditions as the
DCBL case to carefully examine the effect of moist convection as opposed to the dry case. In addition, mois-
ture is initialized with an analytic profile for specific humidity given by
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cated by dashed line.
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qvðzÞ50:0088 expð2z=1500Þ : (41)

The factor 0.0088 is roughly 0.74 times the saturation specific humidity at the surface. This profile corre-
sponds to an exponentially decreasing relative humidity, which in turn ensures an initial equivalent poten-
tial temperature profile decreasing with height which is necessary for the growth of a conditionally
unstable cloud layer [Stevens, 2007]. The initial temperature and humidity profiles are shown in Figures 10a
and 10b as dotted lines. The initial wind is set to zero as in the DCBL case.

Similar to the DCBL, the boundary layer is set to grow in time due to a fixed forcing at the surface. Instead
of fixing the sensible and the latent heat flux at the surface, an extra degree of freedom is provided to the
system by allowing these fluxes to change in time while maintaining a constant surface buoyancy flux
B5

g
H ðw0h

0
qÞs 5 0.0007 m2 s23 for the reference temperature H 5 290 K. The surface thermodynamic varia-

bles, hs and qv s are obtained by iterating the following equation:

B5
g
H

CjvhðDzÞÞj½ðhs2�hðDzÞÞ1��hðDzÞðqv s2qv ðDzÞÞ�; (42)

where qv s5qsatðps; hsð ps
p00
ÞRd=cpd Þ is the saturation humidity at surface pressure ps 5 1020 hPa. Here �hðDzÞ and

qv ðDzÞ are the horizontally averaged potential temperature and specific humidity at the first model level,
and �5Rd=Rv21. The turbulent exchange coefficient, CjvhðDzÞj, has been fixed to 0.02 ms21 in all the mod-
els. For a typical value of the transfer coefficient C (�0.001–0.002) over sea surface at low wind speed [Bel-
jaars, 1994], CjvhðDzÞj5 0.02 ms21 implies very high wind speed of order 10 ms21. Such large wind speeds
are unrealistic, but because they only serve to determine the surface fluxes, this only effects the strength of
the near surface gradients of temperature and moisture.

Results in the previous section clearly show convergence of ICON as the grid resolution is increased. The
intermediate resolution of D 5 50 m was found to be in good agreement with D 5 25 m. Similar conclusion
was drawn for the CTBL case with a base simulation using D 5 50 m and another simulation with double
the number of points in the vertical. It is for this reason that we only use the results from the base simula-
tion in this section. The domain size is kept the same as in the dry case with doubly periodic boundary con-
ditions and the solution is integrated for 25 h.

4.2.2. Time Evolution
Figure 9a shows the time evolution of the boundary layer height as simulated by the three models. As
noted earlier in Figure 3, UCLA and PALM start with a big jump due to the random initialization. Before the
cloudy layer develops, the evolution of zi in all the models is consistent with the DCBL case at D 5 50 m in
the sense that ICON has lowest zi and PALM has the highest. UCLA and PALM match well until t 5 20 h after
which they depart slowly. ICON simulates a shallower boundary layer (by 150–200 m). The rate of boundary
layer growth, dzi

dt , in ICON (and in both other models) increases due to the developing cloud layer after

Figure 8. Contour plots of (left) h0q (K) and (right) w0 (ms21) in a horizontal plane at z 5 137 m drawn at the end of the simulation for D 5 25 m.
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�12 h. This is consistent with earlier findings [Stevens, 2007] that dzi
dt varies as t1=2 when the boundary layer

is dry, and as t when the cloud layer develops.

Clouds are triggered at t � 5 h in ICON and PALM, and at t � 10 h in UCLA as seen in Figure 9b. All models
maintain a near constant cloud fraction after t 5 15 h. ICON saturates at a cloud fraction of 0.2, PALM at
0.13, and UCLA at 0.1. In order to ensure that the spread in cloud fraction lies within the known limits of
uncertainty due to different model configurations, an uncertainty range is added in the figure correspond-
ing to the spread found in the LES intercomparison study of cumulus convection as observed during the
Barbados Oceanographic and Meteorological Experiment (BOMEX) by Siebesma et al. [2003]. The range
shows a spread of 50% about the ensemble mean which is marked as a thin solid line. It is clear that all the
models stay within this range despite all the differences.

The surface temperatures in all the models match quite well, except for some initial oscillations in ICON (see
Figure 9e). These oscillations are more apparent in the surface fluxes in Figures 9d and 9e for t< 10 h. At
first we thought that the oscillations are due to the fact that ICON has lesser degree of freedom than UCLA
and PALM, therefore we did simulations with higher horizontal resolution so that the degree of freedom in
ICON becomes equal to the other models (see discussions in Appendix C) and also with doubled vertical
resolution (D3 5 25 m). Simulation with higher horizontal resolution had minimal effect (not shown). Simula-
tion with doubled vertical resolution, as indicated by ICON–HI in Figures 9c and 9d, show that the
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Figure 9. Time evolution of the indicated quantities for the cloud topped boundary layer simulation. The black solid line in Figure 9b is the mean over all the three models used in the
present paper, and the spread of 50% [from Siebesma et al., 2003] about this ensemble mean is indicated by the bars. The magenta lines in Figures 9c and 9d are from ICON after dou-
bling the number of vertical levels.
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oscillations are greatly reduced in ICON suggesting that the oscillations are mainly due to grid-locking of
the inversion height to model levels.

Besides these initial oscillations, the surface fluxes in the models evolve in the same fashion. ICON simulates
higher ðw0h0 Þs (by 5 W m22) throughout the simulation and smaller ðw0q0v Þs (by 20 W m22) after the forma-
tion of the clouds, thereby maintaining a constant value of the buoyancy flux.

4.2.3. Vertical Structure
In this section we look at the vertical structure of the thermodynamic variables and the turbulent fluxes in
ICON. The vertical profiles are obtained by averaging spatially in the horizontal direction and temporally
over the last 30 min (sampled every 30 s). The liquid water potential temperature (hl ) profile in Figure 10a
shows that ICON is about 0.2 K cooler compared to UCLA in the subcloud layer. Similar behavior was seen
in the DCBL case. We believe that this additional cooling in ICON is due to the fact that a fraction of the
heat transported from the surface is used in the expansion work in ICON, thereby generating mean vertical
wind (see Figure 10d), which does not take place in the other two models because of the Bousinessq and
anelastic assumptions. Furthermore, the subcloud layer top in ICON is slightly less than 700 m where UCLA
and PALM converge. This implies a shallower cloud base in ICON which can also be seen in the ql profile in
Figure 10c. The specific humidity profile from ICON lies exactly between that of PALM and UCLA as seen in
Figure 10b.
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Figure 10. Mean vertical profiles of (a) hl , (b) qv , (c) ql , and (d) w. The initial conditions are indicated by the black dashed lines, and the black solid line in Figure 10c is the mean over the
three models and the uncertainty range from Siebesma et al. [2003].
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As previously mentioned, ICON prognoses both ql and qv whereas PALM and UCLA only prognose qt. qc is
then diagnosed using the condensation scheme of Sommeria and Deardorff [1977]. Despite this difference,
the mean cloud liquid water in ICON stays within the range noted earlier by Siebesma et al. [2003], as indi-
cated by the bars in Figure 10c. The reason for a lower cloud base in ICON can be understood by realizing
that the air near the surface in ICON is moister than in the other models (by 0.2g kg21) whereas the temper-
ature is a little lower (by 0.2 K). Therefore, an air parcel ascending from the surface saturates much faster in
ICON in comparison to PALM and UCLA. Furthermore, the slightly lower cloud top in ICON suggests
enhanced mixing with the dry atmosphere above, in comparison to other models. This extra mixing near
the cloud top in ICON is either due to the implicit diffusion in the tracer advection scheme or the flux limiter
which gets more active near the cloud boundary in ICON because of the use of nonconservative tracers.

The lower maximum (negative) w0h0l flux in ICON as seen Figure 11a is because of lower liquid water vertical
flux (w0q0l ) (see Figure 11c), which can be understood by noting that

w0h0l 5w0h02
1
p

Lv

cpd
w0q0l :

Figure 11a also shows a small kink at the cloud base in ICON. This is probably due to the use of the noncon-
servative thermodynamic and moisture variables in ICON which creates a discontinuity at the cloud
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Figure 11. Turbulent flux (resolved) profiles of the indicated quantities in the cloud topped boundary layer simulation. The zero value is indicated by black dashed line.
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boundary. This effect, although very small in the pres-
ent case, can generate significant errors in cases with
strong convection.

The turbulent buoyancy flux in the subcloud layer of
a CTBL is known to follow the DCBL case in a nondi-
mensional sense [Stevens, 2007]. The maximum
resolved buoyancy flux in DCBL case for D 5 50 m
was found to be around 84% of the surface flux pre-
scribed in all models. Looking at the similar maxima
in Figure 11b (near the surface) it appears that ICON
resolves slightly less, around 76% of the prescribed
value (ðw0h0qÞs 5 25 W m22) whereas UCLA and PALM
resolve nearly 84%. However, as was mentioned dur-
ing the discussion of Figure 6, this is simply a diag-
nostic error which arises due to the vertical averaging
of the fluxes in ICON from main levels to the interface
levels for plotting purposes. Also, Figure 11b shows
two (positive) peaks as one would expect in a CTBL.
The flux decreases linearly in the subcloud layer up
to the cloud base where it resolves about 10% (nega-
tive) of ðw0h0qÞs in all models.

The resolved vertical flux of specific humidity in ICON
is found to be smaller than in the other two models

(see Figure 11c). In the subcloud layer it is a consequence of its lower surface moisture flux, whereas in the
cloud layer it is probably due to the enhanced mixing near the cloud top in ICON. The liquid water vertical
flux (w0q0l ) in ICON compares very well with other models (see Figure 11d) despite the aforementioned dif-
ferences in the way cloud liquid water is handled.

Vertical profiles of resolved vertical velocity variance by the three models are shown in Figure 12. Similar to
the dry case in Figure 7 for D 5 50 m, w02 in ICON and UCLA are nearly the same till the lowest peak at
z � 300 m. At the peak and beyond that, the variance in ICON is slightly smaller than in UCLA in the sub-
cloud layer, which is different from the dry case. In the cloud layer and above, the differences between the
two is reduced again.

Overall, the results of the CTBL simulation show that ICON follows the expected trend and agrees well with
the standard LES models with some differences in and around the cloud layer. We believe that such differ-
ences are bound to show up because of the inherent differences in the model and experimental designs.
Some of the differences in both DCBL and CTBL cases are also because of the artificial initial profiles of tem-
perature and moisture that produces very thin boundary layer in the early phase of the simulation, which
cannot be resolved with the prescribed grid resolution. While it is hard to argue how long and by how
much this affects the simulation, we think that in the presented simulations such effects are relatively
smaller after the first hour of the simulation. To confirm this, we also performed the BOMEX simulation [Sie-
besma et al., 2003] that does not suffer from similar initialization issues. The results from this case do not dif-
fer in any important way from those from the simulation of the CTBL case, and are therefore not presented
here.

As already mentioned, several interpolations are required in ICON for spatial discretization which can
lead to (numerical) errors and smoothening of the results. On top of that, unlike standard LES models
that use high-order schemes for spatial discretization, the triangular grid in ICON poses a challenge on
the use of higher-order schemes in the horizontal. It is, however, to be noted that the overall (spectral)
accuracy of the models using such higher-order schemes decreases as the complexity of the experiment
increases. For complex cases, the use of artificial second-order numerical dissipation becomes necessary
to keep the model stable, which reduces the order of the leading truncation error term of the spatial dis-
cretization scheme to second order, thereby reducing the overall accuracy of the spatial discretization to
first order [Ghosal, 1996].

0 0.2 0.4
0

700

1400

2100

<w′2> (m2s−2)

z 
(m

)

ICON
UCLA
PALM

Figure 12. Vertical velocity (resolved) variance in the cloud-
topped boundary layer simulation.
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5. Conclusion

This paper describes the extension of a unified modeling system for climate and weather forecast ICON
(ICOsahedral Nonhydrostic) to a large-eddy simulation framework and its comparison against two well-
established LES models.

The first part details the implementation of the turbulence scheme on the triangular grid used in ICON
and the numerical technique used to integrate the diffusion equations. Conservative implementation
of a three-dimensional turbulence scheme in a triangular grid is nontrivial and involves several inter-
polation operations. Despite these computational overheads, the turbulence scheme in ICON-LES
takes less than 20% of the overall computational time in case of a dry convective boundary layer,
which is comparable to the performance of the similar turbulence scheme implemented in the quadri-
lateral grid of UCLA-LES.

The second part of the manuscript deals with the validation of ICON-LES against two standard LES models
(UCLA-LES and PALM) for two test cases: dry convective boundary layer, and cloud-topped boundary layer.
Considering the compromises that ICON undergoes from being a unified modeling system, and that it is
mostly second-order accurate in space whereas UCLA-LES is fourth and PALM is fifth-order accurate, the
eddy-resolving capability of ICON-LES is fairly good. The turbulence scheme in ICON-LES captures the mean
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Figure 13. The horizontal spectra of the vertical velocity at indicated resolutions in log-log scale. The data have been multiplied by some factors in order to avoid overlap. Also shown is
the expected Kolmogorov’s spectrum (/ k25=3) (black line), for D15 50, 25 m.
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flow characteristics quite satisfactorily, and produces similar turbulent structure and statistics in comparison
to the standard LES models. In particular,

1. it was shown in section 4.1 that ICON-LES approaches toward a converged solution as the grid resolution
is increased.

2. the profiles of resolved vertical fluxes for both DCBL and CTBL indicate that the eddy-resolving capabil-
ities of ICON-LES is comparable to that of the standard LES models.

3. the lower cloud top in ICON-LES for the CTBL case suggests enhanced (numerical) mixing near the cloud
top which could have been activated due to the use of nonconservative variables in ICON which creates
a discontinuity at the cloud boundary.

Appendix A: Coupling of Dynamics and Turbulence

In this section, the sequential coupling of the dynamics with the turbulence parameterization in ICON is
explained. When marching in time from nDt to ðn11ÞDt; Dt being the physics time step, let us indicate the
variables after being updated from dynamics by ðÞn1. Subgrid-scale diffusion is applied on equation (5) in
three stages as following:

Dt v1ðvn1
1 ; vn1

2 ; ::Þjh5
1

qn1

@sn1
11

@x1
1
@sn1

12

@x2

� �
; (A1)

Dt v1ðvn11
1 ; vn1

1 ; ::Þjv5
Dx3

�K i
m

Dx3 vn11
1

Dx3
1

Dqp vn1
3

Dqp x1

� 	
2Dx3

; (A2)

vn11
1 2vn1

1

Dt
5Dt v1jh1Dt v1jv : (A3)

The RHS of equation (A1) is composed of the first two terms in equation (30), representing the horizontal
diffusion, all evaluated using variables from dynamics. This equation is integrated in time using Euler explicit
and the tendency is stored in Dt v1jh. Vertical diffusion is then performed using equation (A2) where all the
terms in the RHS are also evaluated using the ðÞn1 variables, except for the term involving the vertical deriv-
ative of v1, which is evaluated implicitly using Euler implicit method. This is indicated in equation (A2) by
the use of an intermediate time step n11. The tendency from this equation is then combined with the hor-
izontal tendency in the final equation to get the velocities at ðn11ÞDt.

Subgrid-scale diffusion for the vertical momentum equation is similarly performed by splitting the RHS of
equation (31) into the horizontal and vertical components. As for the thermodynamic and tracer variables,
the implementation is described for h following equation (32). That is,

Dthðhn1Þjh5
1

ac

X
Km

Dqph
n1

Dqpx1
Dcd x1fo; (A4)

Dthðhn11; hn1Þjv5
Dx3 Km

i Dx3 hn11

Dx3

� 	
Dx3

; (A5)

hn112h�

Dt
5Dthðhn1Þjh1Dthðhn11; hn1Þjv : (A6)

Here again, equation (A4) is integrated explicitly using the variables from dynamics and the tendency is
stored in Dthjh, and equation (A5) is integrated implicitly storing the tendency in Dthjv . It is to be noted that
Km and Kh are always evaluated using the variables from dynamics.

Appendix B: Discretization of Turbulent Fluxes

Here we derive some of the turbulent fluxes on ICON grid for the interested readers.

Following steps are taken to derive equation (30). The first term on the RHS of above equation, which is due
to the first term in the RHS of equation (29), is obtained as
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The second term in RHS of equation (30) involves some manipulation which can be realized by noting that
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At this point, if we make the assumption that Kmjf 5ðKmjc1KmjeÞ=2 and Kmjg5ðKmjd1KmjeÞ=2, and that v2 at
nodes i; j; k; l are also arithmetic averages of their neighboring vertices (e.g., v2ji5ðv2jc1v2jbÞ=2), after some
manipulation we end up with the second term of the RHS of equation (30). The third term on the RHS of equa-
tion (30) is a straightforward expansion of @s13

@x3
utilizing the strain rates located at ek11=2 and ek21=2 in Figure 2.

The first term on RHS equation (31), which is due to @s31
@x1

, is evaluated at ek21=2 as (dropping out k21=2 for
clarity)
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Rest of the terms can be derived in a similar manner and are therefore not derived here.

Appendix C: Grid Resolution in ICON

It is mentioned at the outset that the results in this section are relevant for flat meshes only.

One of the difficulties with the triangular mesh is an a-priori estimation of its grid resolution (should not be
confused with the effective grid resolution). For the present experiments, we have defined the resolution as
square root of the area of the triangle, which gives

D150:67Dl : (C1)

The other two definitions which are frequently used are the distance between the two cell-centers, which gives

D250:58Dl (C2)

and, the triangle edge length that gives D3 5 D l. Of course, D3 > D1 > D2. An advantage of using the first
definition is that it gives the same number of grid points as a regular mesh with an added disadvantage of
having to deal with lesser degree of freedom per grid cell for velocity components. If one chooses to define
a resolution such that the degrees of freedom remains the same as in a regular mesh, then for Ng number

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000431

DIPANKAR ET AL. LARGE EDDY SIMULATION USING ICON 984



of total grid points in a regular quadrilateral mesh, 4
3 Ng grid points will be required in the ICON grid. Noting

that the total number of grid points in an ICON grid is 2ðL=DlÞ2, for a square domain of length L, we can esti-
mate the required resolution to be

D45

ffiffiffi
2
3

r
Dl � 0:82Dl : (C3)

In order to see how the estimation from equation (C1) compares with a regularly spaced grid model, we
have compared the horizontal spectra of vertical velocity from ICON to that of PALM and UCLA for the
DCBL case. These one-dimensional spectra are obtained by Fourier transforming the field along a horizontal
line and averaging over all parallel lines at a fixed height and time. ICON spectrum is obtained by interpolat-
ing its velocity field to a regular grid with the same number of grid points as the standard LES models using
distance weighted averaging technique. That is, the D1 5 50 m simulation results are interpolated to 192 3

192 grid points and the D1 5 25 m to 384 3 384 grid points. The corresponding spectra at z 5 500 m are
shown in Figure 13.

Figure 13 shows that the Kolmogorov’s spectrum (/ k25=3) is followed by all the models, and the represen-
tation of the larger scales improves as the resolution is increased to D1 5 25 m. The peculiarity of the ICON
data is that it shows a small spectral bump toward the high wave numbers (see also Figure 14 where the
ICON spectrum for D1 5 50 m is redrawn). This bump is indicative of aliasing in ICON data which lead to the
accumulation of energy at the scales near the Nyquist limit. It means that 192 3 192 grid points is more
than the actual number of points required to properly represent ICON data on a regular grid. After some tri-
als with less number of grid points, we found that when interpolated to a 148 3 148 grid the bump in the
spectrum almost disappears (see the blue colored line in Figure 14). This implies that 148 3 148 number of
grid points in a regular grid is a fairly good representative of the ICON data at D1 5 50 m. We use this to
infer that the spectral resolution of ICON grid is

D55
192
148

D1 � 0:87Dl : (C4)

The estimate from equation (C4) cane be generalized further, accounting for the interpolation and measure-
ment errors, to deduce that D5 lies is the range of 0.8Dl 2 0.9Dl, which, at the best, is a good approximation.
Interestingly, the resolution D4 based on the degrees of freedom lies within the range of D5. However, more
investigation is required in this direction.
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