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ABSTRACT

The inversion layer (IL) of a clear-sky, buoyancy-driven convective boundary layer is investigated using

large-eddy simulations covering a wide range of convective Richardson numbers. A new model of the IL is

suggested and tested. The model performs better than previous first-order models of the entrainment and

provides physical insights into the main controls of the mixed-layer and IL growths. A consistent prognostic

equation of the IL growth is derived, with explicit dependence on the position of the minimum buoyancy flux,

convective Richardson number, and relative stratification across the inversionG. The IL model expresses the

interrelationship between the position and magnitude of the minimum buoyancy flux and inversion-layer

depth. These relationships emphasize why zero-order jumpmodels of the convective boundary layer perform

well under a strong inversion and show that thesemodelsmiss the additional parameterG to fully characterize

the entrainment process under a weak inversion. Additionally, the position of the minimum buoyancy flux

within the new ILmodel is shown to be a key component of convective boundary layer entrainment. The new

IL model is sufficiently simple to be used in numerical weather prediction or general circulation models as

a way to resolve the IL in a low-vertical-resolution model.

1. Introduction

Bulkmodels of the boundary layer, introduced by Ball

(1960), Lilly (1968), and Betts (1973), have been useful

tools to understand the dynamics of the convective

boundary layer (CBL). The so-called zero-order models

of the CBL assume a mixed layer of conserved variables

capped by a jump corresponding to a sharp, infinites-

imally thin inversion layer (IL). Even though zero-order

models correctly predict the CBL growth in a linearly

stratified fluid, those models cannot diagnose the re-

lationship between the IL structure and CBL entrain-

ment nor the CBL dynamics under conditions of a deep

IL since, by construction, they assume an infinitesimally

thin IL. The tight relationship between the structure of

the IL and the entrainment rate becomes clear when one

investigates the turbulence kinetic energy (TKE) budget

(Zilitinkevich 1991; Fedorovich and Mironov 1995;

Fedorovich et al. 2004). The depth of the IL defines the

region of buoyancy consumption (Deardorff 1979;

Hägeli et al. 2000) and is related to the CBL entrain-

ment rate (Zilitinkevich 1991; Fedorovich andMironov

1995; Fedorovich et al. 2004; Garcia andMellado 2014).

In the IL, rapid vertical variations in the buoyancy

fluxes can occur over a very short distance of a few tens

of meters (Deardorff 1976; Randall 1980b, 1984). The

IL is therefore unresolved in current generations of

weather and climate models (Teixeira et al. 2008) and
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still remains a modeling challenge even for large-eddy

simulations (LESs) (Stevens and Bretherton 1999;

Bretherton et al. 1999; Stevens and Lenschow 2001;

Sullivan and Patton 2011) so that direct numerical sim-

ulations (DNSs) of the ILmay be needed (Mellado et al.

2010; De Lozar and Mellado 2013; Garcia and Mellado

2014). A better understanding of the dynamics of the IL

is crucial, because the IL impacts (i) the convective in-

hibition and the transition from dry to shallow convec-

tion, as well as themagnitude of the cloud-basemass flux

(Bretherton and Park 2009; Park and Bretherton 2009;

Hohenegger andBretherton2011;Gentine et al. 2013a,b,c);

(ii) the transition between stratocumulus and shallow

cumulus (Randall 1980a); and (iii) the dynamics of the

entrainment and the heat and moisture budgets of the

boundary layer. The IL is therefore at the core of a

correct representation of most boundary layer regimes

and the transition between them.

To represent the finite depth of the IL, Betts (1974)

introduced a first-order model of the dry CBL with a fi-

nite IL, where the profiles of conserved variables and

their fluxes were linear. The entrainment at the mixed-

layer top was derived assuming a constant potential tem-

perature jump and constant inversion depth. Deardorff

(1979) argued that first-ordermodels of the boundary layer

were not more useful than zero-order models, because in

the former models, the mixed-layer top zm is assumed to

match theminimumbuoyancy flux height zi. This assumed

correspondence between the mixed-layer top and mini-

mum buoyancy flux height generates a singularity for

the IL growth rate equation under strong inversions.

VanZanten et al. (1999) reinvestigated Deardorff’s

(1979) work but did not share his conclusions. Since

Deardorff et al. (1980), the IL depth has generally been

parameterized [e.g., defined as a function of the con-

vective Richardson number (Ri)] to avoid the singular-

ity pointed out by Deardorff (1979).

In existing first-order models based on Betts (1974),

both the conserved variable and heat flux profiles are

assumed linear in the inversion. It is clear that these

profiles are incompatible: parabolic flux profiles should

correspond to linear profiles of conserved variables.

Deardorff (1979), followed by Fedorovich and Mironov

(1995) and Fedorovich et al. (2004), proposed a more

realistic representation of the IL, the so-called general

structure model (GSM). In the GSM, consistent IL pro-

files and prognostic equations for the IL growth can be

derived. Nonetheless, the structure of the IL in the GSM

needs to be parameterized (Fedorovich and Mironov

1995; Fedorovich et al. 2004), which limits its applicability.

The objectives of the present paper are as follows:

1) to investigate the structure of the IL using LES and

2) to develop a minimal IL structure model, which does

not require additional parameterization and can cor-

rectly predict the IL growth and structure. The focus is

on the dry buoyancy-driven convective boundary layer;

however, the results are expected to be extended to

shear-driven and stratocumulus CBL. The paper is or-

ganized as follows: in section 2 we analyze previous bulk

models; in section 3 we propose a structure of the IL

based on LES results; in section 4 we develop the new

inversion model that can resolve the problems of first-

order CBL models, and we provide a derivation of the

IL growth based on the TKE budget; in sections 5 and 6

we present the model results; and in section 7 we present

conclusions of the study.

2. Discussion of current first-order models

The CBL is assumed to be dry (i.e., without moisture).

Results are therefore presented in terms of potential

temperature u. The profiles of u and of the vertical tur-

bulent flux of u, w0u0, in a first-order CBL model are de-

picted in Fig. 1 (Betts 1974; Deardorff 1979). In these

models, zm is collocated with zi, and the flux is linearly

decaying in the mixed layer. In the IL the potential tem-

perature profile and the corresponding flux profile are lin-

ear, which is inconsistent, as discussed in the introduction.

The ensemble-averaging operator is denoted with an

overbar. Neglecting horizontal advection and the radi-

ation contribution, which are small in the dry CBL, and

assuming a horizontally homogeneous CBL, the poten-

tial temperature conservation reads (neglecting over-

bars for averages for themean variables) (e.g., Kim et al.

2006)

›u

›t
52

›w0u0

›z
2w

›u

›z
, (1)

with w0u0 being the turbulent vertical flux of potential

temperature and w being the horizontally averaged

FIG. 1. Schematics of (left) a typical first-order model potential

temperature profile and (right) its corresponding vertical turbulent

flux profile in a clear-sky convective boundary layer.
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vertical velocity at height z. Taking the partial derivative

in z of the potential temperature conservation law and

inverting the time t and z derivative, we get the simple

relationship (because the vertical gradient of u vanishes

in the mixed layer)

›2

›z2
(w0u0)5 0. (2)

The profile of w0u0 is therefore linear in the mixed layer.

This is a well-known result of mixed-layer models (Lilly

1968).

In the IL, extending from zm to the top of the in-

version h, if we take the second derivative of the con-

servation Eq. (1), we find that the third-order derivative

of w0u0 vanishes. A linear potential temperature profile

therefore imposes a parabolicw0u0 profile in the IL.With

a parabolic flux profile, zi could be located above zm. We

have evaluated the use of such a parabolic flux profile,

and it generates an ill-defined solution when using the

flux closure; therefore, it is not discussed further.

Soon after the introduction of the first-order model by

Betts (1973, 1974), Deardorff (1979) pointed out that the

representation of the inversion in such models was

oversimplified for several reasons:

1) The observed maximum vertical u gradient is gener-

ally much higher in observations than in first-order

models. Indeed the u profile exhibits a strong curva-

ture in the IL with high gradient near the top of the

inversion.

2) The minimum buoyancy level is located above the

mixed-layer top.

3) The assumption that zm equals zi in first-order

models generates an ill-defined solution: the prog-

nostic equation of the IL leads to spurious results in

the case of a sharp inversion.

Deardorff (1979) therefore concluded that first-order

models were not any more useful than zero-order

models. As a result, in subsequent uses of first-order

models, the inversion depth has been parameterized

(e.g., Deardorff et al. 1980; vanZanten et al. 1999; Pino

et al. 2006; Kim et al. 2006).

To correct for the above-mentioned shortcomings of

first-order models, Deardorff (1979) proposed a more

realistic IL parameterization. Fedorovich and Mironov

(1995) and Fedorovich et al. (2004) improvedDeardorff’s

GSM by introducing a self-similar representation of the

buoyancy profile within the IL and evaluated the model

using LES data. One of the issues with the GSM is that,

in this model, the IL profile of buoyancy needs to be

parameterized. How additional factors such as shear or

radiation will affect such parameterization is unclear.

We therefore try to derive an IL model that is suffi-

ciently general so that additional components (i.e.,

shear, radiation, etc.) can be later added. We start with

a simple dry shear-free CBL case; however, the model

can easily be extended to include liquid water and

radiation. To derive the model, we first investigate

the typical IL structure in the shear-free CBL using LES

data.

3. Large-eddy simulation analysis

a. Large-eddy simulation setups

In this analysis, we have used three shear-free CBL

cases: (i) a weak-inversion case (Sullivan et al. 1998),

(ii) a strong-inversion case (Sullivan et al. 1998), and (iii) a

CBL growing against a linear stratification (Conzemius

and Fedorovich 2006). All three simulations have been

forced by a time-constant surface buoyancy flux and no-

slip boundary conditions for the horizontal velocity and

impermeability condition for the vertical component of

the velocity. The three initial and final profiles are de-

picted in Fig. 2.

The cases have been run with MicroHH (C. van

Heerwaarden et al. 2014, unpublished manuscript) (http://

github.com/microhh). MicroHH is a three-dimensional

computational fluid dynamics code that solves the fil-

tered Navier–Stokes equations with the Boussinesq ap-

proximation applied on a staggered grid. The model

uses a fully conservative second-order finite difference

scheme in space (Morinishi et al. 1998) and a third-order

low-storage Runge–Kutta scheme in time. The pressure

is solved using fast Fourier transforms in the horizontal

dimensions. The subfilter-scale diffusion has been mod-

eled using a Smagorinsky scheme (Smagorinsky 1963)

with a constant cs 5 0.21 and a turbulent Prandtl number

of 1/3. The first vertical level of the model is solved as-

suming theMonin–Obukhov similarity theory.At the top

of the domain, a sponge layer is applied that dampens the

propagating gravity waves in order to prevent reflection.

The lateral boundary conditions are periodic. The time

step of integration is found so that a Courant number of

1 is enforced in order to satisfy the Courant–Friedrichs–

Lewy (CFL) condition.

The domain size in the case of the strong- and weak-

inversion runs was 5120m 3 5120m 3 2048m, with

a grid spacing of 5.12m 3 5.12m 3 5.12m; the domain

size of the linearly stratified case was 9600m3 9600m3
3200m, with a grid spacing of 12.5m3 12.5m3 6.25m.

All cases were started with zero values for the entire

velocity vector and small random perturbations in the

temperature field in the lowest 300m that exponentially

decay with height. The output time interval is 30min in

the strong-inversion case because the growth is slow and
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180 s in the other cases. Average values in the LES are

defined as horizontal mean values averaged over the

output time step.

b. Mixed and inversion layer in large-eddy
simulations

We here investigate the horizontally averaged LES

profiles in order to gain insights on the structure of the

IL. We especially focus on the following heights:

1) The first zero-crossover height ofw0u0: z0. This height
was used as the definition of the top of the mixed-

layer model by Deardorff (1979) and Fedorovich and

Mironov (1995).

2) The minimum buoyancy flux height.

3) The intersection of the linear tangent at the maximum

gradient of u in the ILwith the linear free-tropospheric

profile [as inGarcia andMellado (2014)]. This height is

called h.This height is similar to—yet less noisy than—

the height of the minimum second-order vertical de-

rivative of potential temperature (Yamaguchi and

Randall 2012), which corresponds to a rapid change

in the vertical gradient of u from the IL to the free-

tropospheric value.

4) The height of vanishing buoyancy flux above zi,

defining the top of the IL in the LES hLES. This

height is notoriously difficult to properly retrieve

from LES because of overdiffusion at the top of the

inversion, insufficient spatial resolution, and limited

domain size. We thus use a threshold for the magni-

tude of the flux (1025Km s21) for all cases.

Figure 3 depicts the profiles of horizontally averaged

potential temperature (top left), second vertical deriv-

ative of potential temperature (bottom left), sensible

heat flux (top right) and vertical derivative of sensible

heat flux (bottom right) for the weak-inversion case

(Sullivan et al. 1998). The heights of interest are plotted

on the temperature and flux profiles. It should be em-

phasized that the vertical resolution of the LES limits

the exact retrieval of the heights.

Amixed layer is well defined below z0: the curvature is

zero in the mixed layer and increases sharply above z0,

as seen in Fig. 3. Using tank observations, Deardorff

(1979) showed that the zero-crossover height of w0u0

could lie slightly above the mixed layer, defined as the

region of near-constant potential temperature. This is

not the case in our LES. This difference could be due to

either the measurement accuracy of Deardorff’s obser-

vations or to the limited LES resolution. Our LES ex-

periments suggest that z0 is a good approximation of zm
[as pointed out in Deardorff (1979); Fedorovich and

Mironov (1995)], and we will thus assume that zm5 z0 in

the rest of the manuscript. Above z0, the potential tem-

perature increases slightly up to zi. This increase is better

seen from the curvature of the potential temperature

profile. No spike is present in the curvature of the po-

tential temperature at z0, emphasizing the continuity of

FIG. 2. Initial and final LES profiles of the three different cases (weak, strong, and growth against a constant linear

stratification) used in the analysis.
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the vertical gradient of potential temperature at the

mixed-layer top z0.

In the weak-inversion case, w0u0 is only very slowly

decaying above h. Above this height the vertical gradi-

ent of u is hardly distinguishable from the free-

tropospheric gradient. This is due to the very small

portion of the totalw0u0 profile present above h. Overall,

h seems to be a good and reliable indicator of the IL top.

We will use this height h as our definition of the LES-

diagnosed IL top in the remainder of the manuscript.

The advantage of this height is that it is easily diagnosed

in the LES outputs, contrary to hLES. The noise in the

LES data at the top of the inversions limits the exact

retrieval of hLES (Mason 1989; Sullivan and Patton

2011).

Similar conclusions are reached in the strong-

inversion case shown in Fig. 4 and in the case of the

growth in a constant linear stratification shown in Fig. 5:

the mixed layer is well defined below z0. Above z0, the

potential temperature curvature increases slightly by up

to 0.7K in the strong-inversion case. Even in the strong-

inversion case, h is close to hLES located about 30m

above. The curvature of potential temperature exhibits

a drastic change above h, indicating a near discontinuity

in the vertical gradient of u at this height. In all cases,

more than 99% of the TKE production by buoyancy fluxÐ1‘
0 jw0u0j dz is located below h (not shown), emphasiz-

ing that h is a physically meaningful definition of the top

of the inversion based on the horizontally averaged

profile.

4. New inversion-layer model

a. Model structure

The new inversionmodel structure is depicted in Fig. 6

and is based on the above LES analysis. The mixed layer

in the model extends up to level z0, corresponding to the

FIG. 3. LES profiles of (top left) u, (bottom left) d2u/dz2, (top right) vertical turbulent flux of u, and (bottom right)

its vertical derivative for the weak-inversion case (Sullivan et al. 1998). The variable z0 is the zero-crossover height, zi
is theminimumbuoyancy flux height, h is the top of the inversion layer diagnosed as theminimumof the curvature of

potential temperature, and hLES is the level of vanishing flux on top of the inversion.

732 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



first zero crossing of w0u0. As highlighted earlier, in the

mixed layer the w0u0 profile is linear for consistency with
the u profile. The potential temperature and its vertical

gradient are assumed continuous at z0 based on the

LES profile analysis (section 3). For consistency, w0u0

and its vertical derivative are continuous at z0: the

vertical gradient of u is thus assumed to be zero at z0.

At the top of the IL (i.e., at h) the vertical derivatives

of u and w0u0 are assumed to be discontinuous based on

the LES diagnostics, which exhibited sharp gradient

change above h. Consequently, the boundary con-

ditions in h are as follows: w0u0 is zero, and u is con-

tinuously merging with the free-tropospheric profile.

Those latter conditions are similar to the ones adopted

at the upper IL interface in first-order models. The

minimum value of w0u0 occurs within the IL at zi. Like

in the GSM parameterizations (Deardorff 1979;

Fedorovich and Mironov 1995; Fedorovich et al.

2004), zi is a model diagnostic and is found as the height

of the vanishing vertical derivative of w0u0 (see discus-

sion below).

Tomatch the imposed IL boundary conditions, we use

a minimal polynomial for the potential temperature

profile. A second-order polynomial is thus used for the

profile of u in the IL. Given the continuity conditions,

the profile of u in the IL can be written as

u(z)5 hui1Du
�z2 z0

d

�2
, (3)

with hui being the mixed-layer u value, assumed to be

vertically uniform; Du5 u(h)2 hui being the jump of u

across the inversion; and d5 h2 z0 being the IL depth.

Examples of the model profiles fitted on LES outputs

are plotted in Fig. 7; the model is able to correctly

characterize the structure of the IL, especially the

strongest vertical gradient of u near the top of the IL.

For consistency with the potential temperature profile

in the IL, we use a third-order polynomial for w0u0. The
profile can be expressed using the IL boundary conditions

and the minimum flux in zi [see appendix A, Eq. (A4)]:

w0u0(z)5w0u0(0)
(z2 z0)(z01 d2 z)(z01ad2 z)

z0d
2a

1w0u0(zi)
(z2 z0)

2(z01 d2 z)

d3a2(12a)
, (4)

with a5 (zi 2 z0)/(h2 z0) (i.e., zi 5 z0 1ad) being the

relative position of the minimum buoyancy flux within

the inversion.

The new inversion model has several advantages over

previous inversion models. Compared to first-order

FIG. 4. As in Fig. 3, but for the strong-inversion case (Sullivan et al. 1998).
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models, the buoyancy flux exhibits a minimum above

the mixed-layer top; the maximum gradient of po-

tential temperature is sharper than in first-order

models, as observed (Deardorff 1979); and the pro-

files of u and w0u0 are mathematically consistent.

Compared to general structure models (Deardorff

1979; Fedorovich and Mironov 1995; Fedorovich et al.

2004), the model does not require any added param-

eterization of the shape of the IL as a function of

a stability parameter; only the specification (closure)

of the minimum buoyancy flux is sufficient to close the

system of equations similarly to first-order models (see

section 4e below).

In addition to the imposed continuity conditions at the

bottom and top of the IL, to close the system of equa-

tions of the mixed layer and IL, we need (i) an equation

for themixed-layer potential temperature budget, (ii) an

equation for z0, (iii) an equation for h, and (iv) a closure

for w0u0(zi).

b. Mixed-layer budget

The buoyancy conservation [Eq. (1)] is integrated

from the surface to z0 using Leibniz’s rule so that the

mixed-layer conservation reads

z0
d

dt
hui5w0u0(0)2w0u0(z0)5w0u0(0) . (5)

This is a classic result of mixed-layer heat conservation

(Deardorff 1979; Betts 1974; Lilly 1968; vanZanten et al.

1999), except that the flux at the mixed-layer top is not

FIG. 5. As in Fig. 3, but for the growth in a constant linear stratification (Conzemius and Fedorovich 2006).

FIG. 6. Schematics of (left) the new first-order model potential

temperature and (right) its flux in a clear boundary layer with the

improved inversion representation.
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the minimum buoyancy flux but a vanishing flux

(Fedorovich and Mironov 1995).

c. Entrainment rate at the mixed-layer top

To derive the entrainment rate at z0 we integrate the

potential temperature equation [Eq. (1)] between z0 and

h. Similar to Deardorff (1979), we introduce the IL

shape factor:

Y5
1

d

ðh
z
0

u2 hui
Du

dz . (6)

The total heat in the inversion is then simplyðz
z
0

udz5 huid1DudY . (7)

The heat budget in the inversion is (using Leibniz’s rule)

d

dt

ðh
z
0

udz2
dh

dt
(hui1Du)1

dz0
dt

hui52

ðh
z
0

w
›u

›z
dz ,

(8)

which leads to the following expression for the mixed-

layer entrainment rate (see appendix A for a full

derivation):

we(z0)

w*
5

1

Ri

2
4 1

(12a)a2

w0u0(zi)
w0u0(0)

1
11a

a

d

z0

3
51G

w(h)

w*
,

(9)

with Ri5 (gz0/w
2
*)(Du/hui) being the convective

Richardson number, w*5 [(g/hui)z0w0u0(0)]1/3 being

Deardorff’s (1970) convective velocity, and G5 gud/Du
being the relative stratification across the inversion

(Deardorff 1979; Fedorovich and Mironov 1995).

d. Entrainment at the inversion-layer top

At the CBL top (i.e., at level h) the vertical derivatives

of potential temperature and w0u0 are assumed to be dis-

continuous based on the LES analysis. The total derivative

of u can be decomposed into its partial derivatives, which

can be evaluated either below (left derivative in h2) or

above the inversion (right derivative in h1):

du

dt jz5h
2=1

5
dh

dt

›u

›zjz5h
2=1

1
›u

›t
(h) . (10)

The continuity of the temperature at the inversion top h

gives the entrainment rate we(h)5 dh/dt2w(h) (full

derivation is provided in appendix A):�
Du2

gud

2

�
we(h)52

1

2(12a)a2
w0u0(zi)

2
12a

2a

d

z0
w0u0(0) , (11)

with Du5 u(h)2 hui being the potential temperature

jump across the inversion, a5 (zi 2 z0)/(h2 z0) being

the relative position of the minimum buoyancy flux, and

d5h2 z0 being the inversion depth. This expression

shares similarities with the entrainment derivation of

Deardorff (1979) and vanZanten et al. (1999), except

that the expression uses a reduced jump Du2 gud/2,

similar to a jump computed half-way within the in-

version. The expression also includes a flux divergence

with the presence of the surface heating.

FIG. 7. Example of potential temperature profile with the new inversionmodel (dashed line) against LES outputs in

the weak-inversion case.

FEBRUARY 2015 GENT INE ET AL . 735



Using dimensionless scaling, the entrainment rate can

be further simplified into

we(h)

w*
5

1

22G

1

Ri

2
42 1

(12a)a2

w0u0(zi)
w0u0(0)

2
12a

a

d

z0

3
5 .

(12)

This expression resembles Sullivan et al.’s (1998): the

first term in the brackets corresponds to the minimum

buoyancy flux contribution, and the second term corre-

sponds to the contribution of the heat storage in the in-

version. We, however, point out the presence of a shape

factor a in the minimum buoyancy flux and storage term,

which can strongly modify the effect of minimum buoy-

ancy flux and heat storage on the CBL entrainment rate

(see section 6). This term was not present in previously

proposed first-order models (e.g., Betts 1974). This shape

factor explains the decrease of the minimum buoyancy

flux contribution growth, as well as the decrease of the

storage term contribution at a large Richardson number

noticed by Sullivan et al. (1998). Note the similarity be-

tween the mixed-layer and top of the inversion entrain-

ment rates, with the presence of the minimum buoyancy

flux, storage term, and shape of the IL profile a. The

presence of G in the denominator of the inversion top

entrainment rate [Eq. (12)] shows that two-layer non-

stratified fluid (G5 0) exhibits weaker entrainment at the

PBL top compared to stratified fluid, in agreement with

recent observations (Jonker and Jiménez 2014). The

presence ofG in the top of the IL entrainment also shows

that the mixed-layer scaling parameters (height, convec-

tive velocity, andRichardson convective numbers) are not

sufficient to fully characterize the IL growth. However, in

the strong-inversion casesG� 1, the IL growth does not

depend on the relative stratification anymore, and mixed-

layer convective scaling is sufficient to fully characterize

the IL entrainment.

In the new IL model, the position of the minimum

buoyancy flux in the IL a (or similarly zi) is a diagnostic

variable, defined as the height of vanishing vertical flux

gradient: dw0u0/dz(zi)5 0. Differentiating the flux with

respect to zi using Eq. (4), we find

a(12a)2

22 3a
52

z0
d

w0u0(zi)
w0u0(0)

. (13)

Expression (13) emphasizes the tight connection be-

tween the position of the minimum buoyancy flux, the

magnitude of this flux, and the relative depth of the in-

version. Expression (13) also shows the relationship

between the relative inversion depth d/z0 and the ratio

b52w0u0(zi)/w0u0(0).

Equation (13) can be combined with the mixed-layer

entrainment rate [Eq. (9)] to eliminate the inversion-

layer depth:

we(z0)

w*
52

Sz
0

Ri

w0u0(zi)
w0u0(0)

1G
w(h)

w*
, (14)

with Sz0 5 (12 3a2)/(12a)2a2 being the shape factor

for the mixed-layer entrainment, and similarly,

we(h)

w*
52

Sh
Ri

w0u0(zi)

w0u0(0)
, (15)

with Sh 5 [1/(22G)][(3a2 1)/a2(12a)] being the

shape factor of the entrainment at the IL top.

A point to emphasize is that the minimum buoyancy

flux’s position zi (or a) and the relative depth of the

inversion are all connected, as emphasized in Eq. (13).

The mixed-layer and top of the IL entrainment equa-

tions give two additional constraints on the relationship

between the minimum buoyancy flux, a, and the relative

depth of the inversion. A single closure on the minimum

buoyancy flux, as done in zero-order CBL models,

should therefore be sufficient, as long as it is described

by all parameters of the flow (convective mixed-layer

parameters and relative stratification). Consequently,

zero-order models include not only both the direct

minimum buoyancy flux effect and the IL storage term

without explicitly resolving the IL (Sullivan et al. 1998),

but also the shape of the inversion (i.e., the position

of the minimum buoyancy flux within the inversion a).

Current first-order CBLmodels with a parameterized IL

depth assume that the IL depth scales only with the

mixed-layer convective parameters; our results show

that this is not correct, and the additional parameterG is

needed to fully describe the IL depth and entrainment.

The mixed-layer entrainment rate [Eq. (14)] does not

exhibit any dependence onG (other than in front of the

large-scale vertical velocity), contrary to the top of the

IL entrainment rate [term 2 2 G in the denominator].

This is consistent with recent findings regarding the IL

structure in DNS (Garcia and Mellado 2014), which

emphasize that the IL essentially consists of two layers:

1) a lower layer, the depth of which scales with the

mixed-layer convective parameters (Ri, w
*
) and 2) an

upper layer, the depth of which does not obey mixed-

layer convective scaling and is instead obtained by the

distance traveled by an overshooting parcel in the free

troposphere. The upper-layer depth becomes very small

compared to the lower layer in a strong-inversion case.

Our theoretical results are in line with Garcia and

Mellado (2014): the mixed-layer growth can be charac-

terized by mixed-layer convective parameters [Eq. (14)]
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in the absence of subsidence, because a is related to the

minimum buoyancy flux and relative inversion depth

[Eq. (13)]. Conversely, the top of the IL growth [Eq.

(15)] needs the additional parameter G, the relative

stratification across the inversion. In a strong-inversion

case,G’ 0 so that both the mixed-layer and IL growths

can be described by mixed-layer convective parameters

only. It should therefore come as no surprise that zero-

order bulk models of the CBL are able to accurately

describe the entrainment process under a strong in-

version, because the IL in this case should scale with

mixed-layer convective parameters [in the absence of

subsidence, as seen in the mixed-layer entrainment in

Eq. (14)]. In the presence of a weak inversion and large

G, zero-order models cannot accurately describe the

entrainment process, because G is missing from the set

of parameters used in the closure.

e. Minimum buoyancy with integrated TKE closure

The only unknown of the new ILmodel isw0u0(zi).We

turn to the TKE budget in order to define the closure.

Previous closures have used a local TKE budget at zi
(Tennekes 1973; Zeman and Tennekes 1977; Tennekes

and Driedonks 1981; Driedonks and Tennekes 1984;

Driedonks 1982; Pino et al. 2003) or the integral CBL

TKE budget (Fedorovich 1995; Fedorovich and

Mironov 1995; Fedorovich et al. 2004; Conzemius and

Fedorovich 2006, 2007; Kim et al. 2006). Here we use

the integral CBL TKE budget since it avoids the need

for a parameterization of the transport and pressure

terms: both terms are negligible when integrated over

the entire CBL depth with neglected energy transport

by waves above the CBL. Another advantage of the

integral TKE budget is that the contribution of the

storage term of TKE is much smaller than the other

terms (Kim et al. 2006), whereas it can be a large

contributor of the local TKE budget at zi (Zilitinkevich

1975).

In the assumed horizontally homogeneous CBL, the

local TKE budget in the Boussinesq approximation at

any height reads

›e

›t
5

g

u0
w0u0|fflfflffl{zfflfflffl}
B

2

�
u0w0 ›U

›z
1 y0w0 ›V

›z

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

2
›w0e0

›z|fflfflfflffl{zfflfflfflffl}
T

2
1

r0

›w0p0

›z|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
P

2 � , (16)

with e being the TKE, B being the buoyant production

of TKE, S being the shear production of TKE, T being

the turbulent transport of TKE, P being the pressure

fluctuation–induced TKE, � being the TKE viscous

dissipation rate, u0 being the reference potential tem-

perature, and r0 being the reference hydrostatic air

density. The normalized TKE budget is shown at dif-

ferent time steps of the LES in Fig. 8. The turbulent

transport term vanishes when integrated over the en-

tire CBL. The vertical integral of P is negligible in the

absence of gravity wave transport (Fedorovich 1995),

as well as the contribution of the storage term of

TKE (Kim et al. 2006). After the initial transient stage,

the integral TKE budget thus simplifies to

ðh
0
(B1 S) dz5

ðh
0
�dz ; (17)

that is, the integral TKE production by buoyancy and

shear is compensated by the integral viscous dissipation.

In the case of a shear-free CBL, the shear term is zero so

that Eq. (17) further simplifies toðh
0
Bdz5

ðh
0
� dz . (18)

In the mixed layer, the dissipation rate is typically

nearly uniform vertically, only slightly decreasing with

height in the mixed layer and then almost linearly de-

creasing to 0 at the PBL top (Fedorovich and Mironov

FIG. 8. TKE budget for the case of a growth against a linear

stratification; each curve represents a different model time step.

The budget is normalized so that the buoyancy generation at the

surface is unity. Represented are buoyancy (blue), shear (yellow),

pressure (cyan), transport (green), and TKE dissipation (red). The

normalization factor is (g/u)w0u0(0).
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1995; Kim et al. 2006), as seen in Fig. 8. We there-

fore assume a uniform dissipation rate in the mixed

layer h�i and a linearly decaying dissipation rate in the

IL so that the integrated dissipation rate over the entire

CBL is ðh
0
� dz5 h�i(z01 d/2) . (19)

We do not take into account the larger TKE dissipa-

tion rate in the surface layer, because the surface layer

is thin and is in quasi equilibrium (Zilitinkevich 1991)

so that one may assume that the TKE is locally dissi-

pated there (Charuchittipan and Wilson 2009). The

integral of the TKE buoyancy production in the mixed

layer is as follows (see appendix B for a complete

derivation):

g

u

ðz
0

0
w0u0 dz5

1

2

g

u
w0u0(0)z0 , (20)

and in the IL, the production integral is

g

u

ðh
z
0

w0u0 dz5
1

12

g

u

"
6az201 (12 2a)d2

az0
w0u0(0)

2
d

a2(12a)
w0u0(zi)

#
. (21)

The minimum buoyancy flux is then related to the dis-

sipation rate in the mixed layer, summing the buoyancy

contribution in the mixed layer [Eq. (20)] and in the IL

[Eq. (21)] and using the equality of the rate of change of

TKE [Eq. (19)]:

w0u0(zi)5a(12a)
26z20a1 d2(2a2 1)

dz0
w0u0(0)

1 6a2(12a)
2z0 1 d

d

hui
g

h�i . (22)

For the closure, we use a CBL scaling of the dissipation

rate with the cube of the mixed-layer convective velocity

�kz0/w
3
* (Zilitinkevich 1991; Garratt 1994; Fedorovich

and Mironov 1995). Figure 8 depicts this normalized

mixed-layer dissipation rate. In this case, after quasi-

steady state is reached, the mixed-layer dissipation term

is estimated as

h�ikz0
w3
*

5C� 5 0:37, (23)

which is close to the 0.3 value of Fedorovich andMironov

(1995). Using this closure on h�i, we deduce the minimum

buoyancy flux using Eq. (22) (full derivation is provided in

appendix B):

b52
w0u0(zi)
w0u0(0)

526a2(12a)
�
11 2

z0
d

�C�

k

1 (12a)a

�
6a

z0
d
1

d

z0
(12 2a)

�
. (24)

It should be emphasized that this closure [Eq. (24)] gives

a relationship between (i) the minimum buoyancy flux,

(ii) its a, and (iii) d/z0. Equation (24), together with the

diagnostic expression for the minimum flux height [Eq.

(13)] gives two independent equations for a, d/z0, and the

minimum buoyancy flux. As described above, this in-

terdependence of a, d/z0, and the minimum buoyancy

flux is implicitly imposed in zero-order models through

the closure on the minimum flux only, since these models

do not explicitly resolve the inversion layer. Here we have

chosen a closure based on the minimum buoyancy flux,

but any other closure based on a or d/z0 as a function of

other CBL parameters could have been used in practice.

f. Inversion-layer growth rate

The IL growth rate can be found by subtracting the

mixed-layer entrainment rate [Eq. (9)] from entrain-

ment rate at the IL top [Eq. (12)]:

1

w*

dd

dt
5

1

(22G)

1

Ri

2
42 32G

(12a)a2

w0u0(zi)
w0u0(0)

2
21 (12G)(11a)

a

d

z0

3
51 (22G)

w(h)

w*
.

(25)

The first term in the largest bracket corresponds to the

cooling induced by the negative buoyancy flux in the in-

version. This term always increases the inversion depth.

The second term corresponds to the change in heat storage

in the inversion and is detrimental to the inversion growth.

It is also important to stress the presence of a large-scale

velocity term. Subsidence, w(h) , 0, decreases the IL

depth aswould be expected.Most importantly,G is needed

to describe the growth of the IL and is present in neither

zero-order models of the CBL, nor in parameterized first-

order models (since the inversion is parameterized as a

function of the mixed-layer convective parameters).

5. Model evaluation

We now evaluate our new IL model in three shear-

free CBL cases described above: (i) a weak-inversion

case (Sullivan et al. 1998), (ii) a strong-inversion case
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(Sullivan et al. 1998), and (iii) a growth against a linear

stratification (Conzemius and Fedorovich 2006). The

model is examined against vanZanten et al.’s (1999)

first-order model, in which the IL depth is parameter-

ized as a function of the mixed-layer convective pa-

rameters, and Deardorff’s (1979) first-order model,

which has two independent prognostic equations for the

growth of the mixed-layer and IL top. We again stress

that Deardorff showed that this model led to spurious

behavior in the presence of a strong inversion, since the

inversion becomes unrealistically thin. The zero-order

model results, with closure w0u0y(zi)520:2w0u0y(0), are
plotted as a baseline, even though this model cannot

reproduce the IL and is therefore of limited use for our

main purpose here: diagnosing the evolution of the IL.

In theweak-inversion case depicted in Fig. 9,Deardorff’s

model correctly predicts the evolution of zi yet over-

estimates h. VanZanten et al.’s model strongly un-

derestimates elevations of the mixed layer and IL. The

zero-order model accurately predicts the time de-

pendence of zi, even though it does not take G into ac-

count. The new inversionmodel accurately describes the

mixed-layer and IL growths and favorably compares to

LES outputs. All models perform well in terms of po-

tential temperature (besides vanZanten et al.), as would

be expected, since changes in the entrainment do not

drastically impact the mixed-layer potential tempera-

ture (Gentine et al. 2013a).

In the strong-inversion case depicted in Fig. 10,

vanZanten et al.’s model strongly underestimates the

mixed-layer growth and overestimates the IL depth. The

zero-order model performs very well and accurately

reproduces zi. Deardorff’s model compares favorably to

the LES in the first 2 h of the simulation, but the in-

version depth is then strongly underestimated. In fact, at

high Ri the inversion layer represented by this model

collapses, leading to a singularity, as pointed out by

Deardorff (1979). The new inversion model compares

very favorably to the LES output. The mixed-layer

growth is well captured, as well as the growth of the

inversion depth.

The models are further evaluated in the case of the

growth against a linear stratification in Fig. 11. The zero-

order model again performs well. VanZanten et al.’s

model underestimates the mixed-layer growth: the en-

trainment flux at the mixed-layer top is strongly under-

estimated in this model; the IL grows too quickly

compared to the mixed-layer depth. Deardorff’s model

underestimates the growth of the boundary layer. The

new inversion model again performs well compared to

FIG. 9. (top) Comparison of z and h for the weak-inversion case (Sullivan et al. 1998). Circles

are zi from LES, and diamonds are h from LES. (bottom) Mixed-layer potential temperature.

Solid lines represent the followingmodels: the zero-ordermodel (thick gray), vanZanten et al.’s

(1999)model with a parameterized inversion (green), Deardorff’s (1979) first-ordermodel with

prognostic inversion growth (blue), and the new model presented in this manuscript (black).
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the observations and accurately represents the IL growth.

The newmodel offers important improvements compared

to first-order models of the PBL, as it can accurately

represent both the mixed-layer and IL growths in various

conditions without any additional parameterization.

6. Inversion-layer structure with LES and inversion
model

We now investigate the structure of the inversion

layer and the relative position of theminimumbuoyancy

flux within the inversion a5 (zi 2 z0)/(h2 z0). As seen

in Fig. 12, the relative depth of the inversion d/z0 5
(h2 z0)/z0 decreases with the convective Richardson

number. Deardorff’s (1983) parameterization of the

inversion-layer depth as a function of the Richardson

number, d/z0 5 0:7/(Ri1 2.07)1/4, overestimates the

inversion-layer depth. Approaches based on a parcel

theory approach (converting updraft buoyancy into ki-

netic energy consumption) (Stull 1973; Neggers et al.

2007) overestimate the dependence of the inversion

depth on the Richardson number. The parameterization

of Neggers et al. (2007) correctly performs at high

Richardson numbers under a strong inversion. This em-

phasizes that, under a strong inversion, a parcel approach

correctly represents the entrainment process and IL

structure—this may reflect the fact that, under a strong

inversion, the horizontally averaged IL represents an

averaging of a locally varying interface with sharp edges

separating a region of near-mixed-layer air from the free-

tropospheric air (Lilly 2002a,b). Substantial departure

from parcel theory is present at lowRichardson numbers,

showing that a parcel theory does not provide a good

representation of the IL depth and entrainment in this

regime. This may reflect the fact that under a weak-

inversion, local stratification above the interfacial layer

may substantially differ from the free-tropospheric

value (Cohn and Angevine 2000). As discussed earlier,

Garcia andMellado (2014) showed, usingDNS data, that

the inversion layer may be considered as composed of

two layers: a lower layer, the depth of which is related to

the mixed-layer thickness, and an upper layer domi-

nated by the penetrating thermals that are directly af-

fected by the free-tropospheric stratification. The depth

of this upper layer can be found based on a Lagrangian

parcel overshooting in the free troposphere and is related

to the Ozmidov length scale. Under a strong inversion,

the upper layer becomes much thinner than the lower

layer so thatG (Ozmidov length scale) is not needed any

more to characterize the IL. Garcia and Mellado (2014)

also derived a parameterization of the relative IL depth:

d/z0 5CRi21(11 f11 [(C1 2 1)/C]Rig1/2), with C 5 0.3

and C1 5 0.76, plotted in Fig. 12. Our results are consis-

tent with those recent DNS results and emphasize [Eqs.

(14) and (25)] that the mixed-layer growth can be de-

scribed by mixed-layer convective parameters, but the IL

growth needs the additional parameter G, which is not

accounted for in typical zero- and first-order CBLmodels.

The dependence of a on the Richardson number is

depicted in Fig. 12 (bottom panel). At a low Richardson

number, the minimum buoyancy flux is located at 40%

of the IL depth. At a low Richardson number, the po-

sition of the minimum buoyancy flux depends on the

Richardson number. At a higher Richardson number,

FIG. 10. As in Fig. 9, but for the strong-inversion case (Sullivan et al. 1998).
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and in the strong-inversion case, a asymptotically

reaches 2/3. In addition, in the strong-inversion case, the

IL depth is a near-constant fraction (1/4) of the mixed-

layer depth. The depth of the IL, which is defined as the

layer between z0 and h, is nonnegligible, as assumed in

mixed-layer models. If instead we used the region ex-

tending from zi to h for the IL definition, the IL depth

would represent only 8%of z0 or 7%of zi. Under a weak

stratification, the IL depth is a substantial fraction of the

mixed-layer depth (35%–45%). The new inversionmodel

can be used to understand how the entrainment modifies

the structure of the IL and especially the position of the

minimum buoyancy flux. First, the denominator of Eq.

(13) imposes that a, 2/3 (i.e., the minimum buoyancy flux

must be located in the lower two-thirds portion of the IL).

This theoretical asymptotical limit pertains under a strong

inversion (i.e., small d/z0). Our LES results in Fig. 12 in-

deed confirm that a is always lower than this theoretical

limit (2/3). Similarly, the equation of the entrainment at the

IL top [Eq. (15)] imposes a. 1/3. This result is confirmed

by our LES data in Fig. 12.

Based on our LES data, the normalized minimum flux

b52w0u0(zi)/w0u0(0) exhibits a high Ri4/3 dependence

for Ri, 15 (Fig. 13). For Ri. 15, the normalized flux is

nearly constant with a mean value equal to 0.13, in good

agreement with previous studies (e.g., Sullivan et al.

1998). The departure from a constant flux ratio and its

dependence on the Richardson number has also been

pointed out by Fedorovich et al. (2004). At a low Ri, the

absolute LES minimum buoyancy flux is lower than the

DNS value (Garcia andMellado 2014) plotted in Fig. 13.

The relative position of the minimum buoyancy flux

height compared to the mixed-layer depth (zi 2 z0)/z0 is

also plotted on Fig. 13. Interestingly, this position is

relatively constant across Ri values, on the order of 0.17,

showing that the mixed-layer height provides a good

scaling of the position of the minimum buoyancy flux,

whereas the total IL depth cannot be characterized by

mixed-layer scaling only.

The minimum buoyancy flux, the relative depth of the

inversion, and the position of the minimum buoyancy

are tightly coupled, as emphasized and diagnosed in the

LES data and with the new inversion model in Fig. 14.

The relative position of the minimum buoyancy flux in

the inversion increases with b52w0u0(zi)/w0u0(0), as

shown in Fig. 14a, even though substantial spread of data

is evident. Similarly, the relation between d/z0 and b is

relatively loose, and no clear trend is seen (Fig. 14b).

The relationship between a, d/z0, and b in Eq. (13)

suggests that we should use g52[w0u0(zi)z0]/[w0u0(0)d]
instead of b to evaluate the dependence between a and

d/z0. Indeed, using g in lieu ofb substantially reduces the

spread in the data (Fig. 14c). The model-inferred a [Eq.

(13)] correctly characterizes the LES-observed de-

pendence of a on g, as seen in Fig. 14c. This again

confirms the quality of the new inversion model pre-

dictions in a wide range of conditions. Some spread is

present in the weak-inversion case but can be explained

by the relatively small time step (180 s)—and hence

noisy output—used in the analysis. The value d/z0

FIG. 11. As in Fig. 9, but for the case of a growth against a linear stratification (Conzemius and

Fedorovich 2006).
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exhibits a tight dependence on g and decays almost

linearly with g (slope of 20.57). The presence of d/z0 in

g could be expected to reduce the spread in the data, yet

the near-linear decay emphasizes that b and d/z0 are

coevolving. The relative position of the minimum

buoyancy flux in the IL decreases sharply with the rel-

ative inversion depth (Fig. 14d). The modeled inversion

structure is well characterized compared to LES data. It

is generally assumed that the inversion layer is sym-

metric and that a 5 0.5, but in the weak-inversion case

and constant stratification cases, a is smaller than 0.5. In

the strong-inversion case, the minimum buoyancy flux is

located much higher within the IL (a’ 0.6).

The dependence of Y on the relative stratification

G5 gud/Du (Deardorff 1979; Fedorovich and Mironov

1995) is investigated in the LES in Fig. 15. Contrary to

Deardorff (1979) and Fedorovich and Mironov (1995),

our LES results exhibit little dependence on G, aside

from a slight decrease at highG. We point out that these

differences with Deardorff (1979) and Fedorovich and

Mironov (1995) are certainly explained by our different

definition of the IL. Our definition of the base of the IL

(first vanishing buoyancy flux) is similar to that of

Deardorff (1979) and Fedorovich and Mironov (1995),

but our IL top is always lower than theirs: indeed, in the

LES diagnostic, we have used the intersection of the

tangent at the maximum u vertical gradient with

the free-tropospheric profile (see section 3). We have

used this alternate definition of the CBL top since the

exact height of vanishing flux in the LES is highly vari-

able and erratic in the LES outputs (Conzemius and

Fedorovich 2006). As a consequence, our shape factor

computation is different from previous studies. The

mean shape factor diagnosed in the LES is 0.325, close to

our theoretical value, Y 5 1/3, assuming a parabolic po-

tential temperature profile (see derivation in appendix

A). There is a decrease of Y with G in the LES data in

the weak-inversion and constant stratification cases, but

the strong-inversion case does not seem to support this

change of Y with G; Y is again close to 1/3 in this case.

Equation (12) emphasizes that G must be less than 2 to

avoid infinite entrainment. This limit is in good agree-

ment with the maximum range of observedG values (0–

1.8) based on a metadata analysis of LES and laboratory

data (Fedorovich and Mironov 1995) and our range of

observed values in Fig. 15.

7. Conclusions

We have proposed a new model for the clear-sky

shear-free buoyancy-driven convective boundary layer

FIG. 12. (top) Dependence of the relative inversion depth

(h2 z0)/z0 on the Richardson number: Deardorff’s (1983) pa-

rameterization (dashed line), Stull’s (1973) parameterization based

on a parcel overshoot (red circles), and Neggers et al.’s (2007)

parameterization based on a parcel overshoot (blue circles). (bot-

tom) Relative position of the minimum buoyancy flux within the

inversion, as a function of the Richardson number (open circles):

weak-inversion LES results (open circles), LES results of a growth

against a linear stratification (gray circles) (Conzemius and

Fedorovich 2006), and strong-inversion LES results (squares).

FIG. 13. (top) Dependence of the normalized minimum flux

w0u0y(zi) on the Richardson number. (bottom) Difference between

the position of the minimum buoyancy flux and the mixed-layer

height normalized by the mixed-layer height as a function of the

Richardson number. Represented are the 0.17 line (dashed gray

line), weak-inversion LES results (open circles), LES results of

a growth against a linear stratification (gray circles) (Conzemius

and Fedorovich 2006), and strong-inversion LES results (squares).
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that takes into account the curvature of the potential

temperature profile in the inversion layer. To comprehend

the structure of this layer, we have used large-eddy

simulations in weak- and strong-inversion cases. The

large-eddy simulations suggest that the following LES

results can be applied to build a consistent model of the

mixed layer and inversion layer:

d The mixed-layer top corresponds to the lowest height

of zero buoyancy flux, as reported byDeardorff (1979)

and Fedorovich and Mironov (1995).
d The height of zero buoyancy flux and zero corresponding

vertical gradient is not an accurate measure of the top of

the inversion layer, since it dependson theLES resolution

and numerics. Instead, we use the position of the inter-

section of the tangent at the steepest u vertical gradient

with the free-tropospheric profile or, similarly, the min-

imum curvature of the potential temperature profile h.
d At h, the buoyancy flux and potential temperature

vertical gradients can be considered discontinuous.
d At the mixed-layer top, the buoyancy flux and poten-

tial temperature vertical gradients are continuous.

The proposed model resolves the inconsistencies of

first-order models and does not require additional pa-

rameterization of the inversion structure, such as in the

general structure model. The inversion-layer model is

based on a second-order polynomial for the potential

temperature profile and a third-order polynomial for the

buoyancy flux profile. The main results are as follows:

d The new inversionmodel can accurately prognosticate

the rate of growth of the inversion and of the mixed

FIG. 14. (a) Relative position of the minimum buoyancy flux within the inversion vs minimum flux w0u0y(zi) nor-
malized by the surface valuew0u0y(0). (b) Relative inversion depth (h2 z0)/z0 vsminimumfluxw0u0y(zi) normalized by

w0u0y(0). (c) As in (a), but using2[w0u0y(zi)/w0u0y(0)](z0/d) on the x axis. (d) As in (b), but with (h2 z0)/z0 on the x axis.

Represented are weak-inversion LES results (open circles), LES results of a growth against a linear stratification

(gray circles) (Conzemius and Fedorovich 2006), strong-inversion LES results (squares), and results from the new

inversion model (continuous line).
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layer in varying conditions (weak and strong inver-

sions). The position of theminimumbuoyancy flux can

be deduced from themodel and is located between the

first and second third of the inversion depth, in agree-

ment with the LES outputs. The minimum buoyancy

flux height increaseswith themagnitude of theminimum

buoyancy flux and asymptotically reaches two-thirds of

the inversion-layer depth under a strong inversion. In

turn, the inversion-layer depth decreases with increased

magnitude of the minimum buoyancy flux.
d Both the inversiondepthand thepositionof theminimum

buoyancy flux can be expressed in terms of the minimum

buoyancyflux so that theCBLgrowth canbe expressedas

a single closure in terms of the minimum buoyancy flux.
d Themixed-layer growth can be described bymixed-layer

convective scaling (convective vertical velocity and Ri-

chardson number), whereas the inversion-layer growth

needs the additional parameterG, the relative stratifica-

tion across the inversion. This emphasizes that the set of

parameters used in current zero- and first-order models

todescribe the entrainment is incomplete.Thepositionof

theminimumbuoyancyflux seems, however, to scalewell

with the mixed-layer height, based on LES observations.

When G’ 0, the entrainment process and inversion-

layer growth/depth can then be described bymixed-layer

convective parameters only, as in zero-order models.
d The relative stratification across the inversion is

theoretically constrained to lie within the range 0–2,

which is consistent with LES and laboratory observa-

tions. Two-layer nonstratified fluid (zero relative

stratification) exhibits a smaller inversion-layer growth

rate compared to stratified fluid.

This latter result emphasizes that zero-order models can

correctly simulate the CBL growth even under weak

inversions because they implicitly represent the flux

profile curvature and depth of the inversion layer

through their dependence on the minimum buoyancy

flux. A correct closure on the minimum buoyancy flux is

thus sufficient to represent (i) the magnitude of the en-

trainment flux, (ii) the storage term [as already empha-

sized by Sullivan et al. (1998)], and (iii) the shape of the

inversion-layer profile. The shape of the inversion pro-

file is a new component that provides additional insights

in the entrainment process in the CBL.

The improved inversion model proposed here ad-

dresses and corrects the inconsistencies of first-order

models pointed out by Deardorff (1979) and does not

rely on a parameterization of the inversion-layer struc-

ture, as in general structure models. These results em-

phasize the impact of the inversion-layer vertical

structure on the rates of growth of the mixed and in-

version layers. The position of the minimum buoyancy

flux is an important factor controlling the magnitude of

the minimum buoyancy flux for the mixed-layer en-

trainment rate and for the inversion-layer growth. In

climate models, we suggest that our new inversion-layer

model can be used to refine the characterization of the

inversion layer, avoiding nesting or the definition of an

ambiguous layer [as in Park and Bretherton (2009)].

FIG. 15. Dependence of the shape factor Y (barycenter of the buoyancy in the inversion layer

relative to the mixed-layer value) on the relative stratification G5guy d/Duy .
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APPENDIX A

Derivation of Entrainment Velocities

We assume a quadratic profile for the potential tem-

perature u in the IL. To derive the profile, we use the

following boundary conditions: (i) at the mixed-layer

top (z 5 z0), u in the inversion matches the mixed-layer

value; (ii) the corresponding vertical gradient of u is null;

and (iii) u is continuous at the top of the inversion and

matches the free-tropospheric value. The u profile in the

inversion is thus

u(z)5 hui1Du
�z2 z0

d

�2
, (A1)

with hui being the mixed-layer potential temperature,

Du5 u(h)2 hui being the jump of u across the inversion,

and d5 h2 z0 being the IL depth.

The corresponding vertical turbulent flux of u, w0u0,
has to be a third-order polynomial, as discussed in sec-

tion 4. The following conditions are assumed on the

profile: (i) the flux vanishes at the mixed-layer top z0—

this is, in fact, our definition of the mixed layer, as in

Deardorff (1979) and Fedorovich (1995); (ii) the flux

vanishes at the top of the inversion h; (iii) the flux vertical

derivative is assumed to be continuous at the mixed-layer

top and therefore equal to w0u0(0)/z0, assuming a linear

flux profile in themixed layer; and (iv) the flux isminimum

at height ziwithin the IL, which is a model diagnostic (see

below). Based on those assumptions, the profile of w0u0 in
the inversion can be derived:

w0u0(z)52w0u0(0)
(z2 z0)(z01 d2 z)[da(22 3a)2 (z2 z0)(12 2a)]

z0d
2a(22 3a)

, (A2)

with a5 (zi 2 z0)/(h2 z0) being the relative position of

the minimum buoyancy in the inversion layer. It is ob-

vious from the denominator of w0u0 in Eq. (A2) that the

upper bound of a is 2/3 to avoid infinite flux in the in-

version layer. Using Eq. (A2), we can express the min-

imum buoyancy flux as

w0u0(zi)52w0u0(0)
d

z0

a(12a)2

22 3a
. (A3)

Equation (A3) emphasizes the relationship between the

minimum w0u0, the relative inversion depth, and the

relative position of theminimumw0u0 in the IL a. In fact,

only a single closure assumption is necessary, either on a

or on w0u0(zi), to close the full set of equations, since d is

a prognostic variable. We here use a closure on w0u0(zi),
which is based on the vertically integrated TKE budget

(see appendix B).

Equations (A2) and (A3) can be combined into an

expression describing w0u0(z) as functions of w0u0(zi):

w0u0(z)5w0u0(0)
(z2 z0)(z01 d2 z)(z01ad2 z)

z0d
2a

1w0u0(zi)
(z2 z0)

2(z01 d2 z)

d3a2(12a)
.

(A4)

The total derivative of u can be computed just above

and below the top of the inversion, where the potential

temperature is continuous, using the conservation

equation [see Eq. (1)], neglecting radiation divergence

and variations in the free-tropospheric profile. We use

the definition of the total derivative as a function of

partial derivatives just below (left derivative h2) or

above the inversion (right derivative h1):

du

dt jz5h
2=1

5
dh

dt

›u

›zjz5h2=1

1
›u

›t
(h) . (A5)

The local rate of change of u, ›u/›t, is simply given by the

conservation equation [see Eq. (1)]. Similarly, at the

PBL top

du(h)

dt
5 gu

�
dh

dt
2w(h)

�

5
›u

›zjh2

�
dh

dt
2w(h)

�
2
›w0u0

›z jh2
, (A6)

in which dh/dt2w(h) is the entrainment velocity we(h)

at the top of the boundary layer. Based on the assumed

quadratic profile [Eq. (A1)], the potential temperature

vertical gradient below the inversion top is

›u

›zjz5h
2

5 2
Du

d
, (A7)
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and the corresponding flux gradient is [using Eq. (A2)],

›w0u0

›zjh
2

52
w0u0(zi)

d

1

(12a)a2
2

w0u0(0)
z0

12a

a

5
w0u0(0)

z0

�
k

(12a)a2
2

12a

a

�
, (A8)

with k52(z0/d)[w0u0(zi)/w0u0(0)]. The entrainment rate

of the boundary layer top is�
Du2

gud

2

�
we(h)52

1

2(12a)a2
w0u0(zi)

2
12a

2a

d

z0
w0u0(0): (A9)

Introducing the relative stratification G5 gud/Du
(Deardorff 1979; Fedorovich and Mironov 1995), the

convective Richardson number Ri5 (gz0/w
2
*)(Du/u0),

Deardorff’s (1970) convective velocity w*, and the ref-

erence potential temperature u0 under the Boussinesq

approximation results in the following:

we(h)

w*
5

1

22G

1

Ri

2
4212a

a

d

z0
2

1

a2(12a)

w0u0(zi)
w0u0(0)

3
5 .

(A10)

We now introduce the integral shape factor likeDeardorff

(1979):

Y5
1

d

ðh
z
0

u2 hui
Du

dz . (A11)

With our parabolic profile [Eq. (A1)], Y 5 1/3. The in-

tegral of the potential temperature in the inversion is thusðh
z
0

u dz5 huid1DudY . (A12)

The heat budget in the inversion layer is (using Leibniz’s

rule)

d

dt

ðh
z
0

udz2
dh

dt
(hui1Du)1

dz0
dt

hui52

ðh
z
0

w
›u

›z
dz .

(A13)

The first term on the left-hand side of the equation can

be expanded using Eq. (A12):

d

dt

ðh
z
0

udz5
dhui
dt

d1 hui
�
dh

dt
2

dz0
dt

�
1

dDu

dt
dY

1Du

�
dh

dt
2
dz0
dt

�
Y1Dud

dY

dt
. (A14)

The change in the potential temperature increment

across the inversion is:

dDu

dt
5

d

dt
(u(h)2 hui)5 gu

dh

dt
2

dhui
dt

, (A15)

assuming a constant free-tropospheric profile. Assuming

a constant Y and linear large-scale vertical velocity, Eq.

(A13) then simplifies to

we(z0)5
12Y

Y

d

z0

w0u0(0)
Du

1

�
11G2

1

Y

�
we(h)

1

�
1/32Y

Y

�
w(z0)

w*
1

�
11G2

1

Y

�
w(h)

w*
.

(A16)

This can be rewritten using the convective velocity and

Richardson number as

we(z0)

w*
5

12Y

Y

d

z0

1

Ri
1

�
11G2

1

Y

�
we(h)

w*

1

�
1/32Y

Y

�
w(z0)

w*
1

�
11G2

1

Y

�
w(h)

w*
.

(A17)

Using the entrainment velocity at the PBL top [Eq.

(A10)], we can simplify this expression:

we(z0)

w*
5

1

Ri

2
42aG2aY1 2YGa1a2Y(G1 1)1 1

aY(22G)

d

z0
2

Y(G1 1)2 1

a2(12a)(22G)Y

w0u0(zi)
w0u0(0)

3
51

1/32Y

Y

w(z0)

w*

1
Y(11G)2 1/3

Y

w(h)

w*
. (A18)
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With our value of the shape factor Y 5 1/3,

we(z0)

w*
5

1

Ri

2
411a

a

d

z0
1

1

a2(12a)

w0u0(zi)

w0u0(0)

3
5

2 (22G)
w(h)

w*
. (A19)

APPENDIX B

Integration of the TKE Budget

We assume that the storage term of the TKE equation

is negligible compared to the other terms once the

Ozmidov length scale is much smaller than the CBL

depth (Dillon 1982). Zilitinkevich (1975) showed that

the storage term could be an important term of the local

TKE budget. In the inversion the storage is typically at

least an order of magnitude larger than in the mixed layer

(see Fig. 8). In our case, we are considering the vertically

integrated TKE budget over the CBL depth, and the

storage term ismuch smaller than other terms, as observed

in the LES data. Only the dissipation term has to be pa-

rameterized to determine the closure of the TKE budget.

Integrating the dissipation over the entire PBL gives, as-

suming uniform dissipation rate in the mixed layer and

linear decay of the dissipation rate in the inversion layer,ðh
0
� dz5

z0 1h

2
h�i . (B1)

The minimum buoyancy flux can now be expressed

using the integrated PBL TKE budget:

zm 1 h

2
h�i5 1

2
w3
*

2
411 4

3

d

zm

w0u0(zi)
w0u0(0)

3
5

1 Sinversion_layer 1 Sg , (B2)

with Sinversion_layer being the vertically integrated TKE

buoyancy consumption (taken as negative) in the IL and

Sg being the TKE production contribution of waves,

which is neglected here.

The integral of the TKE buoyancy production in the

inversion is

g

uy

ðh
z
0

w0u0 dz5
1

12

g

u

"
6az201 (12 2a)d2

az0
w0u0(0)

2
d

a2(12a)
w0u0(zi)

#
(B3)

and in the mixed layer

g

uy

ðz
0

0
w0u0 dz5

1

2

g

u
w0u0(0)z0 . (B4)

As the integrated TKE dissipation is h�i(z0 1 d/2),

then the minimum buoyancy flux can be found as

w0u0(zi)5a(12a)
26z20a1 d2(2a2 1)

dz0
w0u0(0)

1 6a2(12a)
2z01 d

d

u

g
h�i , (B5)

or in dimensionless form,

b52
w0u0(zi)
w0u0(0)

5a(12a)
6z20a2 d2(2a2 1)

dz0

2 6a2(12a)z0
2z01 d

d

1

w3
*

h�i . (B6)

Using the convective scaling for the dissipation rate,

h�i5C�(w
3
*/kz0) (Zilitinkevich 1991), gives

b52
w0u0(zi)
w0u0(0)

5a(12a)
6z20a2 d2(2a2 1)

dz0

2
C�

k
6a2(12a)

2z0 1 d

d
, (B7)

which simplifies to

b5 6a2(12a)

�
12 2

C�

k

�
z0
d
2

C�

k
6a2(12a)

2 (2a2 1)
d

z0
. (B8)

The last term in d/z0 of Eq. (B8) is five orders of mag-

nitude smaller than the other terms so that we can fur-

ther approximate Eq. (B8) as

b’ 6a2(12a)

�
12 2

C�

k

�
z0
d
2

C�

k
6a2(12a) . (B9)

We can then solve for the IL depth by equating Eqs. (B9)

and (13):
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d

z0
5

3(C�/k)a(11a)(3a2 2)1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a(3a2 2)(a1 1)22 2(12a)(12 2C�/k)

q
12a

. (B10)

This expression of the IL depth can be used in Eq. (13) to

find the relationship b(a) or, conversely, b(d/z0).
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