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ABSTRACT

This paper assesses intermodel spread in the slope of global-mean precipitation change DP with respect to

surface temperature change. The ambiguous estimates in the literature for this slope are reconciled by an-

alyzing four experiments from phase 5 of CMIP (CMIP5) and considering different definitions of the slope.

The smallest intermodel spread (a factor of 1.5 between the highest and lowest estimate) is foundwhen using a

definition that disentangles temperature-independent precipitation changes (the adjustments) from the slope

of the temperature-dependent precipitation response; here this slope is referred to as the hydrological sen-

sitivity parameter h. The estimates herein show that h is more robust than stated in most previous work. The

authors demonstrate that adjustments and h estimated from a steplike quadrupling CO2 experiment serve

well to predict DP in a transient CO2 experiment. The magnitude of h is smaller in the coupled ocean–

atmosphere quadrupling CO2 experiment than in the noncoupled atmosphere-only experiment. The offset in

magnitude due to coupling suggests that intermodel spread may undersample uncertainty.

Also assessed are the relative contribution ofh, the surfacewarming, and the adjustment on the spread inDP on

different time scales. Intermodel variation of both h and the adjustment govern the spread in DP in the years

immediately after the abrupt forcing change. In equilibrium, the uncertainty inDP is dominated by uncertainty in

the equilibrium surface temperature response. A kernel analysis reveals that intermodel spread in h is dominated

by intermodel spread in tropical lower tropospheric temperature and humidity changes and cloud changes.

1. Introduction

The intermodel spread in global-mean precipitation

response appears to be substantial in simulations of global

warming. To narrow this spread, it may be helpful to

understand the slope of global-mean precipitation

changes with respect to global-mean temperature. How-

ever, estimates of the intermodel spread in this slope vary

from one study to another. To discern the origin of these

differences, we reassess intermodel spread and the mag-

nitude of the slope of global-mean precipitation change

with global-mean surface warming in climate change ex-

periments carried out as part of phase 5 of the Coupled

Model Intercomparison Project (CMIP5). We further

investigate the relative contributions of different pro-

cesses to the spread in the simulated global-mean pre-

cipitation response. We only investigate global-mean

precipitation changes in this study. For simplicity here-

after, when we mention precipitation or surface temper-

ature, we refer to the global-mean quantities.

That changes in global-mean precipitation are con-

strained by the energetics of the atmosphere is well un-

derstood (e.g., Newell et al. 1975;Mitchell et al. 1987; Boer

1993; Allen and Ingram 2002; Held and Soden 2006;

O’Gorman et al. 2012). Given this energetic constraint, it

could be assumed that estimates of the slope of pre-

cipitation change with surface temperature change would

be likewise constrained. However, the estimates of inter-

model spread vary among studies, from the smallest spread

of 1.82–2.70Wm22K21 (a factor of 1.5 between the lowest

and highest model estimates) in Andrews et al. (2009) to

studies suggesting much larger intermodel spreads up to a

factor of 3.3 for models participating in phase 3 of CMIP

(CMIP3) and CMIP5 (Table 1). In addition to different

estimates of intermodel spread, the ensemble-mean mag-

nitude of the ratio of precipitation change with warming

also differs across these model-based studies.
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General circulation models are an indispensable tool

for studying and predicting precipitation changes.

However, the different estimates of the slope of global-

mean precipitation change may raise doubts for the

models’ abilities to correctly predict global-mean pre-

cipitation changes with global warming. Understanding

the reasons for the different model-based estimates in

the literature is important to judge how confident one

can be in the predictions of precipitation change. This

insight may eventually help to improve the represen-

tation of physical processes in themodels and eventually

the prediction of precipitation change with global

warming.

Physical and methodological issues complicate the

interpretation of estimates of the precipitation response

to warming in the literature. First, climate change ex-

periments with different degrees of idealization—from

very idealized CO2-step configurations to transient

scenarios including multiple forcing agents—were ana-

lyzed. Second, the authors defined the slope of pre-

cipitation change with respect to surface temperature

change in different ways, but described it using the same

term: hydrological sensitivity.

In some studies the term hydrological sensitivity is

used to denote the ratio of global-mean precipitation

change to the corresponding global-mean surface tem-

perature change, where the changes were estimated as

the differences between the perturbed and control mean

states (e.g., Held and Soden 2006; Bala et al. 2008;

Previdi 2010; Pendergrass and Hartmann 2014). Other

studies incorporate the expectation that precipitation

not only changes proportionally with surface tempera-

ture, but also adjusts directly to forcing agents. For in-

stance, Allen and Ingram (2002) and other studies (e.g.,

Lambert and Webb 2008; Andrews et al. 2009) express

the global-mean precipitation changes DP as a linear

function of the surface temperature changes DTs

following

DP5hDT
s
1A , (1)

where h is the proportionality factor between DP and

DTs, and A is an adjustment term that measures the di-

rect response of precipitation to forcing, independent of

any eventual surface temperature change. If, for exam-

ple, the CO2 concentration in the atmosphere is abruptly

increased, the atmosphere is directly cooled less via

the increased absorption of longwave radiation from

CO2 (Ramanathan 1981). To balance this reduction in

radiative cooling, the atmosphere reacts rapidly by re-

ducing a heating source, the precipitation (e.g., Allen

and Ingram 2002; Andrews et al. 2009). Rising temper-

atures due to the forcing then lead to more atmospheric

cooling. Precipitation is thus initially suppressed by

abruptly increasing levels of CO2, but increases pro-

portionally to surface temperature warming when the

forcing is held constant. The proportionality factor h of

precipitation change with surface temperature change

has formerly been referred to as differential hydrologi-

cal sensitivity but also, ambiguously, as hydrological

sensitivity.

A more precise terminology for precipitation changes

with temperature changes would be helpful. For the

remainder of this work we will adopt a terminology (il-

lustrated in Fig. 1) that is analogous to the well-defined

framework of equilibrium climate sensitivity (ECS).

In the ECS framework (e.g., Sherwood et al. 2015), an

external forcing F causes a radiative imbalance at the

top of the atmosphere DRTOA that arises from the direct

radiative forcing as well as adjustments of atmospheric

properties without any change in the global-mean sur-

face temperature (e.g., clouds). The surface temperature

TABLE 1. Comparison between the literature and this study for estimates of the slope of precipitation change with respect to surface

temperature change; h denotes the hydrological sensitivity parameter and ha the apparent hydrological sensitivity parameter. The ab-

solute spread shows the lowest–highest model estimate (Wm22 K21, values in parentheses have the unit % K21). The factor of spread is

the approximate ratio between the lowest and highest model estimate. The dispersion (%) is the ensemble standard deviation divided by

the ensemble mean.

Study Definition of slope Absolute spread Factor of spread Dispersion

Held and Soden (2006) ha (1–3) 3 —

Lambert and Webb (2008) h 1.3–3.2 2.4 —

(1.4–3.4) 2.4 —

Andrews et al. (2009) h 1.82–2.70 1.5 11

Takahashi (2009) h 1.50–3.13 2.1 19

Lambert and Allen (2009) h 0.84–1.97 2.3 27

Frieler et al. (2011) h — — 24

Previdi (2010) ha (0.71–2.37) 3.3 31

Pendergrass and Hartmann (2014) ha 0.7–1.9 2.7 27

This study (from abrupt4xCO2) h 1.85–2.73 1.5 11

(2.1–3.3) 1.6 11
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responds to the radiative imbalance according to

DRTOA 5 lDTs 1 F (e.g., Gregory et al. 2004) until a

new equilibrium is reached. The slope l is called the

climate feedback parameter and the surface warming in

equilibrium due to a doubling of CO2 is called equilib-

rium climate sensitivity.

In analogy, for precipitation changes we will hereafter

refer to the amount of global-mean precipitation change

in equilibrium due to a doubling of CO2 as equilibrium

hydrological sensitivity (EHS) and to h, the slope of

temperature-dependent precipitation change, as the

hydrological sensitivity parameter. In contrast to l, h is

not a feedback parameter because DP does not feed

back on DTs. The slope of total precipitation change to

total surface temperature change will be referred to as

the apparent hydrological sensitivity parameter ha,

where ‘‘apparent’’ alludes to the fact that ha is what one

might observe, but is sensitive to the nature of the

forcing. On the contrary, we prefer to think of h as a

more characteristic quantity that does not depend on the

specifics of the forcing agent or the details of the surface

warming (Andrews et al. 2009; Bala et al. 2010; Andrews

et al. 2010; Kvalevåg et al. 2013). However, if A is not

known a priori, then h can only be estimated in steplike

forcing experiments.

The aimof thiswork is to gainmore insight into reasons

for the intermodel spread in the hydrological sensitivity.

In light of the terminological ambiguity discussed above,

we aim to investigate the term hydrological sensitivity for

both the previous definition and our current terminology.

First, we reassess the intermodel spread in the slope of

precipitation change with surface temperature change

(h and ha) in four CMIP5 experiments, compare our es-

timates with the literature, and provide physical expla-

nations for differences among estimates. We discuss how

the value and intermodel spread depend on the definition

and on the analyzed climate change experiment in a set of

CMIP5 models (section 3) as well as the applicability of

h and A derived from idealized steplike CO2-forcing

experiment to a transient CO2 experiment (section 4).

In the second part of this study, we discuss the inter-

model spread in global-mean precipitation response

among the different CMIP5 models in an idealized ex-

periment with abruptly quadrupled CO2 concentration

(section 5). We assess how the three factors from Eq. (1)

(h, DTs, and A) contribute to the spread in the equilib-

rium precipitation response, following the illustrative

approach of Hawkins and Sutton (2009). Previdi (2010)

and O’Gorman et al. (2012) investigated reasons for

intermodel spread in the slope of precipitation change

with the radiative kernel method (Soden et al. 2008),

finding that the spread from clouds dominates over the

spread from temperature and water vapor changes.

Takahashi (2009) proposes that the intermodel spread in

the slope is caused by scatter in the shortwave absorp-

tion among models. Pendergrass and Hartmann (2014)

show that temperature and water vapor profiles change

differently and thus cause differences in the atmospheric

heat budget. To gain more insight into causes for inter-

model spread in h andA, we employ themethodology as

in Previdi (2010), but use newer radiative kernels (ra-

diative flux perturbations due to a unit change in at-

mospheric state variable) to decompose the atmospheric

heat budget into contributions from CO2, temperature,

water vapor, and clouds.

2. Experiments and methods

a. Experiments

We investigate four CMIP5 experiments (Taylor et al.

2012), in which the atmospheric heat budgets are per-

turbed in distinct ways. Coupled ocean–atmosphere

(piControl, historical, 1pctCO2, and abrupt4xCO2) and

noncoupled atmosphere-only experiments (amip and

amip4K) are analyzed. To interpret our findings we also

analyze other specialized experiments (amipFuture; see

also sstClim and sstClim4xCO2 in the supplementary

material).

The historical simulation starts from preindustrial

control conditions (piControl experiment) but with

prescribed transient historical forcings. Transient

FIG. 1. Illustration of the terminology for precipitation change

with surface temperature change adopted in this work, by the ex-

ample of abrupt4xCO2 data from IPSL-CM5A-LR. The hydro-

logical sensitivity parameter h is the slope of the global-mean

precipitation response with respect to surface temperature change

when explicitly taking into account the rapid ‘‘adjustment’’ of

precipitation due to forcing agents. The apparent hydrological

sensitivity parameter ha is given by the slope of global time-mean

responses without accounting for rapid precipitation adjustments.

The equilibrium precipitation change due to a quadrupling of CO2

is denoted as equilibrium hydrological sensitivity at 4 3 CO2

(EHS43). Small circles signify annual global means, and large cir-

cles the endpoint and equilibrium mean.
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forcings include well-mixed greenhouse gases and nat-

ural and anthropogenic aerosols as well as land-use,

solar, and orbital forcings. Although recommended in-

put for most of these forcings was provided, modeling

groups were free to specify aspects such as the aerosol

forcing.

The radiative forcing is less ambiguously defined in

the more idealized CMIP5 experiments. In the 1pctCO2

experiment the forcing consists of a gradual 1%yr21

increase of the CO2 concentration, yielding a near-linear

increase in radiative forcing. The CO2 concentration

doubles after 70 years and quadruples after 140 years. In

the abrupt4xCO2 experiment, the preindustrial CO2

concentration is abruptly quadrupled with respect to

piControl and then held constant for the remainder of

the simulation. The CMIP5 experiment protocol calls

for at least 150 years of simulation length for experi-

ments with coupled models. If modeling centers pro-

vided longer time series, all available monthly mean

values were included in the analysis.We selectedmodels

for which the abrupt4xCO2 experiment was available.

Only one ensemble member of each model (r1i1p1) is

included in the analysis. The noncoupled amip and

amip4K experiments are part of the Cloud Feedback

Model Intercomparison Project (Bony et al. 2011)

where models are driven by prescribed sea surface

temperatures for the period 1979–2008 and the corre-

sponding forcing agents. In amip4K, the sea surface

temperatures are uniformly raised by 4K but all other

boundary conditions remain as in the amip experiment.

b. Calculation methods

Two common methods exist to calculate h: the re-

gression method (e.g., Gregory et al. 2004; Andrews

et al. 2009; Lambert and Webb 2008) and the fixed-SST

method (Hansen et al. 2005; Bala et al. 2010; Andrews

et al. 2010; Kvalevåg et al. 2013). For the abrupt4xCO2

experiment we perform an ordinary least squares re-

gression between annual global-mean DTs and DP,
where h is given by the slope and A by the y intercept.

For the amip4K experiment, we compute DP and DTs as

the global and time-mean differences over the period of

1979–2008 between amip4K and amip. Because the ad-

justment A is zero in amip4K, h is given directly as the

ratio DP/DTs.

The apparent hydrological sensitivity parameter has

usually been calculated by subtracting global time av-

erages over the last years of the perturbed experiment

from a climatological mean of the control state or al-

ternatively of the beginning years of the perturbed cli-

mate change experiment. We follow this approach for

the abrupt4xCO2 experiment, and estimate ha for two

different time means. The endpoint mean refers to the

global time average over the last 10 years of a model’s

simulation. The equilibrium mean is discussed here be-

cause the endpoint mean is not representative of equi-

librium conditions, as the equilibration time scale in

coupled models is much greater than the typical 150-yr

simulation length. To estimate the equilibrium hydro-

logical sensitivity for a quadrupling of CO2 (EHS43), we

follow the Gregory method (Gregory et al. 2004) and

extrapolate the top-of-atmosphere (TOA) radiative flux

imbalance toward equilibrium, finding the equilibrium

climate sensitivity for a 4 3 CO2 forcing (ECS43). To-

gether with h and A, the EHS43 is determined by Eq.

(1). Unless otherwise noted, we calculate ha for both the

historical and 1pctCO2 experiments as the slope from

the regression of annual-mean DTs and DP. We choose

this method because it yields the general trend of pre-

cipitation evolution with surface temperature for the

transient forcing experiment. This method is shown to

be superior to the method of differencing time averages

for estimating linear trends (Barnes and Barnes 2015).

Note that transient forcing simulations do not readily

allow one to separate the adjustment.

3. The slope of precipitation change with respect to
surface temperature change in CMIP5
simulations

Here we compare the slope of global-mean pre-

cipitation increase with respect to surface warming as

found in four CMIP5 experiments and estimated

according to the definitions in section 1. The ensemble-

mean values and their intermodel spread of h and ha are

portrayed byGaussian distributions (Fig. 2a). Individual

model values are given in Table 2. The spread is shown

as the standard deviation across the ensemble (Fig. 2a)

or in terms of the dispersion (Fig. 2b), which is the

standard deviation normalized by the ensemble mean.

Because the dispersion provides a measure of the rela-

tive spread among models, it is more indicative of the

interexperiment spread than the standard deviation.

The smaller the dispersion, the smaller is the relative

intermodel spread.

First we examine how the magnitude and spread de-

pend on the definition of the slope. The dependence on

the definition can only be tested with the abrupt4xCO2

experiment. It is well understood that h is greater than

ha because the fast precipitation adjustment to an in-

crease in CO2 is negative (e.g., Allen and Ingram 2002;

Andrews et al. 2009; Bala et al. 2010). We show that

the choice of h or ha to characterize the hydrological

sensitivity also strongly influences the spread of the

slope (Fig. 2b). The dispersion, and thus the relative

intermodel spread, is smallest for h (10.7%) and larger
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for the two ha estimates. The smaller spread in h is

simply explained by the fact that the spread of the

slope is explicitly separated from the spread of the

adjustment. Estimating the slope via the definition of

ha reveals that its magnitude and spread are sensitive

to the surface warming, and thus time. When ha is

computed at equilibrium conditions (greater surface

warming), the spread from the adjustment loses its

impact on the spread of the slope relative to endpoint

conditions (smaller dispersion of 14.6% versus

18.2%). Not being influenced by the adjustment, the

definition of h yields a more precise estimate for the

increase of precipitation with surface warming (2.246
0.24Wm22 K21; error is given as one intermodel

standard deviation).

The interexperiment differences in magnitude and

spread of the slope depend on the experiment configu-

ration. For the idealized steplike warming experiment

(amip4K), the spread in h is similarly small (dispersion

of 9.3%) as for abrupt4xCO2. That themagnitude of h is

higher in amip4K (2.796 0.26Wm22K21) as compared

to abrupt4xCO2 is unexpected; the usage of the same

definition should yield similar values if h is a charac-

teristic quantity for the evolution of the temperature-

dependent DP. Possible reasons for differences are

discussed in more detail in section 6.

For the transient experiments (1pctCO2 and histori-

cal), the slope is, as explained above, suppressed by the

effect of the adjustments. Here only ha can be estimated

because the exact forcings for the individual models are

unknown. The suppression is stronger in the historical

simulation (0.91 6 0.51Wm22K 21). In addition to

greenhouse gas forcings, absorbing aerosols (e.g., bio-

mass burning and black carbon) reduce the precipitation

increase (e.g., Andrews et al. 2010; Kvalevåg et al. 2013).
Among the considered experiments, the spread is largest

in the historical simulation (dispersion of 53%), al-

though it is calculated by the regressionmethod, thereby

yielding the trend of historical DP evolution with DTs.

Estimates of ha have even greater spread when calcu-

lated using the endpoint method (Table 3) because

endpoint means strongly depend on the forcing and thus

time. The spread in the historical experiment cannot be

expected to be as small as in the idealized experiments,

because a large diversity in aerosol load and distribution

(e.g., Stevens 2015) causes a variable forcing on the re-

spective model’s atmospheric heat budget. Aerosols

have been shown to exert a great impact on the inter-

model spread of ha in the CMIP3 ensemble (e.g., Previdi

2010; Pendergrass and Hartmann 2012). In addition, the

natural variability is high compared to the signal from

the forcing, which increases the intermodel spread of the

estimated slope. The effect of natural variability is also

apparent in Hegerl et al. (2015), where the spread in the

representative concentration pathways (RCPs) reduces

with increasing forcing (see their Fig. 1b).

The merit of estimating ha for a transient experiment

with such variable forcings on the atmospheric heat

budget remains questionable because physical reasons

for intermodel spread in ha are difficult to disentangle.

On the contrary, the concept of h reveals that models in

fact agree well on the magnitude of h.

We consider the estimate in h from abrupt4xCO2 as

the most appropriate estimate for the CMIP5 model

FIG. 2. Comparison of the slope of precipitation change with respect to surface temperature change for different

definitions of the slope and different CMIP5 experiments. (a) The spread is shown as Gaussian curves, as given by

the ensemble mean and standard deviation of h and ha. (b) The ensemble standard deviation is scaled by the

ensemble mean to yield the dispersion. Table 2 lists the parameter values for all models.
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ensemble for the rate of increase in precipitation with

surface warming. The estimate, with absolute model

spread of 1.85–2.73Wm22K21 (with a factor of 1.5 be-

tween the highest and lowest model estimate) and a

dispersion of 10.7%, supports the results in Andrews

et al. (2009), who also find a factor of 1.5 spread among

models. Why is the intermodel spread in h larger in the

remaining studies (Table 1)?

The analysis above demonstrates that the spread in

the slope of precipitation increase is larger when ha is

calculated (Held and Soden 2006; Previdi 2010;

Pendergrass and Hartmann 2014). Studies that estimate

h from transientmultiexperimentmodel ensembles via a

multiple regression analysis must make assumptions for

the magnitude of forcings, finding larger spreads

(Lambert andAllen 2009; Frieler et al. 2011). Takahashi

(2009) finds the best estimate from a multimodel mul-

tirun ensemble by looking at two transient and one

steplike CO2 and accounting for adjustments. The larger

dispersion (19%) in that studymay arise from a different

application of the regression method. Lambert and

Webb (2008) calculate h from the 2xCO2 CMIP3 ex-

periment and from a large ensemble of models with

physically perturbed atmospheric subgrid-scale param-

eters. Probably the analysis of models with physically

perturbed parameters initiated the larger spread in

TABLE 2. Values of h and ha from different CMIP5 experiments (Wm22 K21, values in parentheses have the unit % K21). Error

estimates are given as plus or minus one standard error from the ordinary least squares regression. Ensemble error is plus or minus one

ensemble standard deviation. The models are ordered such that their h value in the abrupt4xCO2 simulation increases. Data have been

horizontally interpolated to a common T63 spectral truncation Gaussian grid prior to analysis. (Expansions of acronyms are available

online at http://www.ametsoc.org/PubsAcronymList.)

Model historical (ha) 1pctCO2 (ha) abrupt4xCO2 (h) amip4K (h) Reference

ACCESS1.0 0.47 6 0.15 0.82 6 0.01 1.85 6 0.02 (2.06 6 0.02) — Bi et al. (2013)

BNU-ESM 0.93 6 0.07 1.22 6 0.02 1.87 6 0.03 (2.14 6 0.04) — Ji et al. (2014)

HadGEM2-A — — — 2.32 Collins et al. (2011)

HadGEM2-ES 0.70 6 0.20 0.98 6 0.01 1.90 6 0.02 (2.13 6 0.02) — Collins et al. (2011)

FGOALS-s2 — 1.45 6 0.02 1.92 6 0.04 (2.49 6 0.05) — Bao et al. (2013)

CanESM2 0.84 6 0.07 1.10 6 0.02 1.97 6 0.03 (2.48 6 0.03) — Arora et al. (2011)

CanAM4 — — — 2.55 von Salzen et al. (2013)

FGOALS-g2 1.44 6 0.09 1.29 6 0.01 1.99 6 0.02 (2.44 6 0.02) 2.59 Li et al. (2013)

GFDL-ESM2G 1.26 6 0.10 0.82 6 0.05 2.01 6 0.03 (2.34 6 0.04) — Dunne et al. (2012)

MIROC-ESM 0.08 6 0.09 1.37 6 0.01 2.08 6 0.03 (2.56 6 0.03) — Watanabe et al. (2011)

MPI-ESM-LR 1.19 6 0.07 1.42 6 0.01 2.15 6 0.03 (2.54 6 0.04) 2.74 Stevens et al. (2013)

GFDL-ESM2M 1.50 6 0.12 1.12 6 0.04 2.17 6 0.03 (2.53 6 0.04) — Dunne et al. (2012)

BCC_CSM1.1 1.26 6 0.04 1.33 6 0.01 2.18 6 0.03 (2.69 6 0.04) 2.74 Wu et al. (2014)

MPI-ESM-MR 1.29 6 0.09 1.53 6 0.02 2.23 6 0.04 (2.59 6 0.04) 2.93 Giorgetta et al. (2013)

ACCESS1.3 0.76 6 0.16 1.46 6 0.02 2.24 6 0.03 (2.44 6 0.03) — Bi et al. (2013)

CNRM-CM5 0.42 6 0.17 1.27 6 0.02 2.24 6 0.03 (2.52 6 0.03) 2.77 Voldoire et al. (2013)

IPSL-CM5B-LR 1.51 6 0.06 1.06 6 0.02 2.24 6 0.04 (2.79 6 0.05) 2.89 Hourdin et al. (2013)

CSIRO Mk3.6.0 0.29 6 0.14 1.47 6 0.02 2.25 6 0.02 (2.68 6 0.03) — Rotstayn et al. (2012)

MPI-ESM-P 1.03 6 0.07 1.42 6 0.01 2.25 6 0.03 (2.66 6 0.04) — Giorgetta et al. (2013)

GFDL CM3 0.82 6 0.20 1.37 6 0.02 2.26 6 0.03 (2.56 6 0.03) — Donner et al. (2011)

NorESM1-M 0.84 6 0.12 1.05 6 0.02 2.32 6 0.03 (2.86 6 0.04) — Bentsen et al. (2013)

CCSM4 1.43 6 0.06 1.22 6 0.01 2.39 6 0.03 (2.82 6 0.04) 3.10 Meehl et al. (2012)

BCC_CSM1.1(m) 1.55 6 0.05 1.58 6 0.02 2.40 6 0.03 (2.97 6 0.04) — Wu et al. (2014)

MIROC5 0.72 6 0.12 1.15 6 0.02 2.42 6 0.06 (2.61 6 0.06) 2.71 Watanabe et al. (2010)

INM-CM4.0 1.38 6 0.08 1.26 6 0.02 2.43 6 0.06 (2.69 6 0.06) — Volodin et al. (2010)

GISS-E2-H 0.74 6 0.08 1.36 6 0.01 2.49 6 0.03 (2.68 6 0.03) — Schmidt et al. (2014)

IPSL-CM5A-LR 1.60 6 0.05 1.50 6 0.01 2.51 6 0.02 (3.27 6 0.03) 2.83 Dufresne et al. (2013)

IPSL-CM5A-MR 1.81 6 0.07 1.49 6 0.01 2.57 6 0.03 (3.24 6 0.03) — Dufresne et al. (2013)

GISS-E2-R 0.38 6 0.14 1.27 6 0.02 2.63 6 0.05 (2.86 6 0.06) — Schmidt et al. (2014)

MRI-CGCM3 20.19 6 0.22 1.92 6 0.02 2.73 6 0.05 (3.22 6 0.06) 3.30 Yukimoto et al. (2012)

Ensemble 0.97 6 0.51 1.30 6 0.24 2.24 6 0.24 (2.64 6 0.30) 2.79 6 0.26 —

TABLE 3. Comparison of the regression and the endpoint

method. The regression method applied to abrupt4xCO2 yields h;

all other estimates yield ha. Values shown are the ensemble mean

plus or minus one ensemble standard deviation, and in parentheses

are the minimum–maximum range of model values (Wm22 K21).

Experiment Regression Endpoint

historical 0.97 6 0.51 (20.19–1.81) 0.44 6 0.94 (21.64–1.76)a

1pctCO2 1.30 6 0.24 (0.82–1.92) 1.28 6 0.23 (0.72–1.88)

abrupt4xCO2 2.24 6 0.24 (1.85–2.73) 1.39 6 0.25 (0.91–1.97)

a Endpoint ensemble estimates for the historical experiment ex-

clude GFDL CM3 for which ha 5 216.4Wm22 K21.
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Lambert andWebb (2008) (factor of 2.4 difference), but

such experiments are less constrained estimates of the

present climate. The large number of CMIP5 models

analyzed here may therefore be considered as a repre-

sentative sample to infer that intermodel differences

result in a factor of 1.5 spread in h among models, which

is comparably small to what has been estimated in most

previous work.

4. Applicability of the hydrological sensitivity
parameter to transient experiments

We have shown that the hydrological sensitivity pa-

rameter is a robust measure in the idealized abrupt4xCO2

experiment, but ha found in transient forcing simula-

tions is sensitive to the experimental configuration.

Transient forcings, however, are more realistic, as an

abrupt quadrupling of CO2 concentration is not ex-

pected to happen in reality.

Of what use is then a measure estimated from the

abrupt4xCO2 simulations to understand precipitation

change in the more complex reality? Thorpe and

Andrews (2014) demonstrated that h estimated from

abrupt4xCO2 serves well for predicting the overall pre-

cipitation response in the historical and different RCP

experiments, simply by considering fast precipitation

adjustments to aerosols, ozone, CO2, solar changes, and

other greenhouse gases. For this analysis, TOA forcing

estimates for the different forcing agents had to be con-

verted into atmospheric forcings, but the conversion ra-

tios were known for only two models and thus had to be

applied to the rest of the models. Consequently, the total

spread of DP could not be exactly predicted.

Here we ask how well precipitation changes in the tran-

sient 1pctCO2 can be predicted by only knowing the

temperature-dependent precipitation response h and the

fast precipitation adjustment A from abrupt4xCO2. To do

so, we scale A (the adjustment for a 4 3 CO2 increase) by

the relative change in forcing in year n to predict DP:

DP
pred,n

5hDT
s,n

1A
n

2
log

2
1:01: (2)

The scaling factor multiplying A has been estimated by

assuming that the forcing increases linearly with the

logarithm of the CO2 concentration, which increases at

1%yr21. It is thus identically one at the time of CO2

quadrupling (i.e., n5 139.32 yr). This approach is similar

to the one adopted by Good et al. (2012).

The predicted evolution of precipitation changes with

surface temperature changes coincides with the overall

model precipitation change (Fig. 3a). Apart from the two

GISS models, the absolute difference between predicted

andmodelDP is smaller than approximately60.9Wm22

(or 60.03mmday21) as shown by the gray shading

(Fig. 3b). Precipitation increases nonlinearly with surface

warming in the GISS models in the abrupt4xCO2 ex-

periment, which leads to ambiguity in the estimates of

h and A, resulting in a biased DPpred,n. The good agree-

ment in the other models, however, suggests that ideal-

ized climate change experiments may serve well in

projecting the global-mean precipitation response.

From this we deduce that the difficulties to exactly

project DP in Thorpe and Andrews (2014) arose from

FIG. 3. (a) Evolution of annual-mean DP with corresponding

DTs in the 1pctCO2 experiment, with respect to the climatolog-

ical mean in piControl. Gray thin lines show actual model results,

and colored thick lines the predicted precipitation change fol-

lowing Eq. (2). (b) Absolute deviation of predicted and model

DP. All colored lines are smoothed by a 5-yr running average.

The gray shading ranges from20.80 to 0.86Wm22. All 1pctCO2

experiments from Table 2 are shown, except GFDL-ESM2M and

GFDL-ESM2G as our analysis suggests that their CO2 increase

stopped after 70 years.
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uncertainties in forcing estimates other than from

CO2. For here it is shown that h andA, estimated from

abrupt4xCO2 experiments, can predict the pre-

cipitation change in a transient CO2 experiment rea-

sonably well.

5. Sources of intermodel spread in the global-mean
precipitation response on different time scales

In this section we address the causes of intermodel

spread in the precipitation response on different time

scales whereas the previous sections investigated the

degree of difference among models in the slope of

precipitation change with surface temperature change.

As we have shown that the intermodel spread in the

slope (h) corresponds to the smallest estimate of spread

in the literature, one might think that global-mean

precipitation predictions from models would converge

toward the same value. Nevertheless, the global-mean

equilibrium precipitation response to an abrupt 43 CO2

forcing—hereafter EHS43—exhibits a factor of 3 spread

among CMIP5 models, even though h has a twofold

smaller factor of spread (1.5) in the same experiment

(section 3).

Which factors, then, determine the larger spread in

EHS43? Assuming that DP linearly increases with DTs,

the spread in EHS43 is affected by the spread in equi-

librium climate sensitivity for a quadrupling of CO2

(ECS43), the hydrological sensitivity parameter, and the

adjustment (Fig. 4a).

At equilibrium, it is the spread in ECS43 that pri-

marily impacts the large range of EHS43 (Fig. 4b). Here

the respective standard deviations si, with i being A, h,

or ECS43, are normalized by the standard deviation of

EHS43, yielding bsi. When comparing the respective

contributions to�i bsi, then ECS43 on its own makes up

57%of the spread, whereasA andh contribute with only

16% and 27%, respectively. Thus, ECS43 conditions the

spread of the EHS43. In fact, if only the spread in ECS43
were to determine the spread in EHS43, the spread in

EHS43 would be slightly larger (ŝECS43 5 1.07). An

anticorrelation between h and ECS43 leads to smaller

DP for models with high surface temperature warming

and vice versa; the spread of EHS43 is thus smaller when

h and A can vary than if only ECS43 caused the spread.

Our conclusion, that the spread in ECS43 dominates the

spread in EHS43 is consistent with other analysis

(Thorpe and Andrews 2014).

The spread in adjustment is important in the early

stages of warming, where the spread in adjustment

dominates over the influence of differing surface

warming amongmodels, with about 45% contribution to

the sum of bsi (Fig. 5). The importance of h rises with

warming, surpassing the adjustment’s contribution to

�i bsi after about 20 years. The residual, given as offset

between model DP and that of the regression line fol-

lowing Eq. (1), amounts to about 20% in the very be-

ginning but reduces with time. The residual is due both

to errors in the prediction and to internal variability.

Uncertainty due to surface warming only overwhelms

the combined effect of ŝh 1 ŝA after year 70 of the

abrupt4xCO2 simulation (Fig. 5).

To understand the spread in precipitation response

over all time scales, it is thus necessary to better un-

derstand separate sources of spread for equilibrium

FIG. 4. (a) Shown are A, h, and ECS43 in the 28 abrupt4xCO2

models. Dots denote EHS43, where dot size increases for larger

EHS43. Colors darken for increasing ECS43. (b) Contributions to

spread in EHS43 from A, h, and ECS43; estimated via Eq. (1), by

setting two of the three factors to their corresponding ensemble-

mean values. The standard deviations of DP due to variation of the

free factors are normalized by the actual standard deviation in

equilibrium DP. Note that normalized standard deviations do not

add to unity.
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surface warming, h and A. All three spread-causing

factors are determined by how the energy fluxes of the

system change in response to the CO2 forcing in the

abrupt4xCO2 models. The analysis of spread-causing

factors in the energetics of the atmosphere thus serves

as a straightforward approach for better understanding

the variation in precipitation response.

Since the 1970s when general circulation models were

first established, extensive effort has been placed on

developing a framework for understanding contributions

to the spread in ECS (Charney et al. 1979). This frame-

work has made it possible to decompose the temperature

response into radiative contributions from climate

change feedbacks: temperature, cloud, water vapor, and

surface albedo feedback. The uncertainty in ECS esti-

mates originates foremost from the uncertainty in simu-

lated cloud feedback (e.g., Cess et al. 1990; Dufresne and

Bony 2008), and in particular in the shortwave compo-

nent of the low-cloud feedback (e.g., Bony and Dufresne

2005; Zelinka et al. 2012; Vial et al. 2013). The path to-

ward better constraining the spread in climate sensitivity

has thus been comprehensively laid out.

Less attention has been focused on understanding

intermodel spread in the slope of precipitation change

with surface temperature change and in the rapid

adjustment. Previdi (2010), one of the pioneers in this

undertaking, diagnosed the radiative impact of changing

atmospheric variables on the atmospheric heat budget. In

so doing, the respective contributions of these radiative

effects could be attributed to ha. That study, however,

was based on an experiment which was simultaneously

forced by CO2 and aerosols, where the latter has sub-

sequently been found to dominate the intermodel spread

in ha (Pendergrass andHartmann 2012). O’Gorman et al.

(2012), extending the analysis of Previdi (2010) for the

same experiment, emphasized that different changes of

clouds in the models cause larger intermodel scatter than

lapse rate plus water vapor changes. Using a different

methodology, Pendergrass and Hartmann (2014) found

that both clear-sky radiative cooling spread, resulting

from differing changes in lapse rate plus moistening, and

cloudy-sky radiative cooling spread contribute to inter-

model scatter in ha.

None of the above studies, however, addressed

intermodel spread in h and A due to radiative effects

from changing atmospheric variables, for instance by

separating between the fast and temperature-dependent

atmospheric heat budget changes resulting from

abruptly increased CO2 levels. This knowledge would

seem helpful for gaining insight into the sources of

spread in precipitation response resulting from the

spread in the adjustment and the hydrological sensi-

tivity parameter, especially for early years of warming

(Fig. 5). To this end, we perform radiative decompo-

sitions of the spread in h and A in the abrupt4xCO2

experiment.

a. Radiative decomposition of the spread in h and A

We decompose the changes of the atmospheric radi-

ative imbalance (DR 5 DRTOA 2 DRsurface) in the

abrupt4xCO2 by the kernel method (Soden et al. 2008).

The decomposition is performed such that

L
y
DP’�DR

x
2DSH, (3)

where SH is the sensible heat flux and the latent heat of

vaporization Ly 5 2500kJkg21; the index x denotes

contributions from CO2 plus stratospheric temperature

changes (CO2 1 Strat), changes in the tropospheric

temperature lapse rate (LR), changes due to uniform

tropospheric warming arising from surface temperature

increase (Planck), changes in water vapor (WV), changes

in surface albedo, and changes in clouds. The in-

vestigation of the decomposed slope from the regression

of DRx against DTs provides information for sources of

spread in the hydrological sensitivity parameter hx and

the y intercept of the regression for sources of spread in

the rapid precipitation adjustment Ax.

FIG. 5. Contributions of surface warming, hydrological sensitiv-

ity parameter, adjustment, and residual to the sum of their re-

spective normalized standard deviation bsi as a function of years

after the 4 3 CO2 forcing. Note the logarithmic time scale. The bsi

values are estimated as in Fig. 4b but for annual-mean standard

deviations of DP. The residual contribution is given by the portion

of normalized standard deviation of differences between model

and calculated DP following Eq. (1).
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To isolate DRx from changes in the atmospheric heat

budget for individual changes in atmospheric state vari-

ables Dx, we follow the technique described by Previdi

(2010), but employ a newer kernel (Block and Mauritsen

2013) calculated with the MPI-ESM-LR model (Stevens

et al. 2013), which is then used for every model in this

analysis. The kernels are vertically interpolated to the

CMIP5 pressure levels and mass-weighted by the pres-

sure thickness of each vertical layer. Any Dx is derived

as a monthly mean deviation in abrupt4xCO2 from the

climatological mean of all available piControl months in

the given model, preserving the monthly, regional, and

vertical structure. Afterward Dx is interpolated to the

same horizontal resolution as the applied kernel (the

Gaussian grid of T63 spectral truncation) before per-

forming the radiative decomposition. We choose to in-

terpolate the model variables to the kernel grid because

the temperature and water vapor kernels have sharp

gradients in orographic areas, where grid points below

the surface are defined as missing values. Interpolation of

fields with stronger gradients introduces more errors.

Detailed information about the MPI-ESM-LR kernels is

given in Block and Mauritsen (2013).

We illustrate the practicalities of our calculations by

the example of the lapse-rate component of the hydro-

logical sensitivity parameter [see Previdi (2010) for

more details on the kernel method applied to the at-

mospheric heat budget]. The lapse rate change DLR is

defined as the change in deviation of tropospheric

temperature from a uniform tropospheric warming

equal to the change in surface temperature. The change

in atmospheric radiative fluxes due to a lapse rate

change DRLR is then given by the vertical integral from

the surface to the tropopause DRLR ’
Ð pt
ps
kTDLRdp,

where p denotes pressure and the subscripts s and t

surface and tropopause. The temperature kernel kT is

the change of atmospheric radiative fluxes due to a unit

temperature change at a given grid point and vertical

level. Deducing from kT (see Fig. S1 of the supplemen-

tary material), a temperature increase by 1K leads to

increases of atmospheric cooling at any vertical level,

but this effect is stronger in the lower troposphere.

Similarly to Soden et al. (2008), the tropopause is ap-

proximated to be at 100hPa in the tropics (308N–308S)
and linearly drops in height with increasing latitude to-

ward 300hPa at the poles. The stratospheric tempera-

ture changes are considered in the x5CO21 Strat term,

where the contributions are first calculated separately

using a CO2 kernel and by multiplying stratospheric

temperature changes with the temperature kernel be-

fore summing both terms.

Then hLR arises from the slope found by ordinary-

least squares regression of annual global-mean DRLR

versus DTs; the y intercept gives ALR. Almost all

abrupt4xCO2 models from Table 2 are included in the

following results, except FGOALS-g2 and CSIRO

Mk3.6.0 as they did not provide all necessary variables

for this analysis. Signs are chosen in terms of atmo-

spheric heating; negative contributions lead to stron-

ger cooling, which is balanced by increases in h or a less

strong adjustment. The other hx and Ax are estimated

with the standard kernel technique, but for atmo-

spheric radiative convergence instead of TOA radia-

tive fluxes.

b. Spread in the hydrological sensitivity parameter

Intermodel spread of atmospheric heating changes

with warming in the abrupt4xCO2 experiment is domi-

nated by large absolute and interquartile ranges of lapse

rate and cloud-induced radiative changes with warming

(Fig. 6a), whereas models agree well on the magnitude

of radiative contributions coming from surface albedo

changes, Planck effect, and water vapor and sensible

heat flux changes.

To better assess the spread due to changes in the

thermodynamic structure of the troposphere, contribu-

tions to DP from lapse rate and water vapor changes

are considered together (hLR1WV), as the water vapor

concentration increases with temperature approxi-

mately following the Clausius–Clapeyron equation (e.g.,

Trenberth et al. 2005; Held and Soden 2006). The sepa-

ration of hLR1WV into three vertical layers reveals that

models disagree most in the lower tropospheric changes

(Fig. 6b). Although intermodel spreads of hLR and hWV

in the middle and upper troposphere are individually as

large as or even larger than in the lower troposphere (not

shown), they cancel almost perfectly in the middle and

upper troposphere because hLR and hWV are anti-

correlated (with r 5 20.89 and r 5 20.92). In the lower

troposphere, however, hLR and hWV correlate positively

(r 5 0.61). The opposite correlation between the lower

and upper troposphere can be understood by considering

how increases inwater vapor and temperaturemodify the

radiative budget at the surface and TOA (Pendergrass

andHartmann 2014). In the upper troposphere, increases

of water vapor lead to less radiative cooling at the TOA,

while increased surface temperatures lead to more cool-

ing; the uncertainties cancel approximately. Increased

water vapor and temperature in the lower troposphere

both lead to more cooling of the atmosphere to the sur-

face; hence uncertainties due to the models’ lower tro-

pospheric temperature and humidity structure amplify

the lower tropospheric spread in hLR1WV. Further sep-

aration of the lower tropospheric changes into three

regions—the tropics, midlatitudes, and poles—indicates

that the spread in the lower troposphere mainly emerges

810 JOURNAL OF CL IMATE VOLUME 29



from differing model responses of the lower tropospheric

structure in tropical areas (Fig. 6b).

That intermodel spread does not reduce strongly by

summing up lapse rate and water vapor changes may

appear surprising as these are usually thought to offset

each other to a large degree (e.g., Bony et al. 2006). This

thought, however, arises from considering how lapse

rate and water vapor changes affect the TOA fluxes and

not the surface. For the spread of hLR1WV and hLR to be

commensurate (Fig. 6), this implies that the spread

originates in the surface contribution to the atmospheric

heating. Our results agree well with Pendergrass and

Hartmann (2014), who also conclude that the radiative

effects of lapse rate and water vapor changes do not

compensate each other in the atmosphere. These results

differ, however, from the findings of O’Gorman et al.

(2012), who report a smaller intermodel spread in

hLR1WV than in the respective hLR or hWV.

In terms of precipitation magnitude, warming of the

troposphere (with medians of hPlanck 521.86Wm22K21

andhLR520.44Wm22K21) is the singlemost important

determinant for the increase in precipitation with surface

warming (h 5 2.24Wm22K21) by increasing the long-

wave atmospheric cooling on a global mean basis (Fig. 6a).

A less important source of precipitation increase is the

sensible heat flux (hSH 5 20.26Wm22K21); the magni-

tude of the sensible heat flux decreases with warming in all

models, which must be offset by more precipitation. The

precipitation increase is dampened by changes in water

vapor (hWV 5 0.22Wm22K21) and clouds (hCloud 5
0.26Wm22K21) inmost models. Although increases of

water vapor concentration enhance the longwave

cooling of the atmosphere (hWV,LW520.66Wm22K21),

this cooling is overcompensated by the additional

absorption of shortwave radiation by the water vapor

(hWV,SW 5 0.87Wm22 K21). Contrary to our study,

Previdi (2010) and O’Gorman et al. (2012) find that

hWV,LW . 0, although both studies use a very similar

methodology to ours. Qualitative comparison sug-

gests that probably the opposing results are caused

by differences in the longwave water vapor kernel

(see the discussion around Fig. S1 in the supplemen-

tary material), particularly in the lower troposphere.

However, our calculations concerning hWV,LW are in

line with the findings of other studies (Mitchell et al.

1987; Pendergrass and Hartmann 2014).

Noteworthy challenges remain in better separating

contributions of radiative effects on h with the kernel

method, as there exists a considerable spread in the re-

sidual between�xDRx and the model atmospheric heat

budget change (Fig. 6a). Because only one set of kernels

derived from a single model in a preindustrial state was

employed to perform the decomposition in the individ-

ual models, a residual may reflect differences in host

model treatments of radiative transfer particularly in the

shortwave spectrum (Takahashi 2009; Pendergrass and

Hartmann 2014). Although more shortcomings of the

kernel method exist, a better method that addresses

FIG. 6. (a) Decomposition of h for 26 abrupt4xCO2 models. Box-and-whisker plots show the minimum and

maximum as thewhiskers; the box shows the first quartile, themedian, and the third quartile as horizontal lines. The

residual is the difference between model DR/DTs and�xhx. (b) Vertical separation of hLR1WV into the lower (p.
700 hPa), middle (700 $ p . 400 hPa), and upper (400 $ p $ 100 hPa) troposphere. The lower tropospheric

hLR1WV is further separated into regions and shown here for the tropics (equatorward of 6308), the midlatitudes

(from6308 to6608), and the poles (poleward of6608). For any separation, first DRx is vertically integrated at each

grid point and month, then if applicable, regionally averaged and last regressed against global annual-mean DTs.
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these issues and is as computationally and practically

feasible has yet to be developed.

Presenting the residual of the kernel decomposition is

important for validating the kernel calculations and to

gain confidence in the results. We test whether the

scatter of the residual arises from systematic offsets in

any of the hx. No single hx is responsible for the residual,

as the correlation coefficients between the residual and

the individual hx are small (jrj# 0.26). The spread in the

residual can thus be understood as a combined effect of

small errors arising from each hx. As such, the spread in

the residual does not contradict the main result that

models disagree most concerning how their cloud and

lower tropical tropospheric temperature and moisture

structure changes affect the atmospheric heat budget

changes.

The lower tropospheric warming response and its

impact on the surface energy budget thus are crucial to

better understand how the atmospheric heat budget and

therefore precipitation will change on slow time scales.

Moreover, this understanding seems to also be impor-

tant to interpret the offset in ensemble-mean h between

the coupled and noncoupled simulations (section 6).

c. Spread in the adjustment

Better understanding of the precipitation adjustments

A has received less attention than h. Recently

Richardson et al. (2015) have explored regional pre-

cipitation adjustments to different forcing agents, where

precipitation increases rapidly over land in the tropics

but reduces over land in the midlatitudes and over the

ocean in response to increased CO2. Here we investigate

how the global precipitation adjustment is composed of

the separate contributions from the typical factors con-

sidered in kernel analyses of radiative effects.

It is straightforward to employ the kernel method to

attain these contributions to fast changes of the atmo-

spheric energy budget. Here the radiative contributions

to the adjustment are given by the y intercept of the

regression. Global-mean precipitation initially de-

creases (with a median ofA524.26Wm22) when CO2

increases. This precipitation decrease is sustained by the

combined radiative heating of CO2 and the fast cooling

of the stratosphere (ACO21Strat 5 3.67Wm22), which

induces additional atmospheric heating (Fig. 7).

The decomposition shows that precipitation adjust-

ments are not influenced by the surface albedo or by the

Planck effect (medians of AAlbedo 5 0.01Wm22 and

APlanck 5 0.01Wm22), nor does water vapor have a

discernible effect (AWV 5 0.13Wm22). The only other

term systematically influencing the fast changes of the

atmospheric heat budget appears to be the lapse-rate

adjustment (ALR 5 21.34Wm22). The lapse-rate

adjustment influences the hydrological cycle through

stabilizing the atmosphere (Kamae et al. 2015). The

stabilization of the atmosphere with higher CO2 levels

increases atmospheric cooling and thus counteracts the

direct effect of CO2 on the precipitation adjustment.

Our analysis reveals a considerable intermodel spread in

the lapse rate and cloud adjustment.

It is somewhat discouraging that not only does the

residual exhibit a large spread, but the residual is also

large with a median of 2.50Wm22. The reason for this

offset in the radiative decomposition of the adjustment

is difficult to trace down; we tested for two possible er-

rors arising from estimating the adjustment via the re-

gressionmethod. Residuals in the adjustment may result

from nonlinearities in any of the DRx with DTs, or from

the fact that the regression-based adjustment does not

capture internal variability. However, neither of these

two possible errors can account for the offset in the

adjustment residual from the radiative decomposition

(see detailed discussion in section S2 of the supple-

mentary material including Ax estimated with the fixed-

SST method).

Studies investigating the CO2 plant physiological ef-

fect find differing (about a factor of 4) estimates of rapid

precipitation reduction over land due to reduced tran-

spiration in two models [Abe et al. (2015) find

approximately 20.75Wm22 in MIROC3 and Andrews

et al. (2011) approximately 22.89Wm22 in HadCM3],

which may also be a source for intermodel spread of Ax

and ASH. The kernel decomposition cannot identify the

role of plant physiological effects in the intermodel

spread in adjustment; this deficiency cannot explain the

FIG. 7. Decomposition of the atmospheric heat budget adjust-

ment derived from 26 models performing the abrupt4xCO2 ex-

periment. More details are provided in the caption of Fig. 6.
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residual, however, because the radiative fluxes have to

balance with or without a plant physiological effect.

Notwithstanding the difficulties in attributing the re-

sidual, the sensible heat flux is unaffected by the radia-

tive decomposition and evolves quite linearly with DTs,

and its adjustment is consistently diagnosed with both

calculationmethods (see the bottom-left panel of Fig. S2

in the supplementary material). Half of the models

predict that the sensible heat flux increases on fast time

scales, while the other half predicts the opposite (Fig. 7).

Considering that the spread in sensible heat flux ad-

justment correlates strongly with the spread in fast

precipitation adjustment (r 5 0.76), for future work it

would be useful to improve understanding of fast sen-

sible heat flux changes to get a deeper insight in fast

precipitation changes.

In summary, to represent precipitation changes on fast

time scales more consistently among models, more un-

derstanding about the spread in fast adjustment to a CO2

forcing is required. In particular, our results have shown

that more attention is needed to better separate radia-

tive contributions to the adjustment from vertical tem-

perature structure changes and sensible heat flux

changes immediately after CO2 levels have been raised.

6. Hydrological sensitivity parameter in coupled
versus noncoupled experiments

The magnitude of the estimated h between coupled

ocean–atmosphere and noncoupled atmosphere-only

models differs surprisingly by approximately 12%–

30% (section 3), although intermodel spread in h is

similarly small (dispersion of 10.7% and 9.3% for the

coupled abrupt4xCO2 experiment and for the non-

coupled amip4K experiment). As a first assumption we

expected the same magnitude of h in both the coupled

and noncoupled experiment. If h is a consistent de-

scriptive quantity of the climate system, constrained by

the atmospheric heat budget, h should be of the same

magnitude independent of the model configuration.

Although the noncoupled amip experiments do not ac-

count for changes in ocean temperatures in response to

surface flux imbalances, they have the advantage of

being driven by observed sea surface temperature dis-

tributions and thus more adequately represent the pat-

tern of precipitation. Here we discuss possible reasons

for a larger h in the noncoupled model configuration.

Differing magnitudes in h can easily be achieved by

employing either the endpoint or regression method

(Table 3). This reasoning does not apply here because

the hydrological sensitivity parameter is concisely de-

fined as the slope of precipitation change with surface

temperature change when accounting for the fast

precipitation adjustment. The expectation of similar

multimodel-mean h in different experiments relies on

the assumption that the atmospheric heat budgets will

change in the same way with warming. In the following

we test several hypotheses for why the atmospheric ra-

diative cooling may increase more strongly in the

noncoupled models.

The warming patterns differ between the coupled and

the amip4K experiments. The coupled abrupt4xCO2

experiment exhibits stronger polar than tropical warm-

ing, whereas the sea surface in amip4K per definition

warms globally uniformly. We test for the influence of

warming patterns by estimating h in patterned warming

amip experiments (amipFuture), which are scaled to

also warm by 4K in the global mean. Analysis is per-

formed for a subset of eight available amip4K and

amipFuture models. If patterned warming was respon-

sible for the greater h in amip4K than in abrupt4xCO2,

then h would have to be smaller in amipFuture. This is,

however, not the case as in seven of eight models h is

even slightly larger (not shown). Patterned warming is

thus not the reason for higher mean h in the noncoupled

model configuration.

The hydrological sensitivity parameter may be lower

in a higher CO2 loading world (Good et al. 2012). Is the

lower CO2 concentration in amip4K causing the higher h?

We address this suggestion by performing amip and

amip4k experiments at 4 3 CO2 concentrations in the

ECHAM6 model (Stevens et al. 2013). Indeed, we find

that h is smaller by 6% compared to the corresponding

ECHAM amip4K experiment at 1 3 CO2 concentration

(2.63 versus 2.79Wm22K21). This finding, however, ac-

counts for less than one-third of the difference in h be-

tween the coupled (2.15Wm22K21) and noncoupled

(2.74Wm22K21) MPI-ESM-LR model.

Finally, we investigate how the atmospheric heat

budget is influenced by differently changing state vari-

ables like temperature, humidity, or clouds between the

coupled and noncoupled models. For this, we perform

the same kernel methodology as in section 5b to the

time-mean differences of amip4K and amipFuture re-

spectively. Only six models are included in this analysis,

as not all necessary variables were available for BCC_

CSM1.1 and IPSL-CM5B-LR.

The greatest offset between coupled and noncoupled

models is found in how the thermodynamic structure

changes (Fig. 8). A systematic difference in radiative

impact of cloud changes between coupled and non-

coupled experiments is apparent, but this difference

actually counteracts the signal of higher h in noncoupled

models. The offset in changes in the thermodynamic

structure is again dominated by the lower troposphere

(pressure p. 700 hPa), as it warms more strongly in the
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noncoupled experiments (not shown). A stronger

warming implies enhanced atmospheric cooling, and

thus a larger hydrological sensitivity parameter. Yet it is

unclear how coupling leads to weaker warming in the

lower troposphere in abrupt4xCO2. Possibly different

land–sea contrasts or the fact that the surface tempera-

ture cannot respond to precipitation in the noncoupled

experiments could offset h. In any case, the budget

analysis suggests that quantifying the effect of coupling

on the lower tropospheric thermodynamic structure

may provide insights for how precipitation is simulated

to change with warming.

Considering that coupling varies the mean values of

h by 12%–30%, it is questionable whether models fully

represent the whole scope of the real world hydrological

sensitivity parameter. Although the intermodel spread

of h is small for either the coupled or the noncoupled

experiments, the model configuration dictates with

which magnitude the atmospheric heat budget adapts to

surface warming.

7. Conclusions

The majority of previous literature states that models

disagree about the slope of precipitation change with re-

spect to surface temperature changewith up to a factor of 3

difference between the lowest and highest estimate (Held

and Soden 2006; Previdi 2010; O’Gorman et al. 2012).

However, the very definition of the slope varies among the

studies. To facilitate the comparison of estimates, we

introduce a more formal terminology analogous to that of

the equilibrium climate sensitivity framework. The slope

of temperature-dependent precipitation change, when

accounting for rapid precipitation changes (adjustment) of

the atmosphere to radiative forcings, is referred to as hy-

drological sensitivity parameter h and the slope of total

precipitation response to surface warming as apparent

hydrological sensitivity parameter ha. The word ‘‘appar-

ent’’ encompasses the fact that ha depends on atmospheric

forcing and surface warming. We introduce the term

equilibrium hydrological sensitivity as the equilibrium

change of precipitation due to a doubling of CO2.

We compare the intermodel spread and magnitude

of h and ha in four different forcing experiments

among current CMIP5 models. We show that inter-

model spread in h is small in the abrupt4xCO2 ex-

periment relative to most previous work. Our estimate

of h 5 2.24 6 0.24Wm22 K21, with a total range of

1.85–2.73Wm22 K21, corresponds to the estimates in

Andrews et al. (2009). The spread is larger in part of the

other studies because for the definition of ha the spread

in the adjustment projects onto that of the temperature-

dependent precipitation response (Held and Soden

2006; Previdi 2010; Pendergrass and Hartmann 2014). In

other studies (Takahashi 2009; Lambert and Allen 2009;

Frieler et al. 2011) the multiregression approach to

estimate h from transient experiments yielded larger

spread than the direct calculation from idealized

steplike climate change experiments as in this study.

We further demonstrate that h and A estimated from

the idealized abrupt4xCO2 experiment reproduce the

simulated precipitation in the transient 1pctCO2 sim-

ulation well.

The comparison of the similarly idealized coupled

ocean–atmosphere abrupt4xCO2 and the noncoupled

atmosphere-only amip4K simulations reveals that the

experimental configurationmodifies themagnitude of h.

In both configurations the atmospheric heat budget

changes robustly. However, the choice of whether or not

the atmosphere is coupled to the ocean offsets the

magnitude of h estimates by 12%–30% toward higher

h in the noncoupled amip4K. This offset suggests that

the intermodel spread for a given climate change ex-

periment may underestimate the real model spread of

the hydrological sensitivity parameter arising from dif-

ferent experiment configurations. To put this in per-

spective, the difference in multimodel-mean h between

the amip4K and abrupt4xCO2 experiments is nearly

as large as the intermodel spread within one of the

experiments.

Although the hydrological sensitivity parameter is

more robust than assumed from a literature review, the

simulated global-mean precipitation response at the end

of the abrupt4xCO2 simulation remains uncertain. In

equilibrium conditions we attribute this spread in equi-

librium hydrological sensitivity due to a quadrupling of

CO2 foremost to the uncertainty in the corresponding

FIG. 8. Comparison of the decomposed h between coupled

(abrupt4xCO2) and noncoupled (amip4K and amipFuture) ex-

periments. Analysis is performed analogously to Fig. 6a, but for

a common set of eight available coupled and noncoupled models.
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equilibrium climate sensitivity. In contrast, in the first half

of the simulation (;70yr) the largest contributor to the

spread is uncertainty in the adjustment, followed by the

uncertainty in the hydrological sensitivity parameter.

We perform a radiative decomposition of the atmo-

spheric heat budget changes via the kernel method to

attribute how radiative effects influence the hydrologi-

cal sensitivity parameter and the adjustment. The spread

in h mainly arises from the spread in cloud radiative

effects and lapse rate plus water vapor. The spread in

lapse rate and water vapor radiative effects across the

model ensemble can be attributed to different lower

tropospheric temperature and water vapor changes,

foremost in the tropics. In terms of spread in the

adjustment, a nonnegligible residual from the de-

composition hinders a firm conclusion. The analysis re-

veals, however, that the spread in the fast response of the

sensible heat flux, where half of the models reduce and

half increase the sensible heat flux on fast time scales,

may be a strong suspect for causing uncertain fast pre-

cipitation changes.
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