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ABSTRACT

Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the

dependence between the mean and variability is rarely discussed. Here, a new climate metric is proposed to

measure the relationship between means and standard deviations of annual surface temperature computed

over nonoverlapping 100-yr segments. This metric is analyzed based on equilibrium simulations of the Max

Planck Institute Earth SystemModel (MPI-ESM): the last-millennium climate (800–1799), the future climate

projection following the A1B scenario (2100–99), and the 3100-yr unforced control simulation. A linear re-

lationship is globally observed in the control simulation and is thus termed intrinsic climate variability, which

is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and

positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes

and associates fluctuating climatemeans with increase or decrease in intensity and occurrence of both El Niño
and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial

structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability

describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate vari-

ability and climate change signals in the past and the future.

1. Introduction

Climatic changes, whether anthropogenic or natural,

can be described by climate modes or preferred

‘‘regimes’’ and changes in intensity and occupancy–

occurrence frequency of these regimes (e.g., Cassou

et al. 2004). These climate modes involve complex in-

teractions between components of the climate system,

which were already at work before human society could

exert considerable impacts and form an essential part of

the observed climate variability (e.g., Cobb et al. 2003).

One scientific debate in recent decades concerns

whether reported changes in these climate modes and

climate extremes can be attributed to anthropogenic

warming, and if so, to what extent (e.g., Tebaldi et al.

2006; Meehl et al. 2009). With the help of global climate

models (GCMs), such a separation of anthropogenic

contributions from natural signals is feasible from a

technical point of view, but it has proven to be extremely

difficult, if possible (e.g., Curry and Webster 2011;

Huber and Knutti 2012).

Most climate analyses are based on statistical metrics

in terms of means, covariances, and, more recently,

higher moments (e.g., Goosse et al. 2005; Volodin and
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Yurova 2013; Huybers et al. 2014), which provide in-

formation of the underlying physical processes and help

to understand climate extreme events. On shorter time

scales (from days to seasons), relations between the first

and second moments can be interpreted as baroclinic

instability physics (e.g., Waterman and Jayne 2011).

Such a relation has also been observed in sea ice thick-

ness in the Arctic on a yearly scale (Blanchard-

Wrigglesworth and Bitz 2014), suggesting that it may

exist in different climate processes. Analyses on longer

time scales, say year-to-year variability and century av-

erages, have mostly focused on characterizing mean

states and the related changes on the respective time

scales (e.g., Watterson and Whetton 2011; Kosaka and

Xie 2013). A possible link between the first and second

moments on longer time scales, to our knowledge, has not

been studied. On the other hand, considering the con-

tinuum of climate variability (Huybers and Curry 2006;

Ault et al. 2013), such research is of particular interest.

In this study, we introduce a new climate metric

characterizing the statistical relationship between

means and standard deviations of annual surface tem-

peratures computed over nonoverlapping segments to

investigate internal climate variability. It reveals a linear

relationship in an undisturbed GCM control simulation,

which we term intrinsic climate variability (ICV). New

features of the ICV in a warmer climate are presented.

In addition, we find that the ICV metric, when large in

magnitude, relates to asymmetric changes in tempera-

ture extremes, which may help interpret similar signals

concerning anthropogenic warming.

This article is structured as follows: section 2 in-

troduces GCM simulations and analysis methods; sec-

tion 3 discusses ICV in relation to distribution symmetry

and extremes; section 4 presents spatial features of ICV

in the unforced control simulation; section 5 assesses

ICV features in the last-millennium and A1B scenario

simulations; and a discussion and conclusions are pre-

sented in section 6.

2. Model data and analysis method

a. Global climate model experiments

We analyze the millennium simulations of a state-of-

the-art earth system model (MPI-ESM; Jungclaus et al.

2010), from which yearly surface temperatures are

extracted. The MPI-ESM consists of the atmosphere

model ECHAM5, theMax Planck InstituteOceanModel

(MPIOM), the Jena Scheme for Biosphere–Atmosphere

coupling in Hamburg (JSBACH), and the ocean bio-

geochemistry module, the Hamburg Model of the Ocean

Carbon Cycle (HAMOCC5). The model setup enables

the interactive simulation of the carbon cycle. The

experiments are carried out with ECHAM5 in T31/

L19 andMPIOM in GR3.0/L40 resolution, including a

thermodynamic–dynamic sea ice model (for details

see Jungclaus et al. 2010). Three experiments are an-

alyzed: (i) The first is an unforced control run, where

all external forcing is kept constant. (ii) The second

is a last-millennium simulation with full forcing based

on reconstructions of natural and anthropogenic

forcing for the period of 800–2005 (five ensemble

members). The full forcing comprises total solar ir-

radiance (Vieira et al. 2011), volcanic aerosols

(Crowley et al. 2008), land-cover changes (Pongratz

et al. 2008), and greenhouse gas emissions, with CO2

concentration being calculated by the model itself

and the methane and nitrous oxide concentration

being prescribed following MacFarling Meure et al.

(2006). (iii) The third experiment is a future climate

projection, following the IPCC A1B scenario (Nakicenovic

et al. 2000). It covers the period of 2006–2200 with sta-

bilized radiative forcing after 2100 and contains five

ensemble members.

Since we are particularly interested in characterizing

climate variability intrinsic to the climate system, our

analysis is confined to the following three equilibrium

periods: 1) the entire 3100 yr for the unforced control

simulation, 2) the last-millennium simulation period

(800–1799), and 3) the A1B equilibrium period (2100–

99). The period of 1800–2005 is discarded because of its

gentle shift related to modern warming, and so is the

period of 2006–99 that is strongly influenced by transient

changes (Fig. 1). In the following analysis, ensembles for

the same simulation period are concatenated, which

renders 5000 data points for the millennium simulation

period (800–1799) and 500 yearly points for the A1B

scenario (2100–99).

b. A new climate metric: Intrinsic climate variability

We define a new climate metric to measure the re-

lation between means and standard deviations of

annual surface temperatures (ST) computed over non-

overlapping segments. The segment length of 100 yr is

chosen, because it is beyond the random walk length of

around 30 yr (Bye et al. 2011, 2013, 2016) and provides

reasonable statistics of all weather events, including

extremes on decadal-to-interdecadal time scales.

Climate state can now be projected onto a new state

space spanned by the first two moments of segmental

statistics: namely, the segmental mean ST and the re-

lated standard deviation (STD) in each segment. This

projection is depicted in Fig. 2. Given a time series,

N nonoverlapping segments with equal length are

constructed, Sj, j 5 1, . . . , N; the segmental mean STs

5936 JOURNAL OF CL IMATE VOLUME 29



and the related STDs form (xj, sj) pairs (Fig. 2a) that

are embedded in the new state space (Fig. 2b). Ac-

cordingly, the relation between the two moments, xj
and sj is assessed using the outlier-resistant non-

parametric Theil–Sen regression estimator (Theil

1950a,b,c; Sen 1968) and characterizes the variability of

the climate:

s
j
5ax

j
1 b j5 1 . . . N .

The quantities (xj, sj) refer to the mean ST and STD

of segment Sj (Fig. 2a), a the regression slope, and

b the error term or the noise; N equals the total

number of segments in the time series. For a time

series from the control simulation that comprises

3100 yearly data points, as is the case with Fig. 2a,

given the segment length of 100 yr, we obtain N 5 31

nonoverlapping segments. The resulting (xj, sj) pairs

with j51, . . . , 31, correspond to 31 points in the mean

ST–STD plane (black dots, Fig. 2b) with a equal

to 20.68. Positive slopes (a . 0) suggest STD in-

creasing with increasing mean ST, while negative

ones (a , 0) indicate decreasing STD versus in-

creasing mean ST. The significance of the slope is

tested using a two-tailed t test (p 5 0.05). It is shown

in further sections that, in an unforced control sim-

ulation, such linear relations are globally observed

(Figs. 5c,d); therefore, they reflect the internal rhythm

FIG. 2. Surface temperature at (1.98S, 142.58E) (control simulation) and its regression slope a: (a) 3100-yr annual

ST time series and (b)mean ST–STD (standard deviation) slope.With a segment length of 100 yr, annual ST in (a) is

split intoN nonoverlapping segments Sjwith mean ST and STD denoted as (xj, sj), j5 1, . . .,N,N5 31. These (xj, sj)

pairs determine the Theil–Sen regression slope a 5 20.68 [black in (b)]. In (b), bootstrap results are shown in gray,

with the median slope ma 5 20.65 constrained by the two-sided 95% Studentized bootstrap pivotal interval [20.79,

20.50]; the red line denotes the linear fit with the median slope.

FIG. 1. Global mean surface temperature (8C) of last-millennium (showing only the period of

1500–2005) and A1B (2006–2200) simulations, separated by the vertical dashed–dotted line.

Both experiments have five ensemble members; ensemble means are shown in black (to 2005)

blue (2005 on); green (red) lines denote the upper (lower) boundaries given by the ensemble

members.
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of the climate system and are termed intrinsic climate

variability.

c. Bootstrap resampling

Since any GCM experiment represents only one re-

alization of the true climate state, bootstrap resampling

is introduced to improve the estimates of the ICV met-

ric. The underlying assumption is that the statistical

properties of the population can be inferred from a large

number of samples by resampling the observed data

(Efron 1981). The number of the replicas should be large

enough to cover the whole range of the population; each

replica has the same length as the observed data. These

replicas produce a distribution of the statistic of interest,

the regression slope in the context here. If the replicas

are independent of each other, the central limit theorem

holds: that is, the location parameter of the distribution

can approximate the statistic (regression slope) of the

population, regardless of the underlying distribution; its

spread, often known as the standard error and described

by confidence intervals, decreases with increasing sam-

ple size and thus corresponds to increasing precision of

the estimate (Krzywinski and Altman 2013).

The MPI-ESM simulation is treated as the observed

data. Take one time series in the control simulation as an

example (Fig. 2a). TheMPI-ESM time series is regarded

as a record that harbors the information of the pop-

ulation. Then 1000 replicas are produced, each with the

same data length of 3100 yr. Subsequently, the Theil–

Sen regression analysis (following section 2c) is applied

to each of the replicas, generating 1000 slope estimates,

of which the median ma is to approximate the regression

slope a of the MPI-ESM time series; the two-sided 95%

studentized bootstrap pivotal interval following

Carpenter and Bithell (2000) serves as its confidence

interval. As expected, the median slope ma 5 20.65 is

reasonably close to that of the MPI-ESM time series

(a 5 20.68) (Fig. 2b); the 95% confidence interval

[20.79, 20.50] measures the related precision.

In this study, the intentionally biased bootstrap

method (Hall and Presnell 1999), or block boot-

strapping, is employed to generate the replica time se-

ries, in which blocks of observations, rather than

individual data points, are resampled to preserve the

data dependence or memory (e.g., Hall et al. 1995;

Kitamura 1997). The block length is essentially de-

termined by memory properties inherent to the system,

which result from physical and dynamical processes ac-

tive at different time scales, such as the El Niño–
Southern Oscillation (ENSO) that is dominant on

inter-annual time scales (Tziperman et al. 1994), the

Pacific decadal oscillation (Mantua et al. 1997), and the

across-scale long-term memory (Zhu et al. 2006, 2010).

As a rough estimate of the memory, we calculate the

decorrelation time scale, approximated by the time lag

when the autocorrelation function first becomes nega-

tive. It is between 1 and 3 yr in most of the tropical re-

gion, below 10 yr over continents, and between 10 and

20 yr in mid-to-high-latitude oceans; small patches of

long decorrelation time scales (30–35 yr) are found in

the Okhotsk Sea, in the Greenland Sea, and along the

eastern coast of Antarctica (not shown). Hence, to set

the block length to a value beyond 20 yr does not lose

generality. In our analysis, the block length is set to

31 (20) yr for the control (last-millennium and A1B)

simulation, such that 100 randomly selected blocks of

31 yearly values form one replica for the control simu-

lation, and 250 (25) blocks of 20 yearly values for the

last-millennium (A1B) equilibrium period.

d. Sample size and precision of slope estimation

The central limit theorem indicates that the bigger the

sample size is, the more precise the estimate is

(Krzywinski and Altman 2013), and the narrower the

related confidence interval (as a measure of the pre-

cision) becomes. Therefore, estimates should always be

discussed together with the related precision. This as-

pect is especially important for the A1B equilibrium

period (2100–99) owing to its rather small sample size

for determining regression slopes: 5 segments of 100-yr

length (out of 5 ensemble members), in comparison to

31 for the control simulation and 50 for the last-

millennium simulation.

To examine how the (un)certainty in the slope esti-

mate evolves with the sample size, we choose a time

series (1.98S, 142.58E) from the last-millennium simu-

lation period (800–1799), which has a regression slope

a 5 20.70 (Fig. 3a; the thick dotted–dashed line in

Fig. 3b). Its bootstrap median slope ma equals20.63 and

is bounded by the 95% studentized confidence interval

[20.78, 20.47] (block length 20 yr), which says that

with a 95% probability the true regression slope will lie

within this range. Bootstrapping is also applied for

bootstrap lengths of 3000, 1500, and 500, corresponding

to the first 600, 300, and 100 yr of the millennium period,

respectively (Fig. 3b). As expected, the shorter the

bootstrap length is (the smaller the sample size), the

wider the confidence interval becomes (thus, the worse

the precision of the estimate is).

If we take the 95% confidence interval for the full

millennium period as criteria (given by edges of the first

box in Fig. 3b), the above test can be used to detect

changes in ICV. If an ICV slope (from a different time

period) lies within this interval, the system can be re-

garded to be statistically unchanged. This is the case in

Fig. 3b, where median slopes estimated for different
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bootstrap lengths all lie within these criteria (and in

Fig. 6b brown hatched areas). On the contrary, as soon as

the ICV slope exceeds this interval, it indicates that sig-

nificant changes have emerged above the internal vari-

ability of the current climate (see areas hatched in green

in Fig. 6c).

We notice that median slopes (red lines in Fig. 3b) do

not always lie closer to the true value (thick dotted–

dashed line) than the respectiveMPI-ESM slopes (dots).

In fact, the benefit of using bootstrap median slopes,

instead of the estimates solely from the MPI-ESM sim-

ulation, becomes preferable when the sample size is

limited.We have compared the deviations of themedian

slopes and the MPI-ESM slopes of the corresponding

periods with respect to the true slopes (the MPI-ESM

slope of the full millennium period) on a global scale

(not shown). The former outperforms the latter on 32%

of the global grid points when the first 600 yr (800–1399)

are considered for bootstrapping, and this out-

performance ratio increases to 75% when only the first

100 yr (800–99) are considered. Therefore, the overall

increase of the outperformance ratio globally is at the

expense of precision at each grid point.

3. Distribution symmetry and extremes in relation
to ICV

The linear correlation between the mean STs and

STDs suggests that the yearly ST is not normally dis-

tributed. In fact, non-Gaussian distributions have been

reported in various climate variables (e.g., White 1980;

Fraedrich and Kietzig 1983; Sardeshmukh and Sura

2009; Ogata et al. 2013; Ng et al. 2014).Moreover, strong

skewness may account for the covariance between the

mean and the extremes (Huybers et al. 2014). Therefore,

the following question naturally arises: Is the ICVmetric

solely a reflection of the underlying skewed distribu-

tion? And what are the implications of ICV for climate

extremes? They are first discussed with two example

time series (Fig. 4); spatial perspectives are presented in

later sections.

a. ICV in relation to skewness

Two time series from the control simulation are first

analyzed. One is located in the western (1.868S, 142.58E,
a520.68) and the other in the eastern (1.98S, 108.88W,

a 5 0.71) equatorial Pacific (Figs. 4b,e). The Jarque–

Bera test that considers both skewness and kurtosis is

employed to test whether the sample data match a

normal distribution (Jarque and Bera 1987). Both ex-

ample time series failed the test at the 5% significance

level and are thus non-normally distributed. In spite of

the large magnitudes of both regression slopes, one time

series is strongly skewed (S 5 21.2), and the other is

almost symmetric (S 5 0.1) (Figs. 4a,d). Therefore, the

strength of the linear mean ST–STD relation does not

reveal whether the distribution is skewed or not.

Next, we try to examine the extent to which the

skewness, or more precisely, the statistical property of

the sample data, contributes to the reported linear mean

ST–STD relation. For each MPI-ESM time series, we

generate a surrogate dataset (106 data points) that shares

the same statistical parameters as listed in Figs. 4a,d;

bootstrapping and regression analysis are applied to the

FIG. 3. Precision of slope estimation in relation to sample size: (a) mean ST–STD slope, as in Fig. 2b, but for the

time series from the last-millennium simulation at [1.98S, 142.58E]; a 5 20.70, denoted in (b) by the thick dashed

line; and (b) boxplot of bootstrap slope estimates for the periods of 800–1799, 800–1399, 800–1099, and 800–99; the

respective 95% confidence intervals are gray shaded; red lines (black dots) denote the respective median bootstrap

(MPI-ESM) slope; box edges mark the 25th and 75th quantiles of the bootstrap slopes.
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surrogate data to estimate the distribution-determined

ICV slopes; regression slopes of the 1000 bootstrap sam-

ples provide the 95% confidence bounds (listed in

Figs. 4b and 4e, for block lengths of 1 and 31 yr, re-

spectively). As expected, since there is no correlation

between any neighboring data points in the surrogate

data, the block length does not greatly influence the

confidence bounds.

Random samples that are strongly skewed tend to

produce large slope coefficients (Fig. 4b): the two

bounds of the 95% confidence interval are considerably

below zero in the case of strong negative skewness

(Fig. 4b), whereas they are more or less equally dis-

tributed around zero in the case of the symmetric dis-

tribution (Fig. 4e). In fact, in the skewed case, it is

impossible to distinguish the true parameter a 5 20.68

from the slopes of random samples, whereas, in the

symmetric case, the regression slope a 5 0.71 lies well

beyond the distribution-determined ranges.

Nonetheless, as will be shown in section 5, in some

regions, even in the presence of strong skewness, the

ICV regression slopes may have large magnitudes well

beyond the distribution-determined confidence in-

tervals. Therefore, the ICV metric is determined by

physical and dynamical processes and should not be

understood from a purely statistical point of view.

b. ICV and climate extremes

Implications of the ICV metric for climate extremes

are demonstrated with the same time series shown in

Fig. 4. Four points at each end of the regression line

(blue and red circles in Figs. 4b,e) are selected to con-

struct the cumulative distribution function (Figs. 4c,f).

Note that each point on the mean ST–STD plane

(Figs. 4b,e) represents statistics of a segment containing

100 yearly points; thus, 400 yearly values in total form

the respective cumulative distribution function. At both

locations, the distribution change between the warm

(red) and cold (blue) cases passes the two-sample

Kolmogorov–Smirnov test at the 1% significance level

(Figs. 4c,f). We further note that changes of different

quantiles are of different magnitudes. In the case of

Fig. 4c, the cumulative distribution function exhibits a

general rightward shift in a warmer climate (red), while

FIG. 4. Example ST time series at (a)–(c) 1.98S, 142.58E and (d)–(f) 1.98S, 108.88W (control simulation): (a),(d) histograms (first four

moments listed); (b),(e) mean ST–STD slopes; (c),(f) cumulative distribution functions of yearly data in segments denoted as red–blue

stars in (b),(e). Gray dots in (b),(e) show segmental mean STs and STDs of bootstrap samples sharing the same distribution as in (a),(d);

the 95% confidence intervals for block length of 1 and 31 are listed.Distribution differences between blue and red lines in (c),(f) passed the

Kolmogorov–Smirnov test at the 1% significance level; insets show the highest and lowest 10%.
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the warmest 3% of the samples shift slightly leftward

(see inset). It is noteworthy that the horizontal displace-

ment of warm quantiles is smaller than that of cold

quantiles. The opposite is observed in Fig. 4f: warm (cold)

extremes become warmer (colder), and the horizontal

shift of warm extremes is bigger than that of cold ex-

tremes. In short, changes in temperature extremes appear

to be asymmetric. Consider the example in Fig. 4f, which

is located in the Niño index region. When defining El

Niño–Southern Oscillation events with a quantile–fixed

SST threshold, an increase in intensity and occurrence of

both El Niño and La Niña is to be expected in a warmer

climate, with stronger increase in El Niño events.

We wish to stress that the asymmetric structure of

climate extremes in presence of strong regression slopes

is also found in other parts of the globe (not shown) and

is thus not limited to the equatorial Pacific region.

Keeping in mind that the analysis above is carried out in

the undisturbed control simulation, the mean ST–STD

linear relation and the related asymmetric structure of

temperature extremes are thus intrinsic features of the

climate system. Assuming that the climates under new

forcings (the last-millennium and A1B simulations) are

not fundamentally different from the undisturbed cli-

mate state (the control simulation), we expect to

observe a similar mean ST–STD linear relation under

different equilibrium states, and our task is to identify

possible changes in terms of the ICV metric in these

climate states with respect to our current climate, which

may enable us to infer changes in the internal dynamics.

Note that the term ‘‘warmer climate’’ refers to locally

(segmentally) warmer mean ST (with respect to the

equilibrium mean temperature) that occurs, owing to

intrinsic variability of the system (rather than transient

responses to varying external forcing).

4. ICV in the unforced control simulation: Spatial
features

The climatological distributions of mean STs and

STDs, calculated as averages of all 31 segments, are

shown in Figs. 5a,b. The STD intensity is linked to local

dynamical processes. For example, the STD maximum

of about 1.4K in the equatorial central Pacific Ocean

and the local maxima in Brazil, Paraguay, Uruguay, and

Australia reflect typical ENSO-related patterns (Müller
and Roeckner 2008); intense variability of similar origin

also exists over Africa. In the Polar Regions, sea ice

variability is mainly responsible for the STD maxima in

the Barents Sea, the Sea of Okhotsk, and around the

coastline of Greenland, as well as in the Ross Sea and

Weddell Sea (Bye et al. 2013, 2016). In contrast, the

open Southern Ocean basins are characterized by low

variability with STD between 0.3 and 0.6K. The striking

pattern of the annual mean STD indicates the balance

between polar and equatorial influences that charac-

terizes the present climate, through a series of tele-

connections, including the North Atlantic Oscillation,

southern annular mode, and others, as summarized in

section 3.6 of IPCC (2007).

We note the following from the spatial features of the

ICV (Figs. 5c,d): (i) A greater area of the tropical ocean

has a negative slope tendency (Fig. 5c), with the biggest

patch of negative slopes over the Pacific warm pool re-

gion and the eastern Indian Ocean as well as over

Australia. (ii) Negative slopes are also visible in high-

latitude oceans: over the east of Japan and the Bering

Sea and over the open ocean south and east of Green-

land, extending to theNorwegian Sea. In these areas, sea

ice processes are presumably involved, because, for in-

stance, sea ice thickness in the Norwegian Sea and the

Barents Sea also exhibits a linear relation between its

segmental means (100-yr averages) and the related

STDs (not shown). (iii) Positive slopes occur in the

Arctic and over a large portion of high-latitude land

areas: the Canadian Arctic Archipelago, central Asia,

and the Antarctic coastal regions. Positive slopes are

also observed in low-latitude land areas, including cen-

tral Africa, northern South America, and the Indian

peninsula, which indicates strong influences of ENSO-

related teleconnections (Zheng 2014).

We now examine on a global scale whether and to

what extent the ICV features in the control simulation

(Figs. 5c,d) are due to the underlying distribution

(Figs. 5e,f). While nonnormal distribution is globally

observed (shaded in Fig. 5e), significant regression

slopes that are beyond the local 95% reference ranges

determined by the local distributions (shaded in Fig. 5f)

still retain most of the spatial features displayed in

Figs. 5c and 5d. This is particularly true in the tropical

and high-latitude oceans, where the ICV metric is be-

yond what to expect from the background distribution,

independent of whether it is normally distributed or not.

Therefore, it is too simplistic to perceive the ICV fea-

tures (Figs. 5c,d) merely from a statistical point of view;

its characteristics are closely linked to the status of the

climate system and should be understood as expressions

of the underlying dynamical and physical processes.

5. ICV in the last-millennium andA1B simulations:
Spatial features

In this section, we first introduce the ICV features in

the last-millennium simulation. Based on this uniquely

long experiment, the discussion regarding the sample

size in relation to the precision of slope estimation, as
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has been demonstrated in Fig. 3, is extended to a global

scale. We demonstrate that bootstrapping with a limited

sample size (5 segments of 100-yr length for the period

of 800–99; five ensemble members are concatenated)

reasonably reproduces the characteristics of the ICV

metric in the full last-millennium period (section 5a); it

is then applied to the A1B equilibrium simulation to

estimate the ICV slope in a warmer climate; significant

changes in the ICV metric are reported (section 5b).

a. ICV in the last-millennium simulation

The ICV metric shows noteworthy differences from

that in the unforced control simulation (contour line in

Fig. 6a vs Figs. 5c,d): (i) The area of negative slopes

distinctly expands into the central tropical Pacific and

the entire Indian Ocean; the southern edge of this area

extends toward 308S in the last-millennium run (com-

pared to about 158S in the control simulation).

(ii) Negative slopes now occur in the tropical Atlantic,

extending southeastward and reaching the Africa con-

tinent. (iii) Positive slopes occur poleward of 608S, in
particular over Antarctica, while the coverage of posi-

tive slopes north of 608N shrinks considerably (e.g., in

the Barents Sea and Kara Sea, over central Eurasia

and Canada).

Since, in contrast to the constant forcing in the control

run, the last-millennium simulation is forced by time-

varying reconstructions of natural and anthropogenic

forcing, the above-noted differences can then be inter-

preted as new features of the ICV that reflect a new

FIG. 5. Spatial patterns of ST and regression slopea (control simulation): (a) average of segmentalmean STs (8C) and
(b) segmental STDs (K), (xj, sj); the overbar denotes averaging over all 31 segments of 100-yr length. (c)–(f)Regression

slopes contoured at values of20.8,20.6,20.4,20.2,20.1, 0.1, 0.2, 0.4, 0.6, and 0.8 for: (c)a. 0 and (d)a, 0; in (c),(d),

gray lines denote the r-squared values of linear fitting; significant slopes (p5 0.05, a two-tailed t test) are shaded; shaded

areas in (e) are areas where ST is non-normally distributed (p 5 0.05, the Jarque–Bera test); in (f), shaded areas are

significant slopes that are beyond distribution-determined signals (p 5 0.05).
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balance of feedbacks and interactions in the system as a

response to the new forcing.

The bootstrapping method with the full bootstrap

length (800–1799) rather faithfully reproduces the ICV

metric of the MPI-ESM last-millennium simulation

(shaded in Fig. 6a) in terms of magnitude and spatial

coverage of both positive and negative slopes (Figs. 7a–c).

In the following, we take the 95% confidence interval

defined by the bootstrap samples (with the full bootstrap

length) at each grid point as the local reference range:

a regression slope being within or beyond this range is

regarded to be statistically the same as (brown in Fig. 6b

and Figs. 7a–c) or significantly different from (green in

Fig. 6c and Figs. 7d–f) the ICV metric of the MPI-ESM

last-millennium simulation.

With a much shorter bootstrap length (800–99), the

bootstrapping method can still reproduce the ICV

metric to a large extent (areas where the median slopes

are within the local 95% confidence intervals account

for a spatial coverage of 75%, hatched in Fig. 6b). The

good consistency is clearly seen in Figs. 7a–c. We also

notice that bootstrapping with shorter bootstrap length

tends to underestimate the coverage of negative slopes

(Fig. 7b) and slightly overestimates the slope magnitude

in the tropical region (Fig. 7c).

b. ICV in the A1B scenario period

The ICV metric of the A1B equilibrium period is

shown in Fig. 6c (shaded). In comparison to the last-

millennium simulation (contour line in Fig. 6c), the

spatial feature of the regression slopes is largely re-

tained: the strongest signals appear in the tropical re-

gion, and a distinct dipole structure occurs in the tropical

Pacific, with negative slopes in the west and positive

slopes in the east. On the other hand, considerable

changes are observed globally (median slopes lying

outside of the local 95% confidence intervals are

hatched in green in Fig. 6c): (i) positive slopes expand

to a bigger area in the tropics and subtropics; (ii) areas

with negative slopes shrink accordingly (Figs. 7d,e), with

reduced magnitude in the Indian Ocean and the western

tropical Pacific (Fig. 6c); (iii) positive slopes intensify, in

particular, in the tropical band and in the middle lati-

tudes of the Southern Hemisphere (Fig. 7f); (iv) the

expansion and enhancement of positive slopes is most

obvious in the tropical region (including the eastern

tropical Pacific, northern South America, and the

southern tropical Atlantic), over Antarctica, and in the

midlatitude oceans in the Northern Hemisphere. In

particular, positive slopes prevail in the northwest Pa-

cific region and in the central North Pacific, which are

dominated by negative slopes in both the control and the

last-millennium simulations (Fig. 6c vs Figs. 5c,d).

6. Conclusions and discussion

We propose a new climate metric to measure the

linear relationship between mean surface temperature

(ST) and its standard deviation (STD), which are esti-

mated for segments of 100-yr length. This relationship is

characterized by two opposing tendencies (slopes): that

is, higher mean STs are related to enhanced or reduced

STDs, and they are found on a global scale: (i) meridi-

onally pronounced regression slopes cover the tropical

and high-latitude oceans, with a prevailing coverage of

FIG. 6. Spatial patterns of regression slopes a for last-millennium

[(a) 800–1799 and (b) 800–99] and A1B [(c) 2100–99] simulation.

Median bootstrap slopes are shaded in gray and red; as reference,

MPI-ESM slopes of 800–1799 are shown at color contour values of

20.6, 20.4, 20.2, 20.1, 0.1, 0.2, 0.4, and 0.6. Hatched areas in (b),

(c) are median slopes lying inside (brown)–outside (green) of the

2.5th and 97.5th percentiles of bootstrap slopes for the full mil-

lennium period of 800–1799.
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negative (positive) slopes in low-to-middle (high) lati-

tudes (Figs. 7a–c); (ii) zonally, a distinct zonal dipole is

found in the Indo-Pacific region, with negative slopes in

the Indian Ocean and the western tropical Pacific and

positive slopes in the eastern tropical Pacific. These

spatial features indicate the balance between polar and

equatorial influences and between the Indo-Pacific

warm pool and the relatively colder eastern tropical

Pacific. A series of teleconnections is likely involved,

including the Hadley circulation, the Walker cells, and

the ENSO mode (section 3.6 of IPCC 2007; Alexander

et al. 2002; Tsonis et al. 2008). This linear relationship is

also shaped by local processes, because such a relation is

also observed in sea ice thickness in regions where sea

ice processes are active (e.g., in the Norwegian Sea, the

Labrador Sea, and the Okhotsk Sea) (not shown). Since

these features exist in the unforced control simulation,

they are therefore intrinsic to the climate system, be-

cause of which they are termed intrinsic climate

variability (ICV).

If evaluated for global mean surface temperature, the

ICV metric has a weak negative value (a 5 20.07

and 20.12 in the control and the last-millennium simula-

tion, respectively); thus, relatively warmer (colder) global

climates are associated with weaker (stronger) variability.

Interestingly, such a relation has been observed on glacial–

interglacial time scales (e.g., Müller et al. 2005), thereby
demonstrating the encouraging property of the ICVmetric.

FIG. 7. Zonal statistics of regression slopes a from the (a)–(c) last-millennium and (d)–(f) A1B simulation. Zonal

counts of (a),(d) positive and (b),(e) negative slopes; and (c),(f) zonalmean of slopemagnitude. Thick black solid (a.
0) and dashed (a, 0) lines in all panels denote slopes of theMPI-ESM last-millennium experiment. Median slopes

of bootstrapping samples are marked by circles for 800–799 and asterisks for a bootstrap length of 100 yr [(a)–

(c) 800–99; (d)–(f) A1B] superimposed on thin red (a. 0) and black (a, 0) lines. The 2.5th and 97.5th percentiles,

determined by bootstrap samples for the period of 800–1799, serve as the 95% confidence interval; slopes lying

inside (outside) the interval are shown as brown (green) asterisks, corresponding to the hatched areas in Figs. 6b

and 6c.
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We further demonstrate that ICV retains its statis-

tical structure to a great extent in the warmer future but

with reduced (increased) coverage and magnitude of

negative (positive) slopes. The difference occurs

mainly in the tropical and subtropical regions, which

suggests a decreased equator-to-pole temperature

gradient and thus a weaker and wider Hadley circula-

tion (not shown). Meanwhile, negative slopes in the

Indo-Pacific warm pool region weaken, while positive

slopes in the eastern tropical Pacific expand and en-

hance, which corresponds to a weaker zonal tempera-

ture gradient in the warmer A1B future. These new

ICV features are substantiated by the weakening of the

tropical circulation and reflect changes in the internal

dynamics in response to new external (e.g., A1B)

forcing, which will complicate attribution of anthro-

pogenic warming-related signals (e.g., Vecchi et al.

2006; Vecchi and Soden 2007).

Pronounced ICV regression slopes are related to

asymmetric changes in temperature extremes. We find

that, in a warmer climate, both extreme El Niño and La

Niña events will exhibit increased occurrences and en-

hanced intensity; moreover, the increase in occurrence

and intensity is more pronounced in El Niño than in La

Niña. Similar changes in temperature extremes have

been reported in relation to anthropogenic warming

(Cai et al. 2014, 2015; Kodra and Ganguly 2014),

whereas our results suggest that the asymmetric struc-

ture of changes in climate extremes may reflect an in-

trinsic rhythm of the climate system; thus, relating them

to anthropogenic forcing requires careful underpinning.

We acknowledge the deficiencies of and discrepancies

among GCMs in capturing physical processes, such as

ENSO, sea ice–related processes, and others, and have

performed the same analysis for some undisturbed

control runs of CMIP5 models (about 1000-yr long).

Similar ICV features are observed, but not in terms of

the exact grid-wise location and intensity (not shown).

In fact, the revealed divergence among GCMs leads us

to believe that the ICVmay indeed be a suitable climate

metric for comparing GCM performances by providing

long-term statistics of model-simulated internal vari-

ability and by enabling one to infer information of

higher moments.

Finally, we like to stress that the phrase ‘‘a warmer

climate/future’’ refers to the fluctuating climate means,

estimated by 100-yr averages in the context here, within

an equilibrium state. This should not be confused with

temperature differences between two different equilib-

rium states: for example, between the last-millennium

simulation and the scenario simulation (Fig. 1). It is also

important to note that in all analyses presented here

no transitional signals are included. Therefore, the

statistical features of the ICV reported here characterize

the natural rhythm of the internal dynamics, which itself,

as a matter of fact, evolves dynamically, reflecting the

active balance of feedbacks and interactions of all pro-

cesses under a set of specific forcing. To study ICV in the

transitional period requires a justified separation of the

externally forced trend, whether linear, quadratic, or

even higher order. This aspect is being tested and

planned for a future report.
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