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Abstract

Errors due to discretization are inherent to the numerical solutions of Ocean General

Circulation Models (OGCM). However, obtaining reliable estimates for these errors is

a difficult undertaking.

In this thesis, we develop a stochastic dual-weighted error estimator for the estimation

of the discretization error in physical quantities of interest (goals) that is applicable

to ocean models. Towards this aim, we extend the dual-weighted error estimation

technique by a stochastic process with memory. In this, we extend previous work on

memory-less stochastic dual-weighted methods for two-dimensional wave-type flows.

The introduction of memory effects is the key new element of our extension and is

shown to be crucial in the estimation of goal errors in an ocean model setting. The

memory governs the temporal evolution of the stochastic process. We interpret the

memory as a stochastic representation of physical constraints on the time-evolution of

the essential building block of our stochastic dual-weighted error estimator – the lo-

cal truncation error. The memory of the stochastic process is represented by temporal

correlation coefficients directly or by their upper bound. The temporal correlation coef-

ficients and other required stochastic quantities of the stochastic process are estimated

from high-resolution model information at near-initial times. Our resulting stochastic

dual-weighted approach is equivalent to a linearized stochastic-physics ensemble, but in

contrast to the ensemble it only requires a single model integration and a single adjoint

integration.

In order to study the applicability of our stochastic dual-weighted error estimator for

OGCMs, we focus on important oceanic features: the presence of lateral boundaries

with their associated boundary currents, and the phenomenon of baroclinic instability

within a stratified ocean. Both phenomena are studied by means of idealized experi-

ments, the Munk gyre and the flow against an island for lateral boundaries, and the

spherical channel experiment for baroclinic instabilities. For flows with boundaries, we

find that our stochastic error estimator provides meaningful error bounds for a range

of physically relevant goals. For the eddying flow regime due to baroclinic instabilities,

the stochastic process of our error estimator is modeled as a compound of a horizontal,

a vertical, and a temporal structure. To be applicable in our stochastic dual-weighted

error estimation framework, we propose a generalization of its temporal structure to

include additional, possibly negative time-correlations.





Zusammenfassung

Diskretisierungsfehler sind Bestandteil der numerischen Lösungen von Ozeanzirkula-

tionsmodellen (OGCM). Die Berechnung belastbarer Abschätzungen für diese Fehler

ist allerdings ein schwieriges Unterfangen.

In der vorliegenden Arbeit entwickeln wir einen stochastischen dual-gewichteten

Fehlerschätzer für die Abschätzung des Diskretisierungsfehlers in physikalischen Ziel-

funktionalen, welcher auf Ozeanmodelle angewendet werden kann. Dafür erweitern

wir die dual-gewichtete Fehlerschätzungsmethode um einen stochastischen Prozess mit

Gedächtnis. Damit erweitern wir vorangegangene Arbeiten über stochastische dual-

gewichtete Fehlerschätzungsmethoden ohne Gedächtnis für zweidimensionale wellen-

dominierte Strömungen.

Die Berücksichtigung von Gedächtniseffekten ist das Schlüsselelement unserer Er-

weiterung und wir zeigen, dass sie bei der Schätzung von Fehlern in Zielfunktionalen

für Ozeanmodelle essentiell sind. Das Gedächtnis regelt die zeitliche Entwicklung des

stochastischen Prozesses. Wir interpretieren das Gedächtnis als eine stochastische

Darstellung von physikalischen Beschränkungen bezüglich der zeitlichen Entwicklung

des essentiellen Bausteins unseres stochastischen dual-gewichteten Fehlerschätzers –

dem lokalen Diskretisierungsfehler. Das Gedächtnis des stochastischen Prozesses ist en-

tweder direkt durch zeitliche Korrelationskoeffizienten oder durch ihre obere Schranke

repräsentiert. Die zeitlichen Korrelationskoeffizienten und andere benötigte stochastis-

che Größen des stochastischen Prozesses werden mittels hochaufgelöster Modellinfor-

mation auf nah-initialen Zeitskalen geschätzt. Unsere resultierende stochastische dual-

gewichtete Methode ist äquivalent zu einem linearisierten stochastische-Physik Ensem-

ble, aber im Gegensatz zum Ensemble benötigt sie nur eine Integration des primalen

Modells und eine Integration des adjungierten Modells.

Um die Anwendbarkeit unseres stochastischen dual-gewichteten Fehlerschätzers für

OGCMs zu untersuchen, fokussieren wir uns auf wichtige ozeanographische Merkmale:

die Anwesenheit von lateralen Rändern mit ihren assoziierten Randströmen, und das

Phänomen der baroklinen Instabilität im stratifizierten Ozean. Beide Phänomene wer-

den mit Hilfe idealisierter Experimente untersucht, dem Munk gyre und der Strömung

um eine Insel für laterale Ränder, und dem sphärischen Kanalexperiment für barokline

Instabilitäten. Für Strömungen mit Rändern erhalten wir sinnvolle Fehlerschranken

für eine Reihe physikalisch relevanter Zielfunktionale für unsere stochastischen Fehler-

schätzer. Für die wirbelbehaftete Strömung durch barokline Instabilitäten modellieren

wir den stochastischen Prozess unseres Fehlerschätzers als Komposition einer horizon-

talen, einer vertikalen, und einer zeitlichen Struktur. Zur Anwendung im Rahmen un-

seres stochastischen dual-gewichteten Fehlerschätzers schlagen wir eine Generalisierung



der zeitlichen Struktur des stochastischen Prozesses vor, um zusätzliche, möglicherweise

negative, zeitliche Korrelationen miteinzubeziehen.
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Chapter 1

Introduction

In a comprehensive Earth System Model, the modeling of the ocean component is

crucial for properly understanding the climate system, its variability and its response

to external forcings. The governing equations that are typically chosen to represent the

ocean component in an Earth System model are too complex to solve them analytically.

Thus, the governing equations are instead solved approximately by a numerical model

on a discrete grid with finite degrees of freedom. The grid spacing of a state-of-the-art

ocean model used for the scientific basis of the IPCC report [12] is typically about

1 degree. At this resolution, important flow features are still unresolved due to the

multiscale nature of the ocean dynamics that ranges from the order of kilometers down

to the millimeter range. Thus, errors due to discretization of the governing equations

are inevitably part of the numerical solution. However, so far, there are no methods

available to reliably quantify the error due to discretization for an arbitrary numerical

ocean model simulation, even though in all of quantitative science it is essential to gain

and provide information about the uncertainty in model output or measurements. The

purpose of this thesis is thus the derivation and implementation of an error estimation

algorithm, targeted at the specifics of ocean models, for the a posteriori estimation of

errors in physical quantities of interest.

The total error in a model can be conceptionally separated into two parts, the for-

mulation error and the error due to discretization [36]. The first part of the total error

already occurs with the formulation of the mathematical model. This is because the

mathematical model can necessarily only be an approximation of the real processes in

nature. Physical processes are usually too complex, not well enough understood or in

part even completely unknown, and thus can only be represented in a simplified form.

Apart from this fact, it is also often even desirable to work with a mathematical model

that is as simple as possible and only keep the ’important’ processes of the physical

process one is interested in studying. In the final mathematical model, parts of the real

dynamics are thus neglected which introduces the first layer of errors, the formulation

error. For most practical applications, the resulting mathematical model is still too

complex to be solved by analytical means. The mathematical model is then discretized

9



Chapter 1 Introduction

and solved approximately on a computer, which introduces the second part of model

errors, which we refer to as discretization error. Under this term, all errors are collected

that have their roots in the discretization of the continuous equations and boundary

conditions of the mathematical model.

In ocean modeling the mathematical models are usually based on approximations of

the Navier-Stokes Equations. More specifically, for Ocean General Circulation Models

(OGCMs), as used in a comprehensive Earth System Model, the governing equations

are the so-called hydrostatic primitive equations [21]. These equations govern the ocean

dynamics, in the horizontal and in the vertical, as well as their interplay with temper-

ature and salinity. One key assumption is that the vertical scale of the ocean is small

compared to the horizontal scale. A model of lower complexity used for idealized ocean

circulation studies is given by the shallow-water equations which can be understood

as a primitive equation model that only has one degree of freedom in the vertical flow

structure [29], i.e. only consists of one vertical ocean layer. Both models only incor-

porate the ocean dynamics necessary for their respective tasks in order to keep the

computational costs for obtaining a numerical solution of the model to a minimum.

The discretizations of these mathematical models are mostly based on Finite-Volume

methods, Finite-Difference methods or a combination thereof. When solving the dis-

cretized models, computational limitations require a trade-off between resolution, typi-

cally the grid spacing in the horizontal, and simulation time. If the required simulation

times go from centuries to millennia, even state-of-the-art OGCMs are limited to a

resolution of about 1 degree, which is equivalent to approximately 100km. This leaves

many flow features such as boundary currents or mesoscale eddies unresolved or highly

underresolved, which is the source of the discretization error in these model simulations.

The combination of the errors due to formulation and discretization constitutes the

total model error, and its quantification proves difficult for the ocean. This is because

the model solution cannot easily be compared to observations, as ocean observations

are sparsely available in time and in space. To fill these gaps, Ocean State Estimation

(OSE) [53] aims at producing numerical solutions of high-resolution ocean models that

in some sense are ’close’ to observations. OSE is thus closely intertwined with data

assimilation [25, 49]. These resulting numerical solutions are generally referred to as

reanalyses, see for instance ORAS4 [2] or GECCO2 [26]. Comparing reanalyses to a

model solution is a standard approach to gain information about the total model error.

However, due to the limited amount of observations, reanalyses have large uncertain-

ties. Reanalyses are by definition only available in hindsight and can only provide error

information for the actual ocean circulation. Error information for future projections

of the ocean circulation as well as for ocean-type experiments in other settings are thus

not covered. Also, a clear separation of the formulation and the discretization parts of

the total model error is not possible but would be highly desirable to understand the

nature of model errors.

10



One extension towards gaining knowledge about discretization errors is then to ad-

ditionally compare solutions on different model resolutions. One example is given in

[22], who perform a series of transient coupled climate model simulations in which the

resolution of the ocean model ranges from 1 degree to 1/10-th of a degree and com-

pare them among each other, and to observational data whenever possible. Valuable

insights about the influence of unresolved processes can be gained from these com-

parisons. However, these comparisons are very expensive as several high-resolution

simulations need to be performed. For an ocean simulation that itself is already at

the current computational limits, this approach is thus not applicable. Bypassing the

computational limit by inferring the discretization error of a model simulation from a

series of even coarser model solutions, such as by Richardson extrapolation [46], is not

applicable because the coarser model solutions will be even more under-resolved than

the model simulation itself.

Apart from the quantification of the discretization error, much current work aims at

its reduction and can be divided into two general approaches. In the first approach, the

work is targeted on improving the discretization itself. Much work has gone into the

improvement of the numerical schemes and their implementation on High Performance

Computers (HPC). With the next generation of ocean models, such as the ICON-Ocean

model [27] or the MPAS-O model [44], further progress on the matter of discretization

errors is expected by formulating the discretized model in a way that it scales better on

future High Performance Computers which would allow higher spatial resolution, and

by increasing the flexibility to adjust the model resolution for specific regions if deemed

beneficial. In the second approach, the error due to discretization is reduced by em-

ploying subgrid-scale parametrizations to mimic the effects of processes that cannot be

resolved. This approach can be understood as shifting parts of the discretization error

into the domain of the model formulation. Standard ocean model parametrizations are

an eddy-viscosity in order to parametrize the effect of eddies, especially near bound-

aries, enhanced vertical diffusion as a parametrization for deep convection, schemes like

the KPP parametrization [28] for the vertical mixing of the upper ocean, and the Redi

[43] neutral diffusion and the Gent and McWilliams [14] eddy advection parametriza-

tion to capture the missing effects of mesoscale eddies on the ocean circulation.

Although these continuous reductions of the discretization error have significantly

improved the numerical solutions of ocean models, there is still a significant amount of

errors due to discretization in a resulting numerical solution. This is due to the wide

range of spatial and temporal scales in the ocean that will remain being unresolved in

the future. One example is given in [22] for the vertical distribution of heat that changes

significantly towards a net warming at around 1000 meters depth once mesoscale eddies

are not explicitly resolved any more by the model but are only parametrized. As it is

not foreseeable when mesoscale eddies can be resolved in climate model simulations,

errors like these will be inherent to the numerical ocean solutions. Despite its undoubt-
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Chapter 1 Introduction

ful importance, there are still no methods available to reliably quantify the error due

to discretization for a given ocean model simulation. Therefore, we think that the de-

velopment of means to quantify the uncertainty associated with these errors is key and

should be pursued with great efforts.

The field of error estimation can be roughly separated into a priori and a posteriori

error estimators. A priori error estimators are derived analytically for a specific model

discretization. However, an ocean model can be considered to be too complex to obtain

useful a priori error estimators, as even for relatively simple problems, a priori error

bounds are difficult to derive and often not very useful as they are not tight enough.

Additionally, the calculation of the bounds usually requires constants that have to be

estimated. In contrast, a posteriori error estimators are calculated for a specific, al-

ready calculated, model solution. A posteriori error estimators usually perform better,

i.e. yield tighter bounds and can even yield model corrections, but in contrast to a

priori estimators, the calculated bounds are usually not guaranteed. Often the term

asymptotic bound is instead used, which means that the bounds are guaranteed if the

model resolution is within the asymptotic range, i.e. higher than a certain threshold

grid spacing. Due to the complexity of ocean models, we focus on the field of a poste-

riori error estimators.

A simple method for a posteriori error estimation is the study of grid convergence,

where model errors are inferred from running the same experiment on grids with dif-

ferent model resolution [46, 35]. The previously introduced study [22] can be counted

towards this class of error estimators. The method’s advantage is that it is easily ac-

cessible and non-intrusive, i.e. the method does not require changes in the model code.

The disadvantage is that running an ocean model for several different model resolutions

is computational expensive.

Another class of a posteriori error estimators aims at quantifying the uncertainty

in a model solution from a series of perturbed model solutions on the same grid. For

instance, methods from the field of statistical mechanics aim at understanding and

modeling the terms that need to be added to a discretized model in order to obtain

corrected model solutions. As these terms are often described stochastically, solving

the corrected discretized model yields an ensemble of perturbed model solutions which

is then interpreted as a measure for the uncertainty in the model solution. However,

even for simple models, this is a difficult undertaking, as is illustrated in [8] for a low-

complexity Hamiltonian system. In a GFD environment, a closely related approach has

become increasingly popular that aims at the quantification of parts of the model un-

certainty due to model errors by employing stochastic sub-grid scale parametrizations

[7, 4, 5]. Although these approaches are promising, they are not yet at the level where

they can be used to estimate the full error due to discretization in a complex ocean

model.

An important and widespread class of a posteriori error estimators is given by the

12



1.1 Thesis Objective:

dual-weighted methods [1, 40, 3, 15, 17, 11, 19, 51]. They are designed to estimate

the error in physical quantities of interest (goals) by combining the dual solution with

local error information on the grid element level, i.e. the residual. The dual solution

is the sensitivity of the goal to the residual. There are many flavors of dual-weighted

methods that can be applied to various tasks, such as estimating corrections for a goal,

estimating error bounds or deriving error indicators to guide adaptive mesh refinement.

Although the method has a strong theoretical foundation, most of the work on dual-

weighted methods is done for the Finite-Element Method (FEM). Only very little work

is dedicated to other discretization schemes, in which it is then often tried to relate

the used discretization schemes back to Finite-Element methods [31], or to estimate

residual information from a series of coarse model solutions [13]. Both approaches are

not deemed to be applicable here because the model is too complex to relate it back

to FEM, and the model solutions are typically too under-resolved to derive residual

information from them.

Recently, an approach for the quantification of the error due to discretization in a

general GFD environment has been put forward in the literature [41]. The method be-

longs to the a posteriori dual-weighted error estimation techniques and yields confidence

intervals on the error in a time-dependent goal, such as energetic quantities or fluxes

through a cross-section. The method is itself embedded into the general framework of

the dual-weighted error estimation approach [15] and extends it to the estimation of

goal errors for inviscid 2D flows on the sphere. In the extension, the local truncation

error, which represents the residual in the framework of [15], is replaced by a stochastic

component. The step towards a stochastic representation of the local truncation errors

was motivated by insights from the field of statistical mechanics.

1.1 Thesis Objective:

In this thesis, we develop a stochastic dual-weighted error estimation algorithm to

quantify the discretization error in goals that is applicable to ocean model simulations.

Our a posteriori error estimator is conceptionally based on the idea of [41] to replace

the local truncation error by a stochastic component, however, we extend it to the

specifics of ocean models in various ways.

One important aspect in this extension is the inclusion of a memory effect for the

stochastic error component. The memory governs how future states of this stochastic

component are connected to past states. We describe the representation of this memory

and show how it needs to be adapted according to the complexity of the experiment

and the numerical ocean model.

We evaluate our extended stochastic dual-weighted error estimation approach by

studying it on important oceanic features. In a first step, we extend our error estimation

algorithm to experiments with lateral boundaries. The resulting boundary currents

13



Chapter 1 Introduction

bring in the concept of regionally varying rates of error production in the computational

domain, and the emergence of biases in the local truncation errors that are persistent

in time. The fundamentals of these flows are studied in a 2D model environment. In

a second step, we discuss our error estimator for a baroclinic instability in the flow.

We do this within the framework of a 3D ocean model with full dynamics. This step

introduces a downward energy cascade to the problem of error estimation and a vertical

ocean structure that the algorithm needs to adhere to. The overarching question is

whether and how a stochastic error component can be modeled that is dominated by

the effects of mesoscale eddies.

Another important aspect of this work is the analysis of the stochastic extension of

the dual-weighted error estimation approach in general. It is clarified how the method

is related to classical ensemble techniques, and the analysis of the method’s results is

extended.

1.2 Thesis Outline

The thesis is structured as follows:

� In chapter 2, we define the basic mathematical notation and framework that

will be used throughout this thesis and derive the dual-weighted error estimation

approach of [15]. We then show how the dual-weighted error estimation approach

can be linked to the field of statistical mechanics and in particular the Mori-

Zwanzig formalism. With this background, the concept of a stochastic dual-

weighted error estimator is introduced.

� In chapter 3, the stochastic error estimation algorithm of [41] is extended by

introducing memory effects for the stochastic component that describes the tem-

poral evolution of the local truncation error. This step broadens the range of

applicability of the algorithm to flows with lateral boundaries. We show this by

investigating our error estimation algorithm with a viscous shallow-water model

on two classical oceanographic experiments, the Munk gyre and the flow around

an island. Also, the relation between our stochastic error estimator and classical

ensemble methods is explained. This chapter has been submitted for publication

in the Journal of Computational Physics in 2016 and is currently under revision.

� In chapter 4, we lay the groundwork for applying the stochastic error estimator

to the phenomenon of baroclinic instability. The testbed is an idealized ocean

channel experiment implemented in a full 3D ocean model. In the experiment, a

tilted temperature field drives the formation of baroclinic instabilities in the flow.

A 3D flow structure with mesoscale eddies emerges that is reflected in the local

14



1.2 Thesis Outline

truncation error. We attempt to model the resulting stochastic component of the

error estimator and discuss its properties.

In chapter 5, we conclude and give an outlook to possible future extensions and open

questions that might be of importance for the further development of a stochastic

dual-weighted error estimator towards full global ocean circulation simulations.
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Chapter 2

Problem Statement and Approach

We here put the previously discussed notations about the different model error sources

into a rigorous mathematical framework. Towards that, we define the concept of a

model, continuous as well as discretized, in a general framework. Given this framework

we then define the formulation error, the discretization error and the total model error

in a physical quantity of interest.

We start by defining the continuous form of a general model

N (q (x, t)) = 0, for (x, t) ∈ Ω× [0, T ] , (2.1)

where N contains the model equations as well as initial conditions q(x, 0) = q0 and

boundary conditions q(x, t) = qb(x, t) on ∂Ω. The function q (x, t) is defined on Ω×[0, T ]

and satisfies system (2.1).

For an ocean model and more generally for a model in GFD, N (q (x, t)) is usually

given by partial differential equations derived from the Navier-Stokes equations that

are combined with subgrid-scale parametrizations. The function q(x, t) then represents

the variables that define the state of the fluid at position x and time t and cannot be

obtained by analytical means and is thus unknown. However, even if the continuous

solution to system (2.1) were known, it would already be flawed in the way that the

formulation error is already inherent in it. Thus, even the unknown continuous solution

q(x, t) would be erroneous if compared to nature.

What we are actually able to solve is a discretization of system (2.1) which can be

written as

N∆ (q∆) = 0, for (x, t) ∈ Ω∆ × {t0, . . . , tn}, (2.2)

where N∆ contains the discretized model equations in discrete time T∆ := {t0, . . . , tn}
and discrete space Ω∆ with initial conditions q0

∆ = P∆(q0) and boundary conditions

q∆ = P∆(qb) on ∂Ω∆. Here, Ω∆ denotes the discrete model domain with boundary ∂Ω∆.

P∆ represents a projection P∆ : V (Ω) → V∆(Ω∆) from the continuous function space

V (Ω) on Ω to the discretized function space V∆(Ω∆) on Ω∆. The solution of system
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(2.2) is denoted by q∆ =

 q0
∆
...

qn∆

 and is a vector of state vectors qi∆ ∈ Rm, i = 0, . . . , n

in discrete time T∆ and discrete space Ω∆.

The discretization error in the solution of the discretized system (2.2) is then given

by the difference between its discrete solution q∆ and the continuous solution q of the

continuous system (2.1)

e∆ := q∆ − PΩ∆×T∆
(q), (2.3)

where PΩ∆×T∆
denotes a projection of the continuous solution q from the continuous

function space V (Ω× [0, T ]) on Ω× [0, T ] to the discretized function space V∆(Ω∆×T∆)

on Ω∆ × T∆.

For the investigated physical system, we are not only interested in estimates of the

discretization error e∆ but especially in the error in physical quantities of interest

(goals) that characterize said physical system. As discretization errors are inherent to

the model solution q∆, they are consequently also in the physical quantities of interest

(goals) that are derived from q∆. In the continuous context, a goal is defined as a

functional J that is applied to the continuous solution q (x, t). We denote its discrete

approximation by J∆(q∆), where J∆ is the discrete version of J . The discretization

error ε in a goal is then the difference between the true value J(q) and its approximation

J∆(q∆)

ε := J∆(q∆)− J(q), (2.4)

that can be separated into two parts

ε = (J∆(P∆(q))− J(q)) + (J∆(q∆)− J∆(P∆(q))) . (2.5)

The first term is the error due to the discretization of the functional, and it is usually

assumed that this term is sufficiently small and can be neglected. The second term

ε∆ := J∆(q∆)− J∆(P∆(q)) (2.6)

directly contains the error in a goal due to the difference between the solution q∆ of

the discretized model (2.2) and q (x, t), the solution of the continuous model (2.1).

The problem can be stated as follows: For a given ocean model (2.1) and its dis-

cretized version (2.2), how can we obtain an estimate for the error in a goal ε? In this,

the possible algorithm needs to be applicable to an already existing model, and thus

should not be intrusive.
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2.1 Dual-weighted Error Estimation

2.1 Dual-weighted Error Estimation

The technique by which we approach the problem is called dual-weighted error estima-

tion. In dual-weighted error estimation approaches, the goal error ε is translated into

a weighted sum of local truncation errors at the grid cell level. The method belongs to

the a posteriori error estimators that are calculated for a specific model solution. The

motivation for dual-weighted error estimation is that it is usually easier to obtain in-

formation about these local truncation errors than the discretization error e∆ directly.

In this section, we derive the dual-weighted approach of [15] based on the framework

and notation provided in the previous section.

First, we perform a Taylor series expansion of N∆ (q∆) around the point P∆(q) up

to first order which yields

N∆ (P∆(q)) ≈ N∆ (q∆)− ∂N∆

∂q∆
e∆. (2.7)

Because N∆ (q∆) is zero by definition, we obtain a direct relationship between the

discretization error e∆ and N∆ (q)

N∆ (P∆(q)) +
∂N∆

∂q∆
e∆ ≈ 0, (2.8)

which is equivalent to

e∆ ≈ −
(
∂N∆

∂q∆

)−1

N∆ (P∆(q)) . (2.9)

N∆ (P∆(q)) is known as the local truncation error which is the result of inserting the

continuous solution q into the discretized model N∆, i.e. the error done by the dis-

cretized model within one timestep.

The relationship (2.9) still has to be connected to the goal J . This is done by

performing a Taylor expansion up to first order of J∆ around P∆(q)

J∆ (P∆(q)) ≈ J∆ (q∆)− ∂J∆

∂q∆
e∆. (2.10)

The approximation (2.10) can be reformulated in terms of ε∆ defined in (2.6)

ε∆ = J∆ (q∆)− J∆ (P∆(q)) ≈ ∂J∆

∂q∆
e∆ (2.11)

= −∂J∆

∂q∆

(
∂N∆

∂q∆

)−1

N∆ (P∆(q)) (2.12)

= q∗∆
TN∆ (P∆(q)) . (2.13)
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The vector q∗∆ is the discrete adjoint solution, which is the solution to the so called

adjoint flow equations (
∂N∆

∂q∆

)T
q∗∆ +

(
∂J∆

∂q∆

)T
= 0. (2.14)

The discrete adjoint solution thus provides a translation from the local truncation error

to the error in the goal J∆.

Equation (2.13) can be used as an error estimator for ε∆

ε∆ ≈ 〈q∗∆, N∆(q)〉Ω∆×T∆
, (2.15)

where 〈·〉Ω∆×T∆
is the standard euclidean scalar product in discrete time and discrete

space. If we can further assume that the first term of (2.4) is small, i.e. the goal dis-

cretization is negligible, then (2.13) is also an error estimator for the full discretization

error ε in the goal J

ε ≈ 〈q∗∆, N∆(q)〉Ω∆×T∆
. (2.16)

This error estimator requires two components, the local truncation error and the dis-

crete adjoint solution.

The discrete adjoint solution can be obtained in several ways. One way is to for-

mulate the continuous adjoint flow equations to the continuous model (2.1), discretize

them and solve the discretized adjoint flow equations. Another way is to formulate and

solve the adjoint model to the discretized model (2.2). The similarities and differences

between both approaches are illustrated in [48]. For a complex ocean model environ-

ment, we chose a third approach which is referred to as Algorithmic Differentiation

(AD) [9, 20]. Basically, in AD the model run is divided into its elementary operations

for which their derivative is known. Using the chain rule, the AD tool now moves

backwards through the computational graph of the model run and accumulates the

derivatives of the elementary operations which then yields the discrete adjoint solution.

Once the model code has been prepared for a specific AD tool, obtaining the discrete

adjoint solution is straightforward.

The local truncation error on the other hand is difficult to obtain continuously for

all timesteps due to the complexity of an ocean model and is thus the focus of this

thesis. The difficulty stems from how the local truncation error, or more generally

residual information, is obtained. We here mention the term residual as it is frequently

encountered when discussing the dual-weighted error estimation for the Finite-Element

Method [40, 3, 17, 11, 19, 51]. Generally, the evaluation of the residual requires two dif-

ferent functional forms of the model, one from which the model solution is obtained and

one in which the residual is evaluated [46]. For practical applications, where continu-

ous model solutions are unavailable, obtaining residual information that can be used to

drive dual-weighted error estimation then comes down to two basic approaches [47]. In

20



2.1 Dual-weighted Error Estimation

the first approach, the discrete model solution is evaluated in a higher-resolved model,

which yields what we here refer to as the classical residual (see [11]). In the second

approach used for the framework described in [15], a higher-resolved model solution

is evaluated in the discrete model which yields the local truncation error. For many

applications, the described residual evaluation is simply an insertion into the respective

functional form and does not involve any additional model runs.

However, for complex geophysical fluid dynamic models such as an ocean general

circulation model (OGCM), we deem the continuous evaluation of residual information

at every model timestep to be prohibitive. For the evaluation of the classical residual,

we expect the residual evaluation to be associated with high computational costs. For

instance, taking the ICON-Ocean model [27] as an example, we expect the evalua-

tion of the classical residual to cost at least 30 percent of a respective high-resolution

model simulation, because many calculations performed within the model simulation

are still required in the evaluation of the residual. Thus, continuously evaluating the

classical residual is impracticable. For the evaluation of the local truncation error, an

often-used, straight-forward approach is based on using a smooth reconstruction of the

coarse model solution as a surrogate for the unknown higher-resolved model solution.

However, in case of an OGCM, the coarse model solution is typically strongly under-

resolved, especially due to the strong influence of resolution-dependent subgrid-scale

parametrizations. Thus, its smooth reconstruction will not be a good representation of

the respective higher-resolved model solution, and consequently we do not expect the

resulting local truncation error estimates to be good approximations. Techniques that

try to bypass the higher resolution entirely by inferring the local truncation error from

a selection of local truncation error evaluations on even coarser model resolutions, see

for instance the τ−estimation technique [13], are then also not deemed to be applicable

due to the under-resolution of the coarse model solutions. As a consequence, for models

with the specifics of an OGCM neither the classical residual nor the local truncation

error can be continuously evaluated in practice.

In order to make the dual-weighted error estimation technique available for these

models, [41] developed a stochastic extension in which the local truncation error is rep-

resented by a stochastic process. This bypasses the need to continuously evaluate the

local truncation error, but introduces the challenge of modeling a stochastic process

that is able to mimic the temporal evolution of the local truncation error. The idea to

stochastically extend the dual-weighted approach was motivated by the Mori-Zwanzig

Formalism from statistical mechanics.
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2.2 Mori-Zwanzig Formalism: Local Truncation Errors as

Local Model Uncertainty

The Mori-Zwanzig Formalism from statistical mechanics [18, 8] illustrates how the

discrete model solution q∆ would need to be corrected in order to make up for the

missing influence of the unresolved scales. First, we write our continuous model (2.1)

in the form

N(q) :=
dq

dt
− h(q) = 0, (2.17)

where the function h represents the continuous dynamics of system (2.1). Given the

initial and boundary conditions of (2.1), the solution of (2.17) is that of system (2.1).

The model (2.17) can be conceptually separated into two parts, the resolved or

macroscopic dynamics and the unresolved dynamics. Towards this aim, we separate

the solution q into a resolved part q̃∆,t and an unresolved part q̂. Here, we interpret

the resolved part q̃∆,t as a discrete function on our discrete space Ω∆ but still in the

continuous time-domain. After also performing the same separation for our model

equations, the model (2.17) is separated into a macroscopic part that governs the

evolution of the resolved components

dq̃∆,t

dt
− f(q̃∆,t, q̂) = 0, (2.18)

and a microscopic part that governs the evolution of the unresolved part of the solution

dq̂

dt
− g(q̃∆,t, q̂) = 0. (2.19)

In equation (2.18), we can already see that the unresolved part influences the evolution

of the resolved components, because f is not only a function of q̃∆,t but also of q̂.

However, the system we are actually able to solve is the time-discretized version of

equation
dq∆,t

dt
− f̄(q∆,t) = 0, (2.20)

where f̄ now only depends on the resolved variables and represents our spatial dis-

cretization scheme. In the Mori-Zwanzig notation this step would be seen as the appli-

cation of a suitable projection operator to f that yields the so-called Markovian term

f̄ . In system (2.20) the influence of the unresolved dynamics is not captured any more,

and the solution to (2.20) is then of course not q̃∆,t anymore but its approximation

q∆,t. If we were to additionally introduce a discretization scheme for the time-domain,

we would again obtain the solution q∆, the solution of system (2.2).

The Mori-Zwanzig Formalism now tells us how we would need to correct (2.20) in
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order to again obtain the solution q̃∆,t

dq̃∆,t

dt
− f̄(q̃∆,t) =

∫ t

0
K(q̃∆,t(t− s), s)ds+ η(q̃∆,t(0), q̂(0), t). (2.21)

Two correction terms appear on the right-hand side of equation (2.21). The first term∫ t
0 K(q̃∆,t(t− s), s)ds is called the memory term and the second term η(q̃∆,t(0), q̂(0), t)

is known as the orthogonal dynamics term. Both terms together are also referred to as

the ’noise’ term (see for instance [8])

n(t) :=

∫ t

0
K(q̃∆,t(t− s), s)ds+ η(q̃∆,t(0), q̂(0), t).

For complex systems such as the shallow-water equations in an ocean-type setting

or even a full 3D ocean model, we expect a direct derivation of a computable noise

term or its components to be extremely difficult if not impossible. In these settings, it

is even already difficult to disentangle the dynamics of the noise and clearly attribute

them to be either stochastic or deterministic. For instance in the orthogonal dynamics,

the initial conditions q̂(0) of the unresolved variables appear. From the point of view

of the resolved scales, it makes sense to interpret q̂(0) as a stochastic quantity. On the

other hand, a large part of the memory term is usually considered to be deterministic,

but with the complexity of our systems of interest its computation is anything else than

clear. Therefore, we hope to instead make progress by following a data-driven approach

in which we choose to interpret the entirety of the noise term as a stochastic process.

If the noise term n(t) is now represented by a stochastic process, the corrected solu-

tion q̃∆,t becomes a stochastic process too, which introduces the concept of uncertainty

to the model solution. This model uncertainty is the source of the uncertainty in

J∆(q∆) that we want to estimate. We can apply the same line of reasoning to our

dual-weighted error estimation approach, where the corrections to the model solution

which we now interpret stochastically are the local truncation errors. In contrast to

(2.21) the thereby introduced model uncertainty is however not propagated through

the system directly, but a posteriori by the discrete adjoint solution.

The Mori-Zwanzig formalism thus motivates to represent the local truncation error

stochastically as local model uncertainty in the form of a time-discrete stochastic pro-

cess X(p) with parameter set p. The local model uncertainty at every timestep i is

then represented by a random vector Xti(pi) with parameters pi and dimension Rm,

the same dimension as the state vectors qi∆. The sequence of these random vectors de-

fines the stochastic process X(p) := {Xti(pi)}i∈N that is our stochastic representation

of the local truncation error.

Replacing the local truncation error by the stochastic process X(p) changes the de-
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terministic dual-weighted error estimator (2.16) for ε to a stochastic error estimator

Eapp := 〈q∗∆, X(p)〉Ω∆×T∆
(2.22)

that yields a random variable Eapp. This random variable is a measure for the uncer-

tainty in the goal J due to discretization errors in the solution q∆.

2.3 Extracting Local Uncertainty Information from Local

Truncation Errors at Near-initial Timescales

Given we have already obtained a discrete model solution q∆, the discrete goal J∆(q∆),

the discrete adjoint solution q∗∆, and an appropriate stochastic process X(p) has been

chosen, then a major task lies in estimating a problem-specific parameter set p. Towards

this problem, [41] developed an algorithm for wave-type flows in a shallow-water model.

It is based on estimating the parameters of the stochastic process from a near-initial

learning period. For this time period, approximations to the local truncation error

are made available from short model simulations on high-resolution. The resulting

parameters are then extrapolated from the near-initial learning period to later times. In

this, it is assumed that the estimated statistical properties of the local truncation errors

at near-initial times are also capable to describe the behavior of the local truncation

error at later times.

The proposed algorithm we build around this idea is an extension to the original

algorithm by [41] that is able to cope with the higher complexity of flows we encounter.

The following algorithmic steps are part of an algorithmic cycle that is formulated

as questions that the user of the algorithm needs to answer in order to obtain a valid

parameter set p. This already indicates that the algorithm is in many regards dependent

on educated guesses by the user who has to make decisions about the trade-off between

estimating reliable parameters and keeping the estimation process as light-weight and

computationally cheap as possible. The algorithmic cycle is exited when the user is

satisfied with the performance of the obtained parameter set.

The algorithmic cycle looks as follows:

� Step 1: Do we encounter different dynamical flow regimes in the model solution?

This is important because different dynamical flow regimes might come with

significantly different rates of error production. If this is the case, it might be

necessary to chose the parameter set p to vary locally according to the respective

dynamical flow regime. The user then needs to decide how the computational

domain is divided into regions of different dynamical flow regimes.

� Step 2: How long should the near-initial learning period be? The model should

not be in a state of initial shock to ensure that the near-initial information is

24



2.4 Research Questions

valid for a long time-window after the near-initial learning phase. At the same

time, the learning phase needs to be kept short to keep the computational cost

to a minimum.

� Step 3: What is a suitable probability distribution for the stochastic process

X(p)? A Gaussian distribution might be tempting as it is a standard choice to

represent model errors, but in principle other probability distributions are possible

and might fit better for certain dynamical flow regimes.

� Step 4: Which statistical parameters need to be estimated? The variance is

here considered to be a standard quantity to be estimated, but do we also need

estimates for the mean values or can the means be neglected? Also correlations,

spatial as well as temporal, might be crucial if the local truncation error follows

certain patterns in space or time. The correlation coefficients then need to be

either estimated or upper-bounded.

In this algorithm, we assume that the stochastic process X(p) has already been chosen

beforehand, but the choice of the stochastic process could as well be integrated into

the algorithmic cycle as an additional algorithmic step between step 2 and step 3. This

additional step can become important in an environment where different stochastic pro-

cesses are available that each have their specific strengths and weaknesses in modeling

the local truncation error but would require different stochastic quantities to be esti-

mated. One stochastic process might for instance be based on temporal fluctuations in

the local truncation error, while another one models the local truncation error directly.

Throughout this thesis, we will constantly use this algorithmic framework to obtain

the problem-specific stochastic process X(p). With the stochastic process being esti-

mated, all components of the stochastic error estimator (2.22) are known and error

estimates for the goal J can be computed.

2.4 Research Questions

Throughout this thesis, we show how the algorithm presented above needs to be adapted

to the specific oceanic phenomena in order to obtain a stochastic process for the local

truncation error that can be used for goal-oriented error estimation. In this, we con-

stantly increase the complexity of the employed ocean model and the studied numerical

ocean experiments throughout this thesis.

For chapter 3, we study the described stochastic error estimation approach for ocean-

type experiments with lateral boundaries in a viscous 2D shallow-water model.

� What probability distribution can be used to model the local truncation error?

� What is the relation between the stochastic error estimator (2.22) and a classical

stochastic-physics ensemble?
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� How big is the effect of the discretization of the goal itself compared to the error

in the goal ε?

� What part of the stochastic process represents the memory term that is predicted

by the Mori-Zwanzig formalism?

� How can spatial and temporal correlations be represented in the stochastic pro-

cess? And, can these correlations be estimated reliably?

� Does this approach lead us to valid error estimates for physically relevant goals?

Chapter 4 is then concerned with the concept of baroclinic instabilities in the full

3D ocean model environment. We discuss the required properties of the stochastic

process and lay the groundwork for a stochastic process that is able to model the local

truncation error and can be applied in our stochastic error estimation approach.

� Does the concept of the local truncation error even make sense in an environment

where the local truncation error primarily results from only partly resolving the

mesoscale eddy field?

� How can the vertical structure, especially stratification, of the ocean experiment

be preserved under the influence of the stochastic process?

� Is it possible to use a stochastic process to model the local truncation error that

is due to not fully resolving the mesoscale eddy field?
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Chapter 3

Stochastic Goal-oriented Error Estimation

with Memory

We propose a stochastic dual-weighted error estimator for the viscous shallow-water

equation with boundaries. For this purpose, previous work on memory-less stochastic

dual-weighted error estimation is extended by incorporating memory effects. The mem-

ory is introduced by describing the local truncation error as a sum of time-correlated

random variables. The random variables itself represent the temporal fluctuations in

local truncation errors and are determined from high-resolution information at near-

initial times.

The resulting error estimator is evaluated experimentally in two classical ocean-type

experiments, the Munk gyre and the flow around an island. In these experiments,

the stochastic process is adapted locally to the respective dynamical flow regime. Our

stochastic dual-weighted error estimator is shown to provide meaningful error bounds

for a range of physically relevant goals. We prove, as well as show numerically, that

our approach can be interpreted as a linearized stochastic-physics ensemble.

3.1 Introduction

Quantifying the uncertainty due to discretization errors is essential in judging the qual-

ity of a numerical model solution. For many applications we are not only interested in

estimates of the discretization error in certain norms but especially in estimating the

resulting error in key physical quantities of interest (goals) such as energetic quantities

or volume transports. These goals are linear or non-linear functionals of the model

solution. A conceptual framework for this type of error estimation is provided by dual-

weighted error estimation techniques [40, 3, 15, 17, 11, 19, 51]. Dual-weighted methods

are applied to a model solution a posteriori and combine the adjoint model solution

with residual information; both are deterministic quantities. The adjoint solution is

the sensitivity of the goal with respect to the residual. In the context of this study, the

residual is the local truncation error that describes to which extend the exact solution to

the continuous equations fails to satisfy the discrete equations. A stochastic extension
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of the dual-weighted error estimation approach was developed in [41] by modeling the

local truncation error as a stochastic process. The purpose of this paper is to extend

the stochastic dual-weighted error estimation by including memory effects and to gain a

more profound theoretical understanding of the properties of stochastic dual-weighted

approaches. This is done by theoretical analysis as well as by an experimental evalua-

tion of the new error estimation algorithm.

For practical applications, where continuous model solutions are unavailable, obtain-

ing residual information comes down to two basic approaches [47] that each can be

used to drive dual-weighted error estimation. In the first approach, the discrete model

solution is inserted into a higher-resolved discrete model which yields what we refer to

as the classical residual, (see [11]). In the second approach, which is for instance used in

[15], a higher-resolved discrete model solution is inserted into the discrete model which

yields the local truncation errors.

We propose a stochastic representation of the local truncation error because the

established methods for calculating the local truncation error and the classical resid-

ual via a higher-order reconstruction are difficult to obtain within our discrete model.

The shallow-water model that we use to illustrate our method uses a finite-difference-

finite-volume discretization on an unstructured grid with a staggered distribution of

variables (Arakawa C-staggering). For such models, a higher-order interpolation of the

state vector would for instance require to interpolate the normal components of the

velocity vector from an unstructured and non-orthogonal grid at a coarse resolution to

the same grid type at higher resolution. This task poses its own difficulties. An addi-

tional reason is due to the specific target application for which we aim to develop an

error estimation algorithm, namely global ocean modeling. For this model framework,

we expect a combination of high computational costs of such a higher-order represen-

tation, significant computational costs of the residual evaluation itself, and the typical

under-resolution of ocean model solutions, which would make the established methods

prohibitive.

An alternative approach to continuously obtaining residual information was intro-

duced in [41] where local truncation errors are modeled as a stochastic process. This

approach was proposed and tested for wave-type flows in a shallow-water model. The

replacement of deterministic local truncation errors by a stochastic process was moti-

vated by the Mori-Zwanzig formalism [33, 32, 54, 18] from statistical mechanics. The

Mori-Zwanzig formalism is used here as a conceptual picture that provides us with

a guideline of how a model that acts on a limited amount of (finite) scales could be

supplemented to incorporate the influence of the unresolved scales. In this, we do not

aim for a systematic or rigorous implementation of the Mori-Zwanzig formalism. From

the point of view of the resolved scales, the influence of the unresolved scales can then

be interpreted as being stochastic. In the dual-weighted error estimation approach,

the information about the unresolved dynamics inherently lies within the local trunca-
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tion errors. Therefore, local truncation errors can be interpreted stochastically as local

model uncertainty, and the temporal evolution of this uncertainty can be described by

a stochastic process. This poses the question of how to determine a suitable stochastic

process. In [41], a white-noise process was chosen whose parameters were estimated

using near-initial, high-resolution information, which was in accordance to the flows

under consideration.

Our work is oriented along the lines of [41], but we go beyond this work in several as-

pects. First, we extend the algorithm to stochastic processes with memory, a property

deemed to be highly important in modeling the effect of the unresolved scales (see e.g.

[33, 32, 54, 18, 8]). The white-noise process used in [41] does not provide such a memory

effect as future states are independent of previous states. Our algorithm now models

the local truncation error by considering temporal fluctuations in local truncation er-

rors at all previous timesteps, and thus naturally inherits a memory effect. Second, we

deepen the analysis of the algorithm and the algorithm’s results, we clarify its relation

to ensemble techniques, and we discuss the assumption of the dual-weighted method

underlying our approach, namely that the goal discretization error is assumed to be

negligible. As a consequence of our algorithmic extension we are able to consider the

estimation of errors in goals for two-dimensional flows with boundaries and viscosity.

In the framework of the two-dimensional shallow-water equations, we study two

ocean-type experiments, the so-called Munk gyre and the flow around an island. The

investigation of viscous flows with lateral boundaries poses several challenges. First,

changing the model resolution can now coincide with a change in the model parameters,

possibly introducing systematic biases in the local truncation errors that are persistent

in time. Thus, local truncation errors at different timesteps cannot be assumed to be

uncorrelated. Also, a memory term is needed to account for these biases. Second,

we encounter transient flows, such as flows being spun up from initial rest. For these

flows, the local truncation errors are expected to grow in time. For these reasons, a

white-noise process as it was used in [41] is not sufficient any more. The third issue

concerns the presence of lateral boundaries. As the dynamical flow regime near these

boundaries changes, so does the production rate of local truncation errors. Information

about a change of the flow regime needs to be featured into the stochastic process. We

will show how to derive a stochastic process that satisfies these new requirements. An

important assumption for our choice of underlying dual-weighted approach, which is

for instance derived in [15], is that the error in the goal due to discretization of the

goal itself is negligible. Our numerical results indicate that this assumption does not

necessarily hold for our experiments. However, we show that, under certain conditions,

we can correct for this error and thus still obtain viable error estimates.

The paper is structured as follows: In section 2, we explain the basic dual-weighted

error estimation approach for a general framework and connect it to the shallow-water

model and our chosen discretized model. Section 3 describes how our specific dual-
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weighted error estimation framework can be carried into a stochastic framework. Based

on this stochastic framework, we propose an algorithm to goal-oriented error estimation

in Section 4. Section 5 describes the results of our error estimation algorithm on the

two experiments including a discussion of the results, and in section 6 we conclude.

3.2 The Shallow-Water Equations and Goal Errors

The model that we use to illustrate our stochastic error estimation approach are the

viscous shallow-water equations on the sphere, which are here given in the vector-

invariant form by

∂v

∂t
= − (ξ + f) k× v−∇ (gh+K) + ν∇2v

∂h

∂t
= −∇ · (h∗v) .

(3.1)

In this, v = (u, v) are the horizontal velocities, ξ is the relative vorticity, f the Coriolis

parameter, g is the gravitational constant and K = 1
2(u2 + v2) is the kinetic energy

per unit mass, h = h∗ + hs is the total height of the free surface, ν is the viscosity

parameter, hs the orography and h∗ the fluid thickness.

Our numerical model to obtain the discrete solution to the continuous shallow-water

equations (3.1) is the ICON-Shallow-Water model [6, 45]. The model is based on a

mixed finite-difference-finite-volume discretization in space implemented on a triangu-

lar grid on the sphere, using a C-type staggering for the prognostic variables height

and velocity. For the discretization in time, we employ a fourth-order Runge-Kutta

method. The discrete heights h∆ are located at the center of grid cells, while the nor-

mal components of the discrete velocity vector reside on the midpoints of the triangle

edges. The normal velocity components are denoted by vn∆.

We can write the continuous shallow-water equations (3.1) in the form of a general

continuous model

N (q (x, t)) = 0, (3.2)

with initial conditions q(x, 0) = q0 and boundary conditions q(x, t) = qb(x, t) on ∂Ω.

The function q (x, t) is defined on Ω× [0, T ] and satisfies system (3.2). The solution q

then represents the functions h and v of system (3.1).

The discretization of the continuous system (3.2) can then formally be written as

N∆ (q∆) = 0, (3.3)

with initial conditions q0
∆ = P∆(q0) and boundary conditions q∆ = P∆(qb) on ∂Ω∆.

Here, Ω∆ denotes the discrete model domain with boundary ∂Ω∆. P∆ represents a

projection P∆ : V (Ω)→ V∆(Ω∆) from the continuous function space V (Ω) on Ω to the
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discretized function space V∆(Ω∆) on Ω∆. The solution of system (3.3) is denoted by

q∆ =

 q0
∆
...

qn∆

 and is a vector of state vectors qi∆ ∈ Rm, i = 0, . . . , n in discrete time

T∆ := {t0, . . . , tn} and discrete space Ω∆. In the notation of the discretized shallow-

water model, the vector q∆ then represents the vector (h∆, vn∆) .

3.2.1 Errors in physical quantities of interest

Discretization errors are inherent in the model solution q∆, and consequently also in

the physical quantities of interest (goals) that are derived from q∆. In the continuous

context, a goal is defined as a functional J that is applied to the continuous solution

q (x, t). We denote its discrete approximation by J∆(q∆), where J∆ is the discrete

version of J . The total error ε in a goal is then the difference between the true value

J(q) and its approximation J∆(q∆)

ε := J∆(q∆)− J(q), (3.4)

that can be separated into two parts

ε = (J∆(P∆(q))− J(q)) + (J∆(q∆)− J∆(P∆(q))) . (3.5)

The first term is the error due to the discretization of the functional, and in our error

estimation approach for the ICON-Shallow-Water model we assume that this term is

sufficiently small and can be neglected. The second term

ε∆ := J∆(q∆)− J∆(P∆(q)) (3.6)

is the error in the discrete goal J∆ due to the discretization errors in the model solution.

This error can be approximated via the dual-weighted error estimation approach that

is illustrated in [15]

ε∆ ≈ εapp := 〈q∗∆, N∆(q)〉Ω∆×T∆
. (3.7)

Here, 〈·〉Ω∆×T∆
denotes the standard Euclidean scalar product in discrete space and

time, q∗∆ is the discrete adjoint solution to q∆, and N∆(q) are the local truncation errors.

More precisely, we note here that the definition of the local truncation error should of

coarse also include an application of P∆ and would thus be written as N∆(P∆(q)).

We however choose to omit P∆ here and in all future mentions simply to increase

readability.

For our ICON-Shallow-Water model, the two components in the scalar product (3.7)

can be defined as following. The vector of local truncation errors at timestep i is defined
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by

N i
∆(q) = P∆ (q(x, ti))− S∆ (P∆ (q(x, ti−1))) , (3.8)

where S∆ is one application of the discrete time-stepping operator of our model.The

discrete adjoint solution q∗∆ consists of the adjoint components for the discrete heights

h∆ and the velocities vn∆ and is here obtained via algorithmic differentiation, which

is described in detail in [42] for the ICON-Shallow-Water model.

Combining an error estimate εapp derived from (3.7) with equation (3.6) could then

be used to correct for the error in J∆(q∆), or derive bounds ε1, ε2 > 0 that satisfy

J∆(q∆)− ε1 < J∆(P∆(q)) < J∆(q∆) + ε2. (3.9)

Here our aim is to derive an error estimator similar to (3.9). To do this, we require

approximations for the local truncation errors, but as already pointed out in the in-

troductory part of this thesis the standard approaches are not applicable for our type

of numerical model. Our alternative approach to approximating the local truncation

errors is motivated by the Mori-Zwanzig formalism (see section 2.2).

3.3 A Stochastic Framework for Dual-weighted Error

Estimation

We now formulate a stochastic framework for the dual-weighted error estimation ap-

proach. We wish to obtain a discrete-time stochastic process that mimics the tem-

poral evolution of the local truncation errors. This stochastic process is denoted by

{Xti(pi)}i∈N consisting of random vectors Xti ∈ Rm with parameters pi. The tempo-

ral character of the Euclidean scalar product in equation (3.7) becomes obvious when

written as a weighted sum of local truncation errors at the timesteps i = 1, . . . , n

εapp =
n∑
i=1

〈q∗∆i, N i
∆(q)〉Ω∆

, (3.10)

where 〈·〉Ω∆
denotes the Euclidean scalar product in discrete space Ω∆, q∗∆

i is the vector

of the discrete adjoint solution at timestep i, and N i
∆(q) is the vector of local truncation

errors at timestep i. Our ansatz then follows from rewriting the local truncation errors

at timestep i by the sum of the local truncation errors at the previous timestep i − 1
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plus a small fluctuation. Equation (4.7) then becomes

εapp =

n∑
i=1

〈q∗∆
i, N i−1

∆ (q) +
(
N i

∆(q)−N i−1
∆ (q)

)
〉Ω∆

(3.11)

=
n∑
i=1

〈q∗∆
i,

i∑
j=1

(
N j

∆(q)−N j−1
∆ (q)

)
〉Ω∆

, (3.12)

with fluctuations N i
∆(q) − N i−1

∆ (q). Note that N0
∆(q) is simply a zero vector. We

bring in stochasticity by assuming that the distribution of the vectors N i
∆(q)−N i−1

∆ (q)

can be described by random variables Y[ti−1,ti](p[ti−1,ti]),which are scalar quantities

with parameter parameter sets p[ti−1,ti] that characterize their distribution. Each en-

try of the vector N i
∆(q) − N i−1

∆ (q) is thus interpreted as one realization of the ran-

dom variable Y[ti−1,ti](p[ti−1,ti]). Given that the random variables Y[ti−1,ti](p[ti−1,ti]) are

known, the stochastic process {Xti(pi)}i∈N is defined immediately. The k − th entry

of its random vectors Xti(pi), a scalar quantity denoted by Xti, k(pi) with Xti(pi) :=

(Xti, k(pi))k=1,...,m, can be written as the sum

Xti, k(pi) :=
i∑

j=1

Y[tj−1,tj ](p[tj−1,tj ]). (3.13)

Assuming the existence of the random variable’s mean E(Y[ti−1,ti](p[ti−1,ti])) = µ[ti−1,ti]

and its variance V ar(Y[ti−1,ti](p[ti−1,ti])) = σ2
[ti−1,ti]

, the mean and the variance of

Xti, k(pi) at timestep i follow from the summation rule for random variables. The

mean can be calculated straightforwardly as

E(Xti, k(pi)) =
i∑

j=1

E(Y[tj−1,tj ](p[tj−1,tj ])) =
i∑

j=1

µ[tj−1,tj ] (3.14)

The variance follows from

V ar(Xti, k(pi)) = V ar(Xti−1, k(pi−1)) + V ar(Y[ti−1,ti](p[ti−1,ti]))

+2Cov(Xti−1, k(pi−1), Y[ti−1,ti](p[ti−1,ti])).
(3.15)

The covariance inherits the temporal correlation of the fluctuations at different timesteps.

Since we want to estimate bounds for the error in a goal, we choose an upper bound

for the covariance, which is given by the Cauchy-Schwarz inequality∣∣∣Cov(Xti−1, k(pi−1), Y[ti−1,ti](p[ti−1,ti]))
∣∣∣ ≤√V ar(Xti−1, k(pi−1))

√
V ar(Y[ti−1,ti](p[ti−1,ti])).

(3.16)
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The upper bound of this estimate is attained in case of maximal correlation between

Xti−1, k(pi−1) and Y[ti−1,ti](p[ti−1,ti]) and thus the maximum growth rate in variance of

the stochastic process. Combining equation (3.15), the upper bound on the covari-

ances (3.16), and the variance of the random variable Y[ti−1,ti](p[ti−1,ti]) then yields the

variance of Xti, k(pi)

V ar(Xti, k(pi)) =
i∑

j=1

σ2
[tj−1,tj ] + 2

∑
1≤j

∑
<k≤i

σ[tj−1,tj ]σ[tk−1,tk]. (3.17)

In order to further simplify these sums, we will assume certain properties for the

stochastic process:

� First, we assume thatN1
∆(q)−N0

∆(q) is known. The random vectorXt1(p1) is then

chosen to have the mean vector N1
∆(q)−N0

∆(q) and variances V ar(Xt1(p1)) = 0.

If there are systematic biases in the local truncation errors, the mean will act as

a bias correction for the local truncation errors.

� Second, we assume that the random variables Y[ti−1,ti](p[ti−1,ti]) are entirely de-

fined by their means and variances,

� and third we assume that the random variables’ distributions are centered

E(Y[ti−1,ti](p[ti−1,ti])) = 0,

and their variance is constant throughout all timesteps i:

V ar(Y[ti−1,ti](p[ti−1,ti])) = σ2.

As all random variables Y[ti−1,ti](p[ti−1,ti]) are the same, we denote them by

Y∆t(p∆t) for simplicity.

The stochastic process then belongs to the class of L2-stochastic processes that are

characterized by their first two moments. The subsequent random vectors Xti(pi) will

then have mean vectors

E(Xti(pi)) = N1
∆(q)−N0

∆(q) (3.18)

and variance vectors

V ar(Xti(pi)) = (i− 1)2σ21, (3.19)

where 1 denotes the all-ones vector in Rm. We note that in this derivation we have

neglected possible spatial correlations of the temporal fluctuations in local truncation

errors. Nevertheless, information about spatial correlations is contained in the mean
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vector and is thus part of the stochastic process. If we can assume that the tempo-

ral fluctuations in local truncation errors are small compared to the mean vector, the

spatial pattern in the mean vector dominates possible spatial correlations in the tem-

poral fluctuation in local truncation errors. In comparison to [41], the variance of the

stochastic process now grows in time and the stochastic process is not centered around

zero any more.

We have not yet assumed a probability distribution for the random variables Y∆t(p∆t)

or discussed the probability distribution of the stochastic process. For our stochastic

process, the type of probability distribution of its entries Xti, k(pi) follows directly from

the chosen probability distribution of the random variables Y∆t(p∆t). The reason is

that the random variables Xti, k(pi) are defined as sums of fully-time correlated random

variables Y∆t(p∆t), which means that the shape of the sum’s distribution is preserved

and only the sum’s variance grows in time. This fact makes it easy to create realiza-

tions of the stochastic process {Xti(pi)}i∈N. For each entry of Xt1(p1), one realization

is drawn from Y∆t(p∆t) and added i times to its respective entry in order to obtain

Xti+1(pi+1). The probability distribution that we use in our numerical experiments is

a Laplace distribution. Our method is however not limited to these probability density

functions.

3.3.1 Deriving an Error Estimator from Parametrized Local Truncation
Errors

Replacing the local truncation errors in (4.7) by a stochastic process {Xti(pi)}i∈N
makes εapp a random variable, and we denote this random variable by Eapp

Eapp = 〈q∗∆,

 Xt1(p1)
...

Xtn(pn)

〉Ω∆×T∆
, (3.20)

where each random vector Xti(pi) ∈ Rm is multiplied by the transpose of vector q∗∆
i ∈

Rm. Eapp then represents an estimate for the probability distribution of the error in

the goal J∆(q∆). For our experiments, it is realistic to assume that the distribution

of Eapp converges towards a Gaussian distribution. To illustrate this, we look at the

contribution to Eapp at each timestep, which can be represented as a sum of adjoint-

weighted random variables. For our experiments, we know that the adjoint solution does

not have any singularities. Also, we know that we can expect to repeatably find adjoint-

weighted random variables with similar variances. This in turn means that the central

limit theorem holds for the sum of these adjoint-weighted random variables, making

the contribution of each timestep to Eapp a Gaussian-distributed random variable.

The parameters of this Gaussian variable can be estimated by creating realizations
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of it. For each realization of Eapp, the scalar product (3.20) is calculated using a

realization of the stochastic process {Xti(pi)}i∈N.

Ultimately, we want to obtain a result that is similar to the information contained in

equation (3.9). This brings us to confidence intervals that give us a certain probability

for the error in the goal being within the given bounds

J∆(q∆)− ε1 < J(q) < J∆(q∆) + ε2, (3.21)

where ε1, ε2 ∈ R. Here, we define ε1, ε2 not to be restricted to positive numbers anymore,

which means that our confidence intervals do not necessarily need to confine J∆(q∆).

This makes sense because the resulting random variable Eapp can have a non-zero mean

if our stochastic process has non-zero means.

We identify two criteria for the resulting error estimates that need to be fulfilled, in

order to consider the estimate as valid:

1. The resulting confidence intervals need to confine the ’true’ goals.

2. Additionally, we want the confidence intervals to be as tight around the ’true’

goal as possible. To quantify this, we define an effectivity index eff as the ratio

between the half confidence interval width ε2+ε1
2 and the total error in the goal ε

eff :=
ε2 + ε1

2ε
. (3.22)

For our experiment we choose a value of up to 10 to still be ’useful’, which was

also chosen in [16]. This value is however a subjective choice based on visual

impressions and could potentially be done differently by other users of the error

estimator.

There is the possibility that only one of these two criteria is fulfilled for a given confi-

dence interval, thus we only consider an error estimate as valid if both criteria are met.

In summary, we identify three main conditions that are crucial for the resulting con-

fidence intervals to hold. First, the assumptions on the random variable Y∆t(p∆t) need

to hold. Second, the discrete adjoint solution needs to be a valid indicator for the

influence of model perturbations on the goal. Third, the error due to discretization of

the goal has to be negligible.

3.3.2 Connection to Established Ensemble Techniques

In this section we establish a connection between our error estimator and stochastic-

physics ensembles. This ensemble method is here understood such that a random

forcing is applied to the current state vector qi∆ at every timestep. In our case, the
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random forcing is provided by the stochastic process {Xti(pi)}i∈N in (3.20). We now

provide theoretical evidence that the distribution of goals J∆, calculated from model

solutions perturbed this way, is comparable to correcting J∆(q∆) by our stochastic

dual-weighted approach (3.20).

Theorem 1. Let q be the solution to the continuous model (3.2) and N i
∆(P∆q) the

corresponding vectors of local truncation errors at timesteps i, where N∆ denotes the

discretized model (3.3). Then, consecutively adding N i
∆(P∆q) to the state vectors qi∆

at all timesteps k = 1, . . . , i yields a corrected state vector at timesteps i, denoted by

qi∆, C , and the state vector at timestep n satisfies

qn∆, C = P∆q(x, tn). (3.23)

The corrected state vectors qi∆, C are thus identical to the continuous solution q at all

grid points for all discrete timesteps.

Proof. The proof is done by induction. Without loss of generality, we assume that the

local truncation errors can be written by means of a discrete time-stepping operator

S∆

N i
∆(P∆q) = P∆ (q(x, ti))− S∆ (P∆ (q(x, ti−1))) . (3.24)

Basis:

We show that the statement holds for the first timestep n = 1. q1
∆ is calculated by

applying one application of the discrete time-stepping operator of our model S∆ to q0
∆

q1
∆ = S∆

(
q0

∆

)
. (3.25)

Now, we correct q1
∆ by the first vector of local truncation errors N1

∆(q)

N1
∆(P∆q) = P∆ (q(x, t1))− S∆ (P∆ (q(x, t0))) . (3.26)

The corrected solution q1
∆, C is then

q1
∆, C = q1

∆ + P∆ (q(x, t1))− S∆ (P∆ (q(x, t0))) . (3.27)

By definition of the discrete system (3.3), P∆ (q(x, t0)) ≡ q0
∆, which means that we

can replace S∆ (P∆ (q(x, t0))) by q1
∆. This yields

q1
∆, C = P∆q(x, t1) (3.28)

which proves our statement to be true for n = 1.

Inductive Step:

In the induction step from n to n + 1 we use that qn∆, C = P∆q(x, tn). It follows
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immediately that

qn+1
∆, C = S∆ (P∆q(x, tn)) +Nn+1

∆ (P∆q)

= S∆ (P∆q(x, tn)) + P∆ (q(x, tn+1))− S∆ (P∆ (q(x, tn)))

= P∆q(x, tn+1),

by using the induction statement in the second line.

This result tells us that correcting J∆(q∆) by the scalar product (3.7) is an approx-

imation of directly calculating J∆(qn∆, C) from a consecutively corrected state qn∆, C .

Thus, we can also expect qualitatively similar results in case of replacing the local trun-

cation errors by our stochastic process. In general, the distribution of the stochastic-

physics ensemble might be different from the probability distribution resulting from the

error estimator (3.20) due to the nonlinearity of the model. The advantage of using

an adjoint-based approach lies in its lower computational cost.

3.4 Goal Error Ensemble Method

In this section, we propose an algorithm based on the framework described in section

2. To obtain the probability distribution of the error in the goal Eapp from (3.20),

we need the algorithm to yield estimates for the parameters of the stochastic pro-

cess {Xti(pi)}i∈N. The main ingredient to estimate these parameters is the knowledge

about the local truncation errors N∆(q) and thus of the unknown q(x, t). To bypass the

knowledge of the analytical solution q(x, t), we make use of information from higher grid

resolutions. More specifically, we use information from a near-initial, high-resolution

solution qhigh. Near-initial means that we start at the same initial conditions but inte-

grate the highly-resolved model for only a small number of timesteps m. The solution

qhigh is then interpreted as our ’true’ solution, and the vectors N i
∆(qhigh), i = 0, . . . ,m

are used as approximations to the vectors N i
∆(q), i = 0, . . . ,m. With this step, we

make the assumption that the local truncation error characteristics from near-initial

behavior can be extrapolated to a much longer time window.

In the case that q(x, ti) is replaced by a high-resolution solution qhigh, we need to

actually define a mapping P∆ that fits to our ICON-Shallow-Water model. Our choice

is motivated by the structure imposed by the grid refinement process of grids in ICON.

To perform one refinement for a grid of chosen resolution, the triangle edges are simply

bisected. Each triangle is thus split into four refined sub-triangles. Thus, we choose to

use point-wise projection to map the heights onto the coarse resolution. As each edge

is bisected into an even number of edges, the velocities are chosen to be mapped onto

the coarse grid by averaging over the two innermost velocity values.

We formulate our algorithm description for a stochastic process that is fully described
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by the parameters mean and variance. The algorithm is, however, not dependent on

this specific choice, and other parameters may be chosen according to the probability

distribution of the random variable Y∆t(p∆t).

We identify three steps for our error estimation algorithm, a pre-processing, a process-

ing and a post-processing step. The parameter estimation for the stochastic process

is at the core of the method and is performed in the processing step. The general

structure of our algorithm is similar to the goal error ensemble method in [41]. The

differences are the separation of different flow regimes that is at the core of a now cyclic

processing step, and we now estimate random variables for the temporal fluctuations

of the local truncation errors Y∆t(p∆t) instead of estimating the random vector Xti(pi)

directly.

3.4.1 Pre-processing: Calculate the approximate goal J∆(q∆) and the
corresponding adjoint solution q∗∆

Our error estimation algorithm is an a posteriori method. Therefore, the pre-processing

part consists of solving the model (3.7) to calculate the discrete model solution q∆ and

finally the approximate goal J∆(q∆). This specific J∆(q∆) is then the initial value for

the calculation of the discrete adjoint solution q∗∆.

3.4.2 Processing: Derive a problem-specific stochastic process {Xti(pi)}i∈N

The following processing steps describe a cycle that needs to be run until the parameter

sets of the stochastic process are satisfactory. Because there might be many possibilities

for reasonable stochastic processes {Xti(pi)}i∈N, this calls for a subjective user decision

to exit the processing step.

1. Separate different flow regimes:

As a consequence of the multiscale nature of Geophysical Fluid Dynamics, we

expect to encounter different dynamical flow regimes and thus changing error

behavior throughout the space domain. Therefore we divide the flow into re-

gions of different dynamical regimes. This means separating Ω∆ into subsets

Ω∆,k, k = 1, . . . , l. We choose the subsets to be disjunct and their union to be

again Ω∆. Each region Ω∆,k then has its own parameter set for the random vari-

able Y∆t(p∆t). The regional change in parameter set is indicated by the subscript

k in p∆t,k. The separation of flow dynamics has to be visible and derived just

from the knowledge of the coarse-grid solution q∆. Furthermore, for every flow

there might be several possibilities to separate the flow regime. In principle, if

dynamical features are prominent in one field only, different variables could use

different separations.
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2. Choose length of near-initial learning phase m:

For simplicity we assume that i timesteps at standard resolution are equivalent to

ki timesteps, with k ∈ N, at high resolution. In total, we then have to perform km

timesteps on the high-resolution grid. Applying the coarse model N i
∆(qhigh) then

yields the approximations for the local truncation errors for the first m timesteps.

3. Choose the probability distribution of the random variables Y∆t(p∆t,k):

Our experimental experience shows that for the flows considered here a Laplace

distribution fits better than a Gaussian. For other models, entirely different

probability distributions might have to be considered.

4. Estimate the parameter sets p∆t,k:

The entries of the vectors N i
∆(qhigh)−N i−1

∆ (qhigh) that correspond to subset Ω∆,k

are interpreted as realizations of the random variable Y∆t(p∆t,k). The parameter

estimation is performed separately for each model variable. To calculate p∆t,k,

we first estimate the first two moments, mean and variance, of the truncation

error rate of change from timestep i− 1 to i

µ[ti−1,ti],k :=
1

#Ω∆,k

∑
j∈Ω∆,k

N i
∆(qhigh)(j)−N i−1

∆ (qhigh)(j) (3.29)

and

σ[ti−1,ti],k :=

√√√√ 1

#Ω∆,k
− 1

∑
j∈Ω∆,k

((
N i

∆(qhigh)(j)−N i−1
∆ (qhigh)(j)

)
− µ[ti−1,ti],k

)2
.

(3.30)

#Ω∆,k
is the number of model variables in region Ω∆,k. N i−1

∆ (qhigh)(j) denotes

the j-th entry of vector N i−1
∆ (qhigh). By using time averages of the estimated

values µ[ti−1,ti],k and σ[ti−1,ti],k, we intend to make our parameter estimations

more robust

µ∆t,k :=
1

m− d

m∑
i=d

µ[ti−1,ti],k (3.31)

σ∆t,k :=
1

m− d

m∑
i=d

σ[ti−1,ti],k, (3.32)

with d < m. d should be chosen such that the solution is not in a state of an

initial shock any more and is able to represent the error characteristics of the

following timesteps.
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3.4.3 Post-processing: Calculate Confidence Intervals on the Error in the
Goal

Our stochastic process {Xti(pi)} is then fully described by the estimated parameter

sets p∆t,k and the first vector of local truncation errors N1
∆(qhigh). With this knowledge

we can estimate the parameters µ and σ of the Gaussian random variable Eapp. These

two moments are sufficient to calculate the confidence intervals described in (3.21),

where ε1 and ε2 are chosen as

ε1 = µ− cσ,

ε2 = µ+ cσ.

The constant c ∈ R relates to the reliability of the error estimator, and we find a

reasonable choice for our application to be c = 3 for 99.7% confidence intervals. These

confidence intervals act as bounds for the error in the goal. Repeating the algorithm

for a series of integration times tn yields a stochastic process of random variables Eapp
that represents the temporal evolution of confidence intervals.

3.5 Numerical Results

We evaluate our error estimation algorithm in two ocean-type experiments, the Munk

gyre and a flow around an island. We show how the algorithmic steps we have described

lead to confidence intervals that bound the error in a goal. The Munk gyre experiment

is designed to show the capabilities of our error estimator in the case of resolution-

dependent viscosity parameters. In this experiment, the flow is in steady state. The flow

around an island experiment is designed to show the capabilities of our error estimator

for a flow that is in a transition phase. Here, the viscosity parameters do not change

with resolution. The separation of these two factors, parametrization and transition,

enables us to study their influence on our error estimation algorithm independently.

For both experiments, the error estimation procedure is started from a mapped-

down, spun-up state of a high-resolution run. To these two experiments, we apply

three physically relevant goals: the area-averaged potential energy, the area-averaged

kinetic energy, and the volume flux through a cross-section. We choose the energies

as goals because of their non-linearity in their respective variable, whereas the volume

flux is an important quantity of interest in oceanography, where often flows through

cross-sections, such as the Drake passage, are discussed.

For each combination of goal and experiment, we derive a series of confidence intervals

that are distributed equidistant in time. The resulting temporal evolutions of confidence

intervals are discussed and compared to reference goals calculated from high-resolution

solutions. In order to illustrate that the error estimator works for different resolutions,

confidence intervals are calculated for two sets of model resolutions, resolution ∆3 with
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Table 3.1: Averages over the square roots of the triangle areas for employed grids

Resolution Grid Spacing in km

∆3 320

∆4 158

∆5 79

∆6 39

∆5 as reference resolution and resolution ∆4 with ∆6 as reference resolution. In this

grid notation, the numbers refer to the number of edge bisections performed on a base

grid. The corresponding grid spacings are given in table 4.1. With this specific choice

of the two sets of model resolutions, the distance between the grids is kept constant in

order to highlight the convergence properties of our error estimator.

To demonstrate the connection of our error estimator to the class of stochastic-

physics ensembles (see 3.3.2), we also show series of error bounds derived from full

stochastic-physics ensembles (SPE) that are forced by the respective stochastic process

{Xti(pi)}i∈N.

3.5.1 Goals

The three different goals are all area-averaged or length-averaged quantities, calculated

from the state vector at one specific timestep. The region or cross-section that is

averaged over is denoted by ΩR, A(ΩR) is its area or length respectively, and their

discretized counterparts are Ω∆R and A(Ω∆R). In this section, A(Ω∆R) is chosen to

be equal to the size of one specific element at resolution ∆2, which coincides well with

the size of the dynamic flow features encountered in the two experiments. For a chosen

grid Ω∆, consisting of cells Ci and edges Ei, the three diagnostics can be expressed in

the following way.

Area-averaged Potential Energy: The area-averaged potential energy in region

Ω∆R is defined by:

J1(qn∆) :=
g

2A(Ω∆R)

∑
Ci∈Ω∆R

A(Ci)h2
∆i. (3.33)

For the displayed results we omit the factor g
2 .

Area-averaged Kinetic Energy: For the kinetic energy, the velocities vn∆, resid-

ing on the edges, are first interpolated into the cell centers by radial basis function

interpolation. This yields one zonal velocity component u and one meridional velocity

component v per cell. With these velocities we can define the area-averaged kinetic
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energy by:

J2(qn∆) :=
1

2A(Ω∆R)

∑
Ci∈Ω∆R

A(Ci)(u2
i + v2

i ). (3.34)

Volume Flux: For the volume flux, the heights h∆ are first interpolated onto the

edges. These height variables are denoted by ĥ∆. We then define the volume flux by:

J3(qn∆) :=
1

A(Ω∆R)

∑
Ei∈Ω∆R

A(Ei)(vn∆iĥ∆i). (3.35)

3.5.2 Experiments

Experiment 1: Munk Gyre

The first experiment is the Munk gyre experiment, a wind-forced gyre circulation in an

idealized ocean basin, for which the main feature is a western boundary intensification

[34], which we will refer to as ”Munk layer” from now on. The basin extends in longitu-

dinal direction from 35W to 35E and in longitudinal direction from the equator to 60N.

Due to the triangular grid, the shape is not fully rectangular as in the original Munk

gyre experiment. We choose the basin to have a depth of 1 km with flat bathymetry.

As for the wind-forcing, the meridional wind stress τλ is set to zero, while the zonal

wind stress τφ is prescribed as

τφ =
−1.08 · 10−03cos

(
πλ
60◦

)
m2

s2

h∆
,

where λ is the latitude and h∆ is the height. This wind-forcing mimics the mean winds

prevailing in the Atlantic basin that change from westwards winds to eastwards winds

with latitude. The viscosity for the simulation on ∆3 is chosen in a way that the flow

at the western boundary is resolved by at least one grid-point [50]. A criterion for the

viscosities of the subsequent higher resolution runs is then given by [23], where the aim

is to have the same ratio between inertial and frictional forces in the Munk layer at

all resolutions. The resulting eddy viscosities and timestep lengths are given in table

4.2. From a physical point of view, decreasing viscosity when increasing resolution

ensures a more realistic representation of the gyre circulation. Figure 3.1 shows the

spun up state of the Munk gyre at resolution ∆5. The error estimation procedure is

started after a short spin-up phase of approximately one week of integration time on

the respective reference resolution. This high-resolution solution is then mapped onto

the coarse-resolution grid using the operator P∆. The error estimation is started from
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Table 3.2: Eddy viscosity parameters and timestep lengths on different resolutions for
the Munk gyre experiment

Resolution ν in m2

s ∆t in s

∆3 4.92E+05 600

∆4 3.15E+05 600

∆5 1.9E+05 600

∆6 1.15E+05 300

this initial state and run for another 10 days of integration time.

Experiment 2: Flow Around an Island

The second experiment is a flow around an island that is located at the equator. The

flow is driven by wind-forcing that has a cosine shape in latitude and has its maximum

intensity at the equator. We define two setups for this experiment. Although the

general setups are that of an ocean-type experiment, we here choose the parameters

such that the flow velocities and heights are one to two orders of magnitude higher

than typical oceanographic values to cover different value ranges for the flow variables.

In the main setup, which we refer to as ”flow around an island setup”, the viscosity

parameter is chosen to be ν = 6.5 ∗ 106m2

s for all resolutions. We prescribe a zonal

wind stress of

τφ =
1.08cos

(
πλ

180◦

)
m2

s2

h∆
,

which is 1000 times stronger than the forcing for the Munk gyre experiment and acts in

opposite direction. The timestep is 60s for resolutions ∆3 to ∆5 and 30s for resolution

∆6. Figure 3.2 shows the state of the flow around the island setup after an initial spin-

up phase of 30 hours at resolution ∆5. After the initial spin-up phase at the respective

reference resolutions, the typical flow velocity upstream of the island is about 80ms for all

resolutions. For the island with a width of around 1500km and viscosity ν = 6.5∗106m2

s

the Reynolds-number is about 20, and thus the flow is still in the laminar regime. As

the flow is further spun up during the error estimation phase of additional 24 hours of

integration time, a pair of symmetric vortices develops in the flow behind the island.

The second setup is especially designed to show that the error estimator also works

for regimes with higher Reynolds numbers, and we refer to this setup as ”Kármán

vortex street setup”. In this setup, the wind forcing is chosen to be a factor 16 smaller

than in the main flow around an island setup, and the viscosity is ν = 2.4∗104m2

s . The

timestep is chosen to be 60s for all resolutions. The resulting velocity upstream of the
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(a)

Zonal Velocity

u in m
s

(b)

Meridional Velocity

v in m
s

(c)

Height

h in m

Figure 3.1: State of the flow after the short spin-up phase of one week of integration
time, the starting time of the error estimation, on the reference resolution ∆5 in the
Munk gyre experiment. (a) zonal velocities, (b) meridional velocities, (c) heights.

island is about 20ms . Thus, the calculated Reynolds-number is 1250 for which a Kármán

vortex street downstream of the island emerges. This dynamical feature develops after

an initial spin-up phase of 4 days of integration time. The error estimation phase is an

additional 24 hours of integration time. The state of the flow at the end of the error

estimation phase is shown in figure 3.3. The Kármán vortex street is most pronounced

in the meridional velocities (Figure 3.3 b). For this setup, error estimation is only

performed at resolution ∆4 with reference solution ∆6.
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(a)

Zonal Velocity

u in m
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(b)

Meridional Velocity
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s

(c)

Height

h in m

Figure 3.2: State of the flow after the spin-up phase of 30 hours, the starting time of the
error estimation, on the reference resolution ∆5 for the flow around an island setup.
The island is located at the center of each plot. (a) zonal velocities, (b) meridional
velocities, (c) heights.

3.5.3 Estimating the Problem-specific Stochastic Processes {Xti(pi)}i∈N

We now present the results for the processing cycle of our algorithm that is described

in section 3 and show how to obtain a problem-specific stochastic process for a given

experiment. We start with a description of the chosen separation of dynamical flow

regimes:

� Experiment 1: Munk gyre

We identify two dynamical regimes. The first is the region of the western bound-

ary current west of 15W longitude, with high flow velocities of up to 0.32ms in the

boundary layer and a boundary layer separation at around 45N . Compared to
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(a)

Zonal Velocity

u in m
s

(b)

Meridional Velocity

v in m
s

(c)

Height

h in m

Figure 3.3: State of the flow after 5 days of integration time, at the end of the error
estimation phase, on the reference resolution ∆6 for the flow around an island setup.
The island is located at the center of each plot. (a) zonal velocities, (b) meridional
velocities, (c) heights.

this western boundary region, the area-averaged kinetic energy in the rest of the

basin is several orders of magnitude smaller. Our choice is therefore to separate

the basin into the Munk layer region west of longitude 15W , with its western

boundary current, and the area east of longitude 15W , referred to as the basin

interior.

� Experiment 2: flow around an island

Similarly to the Munk gyre experiment, we separate the computational domain

into two regions.

For the flow around an island setup, based on the initial state at the start of the

error estimation, we choose to have the island’s boundary layer to be confined by

a circle with radius 40, with the center on the equator at 15E. We refer to this
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region as the boundary region. The area lying outside of this circle is called the

interior region, to be consistent with the Munk gyre experiment. This separation

ensures that all boundary effects are confined in one region.

For the Kármán vortex street setup, the changed dynamical flow regime due to

the emerging vortex street in the wake of the island motivates the definition of

the boundary layer region by a rectangle with the lower left corner at 10W, 10S

and the upper right corner at 40E, 10N . This choice ensues that the vortex

shedding is enclosed within the boundary region, as this is a major source of local

truncation error production. The area lying outside of the rectangle is defined as

the interior region.

For both experiments and all resolutions, we choose the length of the near-initial learn-

ing phase to be m = 20 timesteps. As the probability distribution of the stochastic

process {Xti(pi)}i∈N, we choose a Laplace distribution. The corresponding probability

density function is given by

f(x|b) =
1

2b
exp

(
−|x|
b

)
, (3.36)

where the shape parameter b is defined by the variance, 2b2 = σ2. Thus, the stochastic

process is completely defined by its mean and variance.

For these choices, we perform the last step of the processing part, which is estimation

of the parameter sets p∆t,k that now only consist of the parameters µ∆t,k and σ∆t,k.

We choose d = 10, thus average the parameters for 10 timesteps.

We find that we can neglect the influence of the means µ∆t,k, because they are consis-

tently at least one order of magnitude smaller than σ∆t,k for all regions and timesteps.

We prove that the influence of the means on the uncertainty in the goal is negligible.

For the random vector Xti(pi), the mean is the sum
∑i

j=2 µ∆t,k = (i − 1)µ∆t,k, and

its standard deviation is (i− 1)σ∆t,k. The difference of one order of magnitude is thus

persistent throughout all timesteps. Calculating the scalar product (3.20) also does

not change this difference, as it is a linear operation, and since we use c times σ inter-

vals in the end, the influence of the means becomes even smaller. As an example, for

3σ = 90, the associated influence of the means would be of the order of 3. Thus, we

will only give values for the standard deviations.

The estimated parameters for all experiments are given in table 3.3. As expected,

the standard deviations in the boundary regions are bigger than the ones in the interior

regions for all experiments and all resolutions. For the Munk Gyre, the parameters are

consistently bigger for resolution ∆4 with reference resolution ∆6. This is counterintu-

itive at first, because we would expect the error growth rate to decrease when increasing

resolution because of convergence of the solution. However, the resolution-dependent

viscosity parameters hinder a fast convergence of the solution. The error growth rate
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Table 3.3: Estimated parameters at resolution ∆3 with reference ∆5 and at resolution
∆4 with reference ∆6 for all experiments

Resolution ∆3 Resolution ∆4

Munk gyre σ∆t,Boundary σ∆t,Interior σ∆t,Boundary σ∆t,Interior

h 2.23E-05 1.09E-05 2.62E-05 1.53E-05

vn 8.24E-07 7.15E-07 1.12E-06 8.39E-07

Flow around an island σ∆t,Boundary σ∆t,Interior σ∆t,Boundary σ∆t,Interior

h 2.78E-04 4.24E-05 1.61E-04 2.51E-05

vn 4.18E-05 1.31E-05 4.48E-05 1.30E-05

Kármán vortex street σ∆t,Boundary σ∆t,Interior

h 5.46E-04 8.97E-06

vn 1.54E-05 8.96E-07

might thus just be bigger because the differences in the flow between resolution ∆4

and ∆6 are slightly bigger than the differences between ∆3 and ∆5. Comparing the

parameter values of the Kármán vortex street setup and the flow around an island

setup, it is noteworthy that the parameters in the boundary region are of the same or-

der of magnitude. As the velocity upstream of the island in the Kármán vortex street

setup is however four times smaller, the relative error growth rate is much larger in the

boundary region for the Kármán vortex street setup.

From these standard deviations, we derive the shape parameter b. For resolution ∆3

with its reference resolution ∆5, we show the spatial distribution of the temporal fluc-

tuations N20
∆ (qhigh)−N19

∆ (qhigh) (blue bars) in figure 3.4 for the Munk gyre experiment,

in figure 3.5 for the flow around an island setup,and in figure 3.6 for the Kármán vortex

street setup. We find these distributions to be sufficiently stable for the entire time

of the error estimation and all experiments. We compare the distributions to the rel-

ative frequencies given by the estimated random variables Y[t19,t20](p[t19,t20],k) (dashed

red line), where the shape parameter b is taken to be equal to the standard deviations

σ[t19,t20],k. This choice of shape parameter is basically an overestimate. However, a

Laplace distribution with this choice of parameters is a reasonable fit (Figures 3.4, 3.5,

and 3.6). We thus also choose the shape parameters of the random variables Y∆t(p∆t,k)

to be equal to the standard deviation parameters σ∆t,k, which then fully defines our

problem-specific stochastic processes {Xti(pi)}i∈N.

3.5.4 Error Estimates

We now study the temporal evolutions of the confidence intervals for the chosen goals.

For a combination of goal and region, we calculate 20 confidence intervals equidistantly
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Figure 3.4: Distribution of the temporal fluctuations in local truncation errors
N20

∆ (qhigh)−N19
∆ (qhigh) (blue bars) and the distribution of the estimated random vari-

able Y[t19,t20](p[t19,t20]) (red dashed line) in the Munk gyre experiment. (a) h in the
basin interior, (b) h in the boundary region, (c) vn in the basin interior region, (d) vn
in the boundary region.

in time, covering the whole time interval of 1440 timesteps. We focus on the regions

near boundaries.

In our analysis, we make the distinction between two reference goals, J∆(P∆(qhigh))

and Jhigh(qhigh), to be able to discuss both error terms appearing in (3.5) separately.

Ideally both forms of the reference goal are bounded by our confidence intervals. In

this case our main criterion for an error estimator is fulfilled. If, however, Jhigh(qhigh)
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Figure 3.5: Distribution of the temporal fluctuations in local truncation errors
N20

∆ (qhigh)−N19
∆ (qhigh) (blue bars) and the distribution of the estimated random vari-

able Y[t19,t20](p[t19,t20]) (red dashed line) in the flow around an island setup. (a) h in
the basin interior, (b) h in the boundary region, (c) vn in the basin interior region, (d)
vn in the boundary region.

is not bounded, we can distinguish between two cases.

� If J∆(P∆(qhigh)) is not bounded by the confidence interval either, our main crite-

rion from section 3.3.1 not being fulfilled can be attributed to our error estimator,

the scalar product (3.20). We can then also identify which component of the

scalar product is responsible by looking at the approximated goal J∆(q∆) that

is corrected by the scalar product 〈q∗∆, N∆(qhigh)〉. This means, J∆(q∆) is cor-
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Figure 3.6: Distribution of the temporal fluctuations in local truncation errors
N20

∆ (qhigh)−N19
∆ (qhigh) (blue bars) and the distribution of the estimated random vari-

able Y[t19,t20](p[t19,t20]) (red dashed line) in the Kármán vortex street setup. (a) h in the
basin interior, (b) h in the boundary region, (c) vn in the basin interior region, (d) vn
in the boundary region.

rected with the full knowledge about the local truncation errors at all timesteps.

If this corrected goal is bounded by the confidence interval, the adjoint solution

q∗∆ is responsible for the bad performance of the error estimator and is thus not

a valid surrogate for the full model information. If the corrected goal is however

not bounded, the only remaining error source is the chosen stochastic process

{Xti(pi)}i∈N.
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� If J∆(P∆(qhigh)) is bounded by the confidence intervals but Jhigh(qhigh) lies out-

side, the discretization error in the goal cannot be neglected. In this case we

have reached a fundamental limit of any dual-weighted error estimator based on

framework (3.7).

This rationale enables us to analyze the results of our error estimator and its limitations.

Confidence Intervals at Resolution ∆3

We find J∆(P∆(qhigh)) to be bounded by the confidence intervals not only for the fol-

lowing selection of results but for all possible combinations of experiment, region and

goal at this resolution.

Experiment 1: Munk gyre

The results for the Munk gyre experiment are summarized in figure 3.7. For this ex-

periment, we show confidence intervals for the Munk layer. For each goal, we show one

temporal evolution of confidence intervals for one specific region, except for the kinetic

energy, where we give results for two regions of the Munk Layer region. The system

is in steady state, however, the steady state for the model resolution ∆3 is different

from the steady state of the ’true’ reference solution at resolution ∆5. In particular,

the kinetic energy in Region 2 stabilizes at around 0.04m
2

s2
for resolution ∆5 compared

to 0.02m
2

s2
for resolution ∆3, a relative error of 100 percent.

For the potential energy, the volume flux and the Kinetic energy in Region 1, we

find our main criterion to be fulfilled; the confidence intervals confine the ’true’ goal

Jhigh(qhigh). We now discuss whether the second criterion is fulfilled, which requires

that the effectivity index eff given by the ratio between 3σ and ε does not exceed 10.

We find that for certain phases of the error estimation the confidence intervals are even

small enough that they do not confine J∆(q∆) anymore. In these cases, eff is below 1.

This occurs approximately for the first 50 hours of integration time and it tells us that

for this time window we have not just derived a bound on the error in the goal but we

can go beyond this and even effectively correct for this error. After this initial phase,

the effectivity index grows continuously and eventually reaches 10. For the Kinetic

energy in Region 1 eff exceeds a value of 10 after 225 hours of integration time. For

the volume flux this threshold is crossed after 150 hours of integration time, and for the

potential energy eff exceeds 10 after 120 hours of integration time. In figure 3.8, we

illustrate how the confidence intervals behave in comparison to intervals that indicate

when the effectivity index eff exceeds a value of 10. As an example we here choose the

volume flux goal but we find the same behavior for the other goals as well. The intervals

for the effectivity index increase strongly in comparison to the confidence intervals for

the first 75 hours of integration time. This is because the flows have not reached their

respective steady states yet, and as a result the error in the goal is strongly increasing

in this phase. However, after the steady states are reached, the intervals for eff do not
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Figure 3.7: Temporal evolution of four different goals: (a) the potential energy, (b) the
kinetic energy (Region 1), (c) the volume flux, and (d) the kinetic energy (Region 2)
for the Munk gyre experiment at resolution ∆3. The goal calculated from the model
solution J∆(q∆) (solid red line) is shown in comparison to the discrete goal applied to a
high resolution solution J∆(P∆(qhigh)) (solid orange line) and Jhigh(qhigh) (solid green
line). If J∆(P∆(qhigh)) and Jhigh(qhigh) coincide, only Jhigh(qhigh) is shown. The con-
fidence intervals (dashed blue lines) are derived to confine Jhigh(qhigh), J∆(P∆(qhigh)),
and J∆(q∆) corrected by the scalar product 〈q∗∆, N∆(qhigh)〉 (dashed black line).

grow further while the confidence interval width keeps increasing at a steady pace. The

skill of the error estimate is thus very high in the early phases of the error estimation

but then steadily decreases in time until our second criterion is not fulfilled any more

after 150 hours of integration time.

We now compare the behavior of the confidence intervals for the kinetic energy goals

in Region 1 and Region 2. Both regions are located at the center of the Munk layer
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Figure 3.8: Comparison of the confidence intervals (dashed blue lines) with intervals
that show when the effectivity index equals 10 (solid orange lines) for the volume flux
in the Munk gyre experiment at resolution ∆3. The goal calculated from the model
solution J∆(q∆) (solid red line) is shown, as well as Jhigh(qhigh) (solid green line), and
J∆(q∆) corrected by the scalar product 〈q∗∆, N∆(qhigh)〉 (dashed black line).

region and overall we observe a similar behavior for the temporal evolution of the con-

fidence intervals. A closer look to the first 25 hours of integration time however reveals

differences. Where the confidence intervals also confine the ’true’ goal Jhigh(qhigh) for

Region 1, they do not so for Region 2. Applying the reasoning we developed at the

beginning of the section, we can identify that the cause is the discretization error in

the goal that cannot be neglected for the total error in the goal. At later timesteps,

the discretization error in the goal is again negligible compared to the uncertainty that

is accumulated in the confidence intervals.

The question arises, whether this discretization error in the goal can be corrected for,

given the information available. For the kinetic energy goal in Region 2, we find that the

discretization error in the goal stays almost constant in time. This motivates us to use a

bias correction on the confidence intervals to make them confine Jhigh(qhigh). We make

use of the information from the near-initial learning phase and correct all confidence in-

tervals by adding Jhigh(q20
high)− J∆(P∆(q20

high)), where q20
high denotes the high-resolution

solution at timestep 20. The bias-corrected confidence intervals are shown in figure 3.9.

The corrected confidence intervals now bound Jhigh(qhigh) at all times which fulfills

our first criterion. Our second criterion is also fulfilled as the effectivity index never

exceeds a value of 7. We thus obtain a corrected error estimator that is valid for the

whole integration time. As a result of the bias correction, J∆(P∆(qhigh)) and J∆(q∆)

corrected by the scalar product 〈q∗∆, N∆(qhigh)〉 are not necessarily bounded by the

confidence intervals any more, as can be seen here for the first 50 hours of integration
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time.

Corrected Error Estimator for Kinetic Energy (Region 2)
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Figure 3.9: Bias-corrected confidence intervals (dashed blue lines) for the kinetic energy
in Region 2 in the Munk gyre setup at resolution ∆3. The goal calculated from the
model solution J∆(q∆) (solid red line) is shown in comparison to the discrete goal
applied to the high resolution solution J∆(P∆(qhigh)) (solid orange line), Jhigh(qhigh)
(solid green line), and J∆(q∆) corrected by the scalar product 〈q∗∆, N∆(qhigh)〉 (dashed
black line).

Experiment 2: flow around an island

The results for the flow around an island setup are shown in figure 3.9. For the flow

around an island setup, we are mostly interested in the regions near the island and

especially focus on the area upstream of the island, where the maximum in meridional

velocities is reached and the potential energy is at its peak due to the stagnation point

in front of the island. For each goal we show one temporal evolution of confidence

intervals for one specific region. The examples for the potential energy and the kinetic

energy indicate that the flow is in a transition phase and that energy is constantly

added to the system. For the potential energy, the chosen region is located around lon-

gitude 4W and latitude 11N , which is close to the stagnation point. Thus, as the flow

is further spun up, the potential energy in this area will be mostly increasing in time.

The kinetic energy goal is from an area around the location longitude 9W , latitude 4N .

The kinetic energy roughly doubles for the time window of the error estimation, and

this increase is almost entirely due to the increase in meridional velocities. The increase

in the respective energies occurs very differently at different resolutions (Figure 3.10).

In contrast to these two goals, the volume flux is calculated for a cross-section down-

stream of the island. The chosen cross-section lies parallel to the equator at latitude

14N and stretches from longitude 2E to longitude 7E. Due to this specific choice of

cross-section, the volume flux indicates the formation of the vortex pair downstream of
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Figure 3.10: Temporal evolution of three different goals: (a) the potential energy, (b)
the kinetic energy, and (c) the volume flux for the flow around an island setup at reso-
lution ∆3. The goal calculated from the model solution J∆(q∆) (solid red line) is shown
in comparison to the discrete goal applied to a high resolution solution J∆(P∆(qhigh))
(solid orange line) and Jhigh(qhigh) (solid green line). If J∆(P∆(qhigh)) and Jhigh(qhigh)
coincide, only Jhigh(qhigh) is shown. The confidence intervals (dashed blue lines) are de-
rived to confine Jhigh(qhigh), J∆(P∆(qhigh)), and J∆(q∆) corrected by the scalar product
〈q∗∆, N∆(qhigh)〉 (dashed black line).

the island, as the volume flux changes from negative to positive values, which means a

change in direction of meridional velocities from southward to northward.

As for the Munk gyre experiment, the potential energy, the volume flux, and the

kinetic energy fulfill our main criterion for the error estimator. Concerning the second

criterion, we find that the effectivity index is far lower than for the Munk gyre exper-

iment. The maximum values for eff ranges from 1.6 to 2.5. The confidence intervals
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for the flow around an island setup are thus tighter around the ’true’ goal. At the

start of the error estimation, we have an effective error correction for the error in the

goal. This effect prevails for a time window of about 5 hours of integration time for the

potential energy and the volume flux and up to 13 hours for the kinetic energy plot,

which corresponds to approximately 800 timesteps.

Comparison to Stochastic-Physics Ensembles

We perform full stochastic-physics ensemble simulations in the manner we described

in section 2.5 at resolution ∆3. The ensemble of perturbed goals calculated from the

perturbed model solutions is used to derive error bounds in a similar fashion as for our

adjoint-based error estimator. From our 100 ensemble members, we choose the lower

error bound ε1 to be the ensemble’s minimum and the upper error bound ε2 to be

the ensemble’s maximum. We compare these bounds to the bounds from the previous

section.

The results are shown in figure 3.11 for the Munk gyre experiment and in figure 3.12

for the flow around an island setup. The main finding is that the bounds derived from

the stochastic-physics ensemble also bound the error in the goals and are in this way

qualitatively similar. For the flow around an island setup, the bounds for all regions

and goals are of comparable size. For the Munk gyre experiment this holds true for

the potential energy and the volume flux. For the kinetic energy, we again find that

Jhigh(qhigh) is not bounded in the beginning of the error estimation for Region 2 while it

is bounded for Region 1. Additionally, the bounds derived from the stochastic-physics

ensemble behave differently compared to our error estimator. The first difference is that

the lower bounds do not cross the zero line, which is to be expected as it is the kinetic

energy’s lower bound. The second difference is the far stronger growth of the upper

bound to 0.3m
2

s2
towards the end of the error estimation window compared to 0.14m

2

s2
in

the case of our error estimator. The increased growth rate is for the most part confined

in the second half of the error estimation window and thus coincides with stronger

perturbations by the stochastic process. Our error estimator is an approximation to the

stochastic-physics ensemble, and thus the question arises whether the adjoint solution

provides a valid surrogate under these perturbations.

Confidence Intervals at Resolution ∆4

To have comparable results, we show the same combinations of regions and goals as

presented for resolution ∆3. In general, the results are very similar, which is why

we will only give a short description and focus on the cases where the results differ

significantly.

Experiment 1: Munk gyre

The error estimates for the potential energy, the volume flux and the kinetic energy in

58



3.5 Numerical Results

(a)

Potential Energy SPE

 994000

 996000

 998000

 1e+06

 1.002e+06

 1.004e+06

 1.006e+06

 1.008e+06

 0  50  100  150  200  250

P
o

te
n

tia
l 
E

n
e

rg
y
 [

m
2
]

Time [hours]

(b)

Kinetic Energy SPE (Region 1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250

K
in

e
tic

 E
n

e
rg

y
 [

m
2
/s

2
]

Time [hours]

(c)

Volume Flux SPE

-300

-200

-100

 0

 100

 200

 300

 400

 500

 0  50  100  150  200  250

V
o

lu
m

e
 F

lu
x 

[m
2
/s

]

Time [hours]

(d)

Kinetic Energy SPE (Region 2)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250

K
in

e
tic

 E
n

e
rg

y 
[m

2
/s

2
]

Time [hours]

Figure 3.11: Temporal evolution of error bounds derived from stochastic-physics en-
sembles for four different goals: (a) the potential energy, (b) the kinetic energy (Region
1), (c) the volume flux, and (d) the kinetic energy (Region 2) for the Munk gyre exper-
iment at resolution ∆3. The goal calculated from the model solution J∆(q∆) (solid red
line) is shown in comparison to the discrete goal applied to a high resolution solution
J∆(P∆(qhigh)) (solid orange line) and Jhigh(qhigh) (solid green line). If J∆(P∆(qhigh))
and Jhigh(qhigh) coincide, only Jhigh(qhigh) is shown. The confidence intervals (dashed
blue lines) are derived to confine J∆(P∆(qhigh)) and Jhigh(qhigh).

Region 1 (not shown) stay qualitatively the same, and we find an effective correction of

the goal for the first 50 to 75 hours of integration time. The confidence intervals for the

kinetic energy in Region 2, shown in figure 3.13 (a), again do not bound Jhigh(qhigh)

for the first 75 hours of integration time. However, we now find that J∆(P∆(qhigh)) is

not bounded by the confidence interval either, which indicates that the problem lies

within the scalar product (3.20). More precisely, the problem lies with the adjoint
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Figure 3.12: Temporal evolution of error bounds derived from stochastic-physics en-
sembles for three different goals: (a) the potential energy, (b) the kinetic energy, and
(c) the volume flux for the flow around an island setup at resolution ∆3. The goal
calculated from the model solution J∆(q∆) (solid red line) is shown in comparison to
the discrete goal applied to a high resolution solution J∆(P∆(qhigh)) (solid orange line)
and Jhigh(qhigh) (solid green line). If J∆(P∆(qhigh)) and Jhigh(qhigh) coincide, only
Jhigh(qhigh) is shown. The error bounds (dashed blue lines) are derived to confine
J∆(P∆(qhigh)) and Jhigh(qhigh).

solution q∗∆, because J∆(q∆) corrected by the scalar product 〈q∗∆, N∆(qhigh)〉 does not

coincide with J∆(P∆(qhigh)). To further strengthen this argument, we show the error

bounds derived from the stochastic-physics ensemble (Figure 3.13 b). The error bounds

derived in this way fully bound J∆(P∆(qhigh)) as well as Jhigh(qhigh) at all times and

even yield an effective goal correction for 125 hours of integration time.

For all goals, the widths of the confidence intervals are consistently reduced by 20 to
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Figure 3.13: Comparison of temporal evolutions of (a) confidence intervals for the kinetic
energy (Region 2) with (b) error bounds derived from a stochastic-physics ensemble for
the Munk gyre experiment at resolution ∆4. The goal calculated from the model
solution J∆(q∆) (solid red line) is shown in comparison to Jhigh(qhigh) (solid green line)
and to J∆(P∆(qhigh)) (solid orange line). The derived confidence intervals and error
bars (dashed blue lines) are given, and if applicable J∆(q∆) corrected by the scalar
product 〈q∗∆, N∆(qhigh)〉 (dashed black line) is shown.

40 percent compared to resolution ∆3. To further compare the results, we calculate a

score for the change in confidence interval width. The score is calculated as the ratio

between the effectivity index at resolution ∆4 and the effectivity index at resolution

∆3. This score indicates how fast the error in a goal decreases in relation to the

decrease in confidence interval width when increasing the resolution. For the Munk

gyre experiment, this score is mostly found between 1 and 4, meaning that the width

of the confidence interval decreases faster than the error in the goal when increasing

the resolution from ∆3 to ∆4. The confidence intervals are thus getting tighter for the

goals shown.

Experiment 2: flow around an island

For the flow around an island setup, the ’true’ goals Jhigh(qhigh) are bounded for all

plots (not shown), and we find an effective correction of the goal for the first 5 to 7.5

hours of integration time. For the kinetic energy this time window is thus roughly

halved compared to resolution ∆3.

Concerning the widths of the confidence intervals, we find that they are consistently

reduced by 40 to 70 percent. We observe the strongest reductions of up to 70 percent

for the kinetic energy. Comparing again the scores for the changes in the confidence

interval width, we find the values to vary between 0.5 and 1.4. For the potential energy

the values vary between 0.7 and 1.4 and are concentrated around 1. This means the
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ratio between the error in the goal and the confidence interval width is comparable

on both resolutions. For the volume flux, the values concentrate around 0.8 and for

the kinetic energy values lie between 0.5 and 0.7. In total, this means that although

the width of the confidence intervals decreases quite substantially, the error in the goal

decreases even faster.

For the Kármán vortex street setup, we show a kinetic energy goal in figure 3.14. The
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Figure 3.14: Temporal evolution of the kinetic energy for the Kármán vortex street
setup at resolution ∆4. The goal calculated from the model solution J∆(q∆) (solid red
line) is shown in comparison to Jhigh(qhigh) (solid green line). The confidence intervals
(dashed blue lines) confine Jhigh(qhigh) as well as J∆(q∆) corrected by the scalar product
〈q∗∆, N∆(qhigh)〉 (dashed black line).

area which the kinetic energy is averaged over is located at a region around longitude

22E, latitude 2S, directly downstream of the island on the southern hemisphere. In

this region a vortex is shed from the island at the starting point of the error estimation,

which leads to a strong increase in the kinetic energy goal over the period of the error

estimation. We find that Jhigh(qhigh) is bounded by the estimated error bars at all

times, our error estimator thus fulfills our main criterion. The second criterion is also

fulfilled as we find that the effectivity index eff is constantly around a value of 3.

3.5.5 Discussion

In most cases, our error estimator is able to bound the ’true’ goal, and we can often

even correct for the error in the goal. This property is found at the beginning of the

error estimation time windows and can be persistent for several hundreds of timesteps.

This effect can be entirely explained by the mean-field part of the stochastic process,

which is constant in time by construction. Whenever the influence of the constant mean
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field on the goal dominates over the influence of the purely stochastic part on the goal,

we can perform a correction of the goal’s value. After the initial phase where the goal

can be corrected, the ratio of the confidence interval width 3σ to the error in the goal

ε does not stay below our chosen threshold of 10 for the volume flux and the potential

energy goals in the Munk gyre experiment. This occurs only for the Munk gyre experi-

ment because it is not in transition anymore, which means that the fluctuations in local

truncation errors are only weakly correlated in time. As a result, the upper bound for

the correlation coefficient given by the Cauchy-Schwarz inequality in equation (3.15)

is an overestimate, which results in wide confidence intervals on the error in the goal

compared to the actual error. In the context of ocean-type experiments, however, the

error estimator would not be applied to an experiment that is in a steady state but to

transient flows where transition and the change of viscosity parameters with resolution

occur both at the same time. Under these conditions, the temporal evolution of local

truncation errors will be that of a transient flow but with increased values. Based on

our results, this is a situation that the error estimator should be able to cope with.

We have found strong indications that our error estimator converges, as the con-

fidence interval widths were consistently reduced when increasing resolution. This is

an important property that any error estimator should satisfy. The different rates at

which this convergence takes place for the two experiments is most likely due to the

resolution-dependent eddy parametrization. It prevents a fast convergence of the model

solution for the Munk gyre experiment and thus also of the error estimator.

Certain properties of the random variables that we estimated from the temporal fluc-

tuations in local truncation errors are found to be consistent for all model variables and

dynamical flow regimes. All random variables can be assumed to be centered around

zero. For the heights, this follows directly from the volume conservation of the model

and the chosen separation of the different dynamical regimes. For the velocities, which

reside on the midpoints of triangle edges and point in normal direction, this holds due

to a property of the ICON-grid. For every edge with given velocity, there is an edge in

its vicinity with similar velocity but opposite orientation and thus opposite sign. The

resulting local truncation errors will then also be of the same order of magnitude but

opposite sign. Another property we find in all random variables is that their probability

distribution can be assumed to be Laplacian, which seems to be more appropriate for

flows with boundaries than a Gaussian distribution.

We have shown that the confidence intervals from our error estimator and the error

bounds derived from the stochastic-physics ensemble are similar to the point of being

indistinguishable. An exception is the kinetic energy in the boundary region of the

Munk gyre experiment for which the upper bound derived from the stochastic-physics

ensemble has a higher growth rate. We can exclude the kinetic energy itself as the

reason, as this does not occur for the kinetic energy in the flow around an island setup.

The only explanation left is that here the perturbations due to the stochastic process
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cannot be considered to be ’small’ anymore. The adjoint solution is thus not fully

capable of accounting for the accumulated uncertainty in the goal.

The limitation we encounter for our error estimator is due to the part of the total er-

ror in the goal that comes from the discretization of the goal itself. In the dual-weighted

error estimation framework underlying our approach this error is not represented, and

we thus assumed it to be negligible which is in accordance with most of our numerical

results. If the error is, however, not negligible in practice, our error estimator can-

not bound the ’true’ goal directly. This is for instance the case when flow features

that have a strong influence on the goal are underresolved compared to the ’true’ so-

lution, which is also in accordance to our finding that increasing the model resolution

resolves the issue; our method thus yields asymptotic bounds. We however also find

that if the discretization error in the goal is approximately constant in time, applying

a bias-correction to our confidence intervals yields a valid error estimator that again

bounds the ’true’ goal. In summary, this effect is a known limitation of the chosen

dual-weighted error estimation framework, and it requires expert knowledge about the

flow to decide whether or not this limitation poses a problem for the error estimator.

3.6 Conclusions

From our numerical results we conclude that our error estimator is capable of estimating

bounds on the error in a goal for shallow-water flows with lateral boundaries and an

eddy viscosity parametrization. The method is shown to be a valid approximation to a

full stochastic-physics ensemble by theoretical arguments as well as numerical results.

Our results thus further strengthen the statements made in [41] that deterministic

local truncation errors can be interpreted stochastically, and the already suspected

connection to the class of ensemble methods is clarified. We find that our method

requires expert knowledge in choosing a suitable separation of regions of different flow

dynamics, and it is required to assess whether the error due to the discretization of the

goal is negligible, and if not whether it is correctable.

The stochastic framework of our extended method was motivated by our finding

that the spatial distribution of temporal fluctuations in local truncation errors can be

described by a Laplace-distributed random variable. The stochastic process is then

defined as the sum of these random variables that we assume to be fully correlated

in time. In the context of the Mori-Zwanzig formalism, the stochastic process is a

noise term. The correlation of noise components in time, and the non-Markovian and

non-Gaussian character of our stochastic process are in accordance with the properties

expected for a noise term by Chorin et al. [8].

In our error estimator it is only the stochastic process that is capable of providing

such a memory effect introduced by the Mori-Zwanzig formalism. Furthermore, the

only features of the stochastic process where a memory term could possibly be residing
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in, is its constant mean field and the growth rate of its variance. This implies that

for our approach, the memory term consists of a contribution from the mean field that

is constant in time and a remaining part that is purely stochastic and has thus been

completely converted into uncertainty.

Our algorithm employs a separation of the flow into regions of different dynamical

regimes in order to separate regions of different local truncation error production rates.

For this separation of dynamical regimes, we expect a typical trade-off situation between

the robustness of the method and the performance in terms of ensemble spread. While

a greater number of dynamical regimes should result in tighter confidence intervals,

the estimated parameters of the stochastic process might lose robustness, resulting

in a reduced time window for error estimation. Conversely, reducing the number of

dynamical regimes might be more robust but might potentially yield a vast overestimate

of the uncertainty in the respective goal.

Similarly to [41], our algorithm uses near-initial, high-resolution information, which is

extrapolated to a much larger time-window. Here, we have extended this extrapolation

approach from the local truncation errors themselves to their temporal fluctuations.

This means that spatial knowledge about the temporal fluctuations in local truncation

errors can be converted into temporal knowledge about local truncation errors at future

timesteps, and we have shown that this knowledge transfer can be carried out by means

of a random variable.

The strong underlying theoretical framework we have developed for our method, our

understanding of its limitations, and the robustness of the obtained numerical results

for the 2D shallow-water cases make us confident that we can go one step further and

apply our error estimator to idealized experiments in a full 3D ocean model.
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Chapter 4

The Stochastics of the Local Truncation

Error in an Eddying Regime

Towards a stochastic goal-oriented error estimator for three-dimensional ocean models,

we investigate the local truncation error and its stochastic representation for an eddy-

ing flow driven by baroclinic instabilities. In this regime, we argue that it is extremely

difficult if not impossible to obtain the local truncation error for all state variables. We

instead define a temperature-based representation of the local truncation error that is

shown to be valid for density-driven flows.

For a stochastic representation of the local truncation error, the structure of the

temperature-based local truncation error is divided into three components: its horizon-

tal structure, its vertical structure and its temporal evolution. The horizontal and the

vertical structure are represented by correlation matrices that we successfully merge

into a stochastic representation of the three-dimensional spatial structure of the lo-

cal truncation error. For the stochastic representation of the temporal evolution, the

inclusion of the history of the stochastic process in the form of time-lagged correla-

tion coefficients is argued to be crucial. Based on this analysis, a revised stochastic

timestepping scheme of the stochastic process is proposed.

4.1 Introduction

The quantification of numerical errors in ocean models is a long-standing and still un-

resolved problem. In ocean modeling, key physical quantities of interest (goals) that

characterize the physical system are of interest. These goals are linear or non-linear

functionals of the model solution. A conceptual framework for the error estimation in

goals is provided by dual-weighted error estimation techniques [40, 3, 15, 17, 11, 19, 51].

In the dual-weighted error estimation technique, the error in a goal is translated into

a weighted sum of local truncation errors, the error in the state variables done by the

model per timestep. For an oceanographic context, we have developed a stochastic

extension of the dual-weighted error estimation approach for viscous, bounded shallow-

water flows in chapter 3. Its key component is a stochastic process that parametrizes
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the local truncation error. The purpose of this chapter is to carry the idea of the

stochastic dual-weighted error estimator towards a full 3D-Ocean model, as used in a

comprehensive Earth System Model, by investigating the local truncation error of an

eddying three-dimensional flow and its corresponding stochastic process. The stochas-

tic process is estimated using the learning algorithm 3.4 developed in the previous

chapter.

Due to the complexity of state-of-the-art ocean models and their choice of discretiza-

tion schemes, a continuous evaluation of the local truncation error or equivalent residual

information is not possible. An alternative approach that replaces the local trunca-

tion error by a suitable stochastic representation was first proposed and tested for a

shallow-water model and wave-type flows in [41] and later extended by us to ocean-type

experiments in a shallow-water model in chapter 3. The replacement of deterministic

local truncation errors by a stochastic component was motivated by the Mori-Zwanzig

formalism [33, 32, 54, 18] from statistical mechanics.

Here, we aim to extend the stochastic component of our stochastic error estimator

to a full 3D ocean model, namely the ICON-Ocean model [27]. The additional dimen-

sion and the overall increase in model complexity introduces several challenges for our

stochastic component. The stochastic component now has to incorporate the effects

of a downward energy cascade that is present in a three-dimensional flow. The model

now includes an active tracer in the form of a temperature variable that influences the

model dynamics and introduces the important concept of stratification to the model,

and the model physics is extended by additional sub-grid scale parametrizations. The

interplay of all these additional processes can result in complex spatial and temporal

flow structures which will be reflected in the structure of its local truncation error.

The experiment we study in this model framework is a channel flow driven by baro-

clinic instabilities [38]. The occurring baroclinic instabilities are a source for the de-

velopment of mesoscale eddies, ocean eddies that are nearly in geostrophic balance.

As such, the experiment is a draft for dynamics that frequently occur in many regions

of the ocean such as in the Antarctic Circumpolar Current or near western boundary

currents like the gulf stream [30]. The mesoscale eddy field induces a heat transport in

the lateral direction [24] as well as a net upward heat transport [22, 52].

For the resulting local truncation error and its stochastic representation, several chal-

lenges need to be overcome. First, we encounter that the concept of the local truncation

error as we have used it in previous chapters is not directly applicable (see definition

(3.8) from chapter 3) due to non-physical heating of the channel when correcting the

surface elevation variable. We investigate alternative local truncation error represen-

tations that are applicable to an eddying flow regime in a 3D ocean model. Second,

the occurrence of mesoscale eddies at high resolution entails a spatial structure of the

local truncation error at low resolution that needs to be respected by its stochastic

representation. We show how the spatial structure can be described stochastically
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as a compound of sub-structures that each can be described by their own correlation

matrix. And third, the persistence of mesoscale eddies for a certain lifetime suggests

that a stochastic representation of the temporal structure of the local truncation error

is strongly dependent on its past states. An approach to model this memory of the

stochastic process is proposed that is based on a correlation matrix of time-lagged cor-

relation coefficients.

The chapter is structured as follows: In section 2, we propose how the basic dual-

weighted error estimation approach could be carried into a stochastic framework for a

3D model environment. Section 3, introduces the hydrostatic primitive equations and

the ICON-Ocean model. In section 4 we introduce our channel experiment and analyze

the impact of the mesoscale eddy field on the flow. In section 5, we analyze the local

truncation error and its resulting stochastic representation for the channel experiment

and discuss the results, and in section 6 we conclude.

4.2 Stochastic Dual-Weighted Error Estimation

For our error estimation framework, we define a general form of a continuous model

and its discrete counterpart. The system

N (q (x, t)) = 0, (4.1)

is a continuous model, with initial conditions q(x, 0) = q0 and boundary conditions

q(x, t) = qb(x, t) on ∂Ω. The function q (x, t) is defined on Ω × [0, T ] and satisfies

system (4.1).

The discretization of the continuous system (4.1) can then be written as

N∆ (q∆) = 0, (4.2)

with initial conditions q0
∆ = P∆(q0) and boundary conditions q∆ = P∆(qb) on ∂Ω∆.

P∆ represents a projection of the continuous solution q from the continuous function

space V (Ω × [0, T ]) on Ω × [0, T ] to the discretized function space V∆(Ω∆ × T∆) on

Ω∆ × T∆.. The solution of system (4.2) is denoted by q∆ =

 q0
∆
...

qn∆

 and is a vector

of state vectors qi∆ ∈ Rm, i = 0, . . . , n in discrete time T∆ := {t0, . . . , tn} and discrete

space.

4.2.1 Errors in a Physical Quantity of Interest

A physical quantity of interest (goal) is represented by a functional J that is applied to

the continuous model solution q. We denote its discrete version, which is applied to the
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discrete model solution q∆, by J∆. The calculated goal J∆(q∆) is inherently erroneous

because of the error due to discretization in q∆. The total error ε in a goal J is defined

as the difference between the true value of the goal J(q) and its approximation J∆(q∆)

ε := J∆(q∆)− J(q). (4.3)

This error in a goal can be estimated via the dual-weighted error estimation approach

given in [15]

ε ≈ εapp := 〈q∗∆, N∆(q)〉Ω∆×T∆
, (4.4)

where 〈·〉Ω∆×T∆
denotes the standard euclidean scalar product in discrete space and

time, q∗∆ is the discrete adjoint solution to q∆, and N∆(q) are the local truncation

errors.

In our stochastic extension of (4.4) described in chapter 3, we replace the local

truncation error N∆(q) by a suitable discrete-time stochastic process {Xti(pi)}i∈N of

random vectors Xti(pi) with parameters pi. This stochastic process is our model for

the temporal evolution of the local truncation error, and its insertion into (4.4) yields

εapp := 〈q∗∆,

 Xt1(p1)
...

Xtn(pn)

〉Ω∆×T∆
, (4.5)

where each random vector Xti(pi) ∈ Rm is multiplied by the transpose of vector q∗∆
i ∈

Rmat timestep i. Error estimates εapp from (4.5) are then a measure for the uncertainty

in the goal J which can be used to derive bounds ε1, ε2 ∈ R that satisfy

J∆(q∆)− ε1 < J(P∆(q)) < J∆(q∆) + ε2. (4.6)

Alternatively to the calculation of the scalar product (4.5), one can obtain equivalent

information about the uncertainty in a goal from an ensemble of perturbed model runs

of the discrete model (4.2). The perturbations applied to the model state qi∆ at timestep

i are given by the random vector Xti(pi) of the stochastic process {Xti(pi)}i∈N. The

relationship between the ensemble approach and the dual-weighted approach (4.5) is

discussed extensively in chapter 3.

4.2.2 Parametrizing the Evolution of Local Truncation Errors by a
Stochastic Process

Regardless of whether one chooses the ensemble approach or the dual-weighted ap-

proach (4.5) for goal-oriented error estimation, a suitable discrete-time stochastic pro-
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cess {Xti(pi)}i∈N that models the temporal evolution of the local truncation error is

required. The temporal character of the euclidean scalar product in equation (4.4)

is emphasized when it is written as a weighted sum of local truncation errors at the

different timesteps i

ε∆ =
n∑
i=1

〈
q∗∆

i, N i
∆(q)

〉
Ω∆

, (4.7)

where 〈·〉Ω∆
is the standard euclidean scalar product in discrete space Ω∆, q∗∆

i is the

vector of the discrete adjoint solution at timestep i, and N i
∆(q) is the vector of local

truncation errors at timestep i.

In contrast to the previous chapter 3, we do not aim to build the stochastic process

around the separation of the local truncation error into a time-invariant bias plus the

temporal fluctuations in the local truncation, but instead we build the stochastic pro-

cess around the local truncation error itself. The reason is that in an eddying regime,

we cannot expect to find significant time-invariant biases in the local truncation error.

As a result, the complete local truncation error information will reside in the temporal

fluctuations, which would then be large, which in turn would make the spread of the

stochastic process large. In total, the concept that was found to be appropriate for

flows dominated by strong boundary currents is not deemed to be well applicable here.

Additionally, we expect a generally more complex flow structure than the one en-

countered in chapter 3, which the stochastic component needs to adhere to. We now

have to incorporate the vertical structure of the three-dimensional ocean experiment

which will impose certain restrictions on the vertical structure of the stochastic compo-

nent. For the horizontal structure in chapter 3, important horizontal correlations were

dealt with by the bias of the stochastic process. Here, we also expect to encounter im-

portant horizontal structures in the local truncation error of the low resolution solution

due to unresolved eddies, and we have to find an alternative way to prescribe these

patterns stochastically that is not based on biases. Given that the spatial structures

can be described stochastically, we additionally require a component that governs the

temporal evolution of these spatial structures, a stochastic timestepping scheme which

represents the temporal structure of the local truncation error. A simple approach to

assume an upper bound on the temporal correlations as used in chapter 3 is not deemed

applicable to a complex, eddying flow.

Our approach to model these structures of the local truncation error in a stochastic

process is by means of correlation matrices. Correlation matrices provide a stochastic

measure for the strength of the connection between different local truncation error val-

ues. Optimally, we would of course like to have one correlation matrix that describes

the whole structure of the local truncation error. However, the amount of variables of

the local truncation error is far too large to estimate a correlation matrix of this size.

In our approach we thus choose to separate the full structure of the local truncation
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error into three sub-structures – vertical, horizontal and time – which we each describe

by correlation matrices. In this we have to make assumptions about the negligibility of

certain correlations between variables of different sub-structures.

Given we have obtained a correlation matrix for each sub-structure, our aim is the

calculation of stochastic fields that satisfy the complete structure of the local trun-

cation error. Towards this, we perform a Cholesky decomposition of each obtained

correlation matrices. The resulting matrices can be applied to uncorrelated fields to

obtain fields that satisfy the structures of the corresponding correlation matrices. The

difficulty lies now in merging the correlated fields that all contain the patterns of their

respective sub-structure into one large spatio-temporal structure that can represent the

local truncation error. How to link the correlation matrices of the sub-structures in

order to directly obtain such a structure is the topic of this section.

We start with the definition of the correlation matrix of a given Gaussian random

vector Y ∈ Rm with covariance matrix Σ

Σ := cov (Y ) = E
[
(Y − E [Y ]) (Y − E [Y ])T

]
, (4.8)

dimension Rm×m, and the variances of the entries of Y lie on the diagonal of Σ. The

correlation matrix of Y is then defined as the covariance of the standardized entries of

Y

corr (Y ) = (diag (Σ))−
1
2 Σ (diag (Σ))−

1
2 , (4.9)

where the matrix diag (Σ) consists of the diagonal elements of Σ.

To be able to produce a correlated random vector Ỹ with desired distributionN (µ,Σ)

from an uncorrelated one Yuncorrelated, a Cholesky decomposition of the correlation

matrix can be performed. The correlation matrix associated with the covariance matrix

Σ is denoted by C. This correlation matrix can then be decomposed by Cholesky

decomposition into a product of a lower and an upper triangular matrix

LLT = C. (4.10)

This decomposition is possible because correlation matrices are always positive-semidefinite

and symmetric. Given the lower triangular matrix L, a vector Yuncorrelated ∼ N (0, I)
of uncorrelated normally-distributed random variables can be correlated by applying

the matrix L

Ycorrelated := LYuncorrelated, (4.11)

such that the correlation matrix of Ycorrelated is

corr (Ycorrelated) = C. (4.12)
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Thus, the random vector

Ỹ := µ+ (diag (Σ))
1
2 Ycorrelated ∼ N (µ,Σ) (4.13)

has the desired distribution and correlation structure.

The Spatial Structure of the Local Truncation Error

We separate the modeling of the spatial structure of the local truncation error into two

parts, the local truncation error’s horizontal structure and its vertical structure. Both

parts are represented by a correlation matrix. The employed 3D grid is constructed as

several layers of a chosen horizontal grid.

In our approach, the horizontal structure is governed by a correlation matrix that

represents the correlations between the local truncation error in all model variables at

one specific vertical layer. Which vertical layer is generally best suited is however not

known a priori. Here, we simply choose the surface layer as vertical layer. We note

that the approach described here is however not limited to the surface layer and other

horizontal layers could be chosen as well, which can make sense considering that the

ocean mixed layer in the upper ocean often behaves very differently from the deeper

ocean. Regardless of the choice, the correlation matrix is a quadratic matrix of a di-

mension Rmsurf×msurf , where msurf is the number of degrees of freedom in the surface

layer.

The vertical structure of the local truncation error is important as the flow will for

the most part be in a stratified state, and in presence of a mesoscale eddy field, single

eddies will not just occur in the surface layer but will also have a vertical extend. The

local truncation error will also inherit these properties and vertical correlations are thus

an integral part of its stochastic representation.

For each model variable θ, the vertical structure corresponding to each surface grid

point i is represented by a correlation matrix Cv, θ, i that contains the correlations

within the entire vertical column of said model variable. The dimension of the corre-

lation matrices is equivalent to the number of vertical levels and the entries of Cv, θ, i

are ordered, starting from the surface layer 1 and to the bottom level #layers.

Both structures are connected by first creating a horizontally-correlated surface field

and use it to seed the calculation of the vertical structure. More precisely, we start by

creating a realization

ysurf, uncorrelated ∈ Rmsurf

of an uncorrelated normally-distributed random vector Ysurf, uncorrelated ∼ N (0, I).
With the lower triangular matrix Lsurf that we obtained from the decomposition of
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Csurf into LsurfL
T
surf , we can use equation (4.11) to obtain ysurf, correlated

ysurf, correlated := Lsurf ysurf, uncorrelated, (4.14)

a realization of the random vector Ysurf, correlated ∼ N (0,Csurf ) that follows the cor-

relation pattern of the surface layer.

The correlated surface field ysurf, correlated is now used in the calculation of the vertical

structure. First, for each model variable θ and each surface grid point i, a realization

yv, θ, i, uncorrelated ∈ R#layers

of an uncorrelated random vector Yv, θ, i, uncorrelated ∼ N (0, I) is drawn. Then, the first

entry of yv, θ, i, uncorrelated is replaced by its corresponding value from the surface field

vector ysurf, correlated. If we now apply the lower triangular matrix Lv, θ, i obtained from

the decomposition of Cv, θ, i, we obtain yv, θ, i, correlated

yv, θ, i, correlated := Lv, θ, i yv, θ, i, uncorrelated. (4.15)

Due to the special construction of the matrix Lv, θ, i, the first entries of the vectors

yv, θ, i, correlated are identical to the corresponding entries in the surface layer vector

ysurf, correlated. This is because Lv, θ, i is a lower triangular matrix and the first entry in

its first row is 1. As a consequence, the matrix Lv, θ, i then carries the information from

the horizontal surface structure associated with ysurf, correlated into the vertical columns

of the 3D grid. The described procedure thus results in a stochastic representation of

the local truncation error’s 3D structure at a specific timestep.

Of course, this choice of splitting up the spatial structure into a horizontal and a

vertical part comes at a cost. Because both correlation matrices are connected by one

horizontal layer only, we do not account for all correlations of the 3D flow structure.

Instead, we have already implicitly made a choice that certain correlations are not

taken into consideration. Direct correlations between different grid points that reside

on different vertical levels are neglected. Also, apart from the correlations that are

already determined by the surface layer and propagated to deeper layers, possible fur-

ther correlations between different model variables θ in the vertical column have to be

neglected. If these correlations are however found to be important for an experiment,

the steps described above need to be adjusted. For instance, one of possible variation

would be to replace the surface layer by another horizontal layer for linking the fields.

If the assumptions about the correlations hold, the approach described above yields

the spatial structure of the random vectors Xti(pi) of the stochastic process for the

local truncation error {Xti(pi)}i∈N. Given the vectors yv, θ, i, correlated, all information

is available to reassemble them into a base realization yti from which a realization of the

random vector Xti(pi) can be obtained. De-normalization by the standard deviation
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and the addition of the mean vector as given in (4.13) yields the desired realization of

the random vector Xti(pi). However, although the spatial structure can be obtained,

the framework so far does not provide information on the temporal evolution of the

random vectors Xti(pi).

The Temporal Structure of the Local Truncation Error

We make certain assumptions for the stochastic timestepping of a realization of the

random vector Xti(pi) at timestep i to a realization of Xti+1(pi+1) at timestep i + 1.

We first assume that we already obtained a realization of a random vector Xti(pi)

that is from here on always denoted by xti(pi). We here assume that the correlation

matrices corr (Xti(pi)) are invariant in time, which is in accordance for what we find

in the results setion. For simplicity, we also assume that the mean vectors µti and the

covariance matrices Σti of the random vectors Xti(pi) are invariant in time and are

thus only referred to as µ and Σ from now on. If for an experiment µ and Σ were found

to change in time, both can be made time-dependent without affecting the algorithm

described here.

The proposed stochastic timestepping is based on directly estimating the correlation

coefficient δ between the local truncation error at two consecutive timesteps. Given the

correlation coefficient δ, the timestepping can be defined straightforwardly. In the first

step, we construct a base realization yti+1 of the random vector Xti+1(pi+1) that by

construction has the correct spatial structure as described in the previous section. The

vector yti+1 is still unconnected to the realization xti(pi) of the random vector Xti(pi)

at the previous timestep. The second step is then to construct a new realization of

the stochastic process at timestep i+ 1 from xti(pi) and yti+1 by using the formula for

correlating two random variables

xti+1(pi+1) = µ+ (diag (Σ))
1
2

[
δ (diag (Σ))−

1
2 (xti(pi)− µ) +

√
1− δ2yti+1

]
. (4.16)

In this, each entry of the vector xti(pi) is propagated in time separately and the vector

yti+1 provides the rate of change in xti(pi) when performing the timestep. As was al-

ready the case for the spatial structure, we here also have to make assumptions about

certain correlations being negligible. The effect that several entries of the vector xti(pi)

might influence one specific entry of xti+1(pi+1) is not represented in this approach.

We need to prove that a random vector Xti+1(pi+1) modeled in this way, indeed fol-

lows the desired probability distribution N (µ,Σ). Equation (4.16) is basically a sum

of two independent random vectors, X1 := (diag (Σ))−
1
2 (Xti(pi)− µ) and X2 := Yti+1 ,

that both have the same probability distributionX1, X2 ∼ N
(

0, (diag (Σ))−
1
2 Σ (diag (Σ))−

1
2

)
.

The covariance matrix of X3 := δX1 +
√

1− δ2X2 follows from the summation rules
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for covariance matrices

cov (X3) = cov
(
δX1 +

√
1− δ2X2

)
(4.17)

= δ2cov (X1) +
(
1− δ2

)
cov (X2) (4.18)

= cov (X1) (4.19)

= (diag (Σ))−
1
2 Σ (diag (Σ))−

1
2 (4.20)

Thus, X3 follows the desired distribution X3 ∼ N
(

0, (diag (Σ))−
1
2 Σ (diag (Σ))−

1
2

)
.

Finally, by using (4.13) to reapply the variance and the mean, it is shown that

Xti+1(pi+1) ∼ N (µ,Σ).

With this, we can now fully define the stochastic process Xti(pi)}i∈N and discuss its

properties. To fully define the stochastic process, we need to assign the first random

vector Xt1(p1). We could simply start from any realization with the correct spatial

structure. In our case, it is however reasonable to assume that the local truncation

error N1
∆(q) at timestep 1 is known, and we choose it as a realization of the random

vector Xt1(p1) as it already satisfies the requirements in terms of the spatial structure.

A fixed choice of Xt1(p1) is also advantageous in terms of spread of the desired goal

error estimates. The reason is that the variance of the stochastic process {Xti(pi)}i∈N
is then zero for the first timestep and afterwards only slowly growing in time due to

the correlation coefficient δ. At least, the reduced growth rate of the error estimator’s

variance holds true until stochasticity takes over and the random vectors Xti(pi) from

a specific timestep i onwards can be considered to be uncorrelated from the initial

information N1
∆(q).

4.3 The ICON-Ocean Model

The ICON-Ocean model is based on the hydrostatic primitive equations [21, 37]

∂v

∂t
+ (f + ω)~z × v +

∇h |v|2

2
+ w

∂v

∂z
+

1

ρ0
∇hp−Dhv −

∂

∂z
Kv
v

∂

∂z
v = 0 (4.21)

∂p

∂z
= −ρg (4.22)

∂η

∂t
+ div

∫ η

−B
vdz = 0 (4.23)

divhv +
∂w

∂z
= 0 (4.24)

∂C

∂t
+ div (Cv)− divh

(
KC
h∇C

)
− ∂

∂z
KC
v

∂

∂z
C = 0 (4.25)

ρ = Feos
(
p, t̂, ŝ

)
. (4.26)
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Staying in the notation of the continuous system (2.1) from chapter 2, the solution

q is represented by the surface elevation η, the temperature t̂, the salinity ŝ and the

horizontal velocity v. The variables and parameters of the system of equations (4.21)

- (4.26) are: the Coriolis parameter f , the vorticity ω, z denotes the vertical dimension,

the vertical velocity w, the density of sea water ρ and its reference value ρ0, the hydro-

static pressure p, g is the gravitational constant, B describes the bathymetry, and C

denotes a tracer, i.e. the temperature t̂ or the salinity ŝ. Additionally, the operator Dh

denotes a diffusion operator for the horizontal velocity with viscosity coefficient Kv
h. In

the same way Kv
v denotes the viscosity coefficient for the vertical velocity diffusion. The

diffusion coefficients KC
v and KC

h are the vertical diffusion coefficient and the horizontal

diffusion coefficient for the tracer C. The function Feos is an equation of state for the

density of sea water.

Our numerical model to approximate q is the ICON-Ocean model [27]. The chosen

discretization is based on a mimetic scheme, which means that the discrete operators

are build in a way that they mimic their continuous counterparts in key quantities such

as conservation properties and a consistent behavior in terms of energy, wave propaga-

tion, vorticity dynamics and tracer transport. The timestepping is performed with a

semi-implicit Adam-Bashford method. The model is implemented on an unstructured,

triangular grid on the sphere, using a C-type staggering for the prognostic variables

height, temperature, salinity and velocity. The discrete surface elevation η∆, discrete

temperatures t̂∆ and the discrete salinity ŝ∆ are located at the center of grid cells, while

the velocities are residing on the midpoints of the triangle edges, oriented in normal

direction to the triangle edge. The velocities are denoted by vn∆. The vertical dimen-

sion is realized as a layering of several horizontal grids, where their vertical spacing

defines the thicknesses dk of the layers k ∈ {1, . . . ,#layers}. In this, the layers are

numbered consecutively from the surface layer k = 1 to the bottom level k = #layers.

The discretized solution at timestep i is thus a vector qi∆ = (ηi∆, t̂
i
∆, ŝ

i
∆, vn

i
∆)T ∈ Rm,

where a single horizontal layer consists of m
#layers variables.

As a sub-grid scale parametrization besides the already mentioned horizontal eddy

viscosity Kv
h used in the diffusion operator Dh, we employ the so called PP-scheme [39]

by Pacanowski and Philander for the vertical ocean mixing. With this scheme, the

intensity of vertical mixing is chosen to be dependent on the Richardson number Ri, a

measure for the importance of buoyancy compared to vertical shear. In ICON-Ocean

model, the Richardson number is calculated as

Ri := max

{
Dzρ

|DzPGvn∆|2
, 0

}
, (4.27)

where Dz denotes the vertical derivative and PG is a reconstruction from the trian-

gle edges to centers. The dependence on the Richardson number is realized by an
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Table 4.1: Averages over the square roots of the triangle areas for employed grids

Resolution Grid Spacing in km

∆4 160

∆5 80

∆6 40

∆7 20

∆8 10

adjustment of the vertical diffusion coefficient for velocity Kv
v

Kv
v =

Kv
0

(1 + CRiRi)2 + Kv
b (4.28)

and for the vertical tracer diffusion coefficient

KC
v =

KC
0

(1 + CRiRi)3 + KC
b . (4.29)

The coefficients Kv
b and KC

b are the respective background diffusivities, Kv
0 and KC

0 are

scaling factors, and CRi is an adjustable parameter.

To perform one refinement for a grid of chosen resolution, the triangle edges are

bisected. As in chapter 3, the resolution of the grid is characterized by the number of

bisections N ∈ N of a base grid, where we denote the N -times refined grid by ∆N . The

average over the square roots of the triangle areas is given as a measure for the grid

spacing in table 4.1.

For the resulting discretized system of the ICON-Ocean model, an analysis of its

numerical properties and its physical behavior, we refer to the manuscript [27]. Based

on the specifics of the ICON-Ocean model, we give the usual definition of the local

truncation error at timestep i

N i
∆(q) = P∆ (q(x, ti))− S∆ (P∆ (q(x, ti−1)) , P∆ (q(x, ti−2))) . (4.30)

Here, S∆ is one application of the discrete time-stepping operator of the ICON-Ocean

model, and P∆ again denotes a mapping onto the discretized space Ω∆. In the calcu-

lation of the local truncation error we have to consider the two previous timesteps ti−1

and ti−2 in the calculation of ti due to the chosen time discretization that is directly

dependent on the two previous model states. In the case that q(x, ti) is replaced by

a high-resolution solution qhigh, we need to define P∆. A reasonable choice that was

also used in chapter 3 is to use point-wise projection to map the height, salinity and
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temperature values onto the coarse resolution and a nearest neighbor approach to map

the velocities onto the coarse grid.

4.4 Experiment: Spherical Channel with Baroclinic

Instabilities

We want to test our stochastic parametrization for the local truncation error that we de-

rived in section 4.2.2 in the 3D ICON-Ocean model. As numerical experiment we want

an idealized, 3D ocean flow that however still incorporates fundamentally important

ocean dynamics. This is why we choose to study an experiment in which tilted density

surfaces trigger baroclinic instabilities, one important source of mesoscale ocean eddies.

In the process, available potential energy is converted into kinetic energy. Among other

effects, the occuring mesoscale eddies have a strong influence on the heat transports in

the ocean as they induce a heat transport in meridional direction [24] as well as a net

upward heat transport [22, 52]. In the experiment we describe here, we focus on the

differences in the net vertical heat transport due to differences in the model resolution

that stem from not fully resolving the mesoscale eddy field.

Our numerical experiment is based on the experiments described in [10, 27]. The

computational domain is a zonally-reentrent channel on an f-plane at 65◦ South. The

channel has a length of 1900km and a width of 1650km and a depth of 1600m with

flat bathymetry. The vertical dimension is discretized into 31 vertical layers whose

thicknesses increase from 14m at the surface to 150m for the bottom layer. For this

specific channel setup, the triangular grid can be constructed in a way that the lateral

boundaries are entirely smooth which keeps disturbances to the channel flow due to

lateral boundaries to a minimum. This enables us to further reduce the horizontal

viscosity parameter Kv
h and thus have a stronger mesoscale eddy field.

The channel flow is initialized with a temperature profile for t̂0∆ that increases lin-

early from 10.5◦C at the southern channel boundary towards 18.5◦C at its northern

boundary. In the vertical dimension the initial temperature is linearly decreasing with

depth with a rate of −6.2·10−3K/m. Additionally, a temperature perturbation is added

with an intensity of 0.5 percent of the original field and of wavenumber 4. The salinity

tracer is initialized with a constant value of ŝ0
∆ = 35psu. Concerning the tracers, the

density ρ is thus only dependent on changes in the temperature field. At initialization,

the fluid is at rest vn0
∆ = 0 and the ocean surface is flat η0

∆ = 0.

The channel flow is driven by wind forcing and a temperature restoring. The wind

forcing is analytical, follows a cosine shape, acts in zonal direction with a maximal

intensity of 0.05Nms at the center of the channel, and diminishes to zero at its north-

ern and southern boundaries. The initial temperature field is restored by a full field

relaxation to the initial temperatures in small longitudinal bands of width 165km at
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Table 4.2: Horizontal velocity viscosity coefficients Kv
h for the Laplacian and bihar-

monic diffusion operator respectively and corresponding timestep lengths at different
resolutions. Dh = ∆ denotes Laplacian diffusion and in case Dh = ∆2 a biharmonic
diffusion operator is used.

Resolution Diffusion Operator Dh Kv
h in m2

s ∆t in s

160km ∆ 5.5E+04 m2

s 3600

80km ∆ 4.5E+03 m2

s 1800

40km ∆2 9.6E+11 m4

s 1200

20km ∆2 1.2E+11 m4

s 600

10km ∆2 1.5E+10 m4

s 300

the northern and southern channel boundaries. The restoring timescale is 3 days. The

task of the temperature restoring is to replenish the available potential energy that is

converted into eddy kinetic energy, the kinetic energy contained in the mesoscale eddy

field.

We implement the experiment for a series of different model resolutions from 160km

to 10km. The horizontal velocity diffusion coefficients Kv
h at the different resolutions

are given in table 4.2. The other model parameters are chosen to be independent of

the horizontal resolution in order to increase the comparability of the model results

at different resolutions, and to be able to easier explain differences in the model solu-

tions by the change in grid spacing. The horizontal temperature diffusion coefficient

Kt̂
h is chosen as 300m

2

s for all resolutions. The vertical background viscosity and dif-

fusion coefficients are chosen to be Kv
b = 2.0 × 10−5m2

s and Kt̂
b = 1.0 × 10−5m2

s , and

the parameter CRi is chosen as CRi = 0.5−2. The scaling factors in the PP-scheme

are Kv
0 = 3.2 · 10−3m2

s for vertical viscosity and the corresponding scaling factor for

the vertical diffusion of temperature is Kt̂
0 = 3.0 · 10−3m2

s . Additionally, the forcings

are balanced by bottom boundary friction in the form of a bottom drag coefficient of

3.2 · 10−3.

Figure 4.1 shows snapshots of the final state for the surface elevation, the temper-

ature at 105 m depth and the vertical velocities at 110m depth at the 10km model

resolution. All flow fields clearly indicate the presence of mesoscale eddies and the

geostrophic turbulence in the flow. This first impression is further strengthened by

the corresponding snapshot of the vertical structure shown for a cross-section of the

potential temperature field in figure 4.2. In the absence of salinity changes, this is

equivalent to the pattern of density. The perturbations to the density field due to the

passing of mesoscale eddies extend to the entire vertical column in our experimental

setup and are visible in figure 4.2 at 28S, 5S, 7N , 20N and 32N as undulations in the
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(a)

Surface Elevation

(b)

Temperature at 105 m Depth

(c)

Vertical velocity at 110m Depth

Figure 4.1: State of the channel flow after an integration time of 2 years at a resolution
of 10km. The plots show snapshots of surface elevation (a), potential temperature at
105m depth (b), and vertical velocities at 110 meters depth (c). The channel is mapped
to [180W, 180E]× [40S, 40N ].
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Vertical profile of potential temperature in meridional cross-section

Figure 4.2: Snapshot of the vertical structure of the potential temperature for a cross-
section from the southern to the northern boundary after an integration time of 2 years
on a resolution of 10km. The channel is mapped to [40S, 40N ].

temperature field.

We now want to quantify this rather qualitative description of the channel flow by

evaluating the strength of the mesoscale eddy field and its resulting effects on the dis-

tribution of heat. A good indicator for the strength of the mesoscale eddy field is the

kinetic energy contained in the eddies, referred to as Eddy Kinetic Energy (EKE). We

here define the volume-averaged eddy kinetic energy where we choose the volume to

be the entire volume of the channel. For the volume-averaged eddy kinetic energy, the

velocities vni∆, residing on the edges, are first interpolated into the cell centers. This

yields one zonal velocity component ui∆ and one meridional velocity component vi∆ per

grid cell. With these velocities we can define a volume-averaged eddy kinetic energy in

a region Ω∆R with volume V (Ω∆R) by:

JEKE(qi∆) :=
1

V (Ω∆R)

∑
Ci∈Ω∆R

V (Ci)((ui∆ − ūi∆)2 + (vi∆ − v̄i∆)2). (4.31)

The Cis denote grid cells of thickness d(Ci) and volume V (Ci). Usually, ūi∆ and v̄i∆
denote temporal averages of ui∆ and vi∆, respectively. However, due to the zonally

symmetric structure of the channel, we are able to replace the temporal averages with
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spatial averages of ui∆ and vi∆ over latitudinal bands. The reasoning behind this choice

is that, in a zonally symmetric channel, the grid cells at one specific latitudinal band

all share the same statistical properties.

The resulting behavior of EKE for the channel flow at different model resolutions

is shown in figure 4.3 for a series of model resolutions, ranging from 10km to 160km.

At the beginning of the integration time, the EKE is small for all model resolutions

Volume-averaged Eddy Kinetic Energy
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Figure 4.3: The Eddy Kinetic Energy averaged over the entire channel volume is shown
for the entire integration time of 2 years for different model resolutions: 160km (red),
80km (orange), 40km (blue), 20km (green), 10km (black)

until 100 days of integration time. After that, the flows at model resolution 40km and

higher start to develop a significantly different behavior than the 80km and 160km

experiments. For the higher model resolutions, mesoscale eddies emerge in the flow in

order to even out the sloped temperature profile. The highest rate of increase in EKE

is found at about 150 days of integration time. The temperature profile is however

constantly replenished by the temperature forcing in form of the temperature relax-

ation to the initial temperature field. As a result, the mesoscale eddy field is further

spun up until the system eventually runs into an equilibrium state where the rate

at which available potential energy is restored is on par with the rate at which it is

converted into EKE. This state is obtained after around one year of integration time

for the 40km, 20km and 10km resolution. The strengths of the resulting mesoscale
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eddy fields are however quite different. While the strength at the 40km resolution is

about 0.015 m2/s2, the mesoscale eddy field at the next higher model resolution 20km

is already more than 100 percent stronger, and the 10km resolution is again about 60

percent stronger in terms of EKE compared to the 20km resolution. Compared to these

resolutions, the EKE for the 160km resolution (0.0025 m2/s2) and the 80km resolution

(0.005 m2/s2) is significantly weaker. However the EKE is not just lower at the coarser

resolutions, its behavior in time is also completely different. The channel flow at the

two low model resolutions does not undergo the same transition in terms of the spin

up of the mesoscale eddy field that starts at a 100 days of integration time. There is

an indication of an onset of a similar transition at later times at around 150 to 200

days of integration time, but this transition is much weaker and progresses slower as

it reaches its peak after 270 days of integration time. These differences between the

higher and lower resolutions might be in part explained by the different forms of the

horizontal velocity diffusion operator Dh, but ultimately they are a consequence of the

horizontal model resolution.

The differences in the EKE have a strong influence on the heat distribution in the

channel. For the analysis of the heat distribution, we compare timeseries of the change

in regionally-averaged potential temperatures compared to the initial temperature pro-

file. We define this quantity by

JPT (qi∆) :=
1

V (Ω∆)

∑
Ci∈Ω∆R

V (Ci)
(
t̂i∆ − t̂0∆

)
. (4.32)

In figure 4.4 a) , we show the evolution of JPT (qi∆) for the upper 500 meters of the

entire channel at different model resolutions. The general trend is an average warming

of the upper 500 meters for all model resolutions. The rates at which this region of the

channel warms differ depending on model resolution. After the 2 year of integration

time period, we obtain the lowest warming of 0.95◦ K for the 160km resolution, which

then steadily increases by about 0.01◦ − 0.03◦ K with every refinement step of the

horizontal grid. An exception is the 20km resolution for which the warming is on

par with the 10km resolution. For the lack of difference between the 10km and the

20km resolution we can however not draw final conclusions because after 2 years of

integration time, none of the model simulations is in equilibrium yet. The reason for

the differences in the warming at the five different model resolutions can be clearly

tracked down to the strength of the mesoscale eddy field. This can be best seen for

the model resolutions higher than 40km for which the strong increase in warming after

150 days of integration time is lead by the strong increase in EKE that was discussed

previously in this section.

The effects of the mesoscale eddy field on the vertical heat distribution are also found

for the lower 1000 meters of the channel, see figure 4.4 b). While the averaged potential
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Upper 500 meters change in potential temperature
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Lower 1000 meters change in potential temperature
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Figure 4.4: The change in the averaged potential temperatures compared to the initial
temperature profile is shown for the upper 500 meters (a), and for the lower 1000 meters
(b) for the entire integration time of 2 years and different model resolutions: 160km
(red), 80km (orange), 40km (blue), 20km (green), 10km (black)

temperature in the lower 1000 meters is constant for the 160km resolution, the values

85



Chapter 4 The Stochastics of the Local Truncation Error in an Eddying Regime

fluctuate for the higher model resolutions with an eventual cooling at the end of the

integration time. This cooling becomes stronger with increased model resolution. The

cooling is suspected to result from a lack of warming of the deeper layers when the

warmer waters at the northern boundaries are constantly advected by mesoscale eddy

activity instead of being diffused to warm the surrounding deep waters.

4.5 Estimation of the Problem-specific Stochastic Process

{Xti(pi)}i∈N

For the channel experiment described in the previous section, we want to perform the

estimation of a problem-specific stochastic process {Xti(pi)}i∈N that could be used in

the goal error estimation procedures described in 4.2.1. As we do not yet have an

adjoint model of the ICON-Ocean model that could provide an adjoint solution for

the required timescales of weeks to months, we aim at deriving a stochastic process

for the stochastic-physics ensemble error estimator that corresponds to our stochastic

dual-weighted error estimator (4.5). Because we do not work with the linear, adjoint-

based error estimator but instead create an ensemble of perturbed model simulations

at the chosen low model resolution, the stochastic process {Xti(pi)}i∈N needs to be

even stronger constrained to behave physically sound, as unphysical behavior now has

a direct negative impact on the underlying flow.

The chosen structure of the stochastic process is described in 4.2.2, but the task to

calculate the local truncation error and estimate the required parameters pi remains

and is described in this section.

First, the calculation of the local truncation error is discussed that we need for the

estimation of the parameters pi. We discuss the local truncation error and how we

can represent it in our model. We show that the usual approach that we described in

(4.30) to simply insert the complete true state vector into the timestepping operator

S∆ is not applicable and we discuss alternatives.

Afterwards, we analyze the stochastic process and its derivation in the following way.

First, we thoroughly describe the parameter learning process and the choices made, in

order to guarantee that the parameters are robust estimates. Then we analyze the

resulting structures of the random vectors Xti(pi). In a first step, we compare the

spatial structure of the local truncation error to realizations of the spatial structure

we obtain for the random vectors Xti(pi). For this, we compare snapshots of both

spatial structures and discuss their patterns, value ranges and the general visual im-

pression. In a second step, we discuss how these spatial structures are connected in

time by the stochastic timestepping scheme of the stochastic process. This is done by

analyzing a realization of the stochastic process in the context of the ensemble-type

error estimator described in 4.2.1. We describe the impact of the stochastic forcing on
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the channel circulation, and discuss the differences between the temporal evolution of

the local truncation error and the stochastic process by numerical as well as analytical

arguments.

To estimate the required parameters, we use the parameter learning algorithm 3.4

we developed in chapter 3 for the shallow-water flows. The algorithmic steps to obtain

the parameters of the stochastic process have been proven to work successfully and we

find that they only need to be slightly adjusted to work in our 3D environment. This

adjustment is not about conceptual changes but we now estimate different stochastic

quantities and thus the fourth step of the processing step of the described learning

algorithm needs to be extended. The changes are that the parameter set pi is now a

associated with the full local truncation error instead of its temporal fluctuations, and

additionally to our standard stochastic quantities, variance and mean, we now need

estimates of the correlation matrices for the spatial structure of the local truncation

error and an estimate of the correlation coefficient for the time-correlations of the local

truncation error.

In the estimation of all of these stochastic quantities we make use of the zonally-

symmetric structure of the channel to increase the number of available observations

of the local truncation error at each timestep. The idea is that the local truncation

error values in a specific latitudinal band are treated as independent observations of

the same random variable, which as a result largely increases the available observations

per random variable in a given timestep. This is especially important for the esti-

mation of the correlation matrices such as the matrix for the surface structure Csurf

that requires a large amount of observations because a necessary condition for the

Cholesky-decomposition is that the number of observations is larger than its dimen-

sion. The dimension, however, is dependent on the chosen model resolution for the

channel experiment.

We need to choose two model resolutions, one coarse resolution model for which we

eventually want to perform goal-oriented error estimation, and its high-resolution ref-

erence model resolution. As coarse model resolution, we choose the 40km resolution

model, as this is targeted to be the new standard resolution for future ocean models

in climate simulations. Also, this is the coarsest resolution at which we obtained a

significant mesoscale eddy field. As a corresponding high-resolution reference model

resolution that will be known for the near-initial-learning period to estimate the pa-

rameter set pi from, we choose the 10km model resolution, a model resolution which is

considered to be eddy-resolving. The local truncation error will contain the differences

between these two model resolution by insertion of the 10km model solution, denoted

by q∆, 10km, into the 40km model operator.

The parameter estimation process is started after about 340 days of integration time,

which corresponds to 24500 timesteps at the 40km resolution. This time-window is of

interest because the flow already has a fully developed mesoscale eddy field (see figure
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4.3), but at the same time the temperature field is in transition into a mean warming of

the upper layers of the channel and a cooling for the deeper layers (as shown in figures

4.4 a) and b)). A suitable stochastic process {Xti(pi)}i∈N would have to be able to

represent the connection between the differences in warming respective cooling and the

strength of the mesoscale eddy field at different model resolutions.

4.5.1 The Representation of the Local Truncation Error

For our 3D ocean model, we find the straightfoward formulation of the local truncation

error by (4.30) that uses all model variables to be not applicable. We will illustrate the

problem we encountered with this formulation and propose an alternative formulation

of the local truncation error that is then shown to be valid for an eddying flow regime

driven by density differences.

We implement the local truncation error (4.30) calculation as a cycle that is oper-

ated while running the model. We assume that we have already obtained a timeseries

of corrected model states until timestep i − 1 and we are at the i-th timestep. The

cycle then starts with correcting the current state variables of the 40km resolution

model at the i-th timestep, i.e. add the difference between the true 10km model state

at timestep i and the model state at timestep i as a forcing term. Second, with the

corrected 40km model states at timestep i and i − 1 we can apply S∆ once to obtain

S∆ (P∆ (q(x, ti)) , P∆ (q(x, ti−1))) from which we can calculate the local truncation er-

ror. Third, we correct the 40km model state at timestep i+ 1 by the true 10km model

state at timestep i+ 1 and move to the next timestep i+ 2.

The Local Truncation Error using the Full State Vector

We use the described cycle to create the local truncation error by correcting all state

variables at the same time. However, as a result we obtain unphysical values for the

local truncation error which can be traced back to the surface elevation variable η. To

isolate the effect, we only correct the surface elevation variable η in the local truncation

error calculation and show snapshots of the resulting temperature fields in which the

unphysical behavior occurs (figure 4.5). The effects are however not limited to a specific

timestep but occur frequently at every timestep. The highest temperature values are

found at the surface at 40N in figure 4.5 a), and we argue that these temperature

values indicate artifacts in the solution. This is because we obtain values larger than

19.0◦C, with the maximum value being 19.38◦C, where the maximum temperature in

the channel in the absence of an additional temperature forcing can only be 18.5◦C by

construction. These artificial temperature are found to occur throughout the channel

and not just at the northern boundary. They can just not be easily identified as such

because they can be easily mistaken as mesoscale eddies. For instance, in the vertical

cross-section in figure 4.5 b), the vertical extend of the surface heating at 10S, 70E
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is shown. It strongly resembles the temperature undulations due to mesoscale eddies.

However, these temperatures in the surface layer can grow larger than 18.5◦C, the

heating is strongly confined to the surface, and it is several degrees warmer than its

surroundings. What we have not shown here is that these high temperatures are not

transported to this specific location, but they just occur seemingly random in the flow

and must thus be a consequence of our applied correction of the surface elevation. The

(a)

Potential Temperature Surface Layer

(b)

Vertical Cross-section at 70E

Figure 4.5: Potential Temperature of height-corrected simulation at 40km resolution
for (a) the surface layer and (b) a vertical cross-section at 70E at timestep 24487.

presence of these artifacts in the temperature variable would of course then also be

present in the local truncation error which means that many of the indicated errors in

the model solution could just be artifacts.
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A Temperature-based Local Truncation Error Representation

We thus need an alternative formulation of the local truncation error that bypasses

the correction of the surface elevation variable η. As an alternative, we choose to omit

the corrections for the surface elevations η and the velocities vn entirely from the lo-

cal truncation error calculation. The omitted variables have to follow the changes in

the temperature field, and we show this to be a suitable assumption for the channel

flow that is for the most part density-driven. The local truncation error and thus the

stochastic process {Xti(pi)}i∈N then only consist of the the temperature variable t̂.

We show that, for the channel experiment, our choice to only take into account the

temperature variable in the calculation of the local truncation error is justified. To-

wards that aim, we compare the resulting surface elevation fields η from the 10km

high-resolution reference solution to the η fields of a 40km model resolution solution

whose temperature variable is corrected to the corresponding true value from the 10km

reference solution at the beginning of each new timestep. If the resulting 40km model

solution is close to the 10km reference solution in the model variable η, we consider

the assumption to omit the surface elevation field η and the velocity field vn to be

justified. For the comparison, we show snapshots of the surface elevations η from the

same timestep for the 10km resolution and the temperature-corrected 40km resolution

in figure 4.6. To get a better picture for the changes in the surface elevation, we ad-

ditionally show the original field at a 40km model resolution and show difference plots

between the two different 40km solutions and the 10km solution in figure 4.7. From

figure 4.6 we can see that the temperature-corrected 40km resolution field and the 10km

reference resolution field generally show a very similar pattern for the entire surface

layer. Although similar, the temperature-corrected 40km field is generally weaker and

differs in the details, i.e. it differs in the exact position and shape of the surface ele-

vations. However, in comparison to the uncorrected 40km resolution surface elevation,

the full impact of the temperature correction in the 40km resolution solution becomes

visible. Although both are being run using the same 40km resolution grid, we can state

that there is not much of a resemblance between the uncorrected and the temperature-

corrected fields. Where the uncorrected 40km resolution field does not indicate much

of a mesoscale eddy field, the temperature-corrected 40km resolution flow in contrast

clearly indicates a geostrophically-turbulent flow. This interpretation is strengthened

by the difference plots in figure 4.7. The difference between the uncorrected 40km so-

lution and the 10km solution (figure 4.7 a) can be up to 1m, which is exactly double

compared to the maximum difference between the temperature-corrected 40km solution

and the 10km solution (figure 4.7 b) of 0.5m. The difference is not just significantly

smaller, the difference in surface elevation also looks much smoother, indicating that

much of the high-resolution dynamics are represented, the effects are just represented

consistently weaker. We find these results to be a general description, regardless of
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(a)

10km Surface Elevation

(b)

Corrected 40km Surface Elevation

(c)

Original 40km Surface Elevation

Figure 4.6: Snapshot of the surface elevation η∆ after 24487 timesteps of integration
time at (a) the 10km high-resolution reference resolution, (b) the 40km model reso-
lution, and (c) the 40km model resolution whose temperature values are corrected by
the 10km reference resolution values at the beginning of each timestep. The channel is
mapped to [180W, 180E]× [40S, 40N ].
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the chosen timestep. The temperature-corrected 40km resolution solution is thus un-

doubtedly much closer to the 10km resolution solution than it is to the uncorrected

40km resolution solution. We conclude that the temperature variable conveys enough

information about the 10km resolution flow to reliably correct the 40km resolution

flow. Omitting the surface elevation η and the velocities vn from the calculation of the

local truncation error is thus justified. This holds especially true if one is eventually

interested in error estimates for temperature-based goals.

(a)

Original 40km Surface Elevation Difference

(b)

Corrected 40km Surface Elevation Difference

Figure 4.7: Snapshots of differences in the surface elevation η∆ after 24487 timesteps
of integration time between (a) the 10km high-resolution reference resolution and
the original 40km solution, (b) the 10km high-resolution reference resolution and the
temperature-corrected 40km solution, whose temperature values are corrected by the
10km reference resolution values at the beginning of each timestep. The channel is
mapped to [180W, 180E]× [40S, 40N ].
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4.5.2 Learning the Parameters of the Stochastic Process

We now follow the four algorithmic steps that are part of the processing cycle of algo-

rithm 3.4.

Step 1: Separate the Flow into Different Dynamical Flow Regimes

The first algorithmic step of the processing step is the separation of the flow into dif-

ferent dynamical flow regimes. We choose to separate the channel flow into latitudinal

bands and to separate their vertical layers. We choose each latitudinal band to have the

width of a grid cell, which means each band extends only over one band of temperature

variables that all reside on the same latitude. We denote the number of resulting lati-

tudinal bands by #Lats and number them consecutively from the first latitudinal band

at the southern boundary of the channel to the #Lats’s band at its northern boundary.

The total number of chosen dynamical flow regimes is then #Lats ·#layers. For the

channel at 40km resolution the number of latitudinal bands is #Lats = 31 and the

channel consists of 32 vertical layers, which makes 992 dynamical flow regimes, which

we denote by the subscript k := {1, . . . , 992}.

Step 2: Choose the Length of the Near-initial Learning Phase

The second step of the algorithm is the choice of the near-initial learning phase, which

we here set to be nl := 1520 timesteps, about 21 days of integration time, after the ini-

tial 14500 timesteps. For these 21 days the algorithm knows the 10km high-resolution

reference solution q∆, 10km and thus the local truncation error.

We require the knowledge about the local truncation error for a near-initial learning

phase of 21 days, which is long compared to the previous chapter 3. The reasons are

the required correlation matrix Csurf , the mean vector of the random vectors Xti(pi),

and the correlation coefficient for the time-correlations of the local truncation error.

First, the dimension of Csurf is R1922×1922, where 1922 is the number of temperature

variables in the surface layer of the channel at 40km resolution. Thus, we require at

least 1922 observation. Second, the mean vectors cannot be ignored as has been done

in chapter 3 and instead need to be estimated robustly, because the structure of the

stochastic process is such that its variances do not grow strong-monotonously in time,

which increases the importance of the means in relation to the variances. Unreliable

estimates of the means would introduce unwanted drifts of the stochastic process, possi-

bly rendering the entire stochastic process {Xti(pi)}i∈N useless. Third, the correlation

coefficient in time requires a large timeseries of observation, i.e. a timeseries of local

truncation errors. These requirements are met by the longer near-initial learning phase

that alone contributes 1520 observations, and by using the mentioned symmetry of the

channel flow. Using the symmetry increases the number of available observations per

93



Chapter 4 The Stochastics of the Local Truncation Error in an Eddying Regime

dynamical flow regime k of 1520 by a factor of 62. The factor 62 is the total number of

temperature variables that belong to one latitudinal band 1922/31, i.e. #Lons := 62

longitude values belong to each dynamical flow regime k. Similarly to the ordering of

the latitudinal bands, these longitude values are numbered consecutively from west to

east by j ∈ {0, . . . 61}.

Estimators for the Stochastic Quantities in the Channel Experiment

With these specification, we are able to define the specific estimators for the stochastic

quantities that we need to estimate for our algorithm. The stochastic quantities are

the mean vector µ, the variances diag (Σ), the horizontal correlation matrix Ĉsurf , the

vertical correlation matrices Ĉv, t̂, Lat, and the temporal correlation coefficient δ. For

their estimation, we use that each position of a temperature variable in the channel

is now uniquely defined by a combination of one dynamical flow regime number k ∈
{1, . . . 992} and one longitude number j ∈ {0, . . . 61}.

The mean µ of the random vector Xti(pi) is estimated separately for each dynamical

flow regime, i.e. we estimate one mean value for each latitudinal band and vertical

layer. The estimator µ̂k for the mean value in dynamical flow regime k is defined as

µ̂k :=
1

62 · nl

nl∑
i=1

61∑
j=0

N i
∆ (P∆ (q∆, 10km))k, j , (4.33)

where nl is the number of near-initial learning timesteps of 1520. N i
∆ (P∆ (q∆, 10km))

is the local truncation error vector at learning timestep i. The attached subscript k, j

denotes the value of the local truncation error vector that belongs to the k-th dynamical

flow regime and resides at the j-th longitude position. An estimate for the complete

mean vector µ can be constructed from the set of estimates µ̂k, k = {1, . . . , 992}.
The estimator for the variance respectively the standard deviation of the dynamical

flow regime k is defined accordingly

σ̂2
k :=

1

62 · nl − 1

nl∑
i=1

61∑
j=0

(
N i

∆ (P∆ (q∆, 10km))k, j − µ̂k
)2
. (4.34)

The estimator uses the previously defined estimator for the means µ̂k. From the es-

timates of σ̂2
k, we can construct an estimate for the matrix diag (Σ), which has the

variances of the random variables of the random vector Xti(pi) on the diagonal.

Next, we give the definition of the estimators for the correlations in time and in space.

We define these estimators by the matrix entries of their respective sample correlation

matrices.

The entry at the matrix position with row l and column m of the sample correlation
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matrix Ĉsurf is defined by

Ĉsurf (l,m) :=
1

62 · nl − 1

nl∑
i=1

61∑
j=0

(
N i

∆ (P∆ (q∆, 10km))k(l), (j(l)+j)mod 62 − µ̂k(l)

)
(
N i

∆ (P∆ (q∆, 10km))k(m), (j(m)+j)mod 62 − µ̂k(m)

)
/
√
σ̂k(l)σ̂k(m). (4.35)

The attached subscript k(m) denotes the subset of the local truncation error vector

that is associated with the unique dynamical flow regime number k = {1, . . . , 992}
whose element is the surface temperature variable m. k(l) is defined accordingly. Sim-

ilarly, j(l) and j(m) denote the longitude at which the temperature variables l and m

reside. Additional to the nl observations, the whole latitudinal bands of the dynami-

cal flow regimes k(l) and k(m) are used. This is represented by the modulo functions

(j(l) + j)mod 62 and (j(m) + j)mod 62 that ensure the correct choice of temperature

variables throughout the summation. As a result of this increase in available observa-

tions, some matrix entries appear multiple times in the correlation matrix Ĉsurf .

The set of correlation matrices for the vertical correlations Cv, θ, i for each surface

variable grid point i is reduced to the correlation matrices Cv, t̂, Lat for each latitudinal

band Lat ∈ {1, . . . , 32} for our choice of dynamical flow regimes k and a local trunca-

tion error that only uses the temperature variable t̂. For the sample correlation matrix

Ĉv, t̂, Lat, the matrix entry at the position with row d1 and column d2 represents the

spatial correlation of the temperature variable between layer d1 and layer d2 for the

latitudinal band Lat ∈ {1, . . . , 32} and is defined by

Ĉv, t̂, Lat(d1, d2) :=
1

62 · nl − 1

nl∑
i=1

61∑
j=0

(
N i

∆ (P∆ (q∆, 10km))k(d1, Lat), j
− µ̂k(d1, Lat)

)
(
N i

∆ (P∆ (q∆, 10km))k(d2, Lat), j
− µ̂k(d2, Lat)

)
/
√
σ̂k(d1, Lat)σ̂k(d2, Lat).

(4.36)

The attached subscript k(d1, Lat) denotes the subset of the local truncation error vector

that is associated with the unique dynamical flow regime number k = {1, . . . , 992}
defined by layer d1 and latitude lat. k(d2, Lat) is defined accordingly. Similarly, j

denotes the longitude at which the temperature variable reside. In total, this makes 32

different correlation matrices Ĉv, t̂, Lat at the 40km resolution.
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The estimator for the temporal correlation coefficient δ is defined by

δ̂ :=
1

62 · 992 · (nl − 1)− 1

nl−1∑
i=1

992∑
k=1

61∑
j=0

(
N i

∆ (P∆ (q∆, 10km))k, j − µ̂k
)

(
N i+1

∆ (P∆ (q∆, 10km))k, j − µ̂k
)
/
√
σ̂kσ̂k, (4.37)

where k again denotes a dynamical flow regime number and j denotes the j-th longitude

position in the dynamical flow regime with number k.

Step 3: Choose the Underlying Distribution of {Xti(pi)}i∈N

In the third step of our algorithm, we discuss the underlying probability distribution

of the random vectors Xti(pi) and thus of the stochastic process. In chapter 3, we

chose a Laplace distribution that was better at capturing the probability in the tails

of the probability distribution. For the channel experiment, we base the choice of the

probability distribution on histograms of the real distribution of the local truncation

error that we compare to a corresponding Gaussian-distributed random variable and

a Laplace-distributed random variable in figure 4.8. These random variables are esti-

mated using (4.33) and (4.34). These figures are taken from latitude number 15 at

the center of the channel and different depths. The same plots for other dynamical

flow regimes of the channel are comparable and thus not shown. It is to note here

that the tails of the distribution of the local truncation error in the temperature value

are very long. The figures are capped to ±6 times the standard deviation, but we

observe outliers that can even go up to ±10 times the standard deviation. We decide

to neglect these extreme values and focus on representing the bulk of the probability.

Neglecting the outliers, both the Gaussian and the Laplace distribution fit reasonably

well to the local truncation error data and can both be used for the stochastic pro-

cess. The Laplace distribution does a slightly better job at representing the tails of the

distribution, especially in the upper layers. However, we here decide on the Gaussian

distribution for one reason, which is the repeated applications of the lower triangular

matrices Lsurf and Lv, t̂, Lat to realizations of the chosen probability distribution. If

we were to choose a Laplace distribution instead of a Gaussian distribution, these lin-

ear combinations of random variables would converge to a Gaussian distribution, due

to the central limit theorem. As the matrices are lower triangular, depending on the

position of the random variable in the matrices, the convergence towards a Gaussian

distribution would occur to varying degrees, which would introduce inconsistencies in

the probability distribution of the stochastic process.
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Vertical layer 30
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Figure 4.8: Distribution of the local truncation error N1520
∆ (P∆ (q∆, 10km)) (blue bars)

at the end of the near-initial learning phase for latitude Lat = 15 in the center of
the channel, the corresponding Gaussian-distributed random variable (solid red line),
and the corresponding Laplace-distributed random variable (solid green line). The
comparison is shown for (a) the surface layer, (b) vertical layer 5, (c) vertical layer 15,
(d) vertical layer 30.

Step 4: Estimate the Parameters of the Stochastic Process {Xti(p)}i∈N

We find that all parameters pi can be assumed to be constant in time, and we thus

omit the subscript i.

The mean values of Xti(p) are estimated from (4.33) and are shown in figure 4.9 for

all dynamical flow regimes. The means increase in intensity from the northern to the

southern channel boundary. In total, the upper layers are generally cooled, while the

lower layers are generally warmed. Noticeable, there is a vertical band structure in the
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Mean field of the local truncation error

Figure 4.9: Estimates for the mean value of the local truncation error in the temperature
variable for all dynamical flow regimes shown as a vertical cross-section. The channel
is mapped to [40S, 40N ].

mean field. The persistence in the vertical supports the reasoning that this is not an

artifact of a non-converged estimate affected by outliers but a robust result in the local

truncation error.

The standard deviations (diag (Σ))
1
2 that are estimated from (4.34) are shown in

figure 4.10. The values for the standard deviation differ by one order of magnitude,

where the maximum values of each vertical column is located at a depth of 600 to 900

meters. The drastic reduction in standard deviation between latitudes 40S to 32S and

32N to 40N and their vicinities clearly indicates the temperature forcing by the 3D

temperature relaxation to the initial conditions. This type of forcing acts the same at

all resolutions and directly restricts the solution and thus the local truncation error.

Above and below the band of high standard deviation between 600 and 900 meters, the

standard deviation decreases again. The structure of the decrease in standard deviation

above 600 meters depth roughly follows the mean density structure in the channel. Thus

in this region, the local truncation error increases with density and follows the mean

stratification contours. In the channel below 900 meters, the standard deviation in the

local truncation error decreases again. It can be suspected that this decrease is again

connected to constraints on the local truncation error in form of a forcing, as the flow

in the lower layers is strongly influenced by the bottom boundary friction. Thus, in
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Standard deviations of the local truncation error

Figure 4.10: Estimates for the standard deviation of the local truncation error in the
temperature variable for all dynamical flow regimes shown as a vertical cross-section.
The channel is mapped to [40S, 40N ].

general, for our channel setup, the further the distance to the forcings, the larger the

standard deviation of the local truncation error. Thus, the applied forcings seem to act

as constraints on the variance of the local truncation error.

The Spatial Structure of the Local Truncation Error

The estimates of the correlation matrices for the local truncation error at the surface

and in the vertical dimension are best discussed in the context of the resulting stochastic

forcing that is created from the application of both. This is why we compare the spatial

structure of an arbitrarily chosen local truncation error at one timestep to a realization

of Xti(p) for the surface layer and a vertical cross-section. Figure 4.11 shows the

resulting fields. As discussed for the underlying probability distributions, the long

tails of the distribution are neglected. Consequently, the shown values for the surface

layer had to be capped to ±0.048◦C, while the values actually range to ±0.07◦C. For

the vertical cross-section of the local truncation error, the actual values reach up to

±0.08◦C. Nevertheless, the resemblance of the real and the modeled structures is

obvious for both, the surface layer as well as in the vertical cross-section. For the

surface layer, the spatial extend of positive and negative temperature anomalies and

their general structure is very similar. For the local truncation error at the surface and
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(a)

Local truncation error surface layer

(b)

Local truncation error vertical

(c)

Realization of Xti(p) surface layer

(d)

Realization of Xti(p) vertical

Figure 4.11: The local truncation error N i
∆ (P∆ (q∆, 10km)) at an arbitrary timestep

is shown at (a) the surface layer and (b) a vertical cross-section and compared to a
selected realization of Xti(p) for (c) the surface layer and (d) a vertical cross-section

its stochastic representation, the values increase towards the southern boundary of the

channel. For the vertical cross-sections, the band-like structures in the local truncation

error are well represented in shape as well as in strength. We again observe the general

increase in the local truncation error in the depth range of 600 to 900 meters that is

also found in its stochastic representation. Overall, the structure obtained by using the

estimated correlation matrices Ĉsurf and Ĉv, t̂, Lat is a good estimate for the structure

of the local truncation error in the horizontal as well as in the vertical.

The Temporal Structure of the Local Truncation Error

To fully describe the stochastic process {Xti(p)}i∈N, the modeled spatial structures

of the local truncation error need to be connected in time. Our approach requires

an estimate of the correlation coefficient δ that describes the connectivity of the local

truncation error in time. The estimate for the coefficient δ from the near-initial learn-

ing phase is 0.99989. The value is robust for all dynamical flow regimes. The local
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truncation errors at consecutive timesteps are highly correlated and are thus to a large

part identical.

Although we have now estimated all required stochastic quantities, we find that we

cannot create a model ensemble of perturbed goals to estimate the error in a goal with

the stochastic forcing provided by the stochastic process {Xti(p)}i∈N. The tempera-

ture values in the perturbed model simulations continuously grow beyond physically

reasonable values after several hundreds of timesteps. We illustrate the problem by

investigating the time-mean of an applied realization of the stochastic process and

compare it to the change in vertical heat distribution due to the application of this

temperature forcing, see figure 4.12. For the change in heat distribution in the channel,

figure 4.12 a), we find that the upper layers of the channel warm strongly, while the

lower levels cool by an equivalent amount. This heating respective cooling is directly

connected to the temperature forcing by the stochastic process figure 4.12 b). The

latitude positions with the strongest positive temperature forcing correspond to the

latitude positions with the strongest warming of the channel, and we find the equiv-

alent to be true for the latitudes with the strongest cooling. We note here that the

time-averaged temperature forcing of the first 15 days of integration time and the forc-

ing at the specific timestep 15 are indistinguishable, the same vertical columns are

thus heated respectively cooled constantly at every timestep. The forcing is strongest

at 600m to 900m depth, which is not surprising as it corresponds to the locations of

maximum variance, see figure 4.10. The mechanism by which the excessive heat due to

the temperature forcing is then transported from the lower levels to the surface is un-

doubtedly convection activated by the unstable stratification in the respective columns.

Equivalently the same mechanism governs the cooling of the the bottom layer, when

the negative temperature forcing cools the column with a minimum at 600m to 900m

depth, this triggers convection with the deeper layers, cooling them in the process. In

this way, a different circulation is created in the channel that dominates the former

channel flow with mesoscale eddies.

On top of these general upper-level warming respective lower-level cooling in the

channel, heating and cooling spikes are created in the flow that are a local phenomenon

and are rarely occurring in space, figure 4.13. For the snapshot in figure 4.13 a), the

most prominent of these locations is 65W, 5S where the temperature increases by more

than 12◦C within 15 timesteps. This can be tracked down directly to the time-averaged

temperature forcing by the stochastic process in the same location, see figure 4.13 b).

For these specific locations we always find a strong forcing with the same sign in its

vicinity that is consistently at a high value over hundreds of timesteps. Equivalently,

the cooling spikes in the bottom layer can reach up to −5◦C. These singularities in

heating respectively cooling are the direct causes for the crashes of the perturbed model

simulations.
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(a)

Zonally-averaged Potential Temperature

(b)

Time-averaged Realization of {Xti(p)}i∈N

Figure 4.12: Vertical cross-sections of zonally-averaged potential temperature of the
flow forced by a realization of {Xti(p)}i∈N after 15 days of integration time (a), and
zonally-averaged time-mean of a realization of {Xti(p)}i∈N averaged over 15 days of
integration time (b)

To better understand why an ensemble of perturbed model solutions with δ = 0.99989

cannot be run successfully, we study the effect of the time correlation coefficient δ by

running a series of experiments with lower correlation coefficients. The result is that the

creation of a model ensemble of perturbed goals with the choices δ = 0.995, δ = 0.990,

and even with δ = 0.950 fails in the same way as has been described for δ = 0.99989.
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(a)

Potential Temperature Surface

(b)

Forcing Potential Temperature Surface

Figure 4.13: Snapshot for the change in surface temperature from timestep 1 to timestep
15 of the stochastically-forced flow (a), and the corresponding surface temperature
forcing by the stochastic process {Xti(p)}i∈N at the surface layer (b)

We find that we have to go as low as δ = 0.70 to not produce too strong heating re-

spectively cooling spikes in the ensemble members.

But although it is possible to stably run the perturbed ensemble with δ = 0.70,

the resulting ensemble still cannot be used for goal-error estimation purposes, because

under this stochastic forcing we still obtain a channel flow with a significant heating

in the upper layers and cooling in the lower layers, see figure 4.14. For the change in

the vertical heat distribution with δ = 0.70 (figure 4.14 a), we observe a similar distri-

bution pattern as for δ = 0.99989. The pattern is however more stably separated into

the heating upper layers and the cooling lower levels at a constant depth of 600m to

900m. Also the change in heat distribution occurs 4 times slower for δ = 0.70 than for

δ = 0.99989. In contrast to the results found for δ = 0.99989, this heating pattern is not
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(a)

Zonally-averaged Potential Temperature for δ = 0.7

(b)

Time-averaged Realization of {Xti(p)}i∈N for δ = 0.7

Figure 4.14: Vertical cross-sections of zonally-averaged potential temperature of the
flow forced by a realization of {Xti(p)}i∈N with δ = 0.7 after 60 days of integration
time (a), and zonally-averaged time-mean of a realization of {Xti(p)}i∈N with δ = 0.7
averaged over the first 60 days of integration time (b)

directly reflected in the time-averaged temperature forcing by the stochastic process

(figure 4.14 b) anymore. Also, the time-averaged forcing patterns are found to be one

order of magnitude weaker. This reduction in the mean strength is due to stronger av-

eraging effects for δ = 0.70 as the temperature forcings at specific timesteps are not as

connected in time anymore as for δ = 0.99989. Thus, although the temperature forcing
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is now changing more frequently in time, we sill obtain regions where convection occurs

that transports heat from the layers at a depth of 600m to 900m to the surface or cools

the levels deeper than 600m to 900m. As the temperature forcing changes faster in

time for δ = 0.70 than for δ = 0.99989, the resulting heating respectively cooling due

to convection is now more evenly distributed over all latitudes. The reason why the

ensemble with δ = 0.70 can be run at all is that the stochastic forcing changes fast

enough to not produce significant heating or cooling spikes.

In summary, although a useful perturbed ensemble cannot be run for δ = 0.70 as

well, we have seen that reducing the connectivity of the temperature forcings in time

makes the resulting flow behave more reasonable as the undesired heating respectively

cooling due to convection as well as the heating and cooling spikes are reduced. At the

same time, however, the parameter δ has to faithfully represent physical phenomena

that are missing in the 40km resolution model solution and it should therefore not be

changed arbitrarily.

Our results thus strongly indicate that the problem lies in the time-evolution of the

local truncation error compared to the time-evolution of our stochastic process. To

study the differences in the temporal evolutions, we analyze the evolution of the time-

lagged correlation coefficients of the local truncation error for different lag times. If

the stochastic process {Xti(p)}i∈N is a suitable model for the local truncation error,

the time-evolutions of their time-lagged correlation coefficients should coincide. The

time-lagged correlation coefficients of the stochastic process {Xti(p)}i∈N for a param-

eter δ can be obtained analytically, as it is the correlation coefficient of Xt1(p) that is

obtained from multiple applications of the stochastic timestepping scheme (4.16). It

can then be seen that the random vector Xti(p) at timestep i and the initial random

vector Xt1(p) are correlated by the correlation coefficient δlag(i) := δi.

The values of the function δlag(i) for different choices of δ are compared to the time-

lagged correlation coefficient of the local truncation error in figure 4.15 with a maximum

time-lag of 14 days of integration time. The time-lagged correlation coefficient for the

local truncation error drops off immediately and reaches zero after a lag time of 270

timesteps which is about 4 days of integration time. Afterwards, the time-lagged corre-

lation coefficient is negative, with a minimum of −0.074 at a lag time of 390 timesteps

and a value of −0.029 for a lag time of 14 days. If compared to the lag-time correlation

coefficient of our stochastic process, it becomes clear that the choice δ = 0.99989 is not

suitable as it completely overestimates the correlations in time for longer time lags. We

find that δ = 0.995 or δ = 0.990 are a better fit. Both, however, drop off too quickly

for small lag times of up to 150 to 200 timesteps but then decrease too slowly for large

time lags. The time-lagged correlation coefficient for δ = 0.7 immediately drops off

to 0.01 after only 13 timesteps. Additionally, the time-lagged correlation coefficient

never become negative as our stochastic timestepping scheme (4.16) does not provide

negative correlations by construction.
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Correlation coefficients for different lag times
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Figure 4.15: Time-lagged correlation coefficients are shown for the actual local trun-
cation error (red) and the stochastic process {Xti(p)}i∈N with different choices of δ,
δ = 0.99989 (black), δ = 0.995 (blue), δ = 0.990 (green), δ = 0.950 (orange)

We need to get an idea about the connection between the time-lagged correlation

coefficients of the local truncation error and the occurring convection in a vertical col-

umn of the channel when we apply our stochastic temperature forcing. Towards this

aim, we provide a rough analytical estimate for the total heat applied to the vertical

column by a constant temperature forcing within a given timespan. More specifically,

we are interested in the needed timespan for the deep layers to have warmed to the

temperature of the surface layer. This would give us a rough timescale of when con-

vection can be expected to occur. As an example, we orient along a vertical column at

latitude 10S as seen in figure 4.2. The typical temperature values at the surface are

about 15◦C, the potential temperature at a depth of 900 meters is about 7◦C, and a

high but realistic difference in temperature forcing between the surface and 900 meters

depth is about 0.08◦C per timestep. From these numbers we can get the estimate for

the timescales at which the deep levels at 900 meters would have warmed to the value

of the surface temperature of about 100 timesteps. Of course, here we have neglected

the effects of heat advection and diffusion, also the temperature forcing will not be

constantly at this high level. But these effects will just make this timescale longer, and

thus the important fact is that the timescale for convection in the channel due to the

106



4.5 Estimation of the Problem-specific Stochastic Process {Xti(pi)}i∈N

temperature forcing is of the order of hundreds of timesteps.

The predicted order of magnitude of a hundred timesteps fits well to the time-

lagged correlation coefficients of the local truncation error becoming negative after

270 timesteps. The negative time-lagged correlation coefficients thus seem to indicate

the timescale when a specific correction of the heat distribution in a vertical column by

the local truncation error typically ends or even needs to be slightly negated. Further

heating or cooling of the vertical column would eventually result in the occurrence of

convection, which occurs on a similar timescale. It is thus important that a stochastic

process for the local truncation error can precisely model the time-evolution of the local

truncation error in order to avoid the timescale on which convection would eventually

occur. We argue that this could be possible by incorporating the negative time-lagged

correlation coefficients into the stochastic process. With this, the stochastic process

would act similarly to the shown stochastic process with reduced δ = 0.7, but the

effects of negative correlations would be stronger and thus more directed towards ac-

tually hindering further forcing of the same kind and as a result should prevent the

occurance of convection. Our stochastic process however lacks this feature of negative

time-correlations and needs to be extended.

Stochastic Timestepping Revisited

Based on our results, we propose a revised time-handling for the stochastic process that

is capable of incorporating the history of the stochastic process in the form of, possibly

negative, time-lagged correlation coefficient.

We assume that we have knowledge about a timeseries of realizations xti−1(p), . . . , xti−q(p)

of the correct stochastic process {Xti(p)}i∈N. Our aim is to define the entries of the vec-

tor xti(p) at timestep i by the corresponding entries of the vectors xti−1(p), . . . , xti−q(p)

and a correlation matrix Ctime. We again assume that we already obtained a base real-

ization yti(p) of xti(p) that satisfies the spatial structure of the local truncation error.

For simplicity, we assume that the vectors xti−1(p), . . . , xti−q(p) have already been nor-

malized by subtracting the means µ̂k and division by σ̂k.

The sample correlation matrix Ĉtime ∈ Rq×q is defined by its entries at the matrix

positions with rows t1 and columns t2

Ĉtime(t1, t2) :=
1

992 · 62 · (nl − q)− 1

nl−q∑
i=1

992∑
k=1

61∑
j=0

(
N i+t1

∆ (P∆ (q∆, 10km))k, j − µ̂k
)

(
N i+t2

∆ (P∆ (q∆, 10km))k, j − µ̂k
)
/
√
σ̂kσ̂k, (4.38)

where t1 and t2 denote the time lags t1, t2 ∈ {1, . . . , q}. Because of the special con-

struction, the time-lagged correlations between future timestep i and all past timesteps

i− j, j = 1, . . . , q are found in the last row of Ĉtime. With this, we have included the
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possibility that some of the time-lagged correlation coefficients might become negative.

For the stochastic timestepping, we first perform a Cholesky decomposition of Ĉtime

into

LtimeL
T
time = Ĉtime (4.39)

The special property of the last row of Ltime is now that it provides us with a relation

of the entries of the vector xti(p) to the corresponding entries of the previous q states

xti−1(p), . . . , xti−q(p).

However, the entries of xti−1(p), . . . , xti−q(p) are already correlated in time and thus

cannot be used directly for the estimation of the entries of xti(p). This can be illustrated

if the whole system is written in matrix notation for the j-th entry of the vectors

xti(p), . . . , xti−q(p)

Ltime


xti−q(p)j

...

xti−1(p)j
yti(p)j


uncorrelated

=


xti−q(p)j

...

xti−1(p)j
xti(p)j

 , (4.40)

where the vector on the left-hand side with subscript uncorrelated is the decorrelated

vector of the vector on the right hand side, and it is obvious that it is required for the

calculation of xti−1(p)j .

The entries of the vector can be decorrelated by application of their so-called whiten-

ing matrix. The required information for the whitening is already present in the lower

triangular matrix Ltime. More specifically, the quadratic sub-matrix given by the first

q − 1 rows and the first q − 1 columns, which we denote by Lwhite with

Lwhite

 xti−q(p)j
...

xti−1(p)j


uncorrelated

=

 xti−q(p)j
...

xti−1(p)j

 , (4.41)

needs to be inverted. Insertion of L−1
white results in

Ltime

 L−1
white

 xti−q(p)j
...

xti−1(p)j


yti(p)j

 =


xti−q(p)j

...

xti−1(p)j
xti(p)j

 , (4.42)

which yields the vector xti(p) that is correlated to the timeseries xti−1(p), . . . , xti−q(p)

according to the time-lagged correlation coefficients until timestep i− q.
The new realization xti(p) satisfies the spatial structure of the local truncation error,
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because it is a linear combination of whitened vectors of xti−1(p), . . . , xti−q(p) that

each satisfy the spatial structure, which can proven by multiple applications of (4.17).

The matrix L−1
white does not need to be calculated explicitly, because Lwhite is a lower

triangular matrix. However it should be kept in mind that due to the high lagged-time

correlation coefficients the values on the main diagonal of Lwhite might become small,

which would mean that the condition number becomes large.

We can connect the revised stochastic timestepping to the original timestepping

approach (4.16). We find that the approach (4.16) is the special case of choosing

q = 1. For this choice, the whitening matrix results in L−1
white = 1 and the lower

triangular matrix Ltime is

Ltime =

(
1 0

δ
√

1− δ2

)
, (4.43)

which yields (4.16). Our revised stochastic timestepping approach thus includes our

original approach (4.16) and is its generalization.

4.5.3 Discussion

Our approach to deriving a stochastic process for the local truncation error in an ed-

dying regime is based on stochastically describing the full local truncation error. In

comparison, in chapter 3 the local truncation error is represented by a time-invariant

bias plus a temporal fluctuation. Considering the temporal evolution of the time-lagged

correlation coefficients we find this change of the stochastic process to be a reasonable

choice. This is because in the channel flow, the local truncation errors at different

timesteps are only correlated for a limited amount of time before they are uncorrelated

and eventually even negatively correlated. In this regime, estimated bias information

would be mostly lost after just 300 timesteps because the time-lagged correlations have

reached zero. At the same time, the temporal fluctuations would have to be very large

to capture the large changes in the local truncation error in time. The approach from

chapter 3 is thus not appropriate.

We find that for our channel experiment we can calculate reasonable local trunca-

tion error information from just the temperature variable. The other fields follow the

prescribed temperature structure as shown for the case of the surface elevation η whose

horizontal gradient is connected to the resulting velocity field vn. In the context of

parametrizing these local truncation errors by a stochastic process, this is however not

the only criterion by which to judge the local truncation error. If we have a closer look

at the resulting order of magnitude for the local truncation error, we find that the values

can be up to 0.1◦C, which represents a huge amount of change in a temperature value

within a single timestep. Given that a stochastic representation is never going to be

109



Chapter 4 The Stochastics of the Local Truncation Error in an Eddying Regime

perfect, we cannot expect the associated stochastic forcing to always be fully applied in

the correct regions and at the right times even in a best case scenario. This can cause or

enhance problems like the observed heating respectively cooling in the model solution

we have described for our estimated stochastic process. It might thus be advisable to

again include other model variables in the calculation of the local truncation error to

separate the single large temperature forcing into several smaller forcings. This would

distribute the risk as each forcing alone would be less likely to produce effects like the

strong heating and cooling, even if it were applied slightly incorrectly.

The distribution of the temperature-based local truncation error is chosen to be

represented by Gaussian distributed random variables. A Laplace-distributed random

variable seems to fit slightly better because of the longer tails of the distribution, but

the choice of the probability distribution is not as clear as for the probability distribu-

tions encountered in chapter 3. This could be related to the differences in experiments.

While the channel experiment is dominated by the sloped density field and its resulting

mesoscale-eddy field, the experiments in chapter 3 are dominated by lateral boundaries

and their associated boundary currents. The presence of strong boundary currents

seems to enhance a deviation from Gaussianity of the local truncation error towards

longer and significant tails in the probability distribution. We here mention signifi-

cance because in this argument we have so far neglected the very long tails in the local

truncation error for the channel experiment. These tails however contain almost no

probability and could be a property of the temperature variable itself and might not

even be directly connected to the flow.

We find that the spatial structure of the local truncation error can be successfully

modeled by our approach to separate the horizontal structure from the vertical structure

and only let both structures communicate at the surface layer. The required correlation

matrices are robustly estimated for the channel experiment by making use of the sym-

metric structure of the channel that we exploit here. The answer to the question why it

is sufficient to only link the vertical and the horizontal structure at the surface layer can

be found in the extend of the vertical structures. In accordance to the local truncation

error, the emerging vertical bands extend almost over the entire vertical column. This

indicates that the local truncation error represents missing barotropic dynamics, which

we find is in accordance with the observed vertical density structure shown in figure

4.2 where densitiy anomalies extend to the entire column depth. Consequently, all

correlation coefficients throughout the vertical column must be high, which in our ap-

proach is then equivalent to a strong information transfer from the surface layer to the

deep channel layers. Only linking the structures at the surface layer is thus sufficient

because the surface layer already explains the entire vertical column for the most part.

In general the surface layer might however be a bad choice as the ocean mixed layer

has significantly different flow properties compared to the deeper ocean. The question

of how to generally choose the horizontal layer at which to link the vertical and the

110



4.6 Conclusions

horizontal structure for a given experiment is thus the task of finding the horizontal

layer that maximizes the information throughput into the vertical column.

The combination of the spatial and the temporal structure of the local truncation

error cannot be performed by a single temporal correlation coefficient. The time evo-

lution of the stochastic process needs to be extended to respect the entire temporal

evolution of the time-lagged correlations. These correlations extend back several hun-

dreds of timesteps but are essential in learning the restrictions the physical system

imposes on the time-evolution of the local truncation error. In chapter 3, we restricted

the temporal evolution of the stochastic process by an upper bound on the correlation

coefficient. Now, the required stochastic process needs to be restricted in time in a

very particular way. Possibly, the correlations in time could be modeled by using the

proposed correlation matrix for the temporal correlations Ctime. Regardless of the ex-

tension to the stochastic process {Xti(p)}i∈N, it would of course need to be build in a

way that our formulated requirements, such as the spatial structure at every timestep

i, are still satisfied.

Assuming that such a stochastic process could be constructed for the channel ex-

periment and its parameters could be estimated from a near-initial learning phase, its

realizations would be very strongly confined in time by the shear amount of involved

correlation coefficients in space and time. The problem we see with these constraints

is that it further reduces the amount of stochasticity of the stochastic process, a prop-

erty that has made our stochastic approach to error estimation that appealing. The

idea has always been to replace the difficult to impossible problem of correcting an

under-resolved physical system of high-complexity by an easy to get, low-complexity

stochastic representation that is computationally cheap. Every further restriction that

we have to impose on the stochastic process shifts the stochastic representation to-

wards a higher level of complexity. Higher complexity of the stochastic process in turn

further decreases its robustness to changes in its parameters as potentially every small

change in one of the key parameter estimates that constrains the stochastic process

might make the stochastic process unusable. This is already visible for the time-lagged

correlation coefficients as the occurring negative correlation coefficient of −0.07 might

be considered small, but if one were not able to robustly estimate it or had to neglect

it, the stochastic process seems to not be applicable in terms of our error estimation

method. The same could possibly hold true for a large number of parameters of the

stochastic process that would not fit anymore to a however slightly changed flow. This

could result in a non-robust stochastic representation of the local truncation error.

4.6 Conclusions

We find that for an eddying flow in an ocean model, the concept of the local truncation

error needs to be broadened, which we have successfully performed by a temperature-

111



Chapter 4 The Stochastics of the Local Truncation Error in an Eddying Regime

based local truncation error. A stochastic representation of the local truncation error is

obtained for the local truncation error’s spatial structure, but a stochastic representa-

tion of its temporal evolution proves challenging. To represent the temporal evolution in

a stochastic model for an eddying flow regime, we argue that the history of time-lagged

correlation coefficients needs to be included. Only then can the stochastic process be

used in the ensemble-based stochastic error estimator. A loophole could be provided

by the adjoint-based error estimator (4.5) because it does not require a stochastic

process {Xti(p)}i∈N that is physically-correct in all aspects. However, we would need

the discrete adjoint solution q∗∆ to do so.

We have shown that the zonally-symmetric structure of the channel can vastly in-

crease the number of observations for the parameter estimation process. Additionally,

the symmetry provides an easy and natural way to choose the separation into different

dynamical flow regimes. Vice versa, for flows where the experimental setup does not

provide these symmetries, a far lower amount of observations would be available which

would pose difficulties for the estimation of the horizontal correlation matrix Csurf .

In the absence of these exploitable symmetries, the obvious choice is then to further

increase the length of the near-initial learning phase, which however would further in-

creases the computational cost, making the application of a stochastic error estimator

less profitable.

From a comparison to the stochastic process used in chapter 3, we conclude that the

choice of the stochastic process is flow-dependent. For a given flow, one can imagine

that even different regions of the same flow might require different types of stochastic

processes, which would introduce a new, additional algorithmic step to to the Goal

Error Ensemble Method algorithm 3.4. The choice which specific stochastic process is

selected for a specific region will then have to be performed in a meta-level dynamical

flow regime separation.

The additional algorithmic step and the overall increase in complexity of the stochas-

tic process increasingly requires decisions based on educated guesses by the user. For

3D ocean experiments, such as our channel experiment, the user needs an in-depth

understanding of the studied experiment and needs to develop a good idea of what the

present ocean dynamics mean in terms of the local truncation error and how this would

be translated into a stochastic representation. We observe that the initial idea of a

learning algorithm for the local truncation error that does the learning task to a large

part independently, as intended by [41], turns more and more into a serious stochastic

modeling undertaking.

Independent of how the temporal evolution will finally be implemented in the stochas-

tic process {Xti(p)}i∈N, the memory term of the Mori-Zwanzig formalism will be much

more delicate than the fully time-correlated one introduced in chapter 3. Compared to

the stochastic process from chapter 3, the new stochastic process will typically result

in a smaller spread for comparable tasks. However, it will be dependent on a large
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amount of correlation coefficients in time as well as in space that keep the stochastic

process in this tightly constrained state. The tradeoff is thus the discussed increase

in complexity which threatens the robustness of the resulting stochastic process and

eventually the robustness of the targeted stochastic error estimator.

The increased complexity of the stochastic process stems from the complexity of the

structure of the local truncation error in time and space. The local truncation error

is just a measure for the difference between two deterministic model solutions with

differently resolved dynamics. The local truncation error is thus inherently determin-

istic and follows its own dynamics, the combined dynamics of both models at different

resolutions. The main features of these deterministic local truncation error dynamics

then have to be matched by the stochastic process. For a dynamically-rich but still

idealized experiment such as our channel flow, we already expect to have to constrain

the stochastic process by several hundred of its past states. Given the large temporal

scales of the dynamics in the real ocean, we expect a further increase in complexity for

the stochastic representation of the local truncation error .
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Chapter 5

Conclusions and Outlook

5.1 The Quintessence

We have successfully brought the concept of goal-oriented error estimation into the field

of ocean modeling.

For flows with lateral boundaries in a shallow-water environment, we have shown

that our developed stochastic error estimator works reliably for a selection of ocean-

type experiments that were designed to verify the error estimator on essentials of two-

dimensional large-scale ocean dynamics.

For the baroclinic instability in the 3D ocean model environment, the results do

not yet allow statements on goal-oriented error estimation specifically. What we can

conclude is that we have successfully understood and modeled many pieces of the puzzle

that is the stochastic component of our error estimator. The current results clearly

indicate a missing piece to be in the correct propagation of the stochastic component

in time, i.e. the memory of the stochastic process.

For all ocean experiments we have found the need to instil the concept of memory into

the stochastic component of our error estimator. The memory’s curve of complexity,

starting from no memory in [41], over a memory induced by an upper bound on temporal

correlations in chapter 3, to a memory represented by the interplay of thousands of

correlation coefficients in time and in space in chapter 4, has still not reached its limit

and could potentially grow further. From this observation we conclude that the correct

handling of memory effects is going to be the linchpin for all future work on this type

of stochastic dual-weighted error estimation methods.

In the context of our stochastic error estimator, it is important to keep in mind that

the local truncation error in a grid element at a specific timestep is a deterministic

measure between two determinist model solutions. However, we continuously find that,

within a dynamical flow regime, its characterization as a stochastic quantity is justified.

This has held true for all investigated variables, for non-eddying as well as eddying flows,

and even under the influence of additional sub-grid scale parametrizations.
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5.2 The Answers to the Research Questions

We here provide the answers to the questions we posed in the introductory part of this

thesis in section 2.4.

� What probability distribution can be used to model the local truncation error?

We have found that a Laplace or a Gaussian distribution fit well to the distribution

of the local truncation error for all flows we encountered. If possible, we would

favor a Laplace distributed random variable, because the long tails of the local

truncation error distribution are better represented by a it. In general, we can

however confirm that the choice from [41] who used a Gaussian distribution for

their experiments can be justified for a wide range of ocean-type experiments.

� What is the relation between the stochastic error estimator (2.22) and a classical

stochastic-physics ensemble?

The stochastic dual-weighted error estimator is proven to be a linearized stochastic-

physics ensemble, and both are shown to be interchangeable. As of yet, we have

not found the limits of said connection, but it is unquestionable that increas-

ing the non-linearity of the studied flows will eventually lead to the connection’s

severance.

� How big is the effect of the discretization of the goal itself compared to the error

in the goal ε?

For our results with the shallow-water model, we have encountered cases where

the error due to the discretization of the goal itself is not negligible. We expect

to come across similar cases for other experiments and goals, because the issue is

connected to under-resolution of the model solutions, a problem that is constantly

encountered in ocean modeling.

� What part of the stochastic process represents the memory term that is predicted

by the Mori-Zwanzig formalism?

In the shallow-water framework as well as in the full 3D Ocean model, the memory

is initially represented by the first local truncation error, and then governed by

temporal correlations. The strength of the temporal correlations and the length

by which they reach into the past defines the memory. The effect of memory can

be illustrated for the initial states in the different model frameworks. While in the

shallow-water experiments the employed fully-time correlation ensures that the

initial state is never erased from the memory, in an eddying flow it is necessary

that the initial state is rapidly forgotten to be in accordance with the temporal

evolution of the local truncation error.
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� How can spatial and temporal correlations be represented in the stochastic pro-

cess? And, can these correlations be estimated reliably?

Spatial and temporal correlations in the form of correlation coefficients are at the

core of the stochastic component of our stochastic error estimator. In chapter 3,

it was sufficient to make use of correlation coefficients in the form of an upper

bound on the temporal correlations. For eddying, three-dimensional flows such

as in chapter 4, we find that not even a collection of multiple correlation matrices

in space and a correlation coefficient in time is sufficient to model the temporal

evolution of the local truncation error. Based on our analysis, our proposed ex-

tension revolves around an additional correlation matrix in time. These matrices

need to be constructed and intertwined in a special way to make the evolving

structures coherent.

� Does this approach lead us to valid error estimates for physically relevant goals?

Yes, for ocean-type experiments in a shallow-water framework, our approach leads

to reliable estimates for bounds on the error in a goal in the form of confidence

intervals. For the full 3D ocean model, we have not yet finalized the stochastic

component of the local truncation error, and are thus not yet at the stage where

we can obtain goal error estimates.

� Does the concept of the local truncation error even make sense in an environment

where the local truncation error primarily results from only partly resolving the

mesoscale eddy field?

We find that the straight-forward definition of the local truncation error is not

applicable directly. We formulate a temperature-based local truncation error for-

mulation as an alternative and provide numerical evidence that this is a reasonable

choice for an eddying flow that is driven by density differences.

� How can the vertical structure, especially stratification, of the ocean experiment

be preserved under the influence of the stochastic process?

If there is a vertical structure present in the local truncation error which the

stochastic component needs to adhere to, it will be reflected in the vertical cor-

relation coefficients, a quantity that is incorporated in the stochastic component

and shown to yield the desired vertical patterns. We have found that the esti-

mated vertical patterns need to be correctly propagated in time to not introduce

unwanted effects, such as constantly triggering convection in the vertical column.

� Is it possible to use a stochastic process to model the local truncation error that

is due to not fully resolving the mesoscale eddy field?

Until now, we can state that we have understood much of its spatio-temporal
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structure, and based on our analysis, we have been able to model its spatial

structure. For the temporal structure we have identified a key mechanism for

which we have then proposed a stochastic model. Thus, we are confident that a

stochastic process can be developed for this flow regime.

5.3 Concluding Remarks & Outlook

The described increase in the curve of complexity that we find for our results raises the

question whether our stochastic dual-weighted error estimator is reasonably applicable

in experiments of even higher complexity. sIn this, we think about realistic ocean sim-

ulations where phenomena have timescales of years, decades and even higher, whereas

in comparison the lifetime of the mesoscale eddies studied in this thesis is in the range

of days to weeks. A long timeseries of time-lagged correlation coefficients might be

required, i.e. a long history past states of the stochastic component. This would mean

a hugely prolonged near-initial learning phase and a strongly constrained stochastic

process, which is not desirable due to the computational cost and due to a possibly less

robust stochastic component because of the large amount of dependencies.

On this note, we feel that we, in the role of the algorithm user, have to perform very

much of the model’s work in the complex three-dimensional environment. We basically

have to teach the stochastic component the most important aspects of the underlying

model physics, i.e. prescribe how to learn the patterns present in the local trunca-

tion error. For an eddying flow, the physics we have to teach the stochastic process

is how the patterns of the unresolved part of the mesoscale eddy field look like and

how they develop over time. Because this step happens outside of the physics-governed

environment of the ocean model, the major features of this unresolved part have to be

identified by us and prescribed in a physically sound way. Sound representations of

physical systems have however never been the strong side of stochastic modeling.

Thus, we argue that we need to find ways to outsource some of this stochastic mod-

eling work back into the domain of the physical model, i.e. the ocean model. Our

motivation that this step is promising stems from our channel experiment described in

chapter 4, which shows that the employed model resolutions (40km resolution and ref-

erence 10km resolution) are actually quite similar in terms of the dynamics. The coarse

resolution model solution is just the high-resolution solution’s filtered version in terms

of the mesoscale eddy field, which in turn is then reflected in the slightly reduced im-

pact on the vertical heat distribution. In summary, it can be said that the coarse model

solution performs quite well and shows the correct dynamics. Yet, the associated local

truncation error indicates large point-wise errors per timestep, presumably because of

errors in the actual shape of the eddies or their correct positioning. Thus, instead of

enhancing the already available flow and work with the available model dynamics, the

local truncation error to a large part rewrites the variable fields at every timestep to
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make them look exactly like the high-resolution solution’s fields. We however argue

that this correction towards point-wise identity of the fields is not of much relevance

here, because goals in an ocean modeling context are typically averaged quantities over

large areas or timescales. This means that the goals can be interpreted as a function of

the probability distribution of the underlying fields. In terms of these goals, a successful

correction of a flow fields would already be achieved if their probability distributions

were corrected instead of their point-wise values. We thus propose the investigation

of stochastic components for our error estimator that do not take the detour over the

point-wise local truncation error which we then describe stochastically anyway, but

that instead try to quantify the error in the probability distribution in a dynamical

flow regime per timestep and directly correct the probability distributions of the fields.

Another research path that might be worth pursuing is the investigation of our

stochastic dual-weighted approach for other dual-weighted methods than the one de-

scribed in [15]. This step might not simplify the stochastic modeling part of our error

estimator but could make the estimation of the parameters of the stochastic process

easier. In this, we think about the dual-weighted approach described in [11] that for-

mulates the error estimator from the point of view of the high-resolution grid instead

of the coarse resolution grid. Instead of a mapping P∆ from the high-resolution grid to

the coarse grid, we would have to define a reconstruction Rhigh, which maps fields from

the coarse grid to the high-resolution grid. In this approach, the Taylor expansions

(2.7) and (2.10) are both formulated in terms of the high-resolution goal Jhigh and the

high-resolution discrete model Nhigh (qhigh). The residual information is then obtained

by inserting the coarse resolution solution q∆ into the high-resolution operator Nhigh

Nhigh (Rhigh(q∆)) .

However, the disadvantage of this approach is the reconstruction Rhigh of a typically

under-resolved coarse model solution q∆, which will probably come with a high interpo-

lation error. How big the effect of interpolation is for ocean model experiment, should

be tested and quantified.
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