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ABSTRACT

A simple and effective self-adjusting hybrid technique has been introduced to develop a new conservative
and monotonic advection scheme that exhibits very low numerical diffusion of resolvable scales. The proposed
scheme combines Bott’s area-preserving flux-form algorithm with an area-preserving exponential interpolating
scheme, the use of either at any particular location being automatically controlled by the local ratio of the nodal

values involved in the approximation process.

The performance of the combined scheme is illuminated in a series of one- and two-dimensional linear
advection experiments. The comparative test calculations presented demonstrate that the combined scheme
provides highly accurate solutions both in regions where the transported flow variable is smooth and in the
vicinity of sharp gradients. Furthermore, the self-adjusting hybrid technique is highly effective in removing
numerical artifacts such as dispersive ripples and simultaneously requires only an admissible additional com-
putational effort relative to Bott’s scheme. Thus, it is concluded that the combined scheme is well suited for
many atmospheric modeling applications where advection plays a significant role.

1. Introduction

Advective processes are of central importance in
geophysical fluid dynamics and their treatment is cru-
cial in numerical modeling of the transport of trace
constituents in atmospheric models. However, the nu-
merical handling of advection is plagued with difficul-
ties. For instance, problems may arise when the trans-
port of positive-definite scalar quantities, such as
moisture, liquid water content, and chemical concen-
trations, is treated, since unphysically negative con-
stituent values may be generated and/or strong spatial
gradients can be smeared out or ripples can be produced
in their vicinity by the numerical scheme. Hence, the
numerical approximation of advective transport is a
classical example of an exercise in compromise, at-
tempting here to reconcile the requirements of stability,
accuracy, and algorithmic simplicity. The main conflict
arises from the need to retain or introduce some kind
of stabilizing diffusive mechanism against the desire to
maximize accuracy by minimizing numerically diffu-
sive agencies.

During the past decades, a wide variety of finite-
difference methods has been suggested for the numer-
ical solution of the advection equation and several in-
tercomparisons have been published (e.g., see Wood-
ward and Colella 1984; Rood 1987; Miiller 1992 for
reviews). However, many of these transport schemes
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do not adequately model the advection equation. For
instance, the well-known upstream scheme suffers from
high numerical diffusion. The fourth-order-accurate
scheme of Crowley (1968) and the third- and higher-
order-accurate schemes of Tremback et al. (1987),
which use the method of polynomial fitting to represent
the local distribution of a dependent variable inside a
grid box, are far less diffusive than the upwind ap-
proximation, but because of dispersion errors the so-
lutions are not ripple-free, and therefore, these schemes
cannot obviate the problem of unphysical negative
mixing ratios. Recent advances in numerical tech-
niques designed specifically for meteorological models
provided a number of positive-definite schemes (or
positive-definite corrections to be applied to existing
schemes), that is, schemes that do not allow physically
positive quantities to become negative. Smolarkiewicz
(1983, 1984) developed a conservative and positive-
definite scheme that has found many applications over
the last years. He introduced corrective advection fluxes
to reduce the truncation error caused by the upstream
method. Based on the integrated flux schemes of
Tremback et al. (1987), Bott (1989a,b) presented a
conservative positive-definite advection algorithm that
is computationally very efficient. His procedure consists
in the normalization and limitation of the advective
fluxes employing specific limiters to avoid negative
mixing ratios. Prather’s scheme (1986), which is an
extension of the slopes scheme of Russel and Lerner
(1981), uses a polynomial expression to represent the
tracer concentration within each grid box. In his
scheme, first-order moments (i.¢., slope ) as well as sec-
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ond-order moments (i.e., curvature) of the distribution
are transported in addition to the cell average (i.e.,
zeroth-order moments ) to reduce numerical diffusion.
Prather also presents a method to assure sign preser-
vation. However, although these methods work quite
well and are widely used in the meteorological com-
munity, their applicability is mainly restricted to flows
that exhibit comparatively smooth gradients, because
they cannot control dispersive ripples. Especially in re-
gions of steep gradients of the transported quantity,
these schemes display unphysical oscillations (i.e., the
schemes produce over- and undershoots) that can be
sufficiently serious to cause numerical instability.

A number of methods have been proposed to sup-
press these unphysical “wiggles” (see, e.g., Woodward
and Colella 1984; Rood 1987), most of which are based
on the introduction of artificial diffusion. However,
these schemes are highly empirical, relying on expe-
rience to determine the level of diffusion coefficients
for particular applications to keep the rippling from
occurring. Other, more systematic approaches are
based on the flux corrected transport (FCT) method
of Boris and Book (1973, 1976), Book et al. (1975),
and Zalesak (1979). The basic idea of this approach
1s to blend the results of two difference schemes to-
gether. FCT constructs the advective fluxes point by
point as weighted averages of a flux computed by a
monotonic, but diffusive, low-order scheme and a flux
computed by a high-order scheme. The criterion used
to control the weighting or blending factors is to ensure
that the high-order flux is used to the greatest extent
possible without introducing ripples, and this constraint
leads to blending factors that depend on local condi-
tions. The principal disadvantage of this flux blending
is such, however, that the contribution of the low-order
scheme is much greater than needed for avoiding spu-
rious oscillations, especially in regions of steep gradients
of the transported quantity. Hence, a certain amount
of additional numerical diffusion must be tolerated,
which results in smearing out of sharp gradients. Based
on the FCT methodology, Smolarkiewicz and Gra-
bowski (1990) and Bott (1992) extended their original
positive-definite approach to monotonicity preserva-
tion. )

A third method, the piecewise parabolic method
(PPM) (Colella and Woodward 1984; Woodward
1986; Carpenter et al. 1990), uses cell averages to con-
struct a unique, monotonic parabola that represents
the distribution of a dependent variable within a grid
box. This scheme is nonoscillatory by construction and
thus monotonicity preserving. The principal drawback
of this scheme is its complexity and the consequent
great computational expense [see article by Miiller
(1992)].

In this paper we present a monotone version of the
area-preserving flux-form advection algorithm of Bott
(1989a,b) using a simple but effective switching pro-
cedure. In contrast to the approach of Bott (1992),
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which uses the concept of the FCT method to limit the
total advective fluxes, we do not use specific limiters
to achieve monotonicity. In principle, our scheme
combines Bott’s flux scheme with an exponential up-
stream-weighted interpolation, the use of either at any
particular location being essentially controlled by the
local ratio of the nodal values involved in the approx-
imation process. Hence, the Bott scheme is used in the
bulk of the domain in regions with smooth gradients;
when the local curvature of the advected variable ex-
ceeds a preset value, however, the algorithm automat-
ically switches to exponential upwinding. Since we use
exponential interpolation functions, the scheme is
nonoscillatory by construction and the scheme intro-
duces implicitly and locally just enough diffusion into
only those regions in which, otherwise, oscillations
would occur, and this introduction is automatically
controlled through a dynamic adjustment of the switch
during the solution process. As a result, the hybrid
scheme is also appropriate to address problems with
sharp gradients and the scheme produces solutions that
are found to be very close to those of the Bott scheme
but displaying no over- or undershoots.

The paper is organized as follows. In section 2 we
describe the details of the numerical methodology.
Numerical results of different advection experiments
in one and two spatial dimensions are presented in
section 3 to illustrate the performance of the resulting
scheme. Finally, the conclusions are summarized in
section 4.

2. Theory ‘
a. The continuity equation

To illustrate the problem, we consider the continuity
equation describing the advection of a nondiffusive
quantity in a nondivergent flow field; that is,

Y

o - V),

(1)
where Y(x, ¢) is the nondiffusive scalar quantity, v
= (u, v, w) is the velocity vector, x = (x, y, z) is the
position vector in a Cartesian coordinate system, and
t is the time. For simplicity, the proposed numerical
solution of (1) will be derived only for the one-dimen-
sional case, namely,

N__ 9
ot 8x(u¢)'

(2)
With the assumption of a constant positive velocity,
(2) represents the shape-conserving movement of an
initial distribution toward positive x. Since the analytic
solution is known in this simple case, the numerical
solution can be critically evaluated. A method for per-
forming multidimensional calculations is the technique
of directional splitting (Strang 1968; Yanenko 1971).
In thistechnique, a multidimensional problem is solved
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by means of successive, one-dimensional sweeps in
each of the coordinate directions. In this connection
it should be noted that the application of the splitting
procedure requires some caution because some
schemes lose their accuracy or stability when too simple
directional splitting algorithms are used; for example,
the decomposition of three-dimensional advection into
three separate one-dimensional steps may lead to in-
stability; instead the second-order splitting in three di-
mensions requires alternating two-dimensional and
one-dimensional schemes (Peyret and Taylor 1983).
However, it turns out that our scheme takes well to
directional splitting, and we conclude that this tech-
nique is an efficient method for extending our one-
dimensional scheme to two or three dimensions.
Denoting the flux of Y past the point x at time ¢ with

F(x, 1) =uw, (3)
the continuity equation then reads

g d

W__39 F. (4)

at dx

To solve (4) a “finite-volume™ technique is used that
is based on control-volume-averaged data. Hence, the
continuity equation (4) is integrated in space from x
—(Ax/2)tox + (Ax/2)and in time from ¢ to ¢ + At
to obtain the control-volume formulation. The mass
conservation principle applied to any finite-control
volume then reads

Bvss = Wy =S (Fa=F), ()
X

where subscripts L and R denote the left and right edges

of the associated control volume. Angle brackets denote

control-volume averages and an overbar denotes a

temporal average, which are given by

1 x+{(Ax/2)

ay=— adx
< > Ax Jx—(ax/2)
1 t+ Al
7 =— dt, 6
a At J; 4 ( )

where a is any variable, AXx is the control volume width,
and At is the time increment.

Thus, the time change of the area average of ¢ in
the control volume x — (Ax/2) < X' < x + (Ax/2)
during a time step Af is equal to the amount of con-
stituent transported across the boundaries into or out
of the grid volume.

b. Bott’s flux scheme

Recently, Bott (1989a,b) presented an upstream-
biased Eulerian finite-volume advection scheme con-
serving mass, being positive definite, and possessing
small amplitude and phase errors. To develop the nu-
merical advective operator, Bott uses the methodology
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of Tremback et al. (1987). The advection procedure
proceeds in two steps. In the first step, area-preserving
polynomials are used to calculate the transport fluxes.
In the second step, specific limiters are employed to
avoid negative mixing ratios.

To derive the method, the calculation domain is di-
vided into a number of nonoverlapping control vol-
umes such that there is one control volume surrounding
each grid point. We adopt the notation that subscripts
i refer to discrete locations in the x direction with con-
stant grid spacing Ax, and superscripts n refer to dis-
crete times with time interval Az. The discretized form
of (5) then reads

Ar a
Vit =l = = Fp = Fapl. (D

where ¢/ is the value of ¥ at grid point i after n time
steps and Fi4,;2, F;_,,, are the time-averaged approx-
imate y fluxes through the right and left boundaries of
the grid box, respectively. According to (3) and (6),
we write Fi ;2 as follows (assuming constant u for the
moment):

1 At R
Fippn= ZIJ(; [ud(x, t + 1) xmxpaxsydl’

1 At .
- Z;fo [ud(x — ut', 1) Lmxparydt’  (8)

where ¥/(x, t) denotes a piecewise profile representing
the variation of ¢ between the grid points. With x'
= x — ut’, (8) becomes

_ 1 Xit1/2 .
Fioyp= —f (X', t)dx'. (9
A +1/2—udt

Xi

Hence, the advective flux is proportional to the total
mass of constituent transported through the right
boundary of the grid box i during the time interval Az,
which corresponds to the integral of Y(x', t) extending
from a point at a distance uAt upwind of Xxi;/2 to
Xi+1,2- Relaxing the condition of constant u and using
the notations

x' — x; U2 AL
"(i) = Ctyp=max| 0, ———
x"(i) Ax t1/2 Ax
and
) Ul AF
C*yn=—mn| O, ———|,
i+1/2 AX

(9) could be written

_ Ax _
Fi+1/2:Tt(1fr+1/2_1i+1/2), (10)
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where

12 X
Ifp = f . WIx(), 1] dx"(d)
1/2~Cit12

—1/2+C{51 2 .
12 = Ll/z Yx"(i + 1), t] dx”(i + 1).

(11)

To evaluate the integrals in (11), Bott (1989a,b) applied
the polynomial fit methodology developed by Crowley
(1968) and Tremback et al. (1987). In this way, the
local ¢ distribution inside a grid box / is represented
using an area-preserving polynomial of order 1:
Ux'(i), 1) =

!
LX) = 2 afx(i). (12)
k=0

The coeflicients a}; are functions of the ¢ values at
grid point 7/ and at neighboring grid points i + 1, .. .,
i +1/2 and are determined from the requirements that
at X;+q, - . . , Xizss2 the values of Y7, [x'(i)] agree with

Tty e ¢,+1/2 and that the area covered by 7, [x’ (l)]
in grid box i equals ¢ Ax. Table 1 lists values of a7,
for / = 2 and / = 4 (after Bott 1989b). Substitution of
(12) into (11) yields the integrals I}.;,, and I7.,2,
respectively (superscript # omitted):

/
d; k

1?1/2,/: Z——_’[l”(l C; /z)kH]
+ ot (k+ ;)2k+l +l
I = zl:‘——_“am’k |
! ” k=0(k+‘1)2"+1
X (=1 — (1 = 2Cr )%, (13)

Finally, positive definiteness of the scheme is obtained
in two steps by introducing the following nonlinear
flux limiters. First, the flux F; /2 should have the same
sign as the advecting velocity u;,,,; otherwise, it will
be put to zero. Second, the flux F;,; is limited in such

MONTHLY WEATHER REVIEW

VOLUME 122

a way that the total amount of outflux from a grid box
i during a time step At is limited by ¢/Ax/Ar. Com-
bining these restrictions, the flux F;.,,, can be written
in the form

_ Ax o
Fiovpp= Xt (5i+1/21?+1/2,/ -

(14)

Birssd i),
with

T- — +
It 2, = max(Ify)2,, 0)

Iiviog=max(Ii24, 0)

Biv1y2 = min[1, Y7 /max (L} 2;+ Iioy 24, €)], (15)

where ¢ is a small value—for example, approximately

10~ '*—which has been introduced to avoid the nu-
merical unstable situation with 77, 20 F I, 20 = 0.
Similar equatlons for F,_,,, are obtained by replacing
i with i — 1 in the preceding equations. For a more
detailed description and discussion of the scheme and
the flux limitation, the reader is referred to the original
papers of Bott (1989a,b).

¢. The exponential upwind scheme

The exponential upwinding interpolation concept is
based on previous work of Spalding (1972). In this
approach, piecewise exponential profiles are used to
express the variation of ¥ between the grid points. The
exponential interpolation function in grid box i may
be uniquely described by three coefhicients (47, B?,
D7) of the following equation:

vIx'(i), 1] = i elx'(i)] = A7 + B} exp[ D7 x'(i)],
(16)

where x’({) is again a normalized grid coordinate. To
determine the coefficients 47, B}, and D7, infor-

TaBLE 1. Coefficients a;; for the / = 2 and / = 4 versions of Bott’s area-preserving flux-form algorithm (aftef Bott 1989b).

/=2 =4
1
o Y Wivr — 26¥: + 4 1) 1920 o (i — 116y, + 2134y, — 116\%—1}"’ Wi2)
1 1
ai, > Wert — ¥i-r) T (—5¥is2 + 34 — 34 + S¢i)
1 1
aip §(¢i+l — 2+ i) a3 (=32 + 36¥i1 — 66y, + 36y — 3¢i2)
1
a3 - I} Wiz — i1 + 201 — Yi2)
| .
Qig — 1 Wiva — Wiy + 6% — iy +ii2)
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mation from grid point { and two neighboring grid
points is used demanding that at x;., the values of

T g[x'(i)] agree with ¥/, and that the integrated area
beneath each interpolation curve is preserved. Thus,
the resulting set of defining equations will be (super-
scripts # omitted henceforth except where confusion
is possible)

Vioy = A; + B exp(—D;) (17a)

_ B; D\ _Di
1}/;—A,~+Di[exp(2) exp( 2)] (17b)

VYiv1 = A; + B; exp(D;). (17¢)
Combining (17a) and (17¢) yields
- (Yiet — Y1) exp(=D;)
ATV T (D) —exp(~Dy) Y
‘Pi+1 - ‘;bi—l (lgb)

"7 exp(D;) — exp(—D;)

The substitution of (18a) and (18b) into (17b) leads
to a nonlinear equation for D;,

Vi — Vi exp(—D;) .
Yin — Ve exp(D;) —exp(—D;) |

_exp(D;/2) —exp(=D;/2) _
exp(D;) — exp(—D;)

which can be solved easily using Newton’s method. In
this manner, the coefficients 4;, B;, and D; of the in-
terpolation curve may be obtained from (18c), (18a),
and (18b). Finally, substitution of (16) into (11) yields
the integrals I7,,,; and I7;,, respectively:

+ — + B;
I e=AiCia + D

i

D, D;
X {exp(;) - exp[; (1r- ZC?—H;Z)H
Dy

By exp| —

Dy 2
D;

X[l —2C,_+,/2:|)—exp(—7+l)]. (19)

It is important to note that due to the local exponential
curve-fitting procedure the advection algorithm in this
form is well suited for accurately representing sharp
gradients. Since the interpolation formula is monotonic
by construction, the advection procedure ensures (es-
pecially in the vicinity of localized sharp interfaces)
that positive quantities will remain positive and that
sharp gradients will be handled correctly without the
generation of spurious oscillations. The main disad-
vantages of the exponential scheme relate to the high
computational costs associated with the solution of
(18a)-(18c) and with the evaluation of (19). More-

0. (18¢c)

e = 4iniCiipp +
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over, since the exponential fitting procedure is possible
only (and therefore available) in the monotonic regime
of the flow, the question remains as to the best pro-
cedure to treat nonmonotonic regimes (i.e., local ex-
trema of the advected variable). A simple and appar-
ently robust strategy is to use the ordinary first-order
upwinding scheme for the case that the zone average
of the advected variable is a local extremum. However,
this procedure adds a substantial amount of numerical
diffusion to the scheme so that the exclusive use of the
pure exponential scheme cannot be recommended even
if computer costs were not an issue. (See also section
3a, where we present results using only the exponential
scheme.) The “automatic switch” described in the next
section has therefore been designed in a way to ade-
quately check for these regions.

d. The combined scheme

As already stated in section 2b, Bott’s flux scheme
has several attractive properties: the method is mass
conservative and positive definite, has small phase and
amplitude errors, and is computationally very efficient.
However, the simulation of sharply varying gradients—
especially in situations with nonzero background values
of the transported quantity—can result in unphysical
oscillations, which although localized could cause dif-
ficulties in nonlinear problems.

To eliminate this deficiency of the scheme and to
ensure monotonicity, we use a variant of Harten and
Zwas’s (1972) self-adjusting hybrid technique. The
basic idea is to identify regions where monotonicity
might be violated and then keep the rippling from oc-
curring. This goal is achieved by combining Bott’s ac-
curate scheme, which is used in the smooth regions of
the transported quantity, with the exponential scheme
that is used in regions of sharp gradients. (Hence, the
name ‘“hybrid” is indicative of a combination of two
different methods.) The use of either of these two
schemes at any particular location is controlled by a
switch that automatically (i.e., self-adjusting ) switches
from one scheme to the other. Since the exponential
interpolation functions are monotonic by construction,
no specific flux limiters have to be employed to avoid
spurious oscillations near sharp gradients. Thus, we
propose to construct the hybrid scheme using a com-
bination of the unlimited Bott scheme and the expo-
nential scheme. Formally, we write the advective  flux
through the right boundary of the grid box i as follows:

x
Fioipp=——[(1 = S0+ Silt o8
At

= (1 = SieiM 20— Simidivipe]l,  (20)

where I7;,,,and I7y,,, g denote the area integrals ob-
tained using the polynomial- and exponential-fitting
techniques, respectively, defined in (13)and (19). The
dimensionless quantity .S;, which will be called the
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“automatic switch,” admits only two states and should
have the property

in “danger zones” 1)
in “smooth zones”

To identify the “danger zones” where monotonicity
might be violated we introduce the so-called “monitor

functions” m,(l , mf and m,( defined by
D = [Wiv1 — 2 + Y|
' [Wis1 — i1 + €]
I=4 =2
2y _ laiy — ai 1 l
m 22
T 05]alt + dn (22)
m(s) |a12 - a12
! 0. 5|a + a,—$2 ’

where ¢ is a small number—for example,'approxi-
mately 107*—and a/*, a'3*, a!3?, ai? denote the
coeflicients a, « for the polynomlals of order / = 2 and
| = 4 of Bott’s area-preserving flux-form scheme listed
in Table 1. Hence, the monitor function m,( measures
the local curvature of the advected variable, and the
monitor functions mf and m 53) are quantities that,

in some way, give a rough estimate of the local spatial.

truncation error. o
lz:or convenience, two additional switches, S; * and
S,(» ), are defined:

s
1, if{[t‘»“< < 1] and
{[m)<1] and [mi]<1]}} or
{[mX=1] or [m]=1] or [mi]=1]}

0, otherwise

S(Z) _ 1, lf[ (2) (2)]
i 0’

otherwise
which are combined according to a logical “OR” to
yield the automatic switch S;, such as

3) 5 42
[m B

or =t

(23)

s 4 5
_ i i
max[Sf»l) + S,(z), 1] ’

(24)

which constitutes the modification criterion for decid-
ing whether to use Bott’s scheme or the exponential
upwinding scheme. Here, according to (23) and (24),
this nonlinear switch satisfies the conditions imposed
by (21); S; equals zero in regions with smooth varying
gradients across a nodal point (this will account for
the bulk of the flow field) but equals one in regions
where localized sharp transitions are found. Finally, it
is important to note that we have coded the exponential
upwinding scheme in such a way that it degenerates
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into an ordinary first-order upwinding scheme in non-
monotonic regimes [i.e., for m; ' > 1], so that the
formulation given by (20) is valid for any arbi-
trary grid pomt in the computational domain.

In (23), t " and t,z) are threshold values for which
we have chosen
1V =035
0.35, if m" <
(@ = " (25)
0.12, if m; >1

which are found to be optimal in the sense that the
combined scheme adds implicitly and locally just
enough diffusion to suppress unphysical “wiggles.” The
empirical determination of the coefficients ¢ and ‘%
may appear to be a weak point of the method because
their determination is based only on a finite number
of test functions. To examine the dependence of the
numerical solutions on these coefficients, calculations
have been performed in which we have varied the
threshold values ¢ and t® by =30% around their
reference values. This sensitivity study indicates that
the combined scheme responds insensitively to varia-
tions in these coefficients and that the combined
scheme returns in these cases solutions, which are vir-
tually as good as those obtained with the reference val-
ues. Therefore, our calculations give grounds for be-
lieving that the optimal coefficients given in (25) are
of general applicability.

The results of the numerical advection experiments
presented in section 3 are obtained using Bott’s scheme
in the version / = 4, abbreviated. The method to use
the abbreviated form of Bott’s scheme was proposed
by Miiller (1992). This technique requires that one
construct a fourth-order polynomial to provide a local
representation of the dependent variable within a grid
box. However, only coefficients of the polynomial up
to order 2 are used for actually computing the fluxes.
In this way the computational effort can be reduced
significantly even though the results are quite similar
compared to order 4 fitting (Miiller 1992).

The extension of the one-dimensional scheme to two
dimensions is done with the directional splitting tech-
nique (Strang 1968), which requires that one make a
series of one-dimensional calculations in the different
coordinate directions. Hence, a two-dimensional time
step of length As consists of a sequence of four one-
dimensional advection substeps, each of length Az/2.
To make the calculation symmetrical with respect to
x and y, a x-p-y-x sequence of sweeps is performed,
each one using the output of the previous sweep as
input data. Finally, we note that in the deformational
flow field test with

6u _@

#0
ax ay
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(section 3c) we take into account the effects of
compressions and rarefractions, which occur during
the one-dimensional advection substeps. In this way
we improve the accuracy of the directional splitting
approach considerably, especially in situations with
nonzero background values of the transported quantity.

3. Numerical results

In this section numerical results will be presented to
examine the performance of the newly proposed com-
bined flux scheme algorithm. The results obtained with
the combined scheme will be compared with Bott’s
(1989a,b) scheme (version / = 4, abbreviated ) and with
the exponential scheme, which will serve as references.

a. One-dimensional experiments

We first consider one-dimensional advection in a
constant velocity field. The calculations are performed
in a 64-point periodic domain with Ax = 1. The four
types of test problems that are used to evaluate the
accuracy of a numerical scheme are the Gaussian
function, the square wave function, the triangular
function, and the ramp function, which are superim-
posed on a constant background value of ¢z = 100.
Each of these functions helps to illustrate some
strengths and limitations of a numerical method. The
numerical results presented herein are obtained with
constant Courant numbers C = uAt/Ax of C = 0.1,
C =04, and C = 0.8 after Ny = 1920, N7 = 480, and
Ny = 240 iterations, respectively, corresponding to
three revolutions around the 64-point periodic domain.
As a measure for the total error of a numerical method
we use the so-called area ratio (AR ), which is the ratio
of the total area of the deviations from the exact so-
lution, and the total area and is given by

ZiMT =y
- !
area ratio Z TR (26)
i
where the summation is made over all grid points;
¢? and Y7 are the values of  at grid box / at initial
time and after n = N time steps (i.e., after three rev-
olutions), respectively. The constant background value
is denoted by ¥ 5. This measure of accuracy turns out
to be very useful because the AR gives an estimate of
the shape preservation of the numerical solution.
Figure 1 depicts the analytical solution as well as the
numerical results of the advection of a Gaussian dis-
tribution, which are obtained with (a) Bott’s scheme,
(b) the exponential scheme, and (c¢) the combined
scheme. (Background values have been removed in
this figure and in the following.) For the combined
scheme tests, one piece of additional information is
included in this and in the following figures: diamonds
on the abscissa mark those points at which the “au-
tomatic switch” detects a “danger zone™ and hence at
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F1G. 1. Solution of the one-dimensional linear advection equation
in which a Gaussian distribution superimposed upon a constant
background field of Y = 100 is advected to the right in a 64-point
grid with periodic boundaries. Shown are the analytical solution ( full
line) along with numerical solutions (dashed lines) obtained (a) with
Bott’s flux scheme (version / = 4, abbreviated), (b) with the expo-
nential scheme, and (¢) the combined flux scheme after three rev-
olutions for Courant numbers C = 0.8, C' = 0.4, and C = 0.1, cor-
responding to 240, 480, and 1920 time steps, respectively. The back-
ground field has been removed. Diamonds on the abscissa in (¢)
mark those points at which the exponential scheme has been activated.

which the exponential scheme has been activated. Ob-
viously, Bott’s scheme and the combined scheme yield
a good agreement with the analytical solution and pro-
duce low amplitude and phase errors. Thus, this ex-
periment provides a demonstration of each scheme’s
ability to transport well-resolved, smoothly varying
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functions over large distances. In contrast, the expo-
nential scheme is slightly diffusive and slowly dimin-
ishes the amplitude of the Gaussian distribution.

The second example is the advection of the square
wave function. This function reveals a numerical
method’s capability to handle Gibb’s oscillations that
arise in the vicinity of discontinuities. As shown in Fig.
2a, Bott’s scheme generates dispersive ripples that dis-
tort the distribution. The exponential scheme (Fig. 2b)
broadens the distribution but as a result of monoton-
icity, exhibits no spurious oscillations; that is, it gen-
erates diffusive rather than dispersive errors. The com-
bined scheme, which has activated the exponential in-
terpolation only in the vicinity of the points of
discontinuity of the square wave function, produces
the best results because it is considerably less diffusive
than the exponential scheme and, moreover, it does
not introduce wiggles.

The third test is the advection of a triangular distri-
bution that should illustrate a numerical method’s ca-
pacity to treat sharp peaks and extremum points. As
is seen in Fig. 3a, Bott’s scheme performs quite well.
Dispersive errors are still present but are much smaller
in amplitude than for the case of the square wave.
Again, the exponential scheme (Fig. 3b) broadens the
distribution somewhat but otherwise advects it quite
accurately. In Fig. 3¢ the same problem has been solved
using the combined scheme. In this situation, no phase
errors and dispersive ripples are visible and the nu-
merical solution is almost identical to the exact solu-
tion, except at the lower corner points and in the vi-
cinity of the extremum.

In the final example of one-dimensional advection,
a ramplike distribution is transported three revolutions
around the 64-point periodic domain. This experiment
gives information about each scheme’s capability to
handle asymmetric functions. As in the case of the
square wave function, Bott’s algorithm (Fig. 4a) pro-
vokes tremendous dispersive ripples in regions with
strong spatial gradients of the transported quantity. In
contrast, the solution obtained with the combined
scheme remains free of spurious oscillations (Fig. 4¢).
The slope of the ramp function is well represented in
regions where the function is only smoothly varying,
but the combined scheme tends to broaden the distri-
bution in the vicinity of the localized sharp transition
zone by spreading the gradient over several grid boxes.
Similarly, the solutions of the exponential scheme (Fig.
4b) are both monotonic and free of spurious oscilla-
tions but considerably more diffusive than the com-
bined scheme, spreading the gradient over about ten
grid boxes.

The accuracies in terms of the AR for Bott’s flux
scheme, the exponential scheme, and the combined
flux scheme for the four test functions and for various
Courant numbers are listed in Table 2. It appears that
Bott’s scheme and the combined scheme exhibit errors
of nearly the same order of magnitude with area ratios
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FiG. 2. As in Fig. 1 except for the square wave.

in the range of 0.01-0.12. However, as already stated,
Bott’s scheme produces mainly dispersion errors that
lead to a lack of monotonicity and that can severely
distort the distribution, especially in flows where strong
gradients or shocks develop. In contrast, as a conse-
quence of the monotonicity constraint, the solutions
of the combined scheme are free from Gibb’s oscilla-
tions, and this scheme generates only small diffusive
errors. As a result, the combined scheme produces so-
lutions that are found to be very close to those of Bott’s
scheme but displaying no over- or undershoots. The
exponential scheme produces errors that are at least
by a factor of 2 larger than those of Bott’s scheme and
of the combined scheme. This is certainly not satisfac-
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FiG. 3. As in Fig. 1 except for a triangular wave.

tory and indicates, as already stated in section 2c, that
the exclusive use of the exponential scheme cannot be
recommended.

Finally, we note that our resuits clearly demonstrate
that a positive-definite constraint is less stringent than
monotonicity. Moreover, in the case of nonzero back-
ground values of the transported quantity, it turns out
that Bott’s flux limiters are almost inactive. The reason
for this is that the limiter is specifically constructed to
eliminate negative values of the transported quantity
by demanding that the total amount of outflux from
a grid box i during a time step is limited by the available
amount of Y in grid box i at time #. Hence, in the case
of zero background values, the scheme performs quite
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well by simply cutting away negative values, while in
the case of nonzero background values, the procedure
fails to work and the limiter therefore additionally al-
lows the generation of new extrema around the level
of the background value.

b. Two-dimensional rotational flow field test

In this section we present results of several two-di-
mensional rotational flow field tests identical to those
reported by Smolarkiewicz (1982), in which a pre-
scribed distribution undergoes solid-body rotation
counterclockwise around a 100 X 100 zone grid with
Ax = Ay = 1. The velocity field is given by
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FIG. 4. As in Fig. 1 except for a ramp function.
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TABLE 2. Area ratios for Bott’s flux scheme, the exponential scheme, and the combined flux scheme after three revolutions
around the 64-point periodic domain for various Courant numbers.

Area ratios

Numerical method Gauss Square Triangle Ramp
Bott (C = 0.1) 3.63 X 1072 1.194 X 107! 2.82 X 1072 1.195 X 107!
Exponential (C = 0.1) 2.424 X 107! 1.505 X 107! 7.93 X 1072 1.757 X 107!
Combined (C = 0.1) 2.15 X 1072 9.23 X 1072 2.48 X 1072 1.038 X 107!
Bott (C = 0.4) 1.42 X 1072 1.018 X 107! 2.13 X 1072 9.99 x 1072
Exponential (C = 0.4) 1.863 X 107! 1.367 X 107! 7.07 X 1072 1.548 X 107!
Combined (C = 0.4) 9.47 X 1073 9.06 X 1072 2.15 X 1072 9.23 X 1072
Bott (C = 0.8) 5.88 X 107 7.97 X 1072 1.47 X 1072 7.78 X 107
Exponential (C = 0.8) 8.94 X 1072 1.015 X 107! 4.45 %1072 1.121 X 107!
Combined (C = 0.8) 7.91 X 1073 7.64 X 1072 2.09 X 1072 7.89 X 1072

v=QX{(r—rp), (27)

with a constant angular velocity of |Q] = 0.1 s™' and
a rotation center located at ro = (50, 50). The integra-
tions are carried out with a time step of Az = 0.1, so
that 628 time steps will effect one complete revolution
about the central point. The maximum Courant num-
ber in the domain is 0.7. As initial conditions we use
three different test functions: the cone, the cube, and
the grooved cylinder, which are superimposed upon a
constant background value of ¥z = 100.

In the first experiment the cone is initialized with a
base radius of 15Ax and a maximum height of Y.
= 3.87 at (x, y) = (50, 75). Figure 5 shows (a) the
initial distribution and (b) the final distribution after
six full rotations (3768 time steps) obtained with Bott’s
flux scheme (c) and with the combined flux scheme.
As expected, both schemes exhibit very good shape-
preserving characteristics. Bott’s scheme leaves the
maximum amplitude of the cone nearly unchanged
but creates new extrema in the distribution at the base
of the cone. In contrast, the combined scheme produces
no over- or undershootings but reduces the maximum
slightly with Y2, , finally reaching 93.5% of ¥ 9,.x .

A more severe test problem is the rotation of a cube
of unit height with lateral lengths of 20A x centered at
(x, y) = (30, 70), (see Fig. 6a). Figure 6 presents a
comparison of the results of the two schemes for six
full rotations of the cube. Bott’s scheme generates dis-
persive errors that severely distort the distribution. In
contrast, the combined scheme preserves the shape of
the cube very well but tends to broaden the distribution
somewhat. However, no oscillations occur either at the
base or at the top of the cube.

The last calculation is performed with a rather severe
test function similar to that proposed by Zalesak
(1979): a cylinder of unit height centered at (x, y)
= (70, 50) with base radius 15A x containing a groove
five zones wide. The width of the bridge connecting
the two halves of the cylinder is ten zones. The initial
condition and the numerical results for both schemes

after one revolution are shown in Fig. 7. Several fea-
tures are worth noting. As in the case before, Bott’s
scheme produces spurious oscillations as a result of
large dispersion errors. The solution obtained with the
combined scheme resembles the initial conditions quite
well. However, the groove and the bridge are both
eroded; that is, the discontinuities that were originally
1Ax wide are now smeared over several grid zones
leading to a partial loss of the bridge connecting the
two halves of the cylinder.

¢. Deformational flow field test

In this section the combined scheme was tested in
the deformational flow field given by Smolarkiewicz
(1982). The problem is the advection of a prescribed
distribution [the same cone as in Fig. 5a superimposed
upon a constant background value of Y5 = 100 centered
at (x, y) = (50, 50)] in a flow field deﬁned by the
streamfunction:

X
X(x, y)—85m(25>cos(25> . (28)
The velocity components (u, v) are given by
aX 8X
= 29
“ 8y v= ax (29)

Obviously, the given X distribution yields a strong de-
formational flow field consisting of sets of symmetrical
vortices, each vortex occupying a square with lateral
lengths of 25 grid zones. As already mentioned by
Smolarkiewicz (1982), this flow field could not be re-
garded as typical for atmospheric situations but it serves
as a stringent test for the numerical stability of a nu-
merical scheme.

- Recently, Staniforth et al. (1987) presented the an-
alytical solution of this problem. They pointed out that
the length scale of the exact solution diminishes as a
function of time. Hence, ih the context of the evalu-
ation of the performance of a numerical scheme it ap-
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pears convenient to compare the numerical solution
with the exact one only for short integration times in
a quantitative manner, whereas for longer integration
times the numerical scheme should be evaluated on
the basis of stability.

Figures 8a-d depict the numerical short-term so-
lutions (i.e., for integration periods, when the space
scales of the analytical solution are still resolvable
by the numerical grid mesh) obtained with the com-
bined scheme with a time step of At = 0.7 after 19,
38, 57, and 75 iterations (background values re-
moved). Since in the deformational flow field test
Bott’s scheme produces solutions that are very close
to those obtained with the combined scheme [except
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FIG. 5. Solution of the two-dimensional linear advection
equation in which a cone superimposed upon a constant
background field of ¢ = 100 undergoes solid body rotation
counterclockwise in a 100 X 100 zone grid with cyclic bound-
ary conditions. Shown are the initial condition (a) along with
numerical solutions obtained with Bott’s flux scheme (version
| = 4, abbreviated) (b), and with the combined scheme (¢),
after six full rotations, corresponding to 3768 time steps. The
maximum Courant number is 0.7. The background field has
been removed.

that Bott’s scheme yields little undershooting values
(about 5% of the initial maximum) in the vicinity of
sharp gradients], their presentation will be omitted
here. The distributions calculated with the combined
scheme quite closely resemble those of the analytical
solution presented in Figs. 3a—d of Staniforth et al.
(1987). After 19 steps, the numerical solution is al-
most indistinguishable from the exact one. As time
evolves, the distribution inside each vortex spirals
around the vortex center. As a result, the flow de-
velops its strongest gradients at vortex boundaries,
where the solution becomes almost vertical. After 38
and 57 iterations, the numerical solution quite
closely matches that of the exact solution, although
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the gradients developing at the boundaries of each
vortex are not as steep as in the exact solution. After
75 time steps, these gradients are nearly completely
eroded at the upper boundaries of the central vor-
tices. However, the numerical solution still faithfully
represents the main features of the analytical solu-
tion; especially, it maintains the right-left symmetry
as it should. Finally, we note that for long time-
integration periods, which are beyond the limit at
which any numerical method (which uses our mesh

spacing) is capable of representing all space scales of
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FI1G. 6. As Fig. § except for a cube.

the exact solution, the combined scheme generates
no numerical instabilities but produces bounded so-
lutions. This result differs from Bott (1989a), who
reports that his long-term solution produces slight
numerical instabilities.

To conclude the discussion of linear advection, one
point is worth noting. We have demonstrated that the
combined scheme performs quite well on linear ad-
vection problems and could be regarded as superior
relative to Bott’s scheme. However, this gain in accu-
racy must be weighted against computational costs.
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This issue is addressed in Table 3 where we have listed
CPU times of the combined scheme relative to Bott’s
scheme for the different test problems. Both schemes
are completely vectorizably coded. It turns out that
one has to pay only a relatively low price for the highly
improved performance of the combined scheme. The
combined scheme is less than twice as expensive as
Bott’s scheme. Since Bott’s scheme requires about three
times as much CPU time as the usual upstream scheme,
the combined transport algorithm appears quite suit-
able for a large variety of applications in atmospheric
modeling and thus gives a good balance between ac-
curacy and efficiency.
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FIG. 7. As Fig. 5 except for a grooved cylinder.

4. Conclusions

A simple and effective self-adjusting hybrid tech-
nique has been introduced to construct a new con-
servative and monotonic advection scheme that is
computationally very efficient. In principle, the
scheme combines Bott’s (1989a,b) area-preserving
flux-form algorithm, which is used in smooth regions
of the flow, with an area-preserving exponential in-
terpolating scheme, which is used in regions where
monotonicity might be violated (i.e., in regions of
sharp gradients of the transported quantity). The use
of either of these two schemes at any particular lo-
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cation is controlled by a switch that—depending es-
sentially on the local curvature of the advected
variable—automatically switches from one scheme
to the other. Since the exponential interpolation
functions are monotonic by construction, no spe-
cific flux limiters have to be employed to avoid rip-
pling.

Using a standard linear advection test, we evaluated
the accuracy of the combined scheme relative to Bott’s
scheme. The comparative test calculations presented
demonstrate the combined scheme’s ability to accu-
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rately transport well-resolved, smoothly varying func-
tions over large distances. Furthermore, the combined
scheme is also well suited to address problems with
sharp gradients, and returns solutions that are virtually
as good as those predicted by Bott’s scheme in respect
to capturing steep gradients, but without the deficiency
of the latter to produce physically unrealistic and often
serious spurious oscillations. Taken together, the com-
bined scheme is mass conservative, has excellent am-
plitude and phase characteristics, exhibits very low nu-
merical diffusion of resolvable scales, obviates numer-
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FIG. 8. Solution of the two-dimensional linear advection equation in which a cone centered on the center of a 100 X 100 point grid
domain superimposed upon a constant background field of Y5 = 100 is exposed in a deformational flow field. Shown are numerical results
of the deformational flow field test obtained with the combined scheme with Ar = 0.7 after (a) 19, (b) 38, (¢) 57, and (d) 75 iterations.

The background field has been removed.
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TaBLE 3. CPU time requirements (on a CRAY 28) for the
combined scheme. CPU time is given relative to Bott’s scheme
(version [ = 4, abbreviated) for different advection experiments after
3768 time steps.

Test Relative CPU time
Rotating cone 1.61
Rotating cube 1.65
Rotating cylinder 1.72
Deformational flow field 2.03

ical artifacts such as dispersive ripples, and is
numerically relatively inexpensive. Hence, it appears
that the combined scheme is well suited for many at-
mospheric modeling applications, and its use is es-
pecially recommended for high-Reynolds number
flows where advection plays a significant role to assure
that numerical models reflect the physics of the system
rather than the inaccuracies of the numerical methods.
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