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Abstract. Eddy covariance data are increasingly used to esparameter uncertainty and often yields parameter retrievals
timate parameters of ecosystem models. For proper maxthat are closer to the true value, than by using ordinary least
imum likelihood parameter estimates the error structure insquares. The systematic error leads to systematically biased
the observed data has to be fully characterized. In this studparameter estimates, but its impact varies by parameter. The
we propose a method to characterize the random error oparameter uncertainty slightly increases, but the true param-
the eddy covariance flux data, and analyse error distribueter is not within the uncertainty range of the estimate. This
tion, standard deviation, cross- and autocorrelation op CO means that the uncertainty is underestimated with current ap-
and RO flux errors at four different European eddy covari- proaches that neglect selective systematic errors in flux data.
ance flux sites. Moreover, we examine how the treatment oHence, we conclude that potential systematic errors in flux
those errors and additional systematic errors influence statisdata need to be addressed more thoroughly in data assimila-
tical estimates of parameters and their associated uncertairiion approaches since otherwise uncertainties will be vastly
ties with three models of increasing complexity — a hyper-underestimated.

bolic light response curve, a light response curve coupled tq
water fluxes and the SVAT scheme BETHY. In agreement
with previous studies we find that the error standard devi-y
ation scales with the flux magnitude. The previously found

strongly leptokurtic error distribution is revealed to be largely The availability of carbon dioxide and water vapour flux
due to a superposition of almost Gaussian distributions withmeasurements between ecosystems and the atmosphere
standard deviations varying by flux magnitude. The crosscoraround the world offers various opportunities to improve our
relations of CQ and KO fluxes were in all cases negligible knowledge about processes connected with the global car-
(R? below 0.2), while the autocorrelation is usually below bon cycle Eriend et al, 2007 Baldocchi et al.2001). The

0.6 at a lag of 0.5h and decays rapidly at larger time lagsjnterplay of models and data gives us insights into the per-
This implies that in these cases the weighted least squaregrmance of models, our level of understanding the system,
criterion yields maximum likelihood estimates. To study the pyt also into the quality of data and the information content
influence of the observation errors on model parameter estitherein about the processes represented in the model. Clas-
mates we used synthetic datasets, based on observations Qf:a"y, parameters were often derived from experiments at
two different sites. We first fitted the reSpeCtive models toieaf or piant Scaie or from expert judgement. |f nonlinear re-
observations and then added the random error estimates d%—tionships are involved the parameters are scale-dependent
scribed above and the systematic error, respectively, to thgng cannot be easily transferred to but also not observed on
model output. This strategy enables us to compare the egarger scales. An alternative option to obtain parameter esti-
timated parameters with true parameters. We illustrate thagates is the inversion of models against data. In this case a
the correct implementation of the random error standard decost function describing the misfit between model output and
Via.tion Scaling W|th ﬂuX magnitude Signiﬁcantly I‘educes the Observations iS minimized by Varying the parameters_ The in-
version of models against Eddy-Covariance (EC) data leads
to parameter estimates at ecosystem scale, our scale of inter-

Correspondence to: G. Lasslop est, thus EC data are increasingly used for model inversions.
BY (gitta.lasslop@bgc-jena.mpg.de) EC data contain information about the actual ecosystem flux,
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but a measured quantity is always the sum of the “true” value We carry out the parameter estimation experiments with

and errors. These errors need to be addressed in an adequatmthetic data based on eddy covariance data from two Eu-
way. The measurement errors can be distinguished into rarropean sites and with three models of different complexity,

dom errors, fully systematic errors and selective systemati@ hyperbolic light response curve, a light response curve
errors Moncrieff et al, 1996. Fully systematic errors appear coupled to water fluxes and the SVAT scheme BETHY, a

constantly and arise for instance from inaccurate calibratiorprocess-based model that calculates the GO and en-

or consistently missing high or low frequency components ofergy exchanges of soil, vegetation and atmosphere for the
the cospectrum, while selective systematic errors appear onlierrestrial land surfac&forr and Heimann2001).

during special temporal periods, for instance at night under

unfavorable micrometeorological conditions. The random

error of EC data arises from the measurement instruments2  Methods

the stochastic nature of turbulence and varying footprint (the

area that influences the measurement, it depends primarily on

atmospheric stability and surface roughness). Quantificationrhe first part of the study deals with the characterization of

of the random error is a prerequisite for statistical cOmpar-q random error. We estimate the random error for four dif-
isons between models and data and model-data synthesis s ant sites. Hainich. Loobos. Puechabon and Hiytiusing

it expresses our confidence in the data. The characteristicg,q gapfilling algorithm oReichstein et ak2005. We focus
of the errors play an important role for the parameter estima-

X ya "'%on the statistical properties important for parameter estima-
tion, the error distribution, error cross- and autocorrelationsij,, e 4. variance, distribution, autocorrelation, crosscorre-
orinhomogeneous variance can bias the parameter retrieval jf1ions.” The kurtosis is a measure of peakedness and can
not accounted forfarantola 1987). The study offrudinger e ysed as an indicator for the type of distribution, the ex-
et al. (2007 showed that how data errors and uncertaintieSgegs kyrtosis used here is zero for Gaussian distributions and
are treated in the optimization criterion will have a significant a6 for double exponential distributions. To reveal the in-
impact on the retrieved parameters. Studies using EC data ifyence of errors to parameter estimates we designed 20 syn-
inverse modelling often assume constant error variaRee ( hetic data sets with random errors and 20 synthetic data sets
ichstein et al.2003 Owen et al. 2007 Wang et al, 2007, \\jth systematic errors for each model that are based on EC
use the standard deviation of the model residusiacks  ata from two sites. We optimized model parameters for
et al, 200§ Braswell et al, 2009 or an adhoc fraction of 66 models to match ten periods consisting of 14-day EC
the observationsknorr and Kattge2009. During the last a1 measured at Hainich and Loobos in 2005 from May to
few years approaches for the quantification of random errorseptemper to get a range of reasonable parameter estimates.

of EC data came up, they used paired observations, first Spgyp, 5 timescale of two weeks the model error can be neglected
tially separated measuremertt®o{linger et al, 2009, butas o 5 model like the hyperbolic light response curve, as the

there are only few appropriately distanced towers availableyaia error is dominant, this changes when the timescale is
Hollinger and Richardso(2009 developed a methodology jcreased. The estimated parameters were used to create a

using daily differenced measurements with equivalent envi-.otarence model output. Then we added a random error and

ronmgntgl cpndltlons that allgwed tg characterlge the univari-gystematic error respectively. The random errors were es-
ate distribution for several sitesi¢llinger and Richardsgn

gl timated from the real data in the same way as for the first
2005 Richardson et al200§. However, the auto- and Cross- 4t of the study, the selective systematic error is a fixed per-

correlg_tion of the errors have so far not been systematicall;eentage of the averaged observed night time flux subtracted
quantified and are assumed to be zero. Moreover, the SySom the modelled night time flux. Afterwards the parame-
tematic errors are still under investigation and challengingerg \ere reestimated using different ways to account for data
the scientific communityWilson et al, 2002 Friend etal.  ,ncertainty and error distribution. This strategy offers the
2007). Hence the aim of this study is advantage that the properties of the error are known and the
— to fully analyze the random error of EC water and car- model error is zero, but the dataset is still realistic. Knowing

bon fluxes regarding the properties important for pa- the true properties of the reference data we could compare es-
rameter estimation, i.e. beside the univariate distribu-timated parameters with true parameters and model output to

tion. also autocorrelation and multivariate correlations & feference model output to reveal the influence of the errors.
of CO, and KO fluxes,

.1 Analysis strategy

2.2 Data

— to elucidate the effect of the error model choice on

model parameter estimates and their uncertainties, We used half hourly EC and meteorological data from the

CarboeuropelP database. In the statistical analysis of the
— and to explore how selective systematic errors influencerandom error we included data from four sites: Hainich in
parameter estimates of models describing carbon and@ermany, an unmanaged deciduous broad-leaf beech forest,
water exchange. Loobos in the Netherlands, a planted maritime coniferous
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Fig. 1. Data uncertainty derived from the gapfilling algorithm directly and standard deviation of the gapfilling algorithm residd& for
(a) andLE (b).

forest, Hyyt#la (Finland), an evergreen needleleaf forest andthe flux using data measured under the same meteorological
Puechabon (France), an evergreen broadleaf forest. For theonditions in a time window ot7 days. The small time win-
parameter retrieval experiments we chose two sites, Hainiclilow is necessary to ensure a similar condition of the ecosys-
and Loobos. The data sets were processed using the statem. The residual of the gap filling algorithm can be used
dardized methodology describedRapale et al(2006; Re- as a random error estimate¢ffat et al, 2007, it is compa-
ichstein et al(2005. CO, fluxes are corrected for storage, rable to the paired observations approach usedadltinger

low turbulence conditions are filtered using the criteria  and Richardso(2005, as shown irRichardson et a(2007).

and spikes (outliers) are detected. Subsequently gap fillind-or the parameter estimation an error standard deviation has
and fluxpartitioning is applied. For the parameter estima-to be assigned to each observation. For the parameter esti-
tion only filtered and corrected high quality measurementsmation experiments we compared the different estimates for
are used. the standard deviation of the random error:

2.3 Observation errors 1. constant weights,

2. the standard deviations of the observations with simi-

In this study we assume that the measurement value consists
of the actual value and an additive systematic and random
error

x=F+6§+e, (1)

wheres§ is a systematic error andis a random error. The
commonly used ordinary least squares (OLS) optimization
assumes the random error standard deviation, e.g. the data
uncertainty to be constant (homoscedasticity). A constant
standard deviation, can usually be provided by the manufac-
turer of a measurement device or it can be determined with
simple tests. For flux data the standard deviation of the ran-
dom error is not constant in this case tests need to be per-
formed for varying conditions, quantifying the changes of
the standard deviation. One option is to perform measure-

lar meteorological conditions within a time window of
+7 days is used directly from the gapfilling algorithm
(std),this is equal to the standard deviation of the resid-
uals between observations with similar meteorological
conditions and expected value,

3. the standard deviations of the residuals of the gapfilling

algorithm (res) were obtained grouping the data accord-
ing to the flux magnitude in 30 groups with an equal
number of data points, for each group the standard de-
viation was computed (see Fit). Afterwards the stan-
dard deviation was related to the flux magnitude using
two linear regression lines to allow for a minimum for
net ecosystem exchange of carbbiEE) and one linear
regression line for the latent heatH).

ments close to each other, temporally or spatially, provided For the third method the modeled flux (here the flux de-
that the conditions are the same or very similar, then the acrived from the gapfilling algorithm) has to be used to derive
tual value is equal and the variation is caused by the randonthe dependency of error standard deviation on flux magni-
error. For the flux data meteorological conditions, the statetude, because the relationship between the residuals and mea-
of the vegetation and if spatially seperated the footprint andsured flux is biaseddraper and Smith1981). Furthermore
topography have to be comparable. To get an estimate oAn observation that is accidentally lower is given a higher

the random error we used the gapfilling algorithmRefich-

weight than an overestimated value, which will lead to an un-

stein et al(2005. This tool computes the expected value of derestimation of flux magnitude by the modevéans 2003.

www.biogeosciences.net/5/1311/2008/
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2.4 Parameter estimation 2.5 Evaluation of the parameter estimation performance

The procedure of parameter estimation can be described abhe reestimation of the parameters was evaluated through
varying the parameters until the best fit between model andhe deviation from the original parameter value, the param-
data is found. The fit or misfit between model and data iseter uncertainty and the root mean squared error between
guantified via the costfunction: model output computed with the reestimated parameters and
T ~—1 the reference model output without noise. The uncertaint
I(p) = (xa = xm)" Cy~ (xa = Xm) @ of the parameters deterrr?ined with the Levenberg—Marquargt
x4 represents the data vectat,, the model output vector, algorithm, was derived by bootstrapping=500), which is
C, the error covariance matrix angis the parameter vector.  only based on the empirical sample not on assumptions about
The best parameter set is found at the minimum of the cosprobability theory of the normal distributio\lks, 1995.
function. T denotes that the vector is transposed. For un-As a measure of uncertainty for the parameters we used the
correlated errors the function simplifies, as all off diagonal 959 confidence intervall (=1.96tandard error) of the mean

elements of the matri, are zero, to: of the parameter distribution. When using the Metropolis
N s — xp \2 algorithm the parameter uncertainties can be directly calcu-
Ipy=Y" <—m> (3) lated from the sampling of the MCMC approach. The uncer-
4 o4
i=1 i

tainty reduction when using the Metropolis algorithm was

o4 is the standard deviation of the random erraksthe  computed as -4 PSS Uity

number of data points. In this study we use synthetic data The main difference between bootstrapping and MCMC
based on a model output, therefore the model error is zerdies in how they derive the uncertainty. Bootstrapping
To consider the uncertainty of flux measurements is necesehanges the data, e.g. drawing subsamples from the data, and
sary if the errors are hetereoscedastic, e.g. error variancases the changes in the parameters to derive the uncertainty
(=squared standard deviation) increases with increasing fluxhile MCMC changes the parameters and uses the model-
magnitude, or if different data sources are used. From aneata mismatch to derive the parameter distribution.

other point of view this means that data with high uncer-

tainty (high error variance) get a lower weight than data with2.6  Models

low uncertainty (low error variance). For constant error vari- o

ance the Eq. (3) simplifies to the OLS method summing up2-6-1 Hyperbolic light response curve

only the squared distances. Given a double exponential dis- .
tribution as proposed byfollinger and Richardso2005 The Hyperbolic light response curve (HLRC) computes net

and Richardson et al(2006, parameter estimation should ecosystem exchange of GINEE) depending on global ra-

be based on the sum of absolute deviations rather than oﬂ'at'on (Rg. incoming shortwave radiation):
squares. To find the minimum of the costfunction we used a-B-R,
the Levenberg-Marquardt algorithm implemented in the dataNEE= Ta Rt f
analysis package “PV-WAVE 8.5 advantag®tqual Numer- 8
ics, 2009 for the simple models. For the complex BETHY « is an approximation of the canopy light utilization effi-
model a Bayesian approach was used to determine the a posiency, 8 is GPP (Gross primary production) at light satu-
teriori probability density function (PDF) of parameters in- ration andy is the ecosystem respiration. InsteadRpfpho-
cluding prior information and the Metropolis Markov Chain tosynthetic active radiation (PAR) or photosynthetic photon
Monte Carlo (MCMC) technique was used to sample theflux density (ppfd) is often used, they are closely related to
PDF of parameters, which was then characterised by meaig, but not measured at all EC sites. UsiRg instead of
and 95% confidence intervallijorr and Kattge 2005. PAR or ppfd changes only the value @f as PPFD is ap-
The Optimisation Intercomparison dfudinger et al(2007) proximately twice theR,.

compared different algorithms, including the two used here,

for the optimisation of a simple coupled model. The opti- 2.6.2 Water use efficiency model

misation algorithms were found to be comparable with re-__ )
To increase the complexity of the model we coupNEE

spect to the parameter retrival. We used the MCMC for the

complex model with more parameters, since the cost func-W'th the latent energyLE) using the HLRC and connect-

tion for the optimization of complex models is more likely N9 it t0 LE via the water use efficiencyh(UE), which is

to show multiple local minima. For the same reason prior in- € ratio of gross primary production and latent heat. The
formation about the parameters was included for the BETHYWUE times water vapour deficityUEVPD) is considered
model. The LM is suitable for simpler models, as the shapeconstant Beer et al, 2007). UsingVPD as additional driver

of the cost function does not show many local minima andNEEandLE can be connected as follows:

is then, in spite of the bootstrapping, computationally much a-B-Rg

more effective. NEE= Ta R+ B +vy (5)

+y 4)

Biogeosciences, 5, 1311324 2008 www.biogeosciences.net/5/1311/2008/
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VPD

LE=(y —NEB - ——— .
(” B WUEVPD

(6) 3 Results and discussion

3.1 Statistical properties of the error estimates

This model is inverted againStEE andLE. To make sure,

that theLE and NEE misfits contribute to a similar extend 3.1.1 Heteroscedasticity

to the cost function when using constant weights, as it is the

case when using the data derived estimates of the error starde standard deviation of the error has been derived from
dard deviation are used, we scaled the residuals with conthe residuals of the gapfilling model, e.g. standard deviation
stants ¢ folNEE andLE, respectively. These constants are Of the residuals depending on the flux magnitude (res), and
defined such that the sum of the weighted synthetic error i¢/Sing the standard deviation of the gapfilling algorithm di-

the same when using the constant and using the std weight&ectly (std). Figurel shows the relationship between flux
for bothNEE andLE: magnitude and error standard deviationN&E andLE. The

standard deviation is not homogeneous, e.g. the errors are
heteroscedastic and increase with increasing flux magnitude.
1 error Thus the residuals have to be weighted with the reciprocal of
- > _error=_ std (7)  the standard deviation of the random errors as already sug-
gested by previous studieRi¢hardson et gl.200§. The
magnitude of the error variance is similar for the two meth-
c denotes the constant weight, the same weight is used for thgds of deriving the error variance described in the previous
inversion of the BETHY model. In Eq7f “error”is the er-  section, see Figl, for res the observations needed to be
ror estimated from real data, that was added to the synthetigrouped to derive the standard deviation. The res standard
data. deviation forNEE ranges from 1 to 5, foLE from 5 to 40.
The model underestimatés, but as we use the model out- jith the std method the ranges are wider because the data
put as reference, by design of the study the model errors argere not grouped. FAXEE the standard deviation lies be-
not important. Conclusions about the influence of the dataween 0.5 and 9.5, fotE between 2.8 and 85. For eddy
error on model parameterisation are not affected. We usedovariance data it is known, that the error variance increases
this model to show, that the results derived with the simplewith increasing flux magnitudeRichardson and Hollinger
model hold for models of various complexities and to me- (2005 showed that the error standard deviatiolN&E, not
diate between the very simple HLRC and the quite complexihe error itself, not only scales with flux magnitude, but that
SVAT scheme of BETHY. wind speed also has a fundamental effect on the uncertainty.
Thus not the whole variability of the standard deviation can
be reproduced when only the flux magnitude is used. An-
other source for the higher scatter of the std results is the un-
certainty in the estimation of the standard deviations derived
BETHY is a process-based model of the coupled photosyndirectly (std).
thesis and energy balance system to simulate the exchange
of COp, water and energy between soil, plant canopy and at3.1.2 Distribution
mosphereKnorr and Heimann200J). It computes absorp-
tion of PAR in three layers, while the canopy air space isPrevious studiesRichardson and Hollinge2005 showed,
treated as a single, well mixed air mass with a single temperthat the error distribution df EEis rather double exponential
ature. Evapotranspiration and sensible heat fluxes are calctaplace) than normal and this is also found for the data used
lated from the Penman-Monteith equatidndnteith, 1965. here (see Fig2e, f). ForLE the distribution is even more
Carbon uptake is computed with the modeHarquhar etal.  peaked than the double exponential distribution. The normal
(1980 for C3. The stomata and canopy model Kxfiorr distribution is characterized by the mean and the standard de-
(2000 simulates canopy conductance in response to PARyiation. As error standard deviation increases with increasing
VPD and soil water availability. In the version of BETHY flux magnitude the distribution of all error estimates is a su-
applied here, autotrophic respiration is calculated as a temperposition of normal distributions with varying standard de-
perature modulated fraction of photosynthetic capacity whileviation. If we group the data according to the flux magnitude,
heterotrophic respiration is based on a basal respiration modwe find Gaussian distributions for high flux magnitudes (see
ulated by soil water availability and air temperature. The in- Fig. 2a, b, exemplary for the Hainich site), adding more data
version set up was the same aKinorr and Kattgg2005), to the distribution plot, we find a rather double exponential
inverting all 21 parameters simultaneously. The prior uncer-distribution (see Fig2c—f). Another possibility to show the
tainties of the parameters were set to 20% of the prior pa-Gaussian distribution is shown in Figg, h , we normalized
rameter value. For the synthetic datasets the prior parametéhe errors with the standard deviation derived with the gap-
were the parameters used to generate the data. filling algorithm (std) this transforms all error distributions

2.6.3 BETHY

www.biogeosciences.net/5/1311/2008/ Biogeosciences, 5, 13242008
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normalized NEE error

normalized LE error

Fig. 2. Distributions ofNEE (left) andLE (right) error estimated with the gapfilling algorithrta), (b): error of high flux magnitudegg),
(d): error of high and medium flux magnitude), (f): all error estimategg), (h): errors estimated with gapfilling algorithm and normalized
with std, data: Hainich May—September 2005.
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Fig. 4. Boxplots with median, upper and lower quartile, minimum and maximum or outliers (points) for the excess kurtosis of the 10 two
week periods from May to September 2005 for errors (orig) and normalized errors (nokBE(R) andLE (b).

to a standard deviation of unity. FBlEE the normalized er-  tosis is in general below the kurtosis for double exponential
rors are slightly closer to a normal distribution than Ed. distributions, but some outliers indicate a much stronger peak
Thus the double exponential distribution is largely due to a(excess kurtosis=5.5). FaE the kurtosis decreases also for
superposition of Gaussian distributions and the least squargdAl, LOO and PUE. For HYY the kurtosis increases after
criteria can be used for the eddy covariance data shown her@ormalization. The kurtosis shows a high sensibility to out-
Figure 3 shows the distribution of errors from the four dif- liers, but also to the rule of the detection of outliers, exclud-
ferent sites. The normalization &fEE resulted in a rather ing outliers will always decrease the kurtosis. As the outliers
Gaussian distribution, folE the distribution is in between are important for the characterisation of the distribution and
Gaussian and Laplace distribution and is slightly skewedthe data is already prefiltered (spike detection according to
This indicates, that the distribution of the error varies from Papale et al., 2006) we did not exclude them. For errors of
site to site or that the error estimation does not perform wellfluxes with high magnitude, normal distribution is still found
for all sites. One indicator for the peakedness of the distri-(excess kurtosis 0.3) and seems to be valid across sites. Over-
bution is the excess kurtosis (=kurtosis-3), it is zero for aall, we conclude that random error characteristics should be
normal distribution and 3 for a double exponential distribu- considered on a site-by-site basis. When comparing different
tion, a high kurtosis indicates a strong peak. Figtishows  studies and different sites regarding their error distribution, a
the kurtosis for ten two week periods for the four sites. Forcareful documentation of the influence and the treatment of
NEE the normalization of the errors decreases the kurtosiutliers is strongly recommended.

and changes the distribution to a less peaked shape. The kur-

www.biogeosciences.net/5/1311/2008/ Biogeosciences, 5, 13242008
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3.1.3 Correlation lower. To make sure that error autocorrelation does not
influence the parameter estimation one could prefer to use
Autocorrelation only every second or third value for the parameter estimation.

Figure 5 shows the autocorrelation function of the ran- Crosscorrelation

dom errors for the four eddy sites. The behaviour of the

function is similar for all sites, the autocorrelation decays R° values for the crosscorrelation betweEE and

fast, after 10h there is no considerable change in the-E errors of the four sites and ten data periods for each
correlation. Figures shows boxplots for the autocorrelation Site are summarized in Table In our study the corre-

for a lag of 30min, it is usually below 0.7, with one lation betweenNEE and LE errors is close to zero, thus
exception for Puechabon (082) HWH’ shows the h|ghest the correlation betweetNEE and LE errors is of minor
autocorrelation forLE and NEE, Loobos the lowest for importance and does not need to be considered in the error
NEE and Hainich the lowest fdtE. Although the gapfilling ~ covariance matrix. The highe&? was 0.24 for one period
algorithm provides a reasonable estimate for the randonfor Puechabon, for the same period the outlier of Lie
error, the autocorrelation could partly be an artefact of theautocorrelation for a lag of 30 min was found (see Bjg.
algorithm, if the deviation from the statistical expectation The measurements &fEE andLE are both based on the
value was not caused by a random error the followingvertical wind velocity and errors introduced via the wind ve-
and previous value would deviate in a similar way and locity measurement, such as errors due to turbulence sam-
the actual autocorrelation of the random error would bepling must show up as a correlation betwe¢BE and LE
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Fig. 7. Time series of normalized parameters (estimated/true) based on data from Loobos with a random error for the HLRC (left) and the
WUE model.

Table 1. Crosscorrelation betweetEE andLE errors for ten two week periods between March and September 2005.

R2 of NEEandLE errors

Data 1- 16.— 1- 16— 1.- 16— 1.- 16.— 1- 16.—
period 155. 315. 156. 30.6. 15.7. 317. 158. 318 159. 30.9.
HAI 0.089 0.004 0.176 0.192 0.088 0.136 0.202 0.007 0.077 0.097
LOO 0.004 0.029 0.059 0.086 0.031 0.000 0.004 0.024 0.030 0.010
HYY 0.197 0.033 0.139 0.128 0.021 0.012 0.023 0.049 0.000 0.003
PUE 0.093 0.244 0.038 0.033 0.068 0.003 0.012 0.018 0.019 0.031

errors. This indicates that the variation in the measured fluxeso weight the data for the parameter estimation to account for
under similar meteorological conditions (i.e. the flux errors) the non constant error standard deviation. The standard devi-
seems to be rather caused by changes in concentrations afion of the errors was estimated as the standard deviation of
water and CQthan by the measurement of the vertical wind the observations measured under similar meterological con-
velocity. As auto- and crosscorrelation are low, the gener-ditions (std) and as the standard deviation of the gapfilling
alized least squares method (E).can be simplified to the algorithm residuals related to the modelled flux magnitude
weighted least squares method (Bppy setting off-diagonal  (res), see Figl. The results of the parameter retrieval ex-

elements in the error covariance matrix to zero. periments (Fig7) show, as expected, that the random error
introduces no systematic error to the parameter estimates and
3.2 Parameter retrieval the true parameters are usually within the parameter uncer-

tainty (95% confidence interval) derived from bootstrapping.
The mean of the parameter ratios is not significantly differ-
ent from unity ¢=0.05). The mean uncertainty of the pa-

The parameters were estimated for three models of dlﬁerrameters using a non constant estimate for the error stan-

ent complexities, the synthetic data is based on data fron‘ghard dewat;]on as weight is betweerr: 10 and 24]% lower for
two different sites (Loobos and Hainich). We are compar- the HLRC than using constant weights (see Taldue to

ing constant weights with two ways of estimating the stan- the stochastic nature of the procedure, these results are true
dard deviation of the observation errors. which is then useJorthe mean results but there exist data periods for both sites

3.2.1 Ordinary least squares vs. weighted least squares
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Table 2. Mean of retrieved normalized parameters and the mean uncertainty for the ten two week periods for the HLRC.

Loobos 2005

mean normalized parameter mean 95% confidence interval
Least squares minimization

weights  « B y o B y rmse
constant 0.978 0.993 0.961 0.187 0.133 0.102 0.265
std 1.016 0.975 0.967 0.157 0.101 0.091 0.228
res 1.034 0.970 0.998 0.198 0.119 0.115 0.332
Absolute deviations minimization
constant 0.951 0.991 0.935 0.174 0.145 0.099 0.425
std 0.972 0.976 0.938 0.172 0.133 0.096 0.388
Hainich 2005
Least squares minimization
constant 0.983 1.001 0.969 0.173 0.087 0.096 0.231
std 1.048 0.984 0.990 0.149 0.071 0.084 0.218
res 1.046 0.981 0.988 0.176 0.080 0.089 0.239
Absolute deviations minimization
constant 1.049 0.977 0.981 0.101 0.199 0.107 0.300
std 1.062 0.972 0.986 0.096 0.192 0.103 0.341

Table 3. Mean of retrieved normalized parameters and the mean uncertainty for the ten two week periodS\folEheodel using last
squares minimization.

Loobos 2005

mean normalized parameter mean 95% confidence interval
weights  « B y wuevpd o B y wuevpd rmse
const 0.974 1.003 0.964 0.980 0.249 0.149 0.111 0.058 1.243
std 1.043 0.963 0.973 0.987 0.140 0.088 0.085 0.050 0.930
res 1.032 0.958 0.975 0.973 0.148 0.096 0.090 0.054 1.238

Hainich 2005

mean normalized parameter mean 95% confidence interval
weights  « B y wuevpd o B y wuevpd rmse
const 1.027 0.987 0.986 0.960 0.300 0.135 0.166 0.051 2.926
std 1.049 0.978 0.984 0.978 0.121 0.081 0.092 0.043 1.924
res 1.061 0.964 0.986 0.952 0.143 0.090 0.098 0.045 3.330

in which the results are opposite. The std weights decreaswhile res increases the value (see Table For simplicity

the mean uncertainty more than res and therefore describ&e focus on the comparison between constant weights and
the error standard deviation better. The root mean squarestd, since std gave the best results. For the inversion of the
error (rmse) between reference model output without noisBETHY model the distance between retrieved and true pa-
and the model output using the reestimated parameters carameters can be decreased using std compared to the constant
be decreased using std as weights for the HLRC, for res itveights (see Tabld). The influence of using varying data
increases. This indicates, that the “std” is a more accurateincertainty compared to constant data uncertainty with the
estimate for the data uncertainty and that a description of thdVICMC algorithm is less pronounced as the absolute value
data uncertainty only based on flux magnitude, as “res”, isof the data uncertainty is more important than the relative
likely not sufficient. For the water use efficiency model the changes. Nevertheless the reduction of uncertainty for pa-
results of the model parameterization are similar, estimatesameters is higher when using “std” and the rmse between
of parameter uncertainty decrease between 5% and 60% anéference and model output is decreased. Another advan-
the RMSE between reference model output and model outputage of weighting the data showed up during the initial fit to
of the reestimated parameters is decreased when using stkal data for the creation of the reference model output, the

Biogeosciences, 5, 1311324 2008 www.biogeosciences.net/5/1311/2008/



G. Lasslop et al.: Influences of observation errors on parameter estimation 1321

o [04
(@) —— © 10% - 20% 40% F(b)1:ﬁ{: 10% + 20% 40% |

1 es LI T T e N
— e e e ® e e e e e e Q
g - = = - = = - - = - Q_m 0.8
o 08 - I I L L
May June Jul Aug Sept Oct
0.6 . . . . B
May June Jul Aug Sept Oct . . . .
B ‘l_cf T = % % &% % % %
; o® 0.8
1 Le= & M. & o = =4 & I L I L
T May June Jul Aug Sept Oct
o 0.8t 1 Y
~— 1 '
0.6 . . . ! ‘g e & e e o e e
May June Jul Aug Sept Oct Z‘” 0 8*9' * % 0% % SO OF S5
v May June Jul Aug Sept Oct
1 ‘ ‘ WUE_VPD
T e ) e e e e L} e e e ' '
osl= = = T = = = = = .| T T 5 = = = = = =
o® 0.8
0.6 : : ‘ . s ‘ ! ,
May June Jul Aug Sept Oct May June Jul Aug Sept Oct

Fig. 8. Time series of normalized parameters (estimated/true) based on data from Loobos with a selective systematic nighttime error for the
HLRC (a) and theWUE model(b).

parameters estimated with std weights resulted in reasonabl.?able 4. Sum of the uncertainty reduction, summed absolute devi-

parameters, whereas using constant weights for some perigion of the parameter ratio from 1 and mean rmse between model
ods negative values fer were estimated for the HLRC and  output and reference output for the BETHY model.

water use efficiency model (not shown). The random error
changes the shape of the cost function, it can increase the
number of local minima or the minimization can become an
ill-posed problem. Using weights representing the data un- _ ~ const  std const  std
certainty seems to improve the behaviour of the cost function ~ uncertainty reduction  50.93  52.31  47.19  50.08
and improves the extraction of information inherent to the fg;aemeterdev'at'on 41141'83 31137'30 4%93;16 322'49
data. This shows that the standard deviation provided by the i i ' '
gapfilling algorithm is a good measure for the eddy covari-

ance data uncertainty, it improves the parameter retrieval and

therefore model performance after optimization, at least for?ﬁeCt to parameter estimation. Comparing the parameter ra-

the sites used here. For skewed error distributions we wouldi® 29ain shows no significant difference between the meth-
expect the parameter estimates to be biased. ods. For our sites, the parameter uncertainty increases using

To explore the power of the Bayesian approach an inter-2bsolute deviations compared to the ordinary least squares
esting alternative way to cope with data uncertainties would™ethod (see Tabl@). - The rmse increases compared to
be to include a relationship for the data uncertainty in thetN® OLS using constant weights and for the weighted least
Likelihood function. The uncertainty could be representedSduares. Since by normalizing the errors with the standard
by a linear dependency and the parameters of the relationd€viation we get a Gaussian distribution for our selected sites
ship could be estimated in addition to the model parametersin€ absolute deviation minimization cannot improve the pa-
However, since with eddy covariance data one can providd@Meter retrieval. If the errors show a double exponential
information about the random error in the data independenP'Str'bUt'on as a result of the superposition of different Gaus-
of the optimization, we expect our method to be more robust Sian distributions, then least squares optimization should be

site Loobos Hainich

e.g. independent of model errors. applied. If the error distribution is more peaked due to out-
liers or a different data filtering, robust methods like the min-
3.2.2 Least squares vs. absolute deviations imization of absolute deviations or robust regression tech-

nigues, which exclude outliers, may be advantageous. Test-
As the use of absolute deviations in the cost function wasing whether the normalized error distribution is Gaussian
suggested previously bRichardson et al(200§ we com-  could support the choice of the cost function.
pare least squares and absolute deviations, to illustrate the
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3.2.3 Systematic error data point for parameter estimation if there is enough data
available. As a reason for the low but significant autocorre-

Figure 8 shows the results of the parameter retrieval basedation of errors we can not exclude artefacts of the gap filling

on data with a selective systematic nighttime error of 10, 20tool. The crosscorrelation betweef andNEE is low and

and 40%. Thex and y parameters of the HLRC show a ¢an be neglected. The assumption for ordinary least squares

systematic bias, estimated parameters underestimate the uthat is not met is the constant error standard deviation, thus

: o ; he ordinary least squares method needs to be extended to
derlying true parameter. The bias is stronger for higher Olata\{Neighted least squares, using the reciprocal of the standard

error. Eorﬂ the parameter bias seems o be not systematicye.iation as weight in the costfunction. We propose a mea-
the retrieved parameter is for some periods lower, for SOMe e for data uncertainty, e.g. the standard deviation of the
periods higher than the original parametgiis GPP atlight  y31yes used to compute the expected value, that can be used
saturation, asNEE at light saturation does not change but to weight the data in the costfunction. Weighting the data
only the night time data point, representing the respiration,decreases the parameter uncertainty and the parameter re-
is lower g8 should also be lower to sum up to the saNteE  trieval is improved. We showed that this result holds true
values during daytime. The effect gnseems to be too low for a wide range of model complexities. We show that the
to show up in the comparably high valuesffFor the water !mpact of systematic errors \{aries by pgrameter, but the bias
use efficiency model all parameters are biased, all estimatel§ Systematic, therefore the interpretation of parameters de-

are lower than the true values. Through the interconnectiorflVe€d from data with systematic errors might be misleading.
of GPP and_E and the use of water and G@uxes to con- The parameter uncertainty slightly increases when a system-

strain the parameters the distance to the true value decreasatiC error is added, but the true parameter is not within the
P . ) _ ﬁﬁcertainty range of the estimate. Not considered here but of
for all parameters. This illustrates the potential of using mul-

: : ) h ) similar importance is the model error, which was set to zero

tiple constraints forllnyers.,e model parameter estimation. Theyy using the model output as basis for the synthetic data. For
parameter uncertainties increase the higher the error but thghe |east squares optimization the model output random er-
real value of the parameter is not within the uncertainty rangeror is additive to the data random error and depending on the
of the estimated parameter. This means, that the real uncepoint of view part of the data random error can also be seen
tainty of the parameter is underestimated, projection of theas model errors, e.g. footprint heterogeneity. Model struc-

parameter uncertainty to model output will result in uncer- tural problems can also affect parameter estimation in a sim-
tainties for the fluxes that are too low. To get the real uncer-lar way as systematic data errors, i.e. dynamics in the data
tainty for parameters and fluxes further knowledge about théNat are not represented or not sufficiently represented in the
systematic errors is needed and methods need to be deve[podelstructure can lead to parameters with biases, which are

) ; L “~ "ot reflected in their uncertainty estimat&a(valhais et aJ.
oped to incorporate them into the estimation of uncertalnty,zooa_ Hence we conclude that potential systematic errors
if the systematic errors cannot be removed.

in flux data or models need to be addressed more thoroughly
in data assimilation approaches since otherwise uncertainties

) will be vastly underestimated.
4 Conclusions

Previous work to quantify the random error structure of

eddy covariance datélbllinger et al, 2004 Richardson and
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