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Abstract. Eddy covariance data are increasingly used to es-
timate parameters of ecosystem models. For proper max-
imum likelihood parameter estimates the error structure in
the observed data has to be fully characterized. In this study
we propose a method to characterize the random error of
the eddy covariance flux data, and analyse error distribu-
tion, standard deviation, cross- and autocorrelation of CO2
and H2O flux errors at four different European eddy covari-
ance flux sites. Moreover, we examine how the treatment of
those errors and additional systematic errors influence statis-
tical estimates of parameters and their associated uncertain-
ties with three models of increasing complexity – a hyper-
bolic light response curve, a light response curve coupled to
water fluxes and the SVAT scheme BETHY. In agreement
with previous studies we find that the error standard devi-
ation scales with the flux magnitude. The previously found
strongly leptokurtic error distribution is revealed to be largely
due to a superposition of almost Gaussian distributions with
standard deviations varying by flux magnitude. The crosscor-
relations of CO2 and H2O fluxes were in all cases negligible
(R2 below 0.2), while the autocorrelation is usually below
0.6 at a lag of 0.5 h and decays rapidly at larger time lags.
This implies that in these cases the weighted least squares
criterion yields maximum likelihood estimates. To study the
influence of the observation errors on model parameter esti-
mates we used synthetic datasets, based on observations of
two different sites. We first fitted the respective models to
observations and then added the random error estimates de-
scribed above and the systematic error, respectively, to the
model output. This strategy enables us to compare the es-
timated parameters with true parameters. We illustrate that
the correct implementation of the random error standard de-
viation scaling with flux magnitude significantly reduces the
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parameter uncertainty and often yields parameter retrievals
that are closer to the true value, than by using ordinary least
squares. The systematic error leads to systematically biased
parameter estimates, but its impact varies by parameter. The
parameter uncertainty slightly increases, but the true param-
eter is not within the uncertainty range of the estimate. This
means that the uncertainty is underestimated with current ap-
proaches that neglect selective systematic errors in flux data.
Hence, we conclude that potential systematic errors in flux
data need to be addressed more thoroughly in data assimila-
tion approaches since otherwise uncertainties will be vastly
underestimated.

1 Introduction

The availability of carbon dioxide and water vapour flux
measurements between ecosystems and the atmosphere
around the world offers various opportunities to improve our
knowledge about processes connected with the global car-
bon cycle (Friend et al., 2007; Baldocchi et al., 2001). The
interplay of models and data gives us insights into the per-
formance of models, our level of understanding the system,
but also into the quality of data and the information content
therein about the processes represented in the model. Clas-
sically, parameters were often derived from experiments at
leaf or plant scale or from expert judgement. If nonlinear re-
lationships are involved the parameters are scale-dependent
and cannot be easily transferred to but also not observed on
larger scales. An alternative option to obtain parameter esti-
mates is the inversion of models against data. In this case a
cost function describing the misfit between model output and
observations is minimized by varying the parameters. The in-
version of models against Eddy-Covariance (EC) data leads
to parameter estimates at ecosystem scale, our scale of inter-
est, thus EC data are increasingly used for model inversions.
EC data contain information about the actual ecosystem flux,
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but a measured quantity is always the sum of the “true” value
and errors. These errors need to be addressed in an adequate
way. The measurement errors can be distinguished into ran-
dom errors, fully systematic errors and selective systematic
errors (Moncrieff et al., 1996). Fully systematic errors appear
constantly and arise for instance from inaccurate calibration
or consistently missing high or low frequency components of
the cospectrum, while selective systematic errors appear only
during special temporal periods, for instance at night under
unfavorable micrometeorological conditions. The random
error of EC data arises from the measurement instruments,
the stochastic nature of turbulence and varying footprint (the
area that influences the measurement, it depends primarily on
atmospheric stability and surface roughness). Quantification
of the random error is a prerequisite for statistical compar-
isons between models and data and model-data synthesis as
it expresses our confidence in the data. The characteristics
of the errors play an important role for the parameter estima-
tion, the error distribution, error cross- and autocorrelations
or inhomogeneous variance can bias the parameter retrieval if
not accounted for (Tarantola, 1987). The study ofTrudinger
et al. (2007) showed that how data errors and uncertainties
are treated in the optimization criterion will have a significant
impact on the retrieved parameters. Studies using EC data in
inverse modelling often assume constant error variance (Re-
ichstein et al., 2003; Owen et al., 2007; Wang et al., 2007),
use the standard deviation of the model residuals (Sacks
et al., 2006; Braswell et al., 2005) or an adhoc fraction of
the observations (Knorr and Kattge, 2005). During the last
few years approaches for the quantification of random errors
of EC data came up, they used paired observations, first spa-
tially separated measurements (Hollinger et al., 2004), but as
there are only few appropriately distanced towers available,
Hollinger and Richardson(2005) developed a methodology
using daily differenced measurements with equivalent envi-
ronmental conditions that allowed to characterize the univari-
ate distribution for several sites (Hollinger and Richardson,
2005; Richardson et al., 2006). However, the auto- and cross-
correlation of the errors have so far not been systematically
quantified and are assumed to be zero. Moreover, the sys-
tematic errors are still under investigation and challenging
the scientific community (Wilson et al., 2002; Friend et al.,
2007). Hence the aim of this study is

– to fully analyze the random error of EC water and car-
bon fluxes regarding the properties important for pa-
rameter estimation, i.e. beside the univariate distribu-
tion, also autocorrelation and multivariate correlations
of CO2 and H2O fluxes,

– to elucidate the effect of the error model choice on
model parameter estimates and their uncertainties,

– and to explore how selective systematic errors influence
parameter estimates of models describing carbon and
water exchange.

We carry out the parameter estimation experiments with
synthetic data based on eddy covariance data from two Eu-
ropean sites and with three models of different complexity,
a hyperbolic light response curve, a light response curve
coupled to water fluxes and the SVAT scheme BETHY, a
process-based model that calculates the CO2, H2O and en-
ergy exchanges of soil, vegetation and atmosphere for the
terrestrial land surface (Knorr and Heimann, 2001).

2 Methods

2.1 Analysis strategy

The first part of the study deals with the characterization of
the random error. We estimate the random error for four dif-
ferent sites, Hainich, Loobos, Puechabon and Hyytiälä, using
the gapfilling algorithm ofReichstein et al.(2005). We focus
on the statistical properties important for parameter estima-
tion, e.g. variance, distribution, autocorrelation, crosscorre-
lations. The kurtosis is a measure of peakedness and can
be used as an indicator for the type of distribution, the ex-
cess kurtosis used here is zero for Gaussian distributions and
three for double exponential distributions. To reveal the in-
fluence of errors to parameter estimates we designed 20 syn-
thetic data sets with random errors and 20 synthetic data sets
with systematic errors for each model that are based on EC
data from two sites. We optimized model parameters for
three models to match ten periods consisting of 14-day EC
data measured at Hainich and Loobos in 2005 from May to
September to get a range of reasonable parameter estimates.
On a timescale of two weeks the model error can be neglected
for a model like the hyperbolic light response curve, as the
data error is dominant, this changes when the timescale is
increased. The estimated parameters were used to create a
reference model output. Then we added a random error and
systematic error respectively. The random errors were es-
timated from the real data in the same way as for the first
part of the study, the selective systematic error is a fixed per-
centage of the averaged observed night time flux subtracted
from the modelled night time flux. Afterwards the parame-
ters were reestimated using different ways to account for data
uncertainty and error distribution. This strategy offers the
advantage that the properties of the error are known and the
model error is zero, but the dataset is still realistic. Knowing
the true properties of the reference data we could compare es-
timated parameters with true parameters and model output to
a reference model output to reveal the influence of the errors.

2.2 Data

We used half hourly EC and meteorological data from the
CarboeuropeIP database. In the statistical analysis of the
random error we included data from four sites: Hainich in
Germany, an unmanaged deciduous broad-leaf beech forest,
Loobos in the Netherlands, a planted maritime coniferous
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Fig. 1. Data uncertainty derived from the gapfilling algorithm directly and standard deviation of the gapfilling algorithm residuals for NEE
(a) and LE (b).
Fig. 1. Data uncertainty derived from the gapfilling algorithm directly and standard deviation of the gapfilling algorithm residuals forNEE
(a) andLE (b).

forest, Hyytïalä (Finland), an evergreen needleleaf forest and
Puechabon (France), an evergreen broadleaf forest. For the
parameter retrieval experiments we chose two sites, Hainich
and Loobos. The data sets were processed using the stan-
dardized methodology described inPapale et al.(2006); Re-
ichstein et al.(2005). CO2 fluxes are corrected for storage,
low turbulence conditions are filtered using theu∗ criteria
and spikes (outliers) are detected. Subsequently gap filling
and fluxpartitioning is applied. For the parameter estima-
tion only filtered and corrected high quality measurements
are used.

2.3 Observation errors

In this study we assume that the measurement value consists
of the actual value and an additive systematic and random
error

x = F + δ + ε, (1)

whereδ is a systematic error andε is a random error. The
commonly used ordinary least squares (OLS) optimization
assumes the random error standard deviation, e.g. the data
uncertainty to be constant (homoscedasticity). A constant
standard deviation, can usually be provided by the manufac-
turer of a measurement device or it can be determined with
simple tests. For flux data the standard deviation of the ran-
dom error is not constant in this case tests need to be per-
formed for varying conditions, quantifying the changes of
the standard deviation. One option is to perform measure-
ments close to each other, temporally or spatially, provided
that the conditions are the same or very similar, then the ac-
tual value is equal and the variation is caused by the random
error. For the flux data meteorological conditions, the state
of the vegetation and if spatially seperated the footprint and
topography have to be comparable. To get an estimate of
the random error we used the gapfilling algorithm ofReich-
stein et al.(2005). This tool computes the expected value of

the flux using data measured under the same meteorological
conditions in a time window of±7 days. The small time win-
dow is necessary to ensure a similar condition of the ecosys-
tem. The residual of the gap filling algorithm can be used
as a random error estimate (Moffat et al., 2007), it is compa-
rable to the paired observations approach used inHollinger
and Richardson(2005), as shown inRichardson et al.(2007).
For the parameter estimation an error standard deviation has
to be assigned to each observation. For the parameter esti-
mation experiments we compared the different estimates for
the standard deviation of the random error:

1. constant weights,

2. the standard deviations of the observations with simi-
lar meteorological conditions within a time window of
±7 days is used directly from the gapfilling algorithm
(std),this is equal to the standard deviation of the resid-
uals between observations with similar meteorological
conditions and expected value,

3. the standard deviations of the residuals of the gapfilling
algorithm (res) were obtained grouping the data accord-
ing to the flux magnitude in 30 groups with an equal
number of data points, for each group the standard de-
viation was computed (see Fig.1). Afterwards the stan-
dard deviation was related to the flux magnitude using
two linear regression lines to allow for a minimum for
net ecosystem exchange of carbon (NEE) and one linear
regression line for the latent heat (LE).

For the third method the modeled flux (here the flux de-
rived from the gapfilling algorithm) has to be used to derive
the dependency of error standard deviation on flux magni-
tude, because the relationship between the residuals and mea-
sured flux is biased (Draper and Smith, 1981). Furthermore
an observation that is accidentally lower is given a higher
weight than an overestimated value, which will lead to an un-
derestimation of flux magnitude by the model (Evans, 2003).
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2.4 Parameter estimation

The procedure of parameter estimation can be described as
varying the parameters until the best fit between model and
data is found. The fit or misfit between model and data is
quantified via the costfunction:

J (p) = (xd − xm)T C−1
d (xd − xm) (2)

xd represents the data vector,xm the model output vector,
Cd the error covariance matrix andp is the parameter vector.
The best parameter set is found at the minimum of the cost
function. T denotes that the vector is transposed. For un-
correlated errors the function simplifies, as all off diagonal
elements of the matrixCd are zero, to:

J (p) =

N∑
i=1

(
xdi

− xmi

σdi

)2

(3)

σd is the standard deviation of the random errors,N the
number of data points. In this study we use synthetic data
based on a model output, therefore the model error is zero.
To consider the uncertainty of flux measurements is neces-
sary if the errors are hetereoscedastic, e.g. error variance
(=squared standard deviation) increases with increasing flux
magnitude, or if different data sources are used. From an-
other point of view this means that data with high uncer-
tainty (high error variance) get a lower weight than data with
low uncertainty (low error variance). For constant error vari-
ance the Eq. (3) simplifies to the OLS method summing up
only the squared distances. Given a double exponential dis-
tribution as proposed byHollinger and Richardson(2005)
and Richardson et al.(2006), parameter estimation should
be based on the sum of absolute deviations rather than on
squares. To find the minimum of the costfunction we used
the Levenberg-Marquardt algorithm implemented in the data
analysis package “PV-WAVE 8.5 advantage” (Visual Numer-
ics, 2005) for the simple models. For the complex BETHY
model a Bayesian approach was used to determine the a pos-
teriori probability density function (PDF) of parameters in-
cluding prior information and the Metropolis Markov Chain
Monte Carlo (MCMC) technique was used to sample the
PDF of parameters, which was then characterised by mean
and 95% confidence intervalls (Knorr and Kattge, 2005).
The Optimisation Intercomparison ofTrudinger et al.(2007)
compared different algorithms, including the two used here,
for the optimisation of a simple coupled model. The opti-
misation algorithms were found to be comparable with re-
spect to the parameter retrival. We used the MCMC for the
complex model with more parameters, since the cost func-
tion for the optimization of complex models is more likely
to show multiple local minima. For the same reason prior in-
formation about the parameters was included for the BETHY
model. The LM is suitable for simpler models, as the shape
of the cost function does not show many local minima and
is then, in spite of the bootstrapping, computationally much
more effective.

2.5 Evaluation of the parameter estimation performance

The reestimation of the parameters was evaluated through
the deviation from the original parameter value, the param-
eter uncertainty and the root mean squared error between
model output computed with the reestimated parameters and
the reference model output without noise. The uncertainty
of the parameters determined with the Levenberg-Marquardt
algorithm, was derived by bootstrapping (n=500), which is
only based on the empirical sample not on assumptions about
probability theory of the normal distribution (Wilks, 1995).
As a measure of uncertainty for the parameters we used the
95% confidence intervall (=1.96· standard error) of the mean
of the parameter distribution. When using the Metropolis
algorithm the parameter uncertainties can be directly calcu-
lated from the sampling of the MCMC approach. The uncer-
tainty reduction when using the Metropolis algorithm was
computed as 1−posterior uncertainty

prior uncertainty .
The main difference between bootstrapping and MCMC

lies in how they derive the uncertainty. Bootstrapping
changes the data, e.g. drawing subsamples from the data, and
uses the changes in the parameters to derive the uncertainty
while MCMC changes the parameters and uses the model-
data mismatch to derive the parameter distribution.

2.6 Models

2.6.1 Hyperbolic light response curve

The Hyperbolic light response curve (HLRC) computes net
ecosystem exchange of CO2 (NEE) depending on global ra-
diation (Rg, incoming shortwave radiation):

NEE= −
α · β · Rg

α · Rg + β
+ γ (4)

α is an approximation of the canopy light utilization effi-
ciency,β is GPP (Gross primary production) at light satu-
ration andγ is the ecosystem respiration. Instead ofRg pho-
tosynthetic active radiation (PAR) or photosynthetic photon
flux density (ppfd) is often used, they are closely related to
Rg, but not measured at all EC sites. UsingRg instead of
PAR or ppfd changes only the value ofα, as PPFD is ap-
proximately twice theRg.

2.6.2 Water use efficiency model

To increase the complexity of the model we coupledNEE
with the latent energy (LE) using the HLRC and connect-
ing it to LE via the water use efficiency (WUE), which is
the ratio of gross primary production and latent heat. The
WUE times water vapour deficit (WUE VPD) is considered
constant (Beer et al., 2007). UsingVPD as additional driver
NEEandLE can be connected as follows:

NEE= −
α · β · Rg

α · Rg + β
+ γ (5)
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LE = (γ − NEE) ·
VPD

WUE VPD
. (6)

This model is inverted againstNEE andLE. To make sure,
that theLE andNEE misfits contribute to a similar extend
to the cost function when using constant weights, as it is the
case when using the data derived estimates of the error stan-
dard deviation are used, we scaled the residuals with con-
stants c forNEE andLE, respectively. These constants are
defined such that the sum of the weighted synthetic error is
the same when using the constant and using the std weights,
for bothNEEandLE:

1

c

∑
error=

∑ error

std
(7)

c denotes the constant weight, the same weight is used for the
inversion of the BETHY model. In Eq. (7) “error” is the er-
ror estimated from real data, that was added to the synthetic
data.
The model underestimatesLE, but as we use the model out-
put as reference, by design of the study the model errors are
not important. Conclusions about the influence of the data
error on model parameterisation are not affected. We used
this model to show, that the results derived with the simple
model hold for models of various complexities and to me-
diate between the very simple HLRC and the quite complex
SVAT scheme of BETHY.

2.6.3 BETHY

BETHY is a process-based model of the coupled photosyn-
thesis and energy balance system to simulate the exchange
of CO2, water and energy between soil, plant canopy and at-
mosphere (Knorr and Heimann, 2001). It computes absorp-
tion of PAR in three layers, while the canopy air space is
treated as a single, well mixed air mass with a single temper-
ature. Evapotranspiration and sensible heat fluxes are calcu-
lated from the Penman-Monteith equation (Monteith, 1965).
Carbon uptake is computed with the model byFarquhar et al.
(1980) for C3. The stomata and canopy model ofKnorr
(2000) simulates canopy conductance in response to PAR,
VPD and soil water availability. In the version of BETHY
applied here, autotrophic respiration is calculated as a tem-
perature modulated fraction of photosynthetic capacity while
heterotrophic respiration is based on a basal respiration mod-
ulated by soil water availability and air temperature. The in-
version set up was the same as inKnorr and Kattge(2005),
inverting all 21 parameters simultaneously. The prior uncer-
tainties of the parameters were set to 20% of the prior pa-
rameter value. For the synthetic datasets the prior parameter
were the parameters used to generate the data.

3 Results and discussion

3.1 Statistical properties of the error estimates

3.1.1 Heteroscedasticity

The standard deviation of the error has been derived from
the residuals of the gapfilling model, e.g. standard deviation
of the residuals depending on the flux magnitude (res), and
using the standard deviation of the gapfilling algorithm di-
rectly (std). Figure1 shows the relationship between flux
magnitude and error standard deviation forNEEandLE. The
standard deviation is not homogeneous, e.g. the errors are
heteroscedastic and increase with increasing flux magnitude.
Thus the residuals have to be weighted with the reciprocal of
the standard deviation of the random errors as already sug-
gested by previous studies (Richardson et al., 2006). The
magnitude of the error variance is similar for the two meth-
ods of deriving the error variance described in the previous
section, see Fig.1, for res the observations needed to be
grouped to derive the standard deviation. The res standard
deviation forNEE ranges from 1 to 5, forLE from 5 to 40.
With the std method the ranges are wider because the data
were not grouped. ForNEE the standard deviation lies be-
tween 0.5 and 9.5, forLE between 2.8 and 85. For eddy
covariance data it is known, that the error variance increases
with increasing flux magnitude,Richardson and Hollinger
(2005) showed that the error standard deviation ofNEE, not
the error itself, not only scales with flux magnitude, but that
wind speed also has a fundamental effect on the uncertainty.
Thus not the whole variability of the standard deviation can
be reproduced when only the flux magnitude is used. An-
other source for the higher scatter of the std results is the un-
certainty in the estimation of the standard deviations derived
directly (std).

3.1.2 Distribution

Previous studies (Richardson and Hollinger, 2005) showed,
that the error distribution ofNEEis rather double exponential
(Laplace) than normal and this is also found for the data used
here (see Fig.2e, f). ForLE the distribution is even more
peaked than the double exponential distribution. The normal
distribution is characterized by the mean and the standard de-
viation. As error standard deviation increases with increasing
flux magnitude the distribution of all error estimates is a su-
perposition of normal distributions with varying standard de-
viation. If we group the data according to the flux magnitude,
we find Gaussian distributions for high flux magnitudes (see
Fig. 2a, b, exemplary for the Hainich site), adding more data
to the distribution plot, we find a rather double exponential
distribution (see Fig.2c–f). Another possibility to show the
Gaussian distribution is shown in Fig.2g, h , we normalized
the errors with the standard deviation derived with the gap-
filling algorithm (std) this transforms all error distributions
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(a) (b)

(c)

(e)

(g)

(d)

(f)

(h)

Fig. 2. Distributions ofNEE (left) andLE (right) error estimated with the gapfilling algorithm.(a), (b): error of high flux magnitudes,(c),
(d): error of high and medium flux magnitude,(e), (f): all error estimates,(g), (h): errors estimated with gapfilling algorithm and normalized
with std, data: Hainich May–September 2005.
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(a) (b)

Fig. 3. Distribution of NEE (a) and LE (b) errors normalized with std and z transformed ((error-mean(error))/standarddeviation(error)) using
data from HAI, LOO, HYY and PUE.Fig. 3. Distribution ofNEE(a) andLE (b) errors normalized with std andz transformed ((error-mean(error))/standarddeviation(error)) using

data from HAI, LOO, HYY and PUE.
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Fig. 4. Boxplots with median, upper and lower quartile, minimum and maximum or outliers (points) for the excess kurtosis of the 10 two
week periods from May to September 2005 for errors (orig) and normalized errors (norm) of NEE (a) and LE (b).

Fig. 4. Boxplots with median, upper and lower quartile, minimum and maximum or outliers (points) for the excess kurtosis of the 10 two
week periods from May to September 2005 for errors (orig) and normalized errors (norm) ofNEE (a) andLE (b).

to a standard deviation of unity. ForNEE the normalized er-
rors are slightly closer to a normal distribution than forLE.
Thus the double exponential distribution is largely due to a
superposition of Gaussian distributions and the least squares
criteria can be used for the eddy covariance data shown here.
Figure3 shows the distribution of errors from the four dif-
ferent sites. The normalization ofNEE resulted in a rather
Gaussian distribution, forLE the distribution is in between
Gaussian and Laplace distribution and is slightly skewed.
This indicates, that the distribution of the error varies from
site to site or that the error estimation does not perform well
for all sites. One indicator for the peakedness of the distri-
bution is the excess kurtosis (=kurtosis-3), it is zero for a
normal distribution and 3 for a double exponential distribu-
tion, a high kurtosis indicates a strong peak. Figure4 shows
the kurtosis for ten two week periods for the four sites. For
NEE the normalization of the errors decreases the kurtosis
and changes the distribution to a less peaked shape. The kur-

tosis is in general below the kurtosis for double exponential
distributions, but some outliers indicate a much stronger peak
(excess kurtosis=5.5). ForLE the kurtosis decreases also for
HAI, LOO and PUE. For HYY the kurtosis increases after
normalization. The kurtosis shows a high sensibility to out-
liers, but also to the rule of the detection of outliers, exclud-
ing outliers will always decrease the kurtosis. As the outliers
are important for the characterisation of the distribution and
the data is already prefiltered (spike detection according to
Papale et al., 2006) we did not exclude them. For errors of
fluxes with high magnitude, normal distribution is still found
(excess kurtosis 0.3) and seems to be valid across sites. Over-
all, we conclude that random error characteristics should be
considered on a site-by-site basis. When comparing different
studies and different sites regarding their error distribution, a
careful documentation of the influence and the treatment of
outliers is strongly recommended.
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(a) (b)

NEE LE

Fig. 5. Autocorrelation of the NEE (a) and LE (b) errors, data: May to September 2005.
Fig. 5. Autocorrelation of theNEE (a) andLE (b) errors, data: May to September 2005.
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(a) (b)NEE LE

Fig. 6. Boxplots of the autocorrelation of lag=1 (0.5 h) for ten two week periods from May to September for NEE (a) and LE (b).Fig. 6. Boxplots of the autocorrelation of lag=1 (0.5 h) for ten two week periods from May to September forNEE (a) andLE (b).

3.1.3 Correlation

Autocorrelation

Figure 5 shows the autocorrelation function of the ran-
dom errors for the four eddy sites. The behaviour of the
function is similar for all sites, the autocorrelation decays
fast, after 10 h there is no considerable change in the
correlation. Figure6 shows boxplots for the autocorrelation
for a lag of 30 min, it is usually below 0.7, with one
exception for Puechabon (0.82). Hyytiälä shows the highest
autocorrelation forLE and NEE, Loobos the lowest for
NEEand Hainich the lowest forLE. Although the gapfilling
algorithm provides a reasonable estimate for the random
error, the autocorrelation could partly be an artefact of the
algorithm, if the deviation from the statistical expectation
value was not caused by a random error the following
and previous value would deviate in a similar way and
the actual autocorrelation of the random error would be

lower. To make sure that error autocorrelation does not
influence the parameter estimation one could prefer to use
only every second or third value for the parameter estimation.

Crosscorrelation

R2 values for the crosscorrelation betweenNEE and
LE errors of the four sites and ten data periods for each
site are summarized in Table1. In our study the corre-
lation betweenNEE and LE errors is close to zero, thus
the correlation betweenNEE and LE errors is of minor
importance and does not need to be considered in the error
covariance matrix. The highestR2 was 0.24 for one period
for Puechabon, for the same period the outlier of theLE
autocorrelation for a lag of 30 min was found (see Fig.6).

The measurements ofNEE andLE are both based on the
vertical wind velocity and errors introduced via the wind ve-
locity measurement, such as errors due to turbulence sam-
pling must show up as a correlation betweenNEE andLE
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(a) (b)

Fig. 7. Time series of normalized parameters (estimated/true) based on data from Loobos with a random error for the HLRC (left) and the
WUE model.

Fig. 7. Time series of normalized parameters (estimated/true) based on data from Loobos with a random error for the HLRC (left) and the
WUEmodel.

Table 1. Crosscorrelation betweenNEEandLE errors for ten two week periods between March and September 2005.

R2 of NEEandLE errors

Data 1.– 16.– 1.– 16.– 1.– 16.– 1.– 16.– 1.– 16.–
period 15.5. 31.5. 15.6. 30.6. 15.7. 31.7. 15.8. 31.8. 15.9. 30.9.
HAI 0.089 0.004 0.176 0.192 0.088 0.136 0.202 0.007 0.077 0.097
LOO 0.004 0.029 0.059 0.086 0.031 0.000 0.004 0.024 0.030 0.010
HYY 0.197 0.033 0.139 0.128 0.021 0.012 0.023 0.049 0.000 0.003
PUE 0.093 0.244 0.038 0.033 0.068 0.003 0.012 0.018 0.019 0.031

errors. This indicates that the variation in the measured fluxes
under similar meteorological conditions (i.e. the flux errors)
seems to be rather caused by changes in concentrations of
water and CO2 than by the measurement of the vertical wind
velocity. As auto- and crosscorrelation are low, the gener-
alized least squares method (Eq.2) can be simplified to the
weighted least squares method (Eq.3) by setting off-diagonal
elements in the error covariance matrix to zero.

3.2 Parameter retrieval

3.2.1 Ordinary least squares vs. weighted least squares

The parameters were estimated for three models of differ-
ent complexities, the synthetic data is based on data from
two different sites (Loobos and Hainich). We are compar-
ing constant weights with two ways of estimating the stan-
dard deviation of the observation errors, which is then used

to weight the data for the parameter estimation to account for
the non constant error standard deviation. The standard devi-
ation of the errors was estimated as the standard deviation of
the observations measured under similar meterological con-
ditions (std) and as the standard deviation of the gapfilling
algorithm residuals related to the modelled flux magnitude
(res), see Fig.1. The results of the parameter retrieval ex-
periments (Fig.7) show, as expected, that the random error
introduces no systematic error to the parameter estimates and
the true parameters are usually within the parameter uncer-
tainty (95% confidence interval) derived from bootstrapping.
The mean of the parameter ratios is not significantly differ-
ent from unity (α=0.05). The mean uncertainty of the pa-
rameters using a non constant estimate for the error stan-
dard deviation as weight is between 10 and 24% lower for
the HLRC than using constant weights (see Table2). Due to
the stochastic nature of the procedure, these results are true
for the mean results but there exist data periods for both sites
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Table 2. Mean of retrieved normalized parameters and the mean uncertainty for the ten two week periods for the HLRC.

Loobos 2005

mean normalized parameter mean 95% confidence interval
Least squares minimization

weights α β γ α β γ rmse
constant 0.978 0.993 0.961 0.187 0.133 0.102 0.265
std 1.016 0.975 0.967 0.157 0.101 0.091 0.228
res 1.034 0.970 0.998 0.198 0.119 0.115 0.332

Absolute deviations minimization
constant 0.951 0.991 0.935 0.174 0.145 0.099 0.425
std 0.972 0.976 0.938 0.172 0.133 0.096 0.388

Hainich 2005

Least squares minimization
constant 0.983 1.001 0.969 0.173 0.087 0.096 0.231
std 1.048 0.984 0.990 0.149 0.071 0.084 0.218
res 1.046 0.981 0.988 0.176 0.080 0.089 0.239

Absolute deviations minimization
constant 1.049 0.977 0.981 0.101 0.199 0.107 0.300
std 1.062 0.972 0.986 0.096 0.192 0.103 0.341

Table 3. Mean of retrieved normalized parameters and the mean uncertainty for the ten two week periods for theWUE-model using last
squares minimization.

Loobos 2005

mean normalized parameter mean 95% confidence interval
weights α β γ wue vpd α β γ wue vpd rmse
const 0.974 1.003 0.964 0.980 0.249 0.149 0.111 0.058 1.243
std 1.043 0.963 0.973 0.987 0.140 0.088 0.085 0.050 0.930
res 1.032 0.958 0.975 0.973 0.148 0.096 0.090 0.054 1.238

Hainich 2005

mean normalized parameter mean 95% confidence interval
weights α β γ wue vpd α β γ wue vpd rmse
const 1.027 0.987 0.986 0.960 0.300 0.135 0.166 0.051 2.926
std 1.049 0.978 0.984 0.978 0.121 0.081 0.092 0.043 1.924
res 1.061 0.964 0.986 0.952 0.143 0.090 0.098 0.045 3.330

in which the results are opposite. The std weights decrease
the mean uncertainty more than res and therefore describe
the error standard deviation better. The root mean squared
error (rmse) between reference model output without noise
and the model output using the reestimated parameters can
be decreased using std as weights for the HLRC, for res it
increases. This indicates, that the “std” is a more accurate
estimate for the data uncertainty and that a description of the
data uncertainty only based on flux magnitude, as “res”, is
likely not sufficient. For the water use efficiency model the
results of the model parameterization are similar, estimates
of parameter uncertainty decrease between 5% and 60% and
the RMSE between reference model output and model output
of the reestimated parameters is decreased when using std,

while res increases the value (see Table3). For simplicity
we focus on the comparison between constant weights and
std, since std gave the best results. For the inversion of the
BETHY model the distance between retrieved and true pa-
rameters can be decreased using std compared to the constant
weights (see Table4). The influence of using varying data
uncertainty compared to constant data uncertainty with the
MCMC algorithm is less pronounced as the absolute value
of the data uncertainty is more important than the relative
changes. Nevertheless the reduction of uncertainty for pa-
rameters is higher when using “std” and the rmse between
reference and model output is decreased. Another advan-
tage of weighting the data showed up during the initial fit to
real data for the creation of the reference model output, the
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(a) (b)

Fig. 8. Time series of normalized parameters (estimated/true) based on data from Loobos with a selective systematic nighttime error for the
HLRC (a) and the WUE model (b).

Fig. 8. Time series of normalized parameters (estimated/true) based on data from Loobos with a selective systematic nighttime error for the
HLRC (a) and theWUEmodel(b).

parameters estimated with std weights resulted in reasonable
parameters, whereas using constant weights for some peri-
ods negative values forα were estimated for the HLRC and
water use efficiency model (not shown). The random error
changes the shape of the cost function, it can increase the
number of local minima or the minimization can become an
ill-posed problem. Using weights representing the data un-
certainty seems to improve the behaviour of the cost function
and improves the extraction of information inherent to the
data. This shows that the standard deviation provided by the
gapfilling algorithm is a good measure for the eddy covari-
ance data uncertainty, it improves the parameter retrieval and
therefore model performance after optimization, at least for
the sites used here. For skewed error distributions we would
expect the parameter estimates to be biased.

To explore the power of the Bayesian approach an inter-
esting alternative way to cope with data uncertainties would
be to include a relationship for the data uncertainty in the
Likelihood function. The uncertainty could be represented
by a linear dependency and the parameters of the relation-
ship could be estimated in addition to the model parameters.
However, since with eddy covariance data one can provide
information about the random error in the data independent
of the optimization, we expect our method to be more robust,
e.g. independent of model errors.

3.2.2 Least squares vs. absolute deviations

As the use of absolute deviations in the cost function was
suggested previously byRichardson et al.(2006) we com-
pare least squares and absolute deviations, to illustrate the

Table 4. Sum of the uncertainty reduction, summed absolute devi-
ation of the parameter ratio from 1 and mean rmse between model
output and reference output for the BETHY model.

site Loobos Hainich

const std const std
uncertainty reduction 50.93 52.31 47.19 50.08
parameter deviation 14.83 13.30 14.16 12.49
rmse 4.11 3.17 4.34 3.6

effect to parameter estimation. Comparing the parameter ra-
tio again shows no significant difference between the meth-
ods. For our sites, the parameter uncertainty increases using
absolute deviations compared to the ordinary least squares
method (see Table2). The rmse increases compared to
the OLS using constant weights and for the weighted least
squares. Since by normalizing the errors with the standard
deviation we get a Gaussian distribution for our selected sites
the absolute deviation minimization cannot improve the pa-
rameter retrieval. If the errors show a double exponential
distribution as a result of the superposition of different Gaus-
sian distributions, then least squares optimization should be
applied. If the error distribution is more peaked due to out-
liers or a different data filtering, robust methods like the min-
imization of absolute deviations or robust regression tech-
niques, which exclude outliers, may be advantageous. Test-
ing whether the normalized error distribution is Gaussian
could support the choice of the cost function.
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3.2.3 Systematic error

Figure8 shows the results of the parameter retrieval based
on data with a selective systematic nighttime error of 10, 20
and 40%. Theα and γ parameters of the HLRC show a
systematic bias, estimated parameters underestimate the un-
derlying true parameter. The bias is stronger for higher data
error. Forβ the parameter bias seems to be not systematic,
the retrieved parameter is for some periods lower, for some
periods higher than the original parameter.β is GPP at light
saturation, asNEE at light saturation does not change but
only the night time data point, representing the respiration,
is lowerβ should also be lower to sum up to the sameNEE
values during daytime. The effect onγ seems to be too low
to show up in the comparably high values ofβ. For the water
use efficiency model all parameters are biased, all estimates
are lower than the true values. Through the interconnection
of GPP andLE and the use of water and CO2 fluxes to con-
strain the parameters the distance to the true value decreases
for all parameters. This illustrates the potential of using mul-
tiple constraints for inverse model parameter estimation. The
parameter uncertainties increase the higher the error but the
real value of the parameter is not within the uncertainty range
of the estimated parameter. This means, that the real uncer-
tainty of the parameter is underestimated, projection of the
parameter uncertainty to model output will result in uncer-
tainties for the fluxes that are too low. To get the real uncer-
tainty for parameters and fluxes further knowledge about the
systematic errors is needed and methods need to be devel-
oped to incorporate them into the estimation of uncertainty,
if the systematic errors cannot be removed.

4 Conclusions

Previous work to quantify the random error structure of
eddy covariance data (Hollinger et al., 2004; Richardson and
Hollinger, 2005; Richardson et al., 2006) has focused on de-
scribing the moments of the distribution of the error, partic-
ularly relating the expected magnitude of the error (i.e. its
standard deviation) to the flux magnitude, and evaluating
whether or not flux errors are Gaussian. Here we have built
on these efforts by considering the auto- and crosscorrelation,
introducing a new method to quantify the standard deviation
of the random errors. We show the effect of the varying stan-
dard deviation to the distribution and investigate how random
and systematic errors affect parameter estimates.

The analysis of the error distribution shows that the appar-
ently double exponential distribution of the eddy flux data
can be almost entirely due to the superposition of Gaussian
distributions with inhomogeneous variance. Whether this is
the case for a special site can be affirmed by testing the nor-
mality of the normalized error distribution. If it cannot be
affirmed one should consider using robust methods. The au-
tocorrelation is low, but one might consider to analyse the
autocorrelation function and use only every second or third

data point for parameter estimation if there is enough data
available. As a reason for the low but significant autocorre-
lation of errors we can not exclude artefacts of the gap filling
tool. The crosscorrelation betweenLE andNEE is low and
can be neglected. The assumption for ordinary least squares
that is not met is the constant error standard deviation, thus
the ordinary least squares method needs to be extended to
weighted least squares, using the reciprocal of the standard
deviation as weight in the costfunction. We propose a mea-
sure for data uncertainty, e.g. the standard deviation of the
values used to compute the expected value, that can be used
to weight the data in the costfunction. Weighting the data
decreases the parameter uncertainty and the parameter re-
trieval is improved. We showed that this result holds true
for a wide range of model complexities. We show that the
impact of systematic errors varies by parameter, but the bias
is systematic, therefore the interpretation of parameters de-
rived from data with systematic errors might be misleading.
The parameter uncertainty slightly increases when a system-
atic error is added, but the true parameter is not within the
uncertainty range of the estimate. Not considered here but of
similar importance is the model error, which was set to zero
by using the model output as basis for the synthetic data. For
the least squares optimization the model output random er-
ror is additive to the data random error and depending on the
point of view part of the data random error can also be seen
as model errors, e.g. footprint heterogeneity. Model struc-
tural problems can also affect parameter estimation in a sim-
ilar way as systematic data errors, i.e. dynamics in the data
that are not represented or not sufficiently represented in the
model structure can lead to parameters with biases, which are
not reflected in their uncertainty estimates (Carvalhais et al.,
2008). Hence we conclude that potential systematic errors
in flux data or models need to be addressed more thoroughly
in data assimilation approaches since otherwise uncertainties
will be vastly underestimated.
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