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ABSTRACT

This paper introduces and applies a new method to consistently estimate internal climate variability for all

models within a multimodel ensemble. The method regresses each model’s estimate of internal variability

from the preindustrial control simulation on the variability derived from amodel’s ensemble simulations, thus

providing practical evidence of the quasi-ergodic assumption. The method allows one to test in a multimodel

consensus view how the internal variability of a variable changes for different forcing scenarios. Applying the

method to the CMIP5 model ensemble shows that the internal variability of global-mean surface air tem-

perature remains largely unchanged for historical simulations and might decrease for future simulations

with a large CO2 forcing. Regionally, the projected changes reveal likely increases in temperature variability

in the tropics, subtropics, and polar regions, and extremely likely decreases in midlatitudes. Applying the

method to sea ice volume and area shows that their respective internal variability likely or extremely likely

decreases proportionally to their mean state, except for Arctic sea ice area, which shows no consistent change

across models. For the evaluation of CMIP5 simulations of Arctic and Antarctic sea ice, the method confirms

that internal variability can explain most of the models’ deviation from observed trends but often not the

models’ deviation from the observed mean states. The new method benefits from a large number of models

and long preindustrial control simulations, but it requires only a small number of ensemble simulations. The

method allows for consistent consideration of internal variability in multimodel studies and thus fosters

understanding of the role of internal variability in a changing climate.

1. Introduction

Internal variability of the climate system, caused by

the system’s chaotic nature, limits the predictability of

climate (e.g., Deser et al. 2014) and represents a major

source of uncertainty for climate projections (e.g.,

Hawkins and Sutton 2009, 2011; Deser et al. 2012; Swart

et al. 2015). Knowledge of internal climate variability

is a prerequisite for climate-change attribution (e.g.,

Swanson et al. 2009; Trenberth 2011; Marotzke and

Forster 2015) and climate-model evaluation (e.g., Flato

et al. 2013; Stroeve et al. 2014; Notz 2015). However,

robustly quantifying internal variability in climate

studies remains challenging. Here we examine how in-

ternal variability in global climate models estimated

frompreindustrial climate simulations relates to internal

variability estimated from the ensemble spread of his-

torical and future climate simulations. This allows us to

develop a new method to estimate internal variability

for individual model simulations, which we apply for

assessing changes in internal variability over time and

for evaluating climate model simulations.

The magnitude of the internal variability of climate

model simulations is usually estimated by using one of

two different approaches (Collins et al. 2013). The first

approach, here called ‘‘control-simulation approach,’’ is

based on the analysis of preindustrial control simula-

tions with constant external forcing (for diverse appli-

cations see, e.g., Schneider and Kinter 1994; Swanson

et al. 2009; Huber and Knutti 2014; Palmer andMcNeall

2014; Resplandy et al. 2015; Schindler et al. 2015;

Roberts et al. 2015). Apart frommodel drift, any climate

variability of the preindustrial control simulations is

internal variability. Preindustrial control simulations,

typically spanning many centuries, are commonly suffi-

ciently long to also include multidecadal and longer-

term internal variability. They are usually available for

any climate model and are, for example, part of the

entrance criteria for a model to participate in phase 6 of

the Coupled Model Intercomparison Project (Meehl

et al. 2014). However, the control-simulation approach
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is commonly considered unsuitable for representing the

internal variability of simulations with a different or

changing external forcing (e.g., Kay et al. 2015).

The second approach, here called ‘‘ensemble-spread

approach,’’ addresses this possible limitation (e.g.,

Deser et al. 2012, 2014; Wettstein and Deser 2014). The

ensemble-spread approach is based on ensemble simu-

lations with slightly different initial conditions, with

each realization subject to the same external forcing.

The ensemble spread between these different re-

alizations of a single model measures the internal vari-

ability for different forcing scenarios. Some modeling

groups run large ensembles of a single model to disen-

tangle the internally and externally forced contributions

in a simulation, because a sufficiently high number of

ensemble simulations is required to estimate themodel’s

total ensemble spread. However, running multiple re-

alizations with any given global climate model consumes

substantial computational power. As a consequence,

many modeling groups provide only a single realization

or a small number of ensemble simulations. This

inhibits a robust and consistent estimation of model-

specific internal variability for different forcing scenar-

ios for a given multimodel ensemble.

We here address this common problem of multimodel

studies by examining the relationship between the estimate

of preindustrial internal variability from the control-

simulation approach and the estimate of historical or

future internal variability from the ensemble-spread ap-

proach. We expect similarities between both estimates of

internal variability following the quasi-ergodic assumption,

which states that the variance of one sequence of events

over time equals the ensemble variance at a given time

(e.g., von Neumann 1932; Hingray and Said 2014). How-

ever, changes in external forcing might alter the internal

variability of a climate variable over time (Lu et al. 2014;

Sutton et al. 2015). By relating both approaches across a

multimodel ensemble, we derive estimates of internal

variability for different forcings of each given model.

We apply our method to the model ensemble of phase

5 of the Coupled Model Intercomparison Project

(CMIP5) for near-surface air temperature (SAT) and

sea ice volume and sea ice area (i) to investigate whether

the magnitude of internal variability changes over time

and (ii) to robustly evaluate CMIP5 sea ice simulations.

Possible changes of internal variability over time were

investigated byHuntingford et al. (2013), Thompson et al.

(2015), and Holmes et al. (2016). Huntingford et al.

(2013) used model output from 17 CMIP5 models to

investigate the time-evolving global temperature vari-

ability. They examined 11- and 31-yr detrended ensemble-

mean historical simulations and RCP8.5 simulations, and

found that so far, the globally averaged temperature

variability has been stable but is projected to decrease

in future. Holmes et al. (2016) analyzed future changes

in winter and summer temperature variability in a

17-member ensemble from a global climate model forced

by the SRESA1B emission scenario. They removed 40-yr

linear trends in ensemble-mean temperature and found

strong regional changes in temperature variability. In

contrast to their approaches, ours does not require the

removal of any trend and thus allows for a clear separa-

tion of internal variability from external forcing based on

ensemble simulations of individual models. Thompson

et al. (2015) estimated the uncertainty in projections of

future climate trends arising from internal variability.

Using an analytic model that requires a time-stationary

standard deviation for different forcing scenarios, they

related the statistics of the preindustrial control simu-

lation to the spread of trends in the 40-member en-

semble of the global climate model CCSM3. They

concluded that for most regions, the preindustrial

control simulation is sufficient to represent the internal

variability derived from the CCSM3 large ensemble.

Based on our multimodel approach, we derive esti-

mates of internal variability for different forcing sce-

narios for all CMIP5 models; our estimates are largely

independent of the ensemble size of a single model.

Further, our approach does not require the standard

deviation of a variable to be stationary in time and thus

can be used for variables whose standard deviation

changes for different forcing scenarios.

For the evaluation of CMIP5 simulations, we limit our

analysis to sea ice. Recent studies evaluated CMIP5 sea

ice simulations of Arctic sea ice extent (e.g., Massonnet

et al. 2012; Stroeve et al. 2012; Flato et al. 2013; Notz

2014), Antarctic sea ice extent (e.g., Mahlstein et al.

2013; Zunz et al. 2013), and Arctic sea ice thickness and

volume (Stroeve et al. 2014; Shu et al. 2015). All of these

studies stressed the large influence of internal variabil-

ity. The influence of internal variability on Arctic sea

ice trends was specifically estimated by Swart et al.

(2015), who investigated both the CMIP5 models and

the 30-member ensemble of the global climate model

CESM1. They concluded that internal variability must

be carefully accounted for when evaluating sea ice

simulations, which was also spelled out in a dedicated

study by Notz (2015). Nevertheless, model-specific es-

timates of internal variability for the satellite period

(1979–today) across the CMIP5 model ensemble do not

exist yet. Our method now provides such estimates and

consistently considers internal variability in an evalua-

tion of the CMIP5 sea ice simulations.

Section 2 introduces our method to robustly estimate

internal variability for different forcing scenarios across

models. Section 3 presents the data used. Sections 4 and 5
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demonstrate usage of this method by applying it to

specific climate observables, namely, annual near-

surface air temperature, sea ice volume, and sea ice

area. Section 6 summarizes our findings.

2. Method and applications

a. Method

We regress the standard deviation from the control-

simulation approach on that of the ensemble-spread ap-

proach. We specifically explain here how this regression

allows us to derive a model-specific estimate of internal

variability across models for simulations with different

forcing scenarios. Our method consists of four steps:

1) We calculate the standard deviation of the preindus-

trial control simulation for each model.

2) We calculate the ensemble standard deviation for

each model that provides ensemble simulations.

3) We regress the estimates from step 1 onto those from

step 2 and fit a regression line through these esti-

mates. We use this basic version of our method to

assess changes of internal variability over time.

4) If the regression can robustly be determined, we use

it in a final step to translate the estimates of the

preindustrial standard deviations to estimates corre-

sponding to different forcing scenarios for models

with a single simulation. This extended version of our

method gives us consistent estimates of internal

variability for all models.

We now explain these four steps in detail.

1) CONTROL-SIMULATION APPROACH

We calculate the standard deviation spiC for a variable x

from the preindustrial control simulation of lengthT of each

model across each output interval of interest t (e.g., year):

s
piC

(T)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T2 1
�
t51

T

(x2 x
t
)2

s
. (1)

However, for two reasons we cannot obtain a reliable

estimate of internal variability from directly applying

this control-simulation approach to all simulations.

First, some preindustrial control simulations still drift

substantially, likely because the models are at the be-

ginning of the control simulation not yet in equilibrium

with the preindustrial forcing (e.g., Knutson et al. 2013;

Frankcombe et al. 2015). We hence remove the least

squares linear trend from each model’s preindustrial

control simulation to minimize model drift. Second,

because of multidecadal and longer-term internal vari-

ability, the standard deviation also depends on the T of

the control simulation, which strongly varies among

models (cf. Table 1). When a model provides too short a

control simulation, which we assess from its power

spectrum as described in appendix A, we assume that

the internal variability as given by the control simulation

is not the total internal variability of this particular

model. We here disregard such models.

2) ENSEMBLE-SPREAD APPROACH

We calculate the ensemble standard deviation sens for a

variable x as the square root of the ensemble variance

across the different ensemble simulationsn of amodelwith

N ensemble simulations for each output interval of t (e.g.,

each year) averaged over the simulation length T:

s
ens

(N,T)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T
�
T

t51

�
1

N2 1
�
n51

N

(x
t
2 x

n,t
)2
�s
. (2)

The ensemble-spread approach also includes long-term

internal variability, because calculating the ensem-

ble standard deviation does not require one to remove

any model trend. The approach avoids possible under-

estimates of a model’s total internal variability due to

small numbers of ensemble simulations because it bene-

fits from a largely increased sample size caused by con-

sidering the estimates of ensemble variance at every

output interval. For example, N 5 3 ensemble simula-

tions withT5 150yr correspond to a simulation withT5
450yr. Hence, the ensemble-spread approach then relies

on a sample size of 450, which is similar to the standard

length of a control simulation. To nevertheless test the

sensitivity of the ensemble standard deviations to very

low numbers of available ensemble simulations, we assess

the range of ensemble standard deviations from any

pairwise combination of a model’s ensemble simulations

(i.e.,N5 2; see section 4a). The upper bound of this range

is given by the two ensemble members with the most

contrarily temporal evolution, while the lower bound

results from the two ensemble members that are most

similar. We use this range to estimate the uncertainty of

the ensemble standard deviation.

The ensemble-spread approach purely samples in-

ternal climate variability and circumvents uncertainties

due to inconsistent natural external forcings over time in

CMIP5. While preindustrial and future RCP8.5 simu-

lations generally do not include natural external forcing

from volcanic eruptions, historical simulations do con-

tain volcanic eruptions (e.g., Santer et al. 2014). Since

volcanic eruptions considerably contribute to the vari-

ability of climate variables, such as global-mean surface

temperature (e.g., Bradley and Jones 1992; Briffa et al.

1998) and sea ice area (Rosenblum and Eisenman 2016),

this would bias estimates of preindustrial and future natural
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variability low compared to estimates of historical natural

variability. However, for our estimates of historical internal

variability derived from the ensemble-spread approach,

each ensemble member has experienced the same volcanic

forcing time series. Apart from the minor effects of syn-

chronized ensemble spread in years of volcanic eruptions,

our ensemble standard deviation is thus independent from

volcanic forcing.

3) BASIC VERSION OF THE METHOD

Depending on the specific application, our method

can be used in two versions, here called ‘‘basic version’’

TABLE 1. CMIP5 simulations and single-model large ensembles used in this study. (Expansions of acronyms are available online at http://

www.ametsoc.org/PubsAcronymList.)

Model name

T of preindustrial control

simulation (yr)

No. of SAT simulations No. of sea ice simulations

Historical RCP8.5 Historical RCP8.5 Extended to 2014

ACCESS1.0 500 2 1 3 1 1

ACCESS1.3 500 3 1 3 1 3

BCC_CSM1.1 500 3 1 3 1 1

BCC_CSM1.1(m) 500 3 1 3 1 1

BNU-ESM 559 1 1 1 1 1

CanESM2 1096 5 5 5 5 5

CCSM4 501 6 6 6 6 6

CESM1(BGC) 500 1 1 1 1 1

CESM1(CAM5) 319 3 3 3 3 3

CESM1(FASTCHEM) 222 3 — 3 — —

CESM1(WACCM) 200 1 3 1 3 —

CMCC-CESM 277 1 1 1 1 1

CMCC-CM 330 1 1 1 1 1

CMCC-CMS 500 1 1 1 1 1

CNRM-CM5 850 10 5 10 5 5

CNRM-CM5.2 150 1 — 1 — —

CSIRO Mk3.6.0 500 10 10 10 10 10

EC-EARTH 452 8 8 10 10 10

FGOALS-g2.0 700 4 1 4 1 1

FIO-ESM 800 3 3 3 3 3

GFDL CM3 500 5a 1 5a 1 5a

GFDL-ESM2G 500 3a 1 1a 1 1a

GFDL-ESM2M 500 1a 1 1a 1 1a

GISS-E2-H 780 6 1 6 1 5

GISS-E2-H-CC 251 1 1 1 1 1

GISS-E2-R 850 6 1 6 1 6

GISS-E2-R-CC 251 1 1 1 1 1

HadCM3 1200 10a — 10a — 10a

HadGEM2-CC 240 1a 3 1a 3 1a

HadGEM2-ES 576 5a 4 4a 4 4a

INM-CM4.0 500 1 1 1 1 1

IPSL-CM5A-LR 1000 6 4 6 4 4

IPSL-CM5A-MR 300 3 1 3 1 3

IPSL-CM5B-LR 300 1 1 1 1 1

MIROC5 670 5 3 5 3 5

MIROC-ESM 630 3 1 3 1 3

MIROC-ESM-CHEM 255 1 1 1 1 1

MPI-ESM-LR 1000 3 3 3 3 3

MPI-ESM-MR 1000 3 1 3 1 3

MPI-ESM-P 1156 2 — 2 — —

MRI-CGCM3 500 3 1 3 1 1

MRI-ESM1 250 1 1 1 1 1

NorESM1-M 501 3 1 3 1 3

NorESM1-ME 252 1 1 1 1 1

CESM1-CAM5-BGC-LE 1800 35b 35 35b 35 —

MPI-ESM1.1-LE 2000 100 — 100 — —

aHistorical simulations that start in year 1860 only.
b Historical simulations that start in year 1920 only.
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and ‘‘extended version.’’ To present both versions of the

method, we use a fictitious example as sketched in Fig. 1.

For the basic version, we simply relate the estimate of

internal variability from the control-simulation ap-

proach (2spiC, x axis) to that of the ensemble-spread

approach (2sens, y axis). This can be done for a single

model that provides ensemble simulations, such as

model 1, but also across all models of a givenmultimodel

ensemble that provide ensemble simulations by linear

least squares regression, such as model 1 and model 2.

This basic version allows one to directly compare the

preindustrial internal variability to the internal vari-

ability for different forcing scenarios for models with

ensemble simulations. We exploit the multimodel re-

lationship of the basic version to test for a change of

internal variability over time in application 1.

4) EXTENDED VERSION OF THE METHOD

The extended version builds on the basic version. By

using the regression line through the estimates of in-

ternal variability of model 1 and model 2, we derive an

ensemble standard deviation for models with a single

simulation from the model’s preindustrial estimate of

internal variability (model 3, situated at the zero line of

the ensemble standard deviation). This procedure is

based on the key assumption that a relationship found

for many models is valid for other models as well. We

justify the assumption by the underlying theory of quasi

ergodicity that we show to hold for the models with

ensemble simulations. To be applicable to a variable, the

procedure requires a similar response from models with

ensemble simulations for this variable. If this pre-

requisite is fulfilled, then the procedure allows us to

circumvent limitations associated with models that

have a single realization only. We keep the original es-

timates for models with ensemble simulations and do

not adjust their standard deviations to the regression

line. We use these original estimates of internal vari-

ability for models with ensemble simulations and the

derived estimates from the extended version of our

method for models with a single simulation to consis-

tently evaluate sea ice simulations from all models in

application 2.

b. Applications

To obtain a consensus estimate of the projected di-

rection and magnitude of a possible change in internal

variability over time (application 1), we evaluate the

regression line obtained in the simple version of our

method at the location of the multimodel mean. To

examine the likelihood of an identified change, we test

whether the confidence interval of the regression line

includes the unity line. Following the IPCC terminology,

we define a change as likely when the 66% confidence

interval of the regression line does not include the unity

line and as extremely likely when the 95% confidence

interval of the regression line does not include the unity

line. In contrast, we define a change as possible when the

66% confidence interval of the regression line does in-

clude the unity line.

To evaluate the CMIP5 sea ice simulations (applica-

tion 2), we consider both the simulated internal vari-

ability smod that we derive from the extended version of

our method and the observational or reanalysis un-

certainty dref (see appendix B). To combine both sources

of uncertainty, we follow an approach of Santer et al.

(2008) that was adopted by Stroeve et al. (2012). This

approach uses a plausibility variable as a measure of

model fidelity,

f5
mod2 refffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
mod 1 d2ref

q , (3)

that weights the distance between any time-averaged

CMIP5 model simulation (mod) and the time-averaged

FIG. 1. Schematic view of the method for estimating internal

variability for different forcing scenarios. The basic version of the

method regresses the estimate of internal variability derived from

the preindustrial control simulation of a model (x axis) on the

ensemble standard deviation of models with ensemble simulations

such as models 1 and 2 (y axis). The unity line as a reference is

indicated by the dashed black line. For the extended version,

a constructed ensemble standard deviation can be derived for

models with a single simulation (model 3) using the regression line

throughmodels 1 and 2. The extended version requires a consistent

response of the models with ensemble simulations.
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reference data (ref) by the internal variability of the

simulations and the observational or reanalysis un-

certainty (see appendix B for details). The plausibility

variable f thus quantifies how far the model deviates

from the reference data in units of the associated

quantity- and model-specific uncertainty.

3. Data

To demonstrate usage of our method, we apply it to

the internal variability of annual near-surface air tem-

perature and of Arctic and Antarctic sea ice volume and

sea ice area as simulated by the models that took part in

CMIP5 (Taylor et al. 2012). These simulations are

available from the Earth System Grid data portal of the

Earth System Grid Federation (http://esgf-node.llnl.

gov/search/cmip5/) and from the data portal from the

Centre for Environmental Data Analysis (ftp://ftp.ceda.

ac.uk/badc/cmip5/). For both near-surface air tempera-

ture and sea ice volume and area, we analyze the pre-

industrial control simulation, the historical simulations

(1850–2005), and future simulations (2006–2100) driven

by the representative concentration pathway (RCP) 8.5

scenario (Moss et al. 2010) of each CMIP5 model.

For near-surface air temperature, we analyze gridded

monthly mean data of 145 historical simulations from

44 different climate models and 87 RCP8.5 simula-

tions from 40 different climate models (Table 1). To

account for regional changes in temperature variability

across models, we regrid all CMIP5 simulations by bi-

linear interpolation on a grid resolution of 1.89478 3
3.758. We use the regridded data to calculate annual

global-mean surface temperature by weighting the near-

surface air temperature with the area of the model grid

cells and then averaging annually and globally.

For sea ice, we analyze 145 historical simulations

from 44 different climate models and 88 RCP8.5 sim-

ulations from 40 different climate models that provide

gridded monthly mean data of sea ice concentration

and sea ice thickness (Table 1). From these, sea ice area

is calculated by multiplying the area of the model grid

cells with their sea ice concentration, which is then

added up over all grid cells for either the Northern or

the Southern Hemisphere. The model output of sea ice

thickness is the equivalent thickness averaged over the

grid cell assuming that the grid cell is entirely ice cov-

ered. Sea ice volume is calculated as the product of the

area of the model grid cells and their equivalent sea ice

thickness, which again is added up over all grid cells for

both hemispheres. For reasons explained by Notz

(2014), such as differences in grid geometry and mis-

leading results with respect to model quality as a result

of synthetic biases in sea ice extent, we focus on the

more direct and more physical metric sea ice area in-

stead of sea ice extent.

To evaluate the applicability of small ensemble sizes of

individual CMIP5 models, we additionally analyze

single-model large ensemble simulations of updated

versions of two models that are part of CMIP5: the

35-member ensemble of the NCAR Community Earth

System Model (CESM1-CAM5-BGC) covering the pe-

riod 1920–2100 with 2006–2100 forced by RCP8.5 (Kay

et al. 2015) and the 100-member ensemble of the Max

Planck Institute Earth System Model (MPI-ESM1.1) in

low resolution covering the period 1850–2005.

4. Application 1: Assessing changes of internal
climate variability over time

a. Surface air temperature

We first apply the basic version of our method to an-

nual surface air temperature (Fig. 2). For the historical

simulations, plotting the global-mean estimates of in-

ternal variability from the control-simulation approach

(2spiC, x axis) against that from the ensemble-spread

approach (2sens, y axis) across the CMIP5 models results

in a linear one-to-one relationship (black regression line

in Fig. 2a). Model estimates of ensemble standard de-

viation that deviate from the one-to-one relationship are

usually very uncertain as shown by the test on how rep-

resentative these estimates are for a model’s total en-

semble standard deviation described in section 2a (see

vertical bars in Figs. 2a,b).Wehave additional support for

the one-to-one relationship from the two models that

provide large ensemble simulations, CESM1-CAM5-

BGC and MPI-ESM1.1 (black triangle and diamond,

respectively). We thus detect no robust change in time-

averaged internal variability of annual global-mean

surface temperature between the preindustrial and the

historical period across the CMIP5 models.

For the future simulations forced by RCP8.5, we

detect a possible decrease in time-averaged internal

variability of annual global-mean surface temperature

compared to the preindustrial climate (Fig. 2b).

To examine the direction and relative magnitude of

regional changes in temperature variability, we use our

method to calculate the ratio sens/spiC averaged for all

models for every grid box (colored patterns in Figs. 2c,d).

For the historical simulations, we find weak regional

changes in temperature variability (Fig. 2c). While

tropical regions show a possibly (no stippling) increased

temperature variability compared to the preindustrial

climate (red), many midlatitude regions show a possibly

decreased temperature variability (blue). The pattern of

temperature-variability change for the historical period
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already depicts the pattern of change projected for

the future.

For the future simulations forced by RCP8.5, we de-

tect strong regional changes in temperature variability

(Fig. 2d). Whereas many tropical, subtropical, and polar

regions show a likely (light stippling) or possibly in-

creased temperature variability, many midlatitude re-

gions show a likely decreased temperature variability.

Many mid-to-high-latitude oceans show extremely likely

changes (strong stippling).

Our findings of a globally averaged stable internal var-

iability of surface air temperature for the time-averaged

historical period and a possibly decreased internal vari-

ability for the time-averaged future climate forced by

RCP8.5 agree with the result by Huntingford et al. (2013)

that so far the variability of global-mean surface temper-

ature has not changed but is projected to decrease in the

future. They are also in line with the single-model result by

Hawkins et al. (2016), who found a decreased global-

mean surface-temperature variability of about 10% for

FIG. 2. Relationship between the standard deviation of each CMIP5 model preindustrial control simulation (x axis) and the ensem-

ble standard deviation of the corresponding (a) historical simulations and (b)RCP8.5 scenario runs (y axis) for annual global-mean surface

temperature. CMIP5 models that provide ensemble simulations (colored filled dots with nonzero ensemble standard deviation)

are considered for calculating the regression line, the r2, and the 66%and the 95% confidence intervals, and for calculating themultimodel

mean (black circled dot). CMIP5 models that have a too short preindustrial control-simulation length to cover their total internal vari-

ability (1 symbols). Models with a single simulation are situated at the zero line of the ensemble standard deviation. Large ensembles

are denoted by a triangle or a diamond. The number of ensemble simulations used to calculate the ensemble standard deviation is given in

parentheses first for the historical simulations and second for the RCP8.5 scenario runs. Uncertainty as a result of the different numbers

of ensemble simulations by assessing the ensemble standard deviation from any pairwise combination of a model’s ensemble

simulations (vertical bars). (c) Magnitude of relative change between the preindustrial temperature variability and the histori-

cal temperature variability, and (d) the magnitude of relative change between the preindustrial temperature variability and

the temperature variability of a future climate forced by RCP8.5. A possible increase (red shades) and a possible decrease (blue

shades) in temperature variability, and likely changes (light stippling) and extremely likely changes (strong stippling) are shown in

(c) and (d).
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idealized initial condition ensembles of a global climate

model forced by a 1% CO2 increase per year.

Regionally, our findings confirm the result by

Huntingford et al. (2013) of increased variability in re-

gions of low variation and decreased variability in regions

of high variation.Our results also agreewith the pattern of

future temperature-variability change found by Holmes

et al. (2016, their Figs. 2c,d, 4c,d) and are further consis-

tent with Screen (2014) and Schneider et al. (2015). They

all argue that polar amplification decreases the tempera-

ture variability in Northern Hemisphere midlatitudes,

because northerly winds are warming more rapidly than

southerly winds, especially in winter. However, our mul-

timodel result often identifies likely and possible changes

because the model estimates differ widely in the direction

and/or magnitude of regional changes.

In contrast to these previous studies that show re-

gional changes in future temperature variability,

Thompson et al. (2015) found a time-stationary internal

variability. They show that for most regions, the pre-

industrial control simulation is sufficient to represent the

future internal variability derived from the CCSM3

large ensemble. Kay et al. (2015) support this in-

dependence of regional internal variability from exter-

nal forcing based on 34-yr trends in winter surface air

temperature from CESM1-CAM5-BGC-LE.

These inconsistent results, which are mainly based on

ensembles of individual models, demands a multimodel

approach. Our multimodel approach discloses often very

different model estimates of projected temperature-

variability change that hinders a robust projection of

changes in many regions of the globe. Our approach

therefore cautions one to use only individual models

for assessing future changes in temperature variability

and now allows one to interpret single-model results

in a multimodel context.

b. Sea ice metrics

We now apply the basic version of our method to

sea ice. In an analogy to surface air temperature, we

find remarkable similarity between the preindustrial

and the historical internal variability for both

Northern and Southern Hemisphere sea ice volume

and area (Fig. 3). The single-model large ensembles

of CESM1-CAM5-BGC and MPI-ESM1.1 (black

triangle and diamond, respectively) confirm the one-

to-one-relationship.

When testing for a change in sea ice internal vari-

ability with respect to a future RCP8.5-forced climate,

we separately analyze winter sea ice (Fig. 4) and summer

sea ice (Fig. 5). For winter Arctic and Antarctic sea ice

volume, we detect an extremely likely decreased in-

ternal variability compared to the preindustrial climate

(Figs. 4a,b), while for winter Antarctic sea ice area we

find a likely decreased internal variability (Fig. 4d).

For winter Arctic sea ice area (Fig. 4c), the model

responses differ substantially and the future variability

proves largely independent of a model’s preindustrial

variability. We suggest two counteracting effects that

cause the models to disagree even on the direction of

change. On the one hand, the variability of Arctic sea ice

area decreases because the mean sea ice area decreases

(see section 4c). On the other hand, the variability of

Arctic sea ice area increases when the sea ice is detached

from continental boundaries (Eisenman et al. 2011),

when the sea ice becomes thinner (e.g., Bitz and Roe

2004; Notz 2009), and when the high-latitude tempera-

ture variability increases (cf. Fig. 2d). The inconsistent

model responses even on the direction of change might

reflect the different manifestation and timing of these

counteracting processes in each model.

For summer sea ice, we consider only sea ice volume

larger than 13 103 km3 and sea ice area larger than 13
106 km2 to prevent artifacts arising from touching the

lower bound of zero sea ice. As for winter, we find an

extremely likely decreased internal variability of sum-

mer Arctic and Antarctic sea ice volume and a likely

decreased internal variability of summer Antarctic sea

ice area compared to preindustrial conditions (Figs. 5a,b,d).

Our result for summer Antarctic sea ice area is consis-

tent with Goosse et al. (2009, their Fig. 1b), who show a

decreasing sea ice variability with a decreasing mean state

for March Antarctic sea ice extent.

In contrast to these variables, the future internal vari-

ability of summerArctic sea ice area possibly increases and

becomes largely independent of the different preindustrial

manifestations of internal variability (Fig. 5c). The possible

increase agrees with the result for CCSM3 (Holland et al.

2008) and is consistent with the study by Goosse et al.

(2009) on September Arctic sea ice extent. Based on 14

global climate models, Goosse et al. (2009, their Fig. 1a)

showed that the variability in September Arctic sea ice

extent increases until the mean sea ice area has decreased

to around 33 106km2 and thendecreases for a lowermean

September sea ice extent. Averaged over the period 2005–

2100, we thus find increased variability in summer Arctic

sea ice area across all models (Fig. 5c). As for winter, the

variability in future summer Arctic sea ice area is possibly

increased because the sea ice gets detached from conti-

nental boundaries, becomes thinner, and is vulnerable to

increases in high-latitude temperature variability.

In summary, the magnitude of modeled annual mean

internal variability of sea ice volume and area remains

largely unchanged for the historical period. In contrast,

themagnitude of internal variability in winter and summer

sea ice decreases in the RCP8.5 scenario, except for the
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variability of Arctic sea ice area, which shows inconsistent

model responses on the way to ice-free conditions. The

inconsistent model responses for Arctic sea ice area

highlight the benefit of our multimodel approach com-

pared to single-model studies, as it allows one to interpret

single-model results in a multimodel context.

c. Linking sea ice variability to the mean sea ice state

Previous studies showed a linear relationship between

mean temperature and temperature variability in the

range of high-latitude annual mean temperatures (Esau

et al. 2012, their Fig. 3b) and a linear relationship be-

tween mean Arctic temperatures and mean Arctic sea

ice area (e.g., Gregory et al. 2002; Mahlstein and Knutti

2012) for global climate models. To test whether sea ice

variability is also linked to the mean sea ice state in

CMIP5 models, we apply the extended version of our

method. The time-averaged evolution of internal vari-

ability for the sea ice metrics in winter (Figs. 6a–d)

shows that models with a high preindustrial mean

FIG. 3. Relationship between the standard deviation of each CMIP5 model preindustrial control simulation (x axis) and the ensemble

standard deviation of the corresponding historical simulations (y axis) for annual (a) Northern and (b) Southern Hemisphere sea ice

volume, and (c) Northern and (d) Southern Hemisphere sea ice area. CMIP5 models that provide ensemble simulations (colored filled

dots with nonzero ensemble standard deviation) are considered for calculating the regression line, the r2, and the 66% and the 95%

confidence intervals, and for calculating the multimodel mean (black circled dot). CMIP5 models that have a too short preindustrial

control-simulation length to cover their total internal variability (1 signs). Large ensembles are indicated by a triangle or a diamond.

Uncertainty as a result of the different numbers of ensemble simulations by assessing the ensemble standard deviation from any pairwise

combination of a model’s ensemble simulations (vertical bars).
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state simulate a higher preindustrial estimate of internal

variability of the corresponding sea ice variable than

models with a low preindustrial mean state (filled dots).

The cross-model relationship for the preindustrial state also

holds for a singlemodel over time,whichone can infer from

following individual models over time in Fig. 6. If for the

reference data period 1979–2014 (triangles) the modeled

time-averagedmean sea ice state is decreased compared to

the preindustrial mean state (filled dots), then the internal

variability is usually reduced similarly. The decrease in in-

ternal variability continues for the RCP8.5-forced decrease

in the mean sea ice state (circles) for all metrics except for

Arctic sea ice area, whose future variability is largely in-

dependent of the future mean Arctic sea ice area.

Except for future Arctic sea ice area, our analysis im-

plies that the stronger themean sea ice state is altered, the

more the internal sea ice variability is reduced. From this

relationship between themean state and the variability of

sea ice in CMIP5, we learn that when assuming that the

models are realistic, knowledge about the mean state of

the observable can be an emergent constraint for the

system’s internal variability, as also stated by Bathiany

et al. (2016) based on two box models and a compre-

hensive Earth system model. However, because of the

spread of modeled estimates, the relationship between

the mean state and the variability permits only a rough

estimate of the system’s total variability from the mean

state of a short observational time series. For comparison

to observational or reanalysis data shown as dashed lines

in Figs. 6a,c,d, we show the model simulations for the

reference data period 1979–2014 instead of those from

the historical period.

FIG. 4. As in Fig. 3, but for the ensemble standard deviation of the corresponding RCP8.5 scenario runs (y axis) for winter conditions.
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5. Application 2: Plausibility of sea ice simulations

To present a second application of our method, we use

its extended version for a robust and consistent assess-

ment of the plausibility of sea ice simulations from all

CMIP5 models. We specifically stress here that only our

robust estimation and consideration of modeled internal

variability for evaluating sea ice simulations is needed,

since we do not know the system’s true internal vari-

ability that otherwise could be used. We lack this

knowledge because the observational record of sea ice

evolution is short and no robust estimate of the internal

variability of the preindustrial sea ice state exists. When

applying the emergent constraint between internal var-

iability and the mean state as discussed in section 4c, we

face too broad a range of modeled estimates to derive a

robust relationship that could be used to properly esti-

mate the system’s true internal variability based on the

observed mean state.

The plausibility of the CMIP5 sea ice simulations is

tested for the metrics sea ice volume and sea ice area for

the Northern Hemisphere and sea ice area for the

Southern Hemisphere both with respect to 30-yr trends

and themean state. No evaluation of CMIP5 simulations

of Southern Hemisphere sea ice volume is provided

because we lack a consistent long-term reanalysis data-

set as a reference. Reference observational or reanalysis

data for the considered measures are available from

1979 until today. To maximize overlap of this period

with the CMIP5 simulations, we prolong the historical

FIG. 5. As in Fig. 4, but for summer conditions. Note that only a sea ice volume . 1 3 103 km3 and a sea ice area . 1 3 106 km2 are

considered when calculating the ensemble standard deviation.
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(1850–2005) sea ice simulations until 2014 using simu-

lations based on future RCP emission scenarios (Moss

et al. 2010). Depending on availability and to maximize

the number of models included in the analysis, we use

RCP4.5 (preferred) or RCP8.5 for the extension of the

historical sea ice simulations. The choice of using either

RCP4.5 or RCP8.5 for the extension of the historical

runs until 2014 does not influence the evaluation result

because both RCPs differ only slightly during this pe-

riod. The extension of the historical sea ice simulations

reduces the total number of available simulations to 119

(see Table 1). For the evaluation of the mean sea ice

state, each model simulation is averaged over the period

1979–2014. The same is done for the reference data. In

case of 30-yr trends, both the model output and the

reference data are averaged over the six 30-yr linear

trends obtained from the available 36-yr-long time series

from 1979 to 2014.

CMIP5 model plausibility subdivided for each indi-

vidual simulation and each month is presented as a

FIG. 6. Relationship between the standard deviation and the mean state of the preindustrial (filled dots), reference data period (tri-

angles), and future RCP8.5-forced climate (circles) of winter (a) Northern and (b) SouthernHemisphere sea ice volume, and (c) Northern

and (d) Southern Hemisphere sea ice area for the CMIP5 models. Symbols are shown in the model-specific color. The mean state of

reference data from 1979 to 2014 is shown (dashed lines). Note that for future Arctic sea ice area, only the estimates from models with

ensemble simulations are shown, because the regression line based on these models is highly uncertain and does not allow one to derive

robust estimates for models with a single simulation (see Fig. 4c).
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portrait plot as introduced by Gleckler et al. (2008)

(Fig. 7). This is a condensed color-coded way to compare

different variables of different model simulations to each

other. The color indicates the likelihood of the model

simulation to be consistent with the reference data. Red

corresponds to a model’s negative deviation with respect

to the reference data, whereas blue indicates a model’s

positive deviation. While f 5 0 describes perfect agree-

ment between the model output and the reference data,

simulations are plausible at a likelihood of 95% when

their deviations from the reference data result in 22 ,
f , 2. Deviations larger than 23 , f , 3 are plausible

at a likelihood of 1%.

By now consistently taking model-specific internal

variability and reference data uncertainty into account,

we find that internal variability can explain much of the

differences between the models and the reference data

for 30-yr trends in sea ice volume and sea ice area

(Figs. 7a–c), whereas for some models it cannot explain

the model biases of the mean state (Figs. 7a–c). More

specifically, our results reveal that for most models their

internal variability is sufficiently high to explain the

models’ deviations from observed Northern Hemi-

sphere trends in sea ice volume and in sea ice area, from

Southern Hemisphere trends in sea ice area, and the

mean state of Northern Hemisphere sea ice area. In

FIG. 7. Portrait plot of the plausibility of CMIP5 sea ice simulations for the 30-yr trend and themean state of (a) NorthernHemisphere sea

ice volume, (b) Northern Hemisphere sea ice area, and (c) Southern Hemisphere sea ice area based on the distance between each extended

historical CMIP5 model simulation and reference data (PIOMAS for Northern Hemisphere sea ice volume and the CDR satellite retrieval

for sea ice area). Deviations are shown in units off, which combines dref andsmod; amodel’s negative (red) and positive (blue) deviationwith

respect to reference data are indicated. Note that each model name is attached to the first ensemble simulation only.
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contrast, for many models their internal variability

cannot explain themodel’s deviation from the reanalyzed

mean state of Northern Hemisphere sea ice volume and

observed Southern Hemisphere sea ice area.

Our results confirm previous findings that modeled

Northern Hemisphere trends in sea ice area are gener-

ally less negative than the observed trends, especially in

summer (e.g., Stroeve et al. 2012), and that modeled

Southern Hemisphere trends in sea ice area are more

negative/less positive than the ones observed (e.g.,

Mahlstein et al. 2013; Zunz et al. 2013; Haumann et al.

2014). Nevertheless, the internal variability of most of

the models can explain the annual mean deviations of

the modeled trends in sea ice area from the ones ob-

served at a likelihood of 95%, in line with the discussion

by Notz (2015).

Overall, the results show that the plausibility of

models differs widely, both within one metric and across

metrics. On the one hand, this variety is simply caused

by the different model performances in simulating a sea

ice metric. On the other hand, this variety is also a result

of the different model-specific internal variability taken

into account for the model evaluation. For example, the

simulations of two different models having the same

distance to the reference data will have a different

plausibility if one model is characterized by a different

internal variability than the other. Evaluating the dif-

ferent model performances in the light of different

model-specific internal variability is the strength of this

evaluation approach.

6. Summary and conclusions

We present a method that allows us to derive a robust

estimate of internal variability in climate model simu-

lations. We combine the control-simulation approach

and the ensemble-spread approach that are commonly

used for estimating internal variability from model

simulations. The method provides practical evidence

that the quasi-ergodic assumption holds as long as the

internal variability is not changed by external forcing.

Across different metrics, we find a linear relationship

between the estimates from both approaches, which al-

lows us to translate the modeled internal variability of

the preindustrial control climate to that of the historical

and future climate. This multimodel approach also al-

lows for robust estimates of historical and future internal

variability for models with a single simulation. This new

method for estimating internal climate variability for

different forcing scenarios is readily transferable to

other variables and other applications in future multi-

model studies. The applicability of our method is limited

when the ensemble spread is averaged over much

shorter periods than several decades, or when the en-

semble standard deviations estimated for models with

ensemble simulations have inconsistent directions of

change, such as for future Arctic sea ice area.

We present results from two applications of this

method, namely, the assessment of changes of internal

variability over time and the evaluation of climate-

model simulations. From applying our method to an-

nual global-mean surface air temperature and sea ice

volume and area to assessing large-scale changes of in-

ternal variability over time, we find

1) a stable internal variability of annual global-mean

surface air temperature and sea ice volume and area

for the historical climate compared to the preindus-

trial climate

2) a possibly decreased multimodel mean internal var-

iability of annual global-mean surface air tempera-

ture for the RCP8.5 scenario

3) an extremely likely decreased internal variability of

winter and summer Arctic sea ice volume and winter

and summer Antarctic sea ice volume and a likely

decreased internal variability of winter and summer

Antarctic sea ice area for a future climate forced by

the RCP8.5 scenario, while winter and summer Arctic

sea ice area show inconsistent model responses

4) changes in sea ice variability to be largely controlled

by changes in themean sea ice state, except for future

Arctic sea ice area, which gets detached from conti-

nental boundaries and is vulnerable to increased

surface-temperature variability

On a regional scale, the method offers a multimodel

consensus view on how and where internal temperature

variability is projected to change in future. We find that

1) the pattern of possible temperature-variability change

for the historical period already depicts the pattern of

change projected for the future, in agreement with

temperature extremes that occurred in the last de-

cade [for an overview see Coumou and Rahmstorf

(2012)]

2) manymidlatitudes are extremely likely to experience

or will likely experience strong decreases in surface-

temperature variability, while many subtropical,

tropical, and polar regions will likely experience

strong increases in temperature variability under a

future RCP8.5-forced climate. The multimodel con-

sensus pattern of a projected increased temperature

variability with possibly associated extreme events,

especially on land, has major implications for society

In the context of previous studies (Deser et al. 2000;

Screen 2014; Schneider et al. 2015; Holmes et al. 2016),

our study suggests a close interplay between the mean
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state and the variability of surface air temperature and

sea ice volume and area. Under global warming, the

mean Arctic sea ice cover decreases linearly with mean

Arctic temperature (e.g., Gregory et al. 2002; Mahlstein

and Knutti 2012). Our results show that decreases in sea

ice variability are directly linked to the decrease in the

mean sea ice state as also found by Bathiany et al.

(2016). This link between surface-temperature vari-

ability and sea ice variability via their mean states is

enforced by the high sensitivity of thin sea ice to ocean

and atmosphere temperatures (e.g., Bitz and Roe 2004;

Notz 2009; Bathiany et al. 2016). For Arctic sea ice area,

the link between sea ice variability and the mean sea ice

state is less prominent, likely because of the competing

effect of increased temperature variability.When sea ice

that keeps surface air temperature close to the melting

temperature is replaced by open ocean, the temperature

variability can increase and thus allows for an increased

variability of the remaining sea ice area.

For both annual global-mean surface air temperature

and sea ice volume and area, applying ourmethod reveals

that the small CMIP5 ensemble size of a model is already

representative of the model’s total internal variability as

shown for CESM1(CAM5) and MPI-ESM-LR based on

their large ensembles. This representativeness of only few

ensemble simulations of a model and the hugely different

manifestation of internal variability in CMIP5 models

suggests that a multimodel approach offers more robust

estimates for changes in internal variability than results

based on single-model large ensembles. The method

proves powerful in addressing questions of regional

temperature variability such as extreme events, which are

commonly investigated using single-model large ensem-

bles. Consequently, we consider the method as a useful

tool for studies on internal climate variability comple-

mentary to large ensemble simulations of a single model.

For the evaluation of climate model simulations, the

method permits a uniform consideration of model-

specific internal variability for all models independent

of whether they provide several realizations or not.

When applied to CMIP5 simulations of sea ice volume

and area, we conclude the following:

1) Our multimodel approach discloses a highly variable

model-specific internal variability of sea ice volume

and area. The different manifestation of internal

variability in CMIP5 models hence must be consid-

ered in climate model evaluation, as discussed pre-

viously by Stroeve et al. (2014), Notz (2014, 2015),

and Swart et al. (2015).

2) The consideration of model-specific internal vari-

ability in evaluating CMIP5 sea ice simulations is

crucial for understanding the discrepancies between

model output and reference data. The results allow

for a distinction between model deviations that are

plausible due to internal variability and reference data

uncertainty and those that cannot be explained by these

sources of uncertainty and thus point to model biases.

The applications discussed here show the potential of

our simple method for estimating internal variability for

individual models and across multimodel ensembles. It

allows us to gain both a robust assessment of temporal

changes in variability and a robust evaluation of model

plausibility. In addition, our method allows us to directly

quantify the agreement among models, which we often

find to be quite low. We hence caution against the

overinterpretation of possible changes in internal vari-

ability obtained from single-model studies. Finally,

while we limited ourselves to an assessment of surface

air temperature and sea ice volume and area, our

method should be applicable for a wide range of climate

variables and thus hopefully contribute to further un-

derstanding of internal variability and its role for the

climate evolution of our planet.
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APPENDIX A

Method

Power spectra of preindustrial control simulations

We analyze the spectral distribution of variability to

test whether individual control simulations are too short

to cover the model’s total internal variability. The log-

arithmic power spectra (see Fig. A1 for HadCM3 and

HadGEM2-ES for annual global-mean surface tem-

perature) reveal that for some models, the maximum

1 DECEMBER 2017 OLONSCHECK AND NOTZ 9569

mailto:publications@mpimet.mpg.de


spectral power of the control simulation does still con-

siderably increase at the time scale provided by the

length of the control simulation (e.g., HadGEM2-ES).

We here consider an increase in the spectral power at

the time scale of the length of the control simulation as

considerable when

var(T)2 var(T2 1
equiv

).

 
�
T

i51

var

!
/100; (A1)

that is, the control simulation’s variance increases by

more than 1% of the total variance for the last time-

equivalent time step D[T 2 (T 2 1equiv)] of the spectral

distribution of variability. We choose this criterion be-

cause it still allows for slight increases in variance and

does not exclude too many models.

APPENDIX B

Reference Data and Uncertainties

a. Sea ice volume

As reference data for the evaluation of Northern

Hemisphere sea ice volume, we use reanalysis data from

the Pan-Arctic Ice Ocean Modeling and Assimilation

System (PIOMAS) (Zhang and Rothrock 2003) that

cover the period from 1979 to today. PIOMAS is con-

sidered useful for climate-model evaluation (Laxon

et al. 2013), as the sea ice–ocean model (i) assimilates

sea ice concentrations from satellite retrievals and is

forced by NCEP atmospheric reanalysis data and (ii)

simulates a sea ice thickness estimate that agrees with

past and recent airborne and in situ point measurements

and with recent satellite measurements of ICESat

(Kwok and Rothrock 2009; Schweiger et al. 2011) and

complemented data of CryoSat (Laxon et al. 2013). In a

detailed assessment of PIOMAS March sea ice thick-

ness, including additional satellite, submarine, and

mooring data, Stroeve et al. (2014) confirmed that

PIOMAS is suitable for model evaluation of long-

term trends.

Schweiger et al. (2011) discussed the uncertainties in

PIOMAS sea ice volume and provided conservative

uncertainty estimates for March and October sea ice

volume and sea ice volume trends. Based on model

sensitivity studies, they stated an uncertainty of the 32-yr

trend in sea ice volume of 1.03 103 km3 decade21 and a

conservative uncertainty range of 2.253 103 km3 for the

mean state of sea ice volume in March and 1.35 3 103

km3 in October. We interpolate the uncertainty ranges

for the other months by weighting them with the

monthly mean sea ice volume averaged over the period

1979–2010. To reach a smooth curve of monthly un-

certainty estimates that is fixed at the March value of

2.25 3 103 km3 and inspired by the mean seasonal cycle

of Arctic sea ice volume, the July–December values are

increased by a factor of 1.12–1.25. Adapting the un-

certainty estimate in summer rather than in winter is

justified by the uncertainty related to melt ponds in the

FIG. A1. Logarithmic power spectra for (a) a preindustrial control simulation that is sufficiently long (HadCM3)

and (b) a preindustrial control simulation that is too short (HadGEM2-ES) to represent the model’s total internal

variability of annual global-mean surface temperature. The number indicates the change in variance at the last

time-equivalent time step of the spectral distribution of variability. Note that preindustrial control simulations

shorter than the one ofHadGEM2-ES can be fully adequate because the suitability depends on themanifestation of

internal variability in a model. The suitability of a preindustrial control simulation further depends on the variable

analyzed.
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sea ice concentration products from satellite retrievals

that are assimilated to PIOMAS. These monthly un-

certainty estimates define dref used when evaluating

Northern Hemisphere sea ice volume.

b. Sea ice area

As reference data for the evaluation of modeled sea

ice area, we use satellite retrievals of sea ice concen-

tration. The sea ice concentration data product used

here is the Climate Data Record of Passive Microwave

Sea Ice Concentration (CDR; Meier 2013). The CDR

combines different satellite algorithms that, when ap-

plied individually, result in different estimates of sea ice

concentration dependent on the applied transfer func-

tion that translates the passive-microwave signature into

sea ice concentration. The reliability of satellite re-

trievals based on a single algorithm is questioned mainly

because of the different treatment of the impact of

surface properties (e.g., Lindsay et al. 2014; Titchner and

Rayner 2014). The CDR aims to reduce the uncertainty

originating from the use of specific algorithms. There-

fore, we consider the CDR time series as a best estimate

of the ‘‘true’’ evolution of sea ice concentration.

To account for the area around the North Pole that is

not covered by satellite data, we fill this data hole fol-

lowing the procedure by Olason and Notz (2014). The

first satellite observations from 1979 to August 1987

reached only 84.58N. However for this period, filling the

data hole with a sea ice concentration of 1 is reasonable

because the latitudes to the south show a constantly

dense sea ice concentration as well. This assumption

does not hold for the period from August 1987 onward,

although the observations now reach 87.28N. The sea ice

concentration starts to become too variable in the cen-

tral Arctic. We therefore use the mean concentration of

the outer rim of the large pre-1987 data hole (i.e., be-

tween 84.58 and 87.28N) to fill the remaining post-1987

data hole of sea ice concentration.

As dref estimates for sea ice area, we use the standard

deviation estimate provided by the CDR. Note that this

standard deviation estimate is available only since

August 1987.
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