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CMIP5 presents a unique opportunity to update the first
CAMIP analysis of carbon cycle feedbacks in coupled climate-
carbon cycle models using a greater number of state-of-the-art
ESMs from a wider modelling community, and encompassing
improved experimental design and model processes.
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Figure 1. Permissible emissions as simulated by
HadGEMZ2-ES (thin lines) compared with observed
CO, emissions for the historical period and those
projected for the RCP scenarios by the integrated
assessment models (IAMs) which created the RCPs
(thick lines)
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There is growing evidence that variability in the stratosphere
has a significant impact on surface climate (Baldwin and
Dunkerton, 2001, Thompson et al., 2002, Charlton et al.,

2004, Scaife et al., 2005, Manzini et al., 2006, Ineson and
Scaife, 2009, Cagnazzo and Manzini, 2009, among others).
During boreal winter, there is the potential that models

with a well resolved stratosphere will lead to an improved
representation of blocking and cold air outbreaks over
Europe, due to the simulation of realistic stratospheric
sudden warming events in the stratosphere resolving models.
In addition, stratospheric changes induced by anthropogenic
climate change may contribute substantially to changes in
storm tracks, sea level pressure and precipitation.

Stratospheric dynamics may also be implicated in linking
remote changes in the Earth system, such as ozone
depletion/recovery and ocean carbon fluxes (Lenton et
al., 2009). A suggested mechanism for this is that ozone
depletion leads to a stronger southern hemisphere polar
night jet in October which in turn leads to increased zonal
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wind over the southern ocean decreasing the uptake of CO,
by the southern ocean (Le Quéré et al., 2007). Figure 1 shows
this trend in zonal wind in ERA4Q, a coupled stratosphere-
resolving model, known as a high top model, run at the UK
Met Office (Martin et al., 2011) for CMIP5, and and equivalent
standard, low top climate model (differing only in vertical
resolution). In this particular case, the high/low top model
comparison indicates sensitivity of the zonal wind trend to
the representation of stratospheric dynamics.

Recently, the Stratospheric Processes and their Role in
Climate (SPARC) Chemistry-Climate Model Validation phase 2
(CCMVal-2) multi-model intercomparison has demonstrated
that the CCMval-2 models, generally with a better-resolved
stratosphere, perform better than AMIP CMIP-3 models in

the stratosphere and perform equally well if not better in the
troposphere (Chapter 10, Baldwin et al., 2010).

These advancements in the knowledge of how stratospheric
representation operates in climate models have lead a
number of climate modeling groups to undertake the Coupled
Model Intercomparison Project Phase 5 (CMIP5) experiments
with models that include a well-resolved stratosphere, the so-
called “high-top models”.

“High-top models” currently refer to coupled atmospheric-
ocean-sea ice general circulation models (AOGCMs), or
their extension to Earth System Models (ESMs), whose
atmospheric model extends above the stratopause. More
specifically, to properly simulate stratospheric processes,
the development of high-top models needs to include also
revised implementations of radiation, gravity wave effects,
and how radiative active trace fields are represented. Paying
particular attention to the evolution of ozone has already
been demonstrated as important (Son et al., 2008).

The high-top models therefore distinguish themselves

from the large majority of climate/Earth system models,
such as those that participated to CMIP3 and used for

the Intergovernmental Panel on Climate Change Fourth
Assessment Report (IPCC AR4) (Chapter 8, Randall et al.,
2007). Consequently, the label “low-top™ is now applied to
any AOGCMs/ESMs, which atmospheric model component
does not reach the stratopause. Most of the low-top models
do extend to the middle stratosphere; however, high-top
models typically extend to the middle/upper mesosphere. A
few models extend to the lower thermosphere.

From the point of view of stratospheric dynamics, the

major limitation of the low top models is that in this class of
models, the explicit simulation of stratospheric variability is
hampered in the upper layers of the model domain and in the
lower stratosphere. This technique may provide reasonable
results for the modelled mean climate, but it reduces the
modelled stratospheric variability and therefore its downward
influence. Its quantitative implications for tropospheric and
surface variability for seasonal to decadal and longer time
scale are just starting to become apparent.
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The status of development of high-top models and their
potential participation in CMIP5 have been recently reviewed
in a workshop lead by the SPARC DynVar Activity on
Modelling the Dynamics and Variability of the Stratosphere-
Troposphere System (Manzini et al., 2011). Topics addressed
in the workshop included: Influence of the stratosphere

on the tropospheric circulation, on the ocean circulation

via air-sea interactions, and on snow and sea ice fields;

role of the stratosphere in the tropospheric circulation
response to climate change; and mechanisms for two-way
stratosphere-troposphere coupling. Presentation sections
were complemented by discussions on how to best analyze,
make full use, and exchange knowledge from the ensembles
of CMIP5 runs, with the role of the stratosphere in focus.

A major outcome of the DynVar workshop is that about 10
modeling groups are carrying out analysis of the CMIP5
simulations with high top models and comparing this

with the low top model simulations. The modeling groups
represented at the DynVar workshop are listed in Table 1,
together with information of the model names, atmospheric
resolution, scenario, and contacts. Of the 10 high top
models represented at the DynVar workshop, three models
include interactive atmospheric chemistry and at least three
modeling systems will additionally be run with CO, emissions,
requiring modules for the land and ocean carbon cycle.

Following the workshop, Research Groups have been
established within the SPARC DynVar Activity, to foster
analysis of the CMIP5 archive, with the role of the
stratosphere in focus.

A SPARC/DynVar workshop will be held jointly with CLIVAR's
Stratosphere Historical Forecast Project (SHFP), which

is carrying out a similar activity for high top and low top
seasonal forecasts. The workshop will take place in spring/
summer 2012. For more and updated information see the
SPARC DynVar web site (http://www.sparcdynvar.org/).
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Figure 1: December-January-February (DJF) trend (ms*decade?) in zonal wind in ERA40 (left), a coupled high top
model, run at the UK Met Office for CMIP5 (middle), and equivalent low top model (right). The trends are computed

over the 1980-1989 period.
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