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A similarity relation for the nonlinear energy transfer 
in a fhite-depth gravity-wave spectrum 

By K. HERTERICH AND K. HASSELMANN 
Max-Planck-Institut fur Meteorologie, Hamburg 

(Received 21 September 1977 and in revised form 26 June 1979) 

The energy transfer in a finite-depth gravity-wave spectrum is investigated in the 
approximation of a narrow spectrum. It is shown that for ocean depths larger than 
approximately one tenth of the wavelength (kh 2 0.7) the finite-depth case can be 
reduced to Longuet-Higgins’ (1976) result for an infinitely deep ocean by a similarity 
transformation involving changes in scale of the angular spreading function and the 
transfer rate. For shallower water (kh c 0.7) Longuet-Higgins’ expansion technique 
is no longer applicable without modification, as the nonlinear coupling coefficient 
develops a discontinuity at  the origin of the expansion. In  the range kh 2 0.7 
both the magnitude and the two-dimensional frequency-directional distribution 
of the energy transfer are found not to differ significantly (to within variat.ions by a 
factor of 2) from the case of an infinitely deep ocean. The transformation rules 
relating the infinite-depth and finite-depth cases may provide a useful guide for con- 
structing parametrizations of the nonlinear transfer for finite-depth wave prediction 
models. 

1. Introduction 
A number of recent experiments (Mitsuyasu 1968, 1969; Hasselmann et al. 1973, 

1976) suggest that the shape and evolution of a wind-wave spectrum is largely con- 
trolled by nonlinear wave-wave interactions. These conclusions were drawn from a 
comparison of spectral growth measurements with numerical computations of the 
nonlinear energy transfer for infinite-depth spectra. Although Hasselmann’s expres- 
sion (1961, 19636) for the nonlinear energy transfer was originally derived for the 
general finite-depth case, similar calculations for finite-depth waves have not yet 
been carried out. Such computations would clearly be desirable not only for an 
improved understanding of the energy balance of gravity-waves of finite depth, but 
also for the construction of numerical wave models for shallow-water areas, where the 
demand for improved wave forecasts and wave-climate statistics has steadily increased 
through the expansion in off-shore activities. 

Numerical calculations of the nonlinear energy transfer for the general case of an 
arbitrary finite-depth spectrum may be expected to be considerably more time 
consuming than in the infinite-depth case. Various simplifications arising from the 
homogeneity of the coupling coefficients and the dispersion relation with respect to 
wavenumber, which enables the transfer rates for different wavenumbeIs to be related 
by scaling factors, are no longer applicable. More importantly, to derive parametrized 
transfer expressions for use in numerical wave models, a large series of computations, 
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216 K .  Herterich and K .  Hasselmann 

including the dependence on the wavelength-Lo-depth ratio as additional external 
parameter, needs to be carried out. For this reason it appears appropriate to restrict 
the investigation of finite-depth influences first to the case of a very narrow spectrum, 
which can be treated more simplyusing the approximations of Longuet-Higgins (1976). 
An investigation of this limiting case may then provide some theoretical guidance 
for incorporating the depth dependence into general parametrical expressions of the 
nonlinear transfer for an arbitrary spectrum. 

The Boltzmann integral for the energy transfer due to resonant third-order wave- 
wave interactions has the general form (Hasselmann 1961, 19633) 

x ( ~ 4  F1 F2 F3 + 03 F, F4 - 02 3 ' 3 4  - ~1 F, F3 q) 
x k2- k3- k4) 6 ( ~ 1 +  ~2 -w3 -wq) (1) 

in which the rate of change of the spectrum at the wavenumber k4 is determined by 
the integral over all third-order interactions with wave components k,, k,, k, satisfy- 
ing the resonance conditions 

k1+k2 = k3+k4, w I + w ~  = ~ 3 + 0 4 ,  

with wave frequencies wi given by the dispersion relation 

03 = gk ,  tanh (ki h) .  

= F(kJ the variance 
spectrum of the surface displacement and D an interaction coefficient which is given in 
Hasselmann (1961) (a recalculation yielded two additional terms which vanish in the 
infinite-depth limit but cannot be neglected for finite depth, cf. appendix B). 

For a general surface-wave spectrum the integral (1)  can be evaluated only num- 
erically (Hasselmann 19633; Sell & Hasselmann 1973; Webb 1978). However, analyti- 
cal results can be derived in the limiting case of a very narrow spectrum (Longuet- 
Higgins 1976; Fox 1976). In  this case all interactions are concentrated in a limited 
region around the peak wavenumber k,, k, k, "N k, "N k, z kp. The interaction 
coefficient, if continuous, can then be regarded as constant, D = Do, and taken outside 
the integral. The frequency &function can also be expanded around the peak frequency, 
and the interaction diagrams in the wavenumber plane (cf. Hasselmann 1963b, 
figure 6)  reduce to a set of hyperbolas centred at  +(kl + k2) = 4(k3 + k4). 

A complication of the finite-depth case is that D is in fact not continuous a t  the 
expansion origin k, = k, = k3 = k, = kp. However, as discussed below, for kp h 2 0.7 
the discontinuous contribution is small and can be neglected. In  the limit of an in- 
finitely deep ocean, D is continuous everywhere and its value at  the expansion origin 
is given by Do = (appendix B; Hasselmann 1963b). The coefficient Do is related 
to Longuet-Higgins' (1976) interaction coefficient Go through Go = n($Do)2 = 4n, 
where the units are chosen such that g = kp = 1. 

For the infinite-depth case, Longuet-Higgins found a positive energy transfer in the 
directions 01 = +_ arctan ( f 1/42, relative to the expansion origin kp. Using the same 
approximation, Fox (1976) calculated the energy transfer in the vicinity of kp for a 
variety of differently shaped, narrow spectra. For a symmetrical peak the maximal 

Here g is the acceleration of gravity, h the ocean depth, 
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Finite-depth gravity-wave spectrum 217 

positive transfer values occur a short distance on either side of the peak along Longuet- 
Higgins’ directions a. Between these directions, along the axes, the transfer is negative, 
with a maximum negative value at  k,. An asymmetry of the spectrum relative to the 
peak frequency along the frequency axis reduces the negative trough on the steeper 
side of the peak. 

This is in general agreement with numerical calculations for the complete Boltzmann 
integral (Hasselmann 19633; Sell & Hasselmann 1973 ; Webb 1978), in which a strong 
asymmetry of the peak is found to shift the energy transfer pattern towards the flatter 
side of the peak (higher frequencies). This leads to a positive rather then negative 
energy transfer on the steep side of the peak, and explains the observed shift of the 
peak of a growing wind-sea spectrum towards lower frequencies. For a rather broad 
spectrum, such as a fully developed Pierson-Moskowitz spectrum, the full calculations 
show that the positive growth region encompasses the peak itself, and tends to sharpen 
the peak as opposed to the peak broadening found for a very sharp spectrum. The 
sensitive dependence of the nonlinear transfer on the spectral shape appears to be 
responsible for the self-generation and stabilization of the spectral shape of a growing 
wave spectrum in the form observed. 

AS many of the principal features of the complete calculations are reproduced, at  
least qualitatively, by the narrow-peak approximation it is significant that the 
principal result of the present study is that the narrow-peak results for infinite-depth 
waves can be carried over directly, for kp h 2 0.7, to the finite-depth case by straight- 
forward scale transformations. The similarity Ielations between the finite-depth and 
infinite-depth cases may be expected to apply also, at least approximately, for more 
general spectra, thereby providing a basis for constructing parametrizations of the 
nonlinear transfer for the general finite-depth case once the simpler infinite-depth case 
has been parametrized. Such an approximation would of course need to be tested and 
possibly modified by independent calculations of the complete nonlinear transfer for 
realistic finite-depth spectra. 

2. The narrow-peak approximation in the case of finite-depth waves 
The method of Longuet-Higgins and Fox is applicable also to the finite-depth case, 

provided the terms of the integrand in (1) which do not involve the wave spectrum 
are continuous a t  the expansion origin k, = k, = k3 = k4 = k,. In  this section we 
ignore for the present the fact that the coefficient D is in reality discontinuous for 
finite h at the expansion origin, and assume that the non-spectral terms in (1) can all 
be expanded for finite h. In  this case we show that there is no need to repeat the calcula- 
tions of Longuet-Higgins and Fox, since the results of their analysis can be carried 
over directly to the finite-depth case by suitable scale transformations. 

In  the narrow-peak approximation equation (1) may be written 

x 6(kl + k, - k3 - k4) &(w,+w, - w3- ~ 4 ) .  (2) 

Introducing difference wavenumbers k; = k, - kp = (A‘ ,  p’)  and frequencies 

W !  = W . - W  z a p ,  
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218 K .  Herterich and K .  Hasselmann 

where wp = (gkp tanh ( k p  h))*, the dispersion relation can be expanded in the neigh- 
bourhood of the peak in the form 

where cl, c2 and c3 are functions of the ocean depth which are given in appendix A. 
In  the infinite-depth limit, kp h -+ co, cl, c2, c3 -+ 1.  

For the evaluation of the frequency &function in (2) only the quadratic terms in (3) 
are relevant, since the sum of the linear terms A; + A; - A; - A; vanishes through the 
interaction condition for the wavenumbers. The quadratic terms can be made identi- 
cal, except for a common factor, with the corresponding expression in the infinite-depth 
case by the scale transformations 

where the scaling factor c4 a t  this point is arbitrary and will be determined later. 
Equation (3) then becomes 

where the functions 

P(Af',  pf') = - 1 g2 ( - hff2 + Zpf'2) and 
WP 

represent the infinite-depth relations, the depth dependence of w" being collected in the 
coefficients cl, c2, cQ and c4. 

Substituting these transformations into equation (Z), we obtain 

x 

x 6(k; + ki - ki - k,") S(P1+ /32 - /33 - P 4 ) ,  

dk; d k i  dk," [Fi Fi(Fl+ F,") - (F; + Pi) 3'; F,") 

(5) 

s 
where f D  is defined by D(kph)  = fD(kph)D(oo) and D(c0) = - $ 4 / g 4  is the inter- 
action coefficient for infinite depth (at the same frequency w p ) .  We have made use of 
the relation 6(cR) = ( l / J c J )  S(Q) in factoring out the depth-dependent coefficients in 
the &-function. The spectra F; are defined as densities with respect to the wavenumber 
space (A", p"), i.e. F"dh"dp" = Fdk. 

Equation (5) is identical to the integral considered by Longuet-Higgins and Fox for 
an infinite-depth spectrum F"(k") except for the additional factor 
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Finite-depth gravity-wave spectrum 219 

It may be remarked that to relate the finite-depth and infinite-depth cases we could 
have normalized the coupling coefficient D and the second-order frequency expression 
p with respect to  either the peak frequency or the peak wavenumber. We have 
chosen the peak frequency rather than wavenumber, since it remains invariant as 
the waves propagate into shallow water. For the same reason we shall derive the 
general relation between the finite-depth and infinite-depth cases in terms of the 
frequency spectra rather than wavenumber spectra. 

We may now prescribe the free scaling factor c4 such that within the narrow-peak 
approximation not only the peak frequency, but also the one-dimensional frequency 
distribution f ( w )  of the finite-depth spectrum and the transformed equivalent infinite- 
depth spectrum are identical. The two-dimensional frequency-directional spectra for 
finite and infinite depth are related by 

f (0) S(W, 0 )  d w d 0  = F ( k )  dk = F " ( k " ) d k  = fm(wm) S m ( ~ m ,  0,) dwm do,, 

where 

w = w , + l  C L A ' +  ... = up+- - A"+ ..., w, = w,+-A"+ 9 ..., 
U P  2c4 wp 2% 

and S ,  S, denote spreading functions which are normalized such that their integrals 
over the directions 0,0, are unity. The requirement f ( w )  = fm(wm)  is clearly satisfied 
if we set c4 = c,. The spreading functions are then related by 

a S,(0,) = yX(0) with 0 = 70, and y = - c3 -. k m  
c1 k, (7) 

Noting that both the left- and right-hand side of equation (5) are expressed in terms 
of the transformed variables, the rules for deriving the nonlinear transfer for a finite- 
depth spectrum may therefore be summarized as follows: 

( 1 )  replace the spreading function S by the broader distribution S,  according to  
the transformation 0, = 0 / y  (maintaining normalization of t h e  spreading function 
in accordance with (7)) ; 

(2) compute the nonlinear transfer for the new frequency-directional spectrum as 
though the depth were infinite; 

(3) multiply the resultant transfer rate by the factor R; 
(4) transform the result back into the original angle variable 0 = yom (again 

conserving angular integrals in accordance with ( 7 ) ) .  

3. The discontinuity of the interaction coefficient D at k, = k, = k, = k, = kp 

The above results need to be modified by consideration of the discontinuity of the 
coefficient D a t  the expansion origin k ,  = k ,  = k, = k4 = k,. Formally, the dis- 
continuity is associated with second-order difference interactions between the compo- 
nents k ,  and k, or k ,  and k, which create a resonant wave a t  wavenumber zero. It 
arises in the first term in (B 2),  after permutation of the wavenumbers as required for 
the first and second terms in (B 1). As ki + k,, the terms take the indefinite form 
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220 K .  Herterich and K .  Hasselmann 

0.1 0.2 ,80.'s i i 5 10 20 so 100 
kP h 

FIGURE 1. Depth dependence of the ratios R and y of the transfer rate and spreading angle, 
respectively, in the finite and infinite-depth cases. R consists of the two factors fi and c:/c2 cII 
representing the contributions from the coupling strength and the resonance phase volume 
respectively. The effective ratio of the transfer rates for comparable spreading angles is of order 
R' = Ry2. The ratio of the angles a of the transfer pattern relative to an origin in the wavenum- 
ber plane at J(k,+ k,) = +(k3+ k4) is given by the curve tan u/tan a,. cr is the normalized 
contribution of the discontinuous term of the interaction coefficient. The similarity relations 
are valid for k, h 2 0.7 and k, h 5 0.3 ( D  5 0.1). 

010. For given fixed directions a,, a, of the difference wavenumbers Ak, = k,-k, 
( = - Ak,), and Ak, = k3 - &( = - Ak,), where k, = i(k,  + k,) = +(k3 + k,), a finite 
limit exists as Ak,, Ak3 + 0, but its value depends on a, and a,. 

The term in the denominator of (B2) is readily seen to be proportional to the square 
of the group velocity at zero wavenumber. Since this is infinite for infinite-depth 
waves, the discontinuity vanishes for an infinite-depth ocean. Thus the corrections 
due to the discontinuity will become negligible for sufficiently large h. 

To determine the region in which the discontinuity becomes important, the inter- 
action coefficient may be written in the form D = D, + Dp, where D, is continuous and 
Dp contains the discontinuous contribution. The separation is made unique by defining 
the angular average of the discontinuous term to be zero, 

Noting that D occurs quadratically in ( I ) ,  we may then consider the ratio 

u = ( (D2-(D2))2) / (D2)2 at k, x k, x k, E k, x kp 

as a characteristic index of the error incurred by neglecting the discontinuous term 
Dp in the narrow-peak analysis. Computed values of u are plotted in figure 1 as 
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Finite-depth gravity-wave spectrum 22 1 

a function of kp h. The errors incurred by ignoring the discontinuity are seen to be 
negligible (CT < 0-1) for kp h 2 0.7 and kp h 6 0.3, but can become appreciable near 
kp h x 0.5 (c x 20). In  practice, the side condition h > 0-7/kp x A110 for the validity 
of the similarity relations should not be too restrictive, since we are not interested 
here in very shallow water in which strongly nonlinear processes occur, but rather in 
intermediate regions, such as continental shelves, where the basic radiative transfer 
description of a slowly varying wave spectrum is still applicable. 

4. Discussion 
Figure 1 shows the depth dependence of the transfer-rate scale factor R and the 

angular scale factor y. Also shown is the scale factor ck relating the angles a and a, in 
the wavenumber plane relative to an origin at  k, = &(k,+ k,) = &k3+ k4) (cf. equs- 
tion (4)), 

Pf t ana  = - = c t k  = citana,. 

The factor R contains two contributions, the term fi = (D(h) /D(m))2  representing 
the change in nonlinear coupling, and the term c t / c 2  c3 arising from the depth-depend- 
ence of the dispersion relation in the frequency resonance condition. With decreasing 
depth, the near-resonance region in wavenumber phase space (defined, for example, by 
the region Iwl + w2 - w3 - w41 < E ,  where E is the some fixed but small number) first 
decreases and then increases. In the limit h -+ 0, second-order resonance becomes 
possible, and the third-order resonance region approaches infinity. Thus c t /c2  c3 -+ 00 

as kp h -+ 0. The strength of the coupling fi also increases to infinity as kp h -+ 0. 
In assessing the strength of the energy transfer for finite-depth waves it should be 

noted that the reference spectrum in the infinite-depth case has a spreading function 
broadened by the factor l /y  (or narrowed, if y > 1). Directional broadening reduces 
the energy transfer by a factor of approximately y2 (Longuet-Higgins 1976), so that 
the eneIgy transfer for finite-depth waves is stronger than in the infinite-depth case 
by a net factor of approximately R' = Ry2. 

In the shaded region of the figure, 0.3 < kp h < 0.7,  the similarity relations no longer 
hold, since the discontinuous part of the coupling coefficient is no longer negligible. 
However, the function R should still give an indication of the order of magnitude of 
the transfer rate, although the detailed distribution of the transfer will no longer 
correspond to the infinite-depth case. 

For sufficiently small depths the theory will ultimately break down because the 
nonlinear transfer becomes too strong for application of the weak-interaction approxi- 
mation. A necessary requirement of the theory is that the characteristic nonlinear 
transfer time is large compared with the time needed to resolve the spectrum - in the 
present case, about ten times the inverse peak width. This is essentially the same 
two-timing condition which is needed generally for the description of the wave field 
as a quasi-homogeneous, quasi-stationary process governed by a spectral transport 
equation. 

The similarity relation between the finite-depth and infinite-depth energy transfer 
implies that the basic nonlinear mechanisms that control the evolution of an infinite- 
depth wind-wave spectrum should act similarly in the finite-depth case. An increase in 

f f  
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222 K.  Herterich and K.  Hasselmann 

the net transfer rate by a factor R‘ implies that the equilibrium between the wind input 
and the nonlinear transfer in the central region of the spectrum will be established 
more rapidly, and the equilibrium level of the spectrum will be lower by a factor of 
order l/R’* (assuming a wind input proportional to the spectrum - cf. Hasselmann 
et al. 1976). However, the rate of shift of the peak frequency a t  this lower energy level 
remains approximately the same as in the infinite-depth case: the stronger transfer rate 
proportional to R‘ is offset by the lower spectral level, which reduces the rate of shift 
by the inverse factor ( l /R‘* )2  = l/R‘. Thus changes in the nonlinear transfer rate 
should not affect the rate of shift of the peak frequency, or the shape of the spectrum. 
This is in accordance with the observations of Bouws (1978), who found good agree- 
ment of the shape of the energy-containing region of shallow-water wind-sea spectra 
with the JONSWAP form for deep-water waves. However, both BOUWS’ figures and 
the measurements of Kitaigorodskii, Krasitskii & Zaslavskii (1975) indicate that the 
spectrum falls off less steeply than w5 at higher frequencies (w 2 2wp) .  In this range the 
narrow-peak approximation is clearly no longer applicable. It would be interesting 
to investigate the energy balance of the complete spectrum by computing the full 
non-linear transfer expression for some typical observed finite-depth spectra. How- 
ever, the present analysis suggests that for the energy-containing range of the 
spectrum (w 5 2wp)  existing concepts on the growth and quasi-equilibrium shape of 
wind-sea spectra, as developed for infinite-depth waves (and incorporated in simplified 
prediction models, cf. Hasselmann et al. 1976), should be applicable, with only minor 
modifications, also to the finite-depth case. 

Appendix A 
The dispersion relation for finite-depth waves is given by 

w = (gktanhkh)i, 

k = [ ( E p  + A’)’+,u’~]*. where 

Expansion in a Taylor series around wp = (gkp tanh kp h)a yields, correct to second 
order in (A ’ ,  ,a’), 

sinh kp h cosh k, h 
w = wp+-tanhkph g 

2% 

-- g2 tanh2Eph[(l- 
8W; 

4w; sinh k, h cosh kp h 
+-tanh2kph g2 

Comparison with equation (3) shows that 

c1 = tanh k, h( 1 + kp hlsinh E p  h cosh kp h), c2 = c1 tanh kp h, 

(1 - kp hlsinh E ,  h cosh kp h)2 + ( 2kp hlcosh kp h)2 
1 + k, h/sinh kp h cosh k, h 

0 for h = 0, 

1 f o r h =  00. 

c3 = 

Limiting values are 
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D i g  = i (w ,+  w,) (E,k,tanh(k,h)tanh(k,h)-k2.k,) 
- ti(@, k,2/cosh2 k, h + w3 kl/cosh2 k,h, 

and wi = o k i  si, si = 

Hasselmann’s (1961) result has been corrected by the two additional terms indicated 
by square brackets in the expression for DF&23. These were discovered after testing 
the invariance of D under permutations of the wavenumbers, as required for the 
conservation of energy and momentum (Hasselmann 1963a). The terms vanish for 
kh -too and therefore do not affect previously published results for infinite-depth waves. 

I n  the limit k, z k, z k, z k, E k, we obtain 

D z D,+D,, 

1. 

where 0, = D, + (Db), D, = Db - (Db),  (Db) = -2 / J d a 1 d a 3 D b  
(2n) 

and 
w; 1 cosh2k,h 

a 9 4  3 sinh4kph 
D = - - ( [$(a + tanh2k,h) + 6 tanhk, h x tanh 2kph 

3[2(tanh kp h x 2 tanh 2kp h + 2) + 4/cosh2 Zk, h - 2/cosh2 kP h 
2 tanh 2 5  hltanh kp h - 4 

- 4 sin2 kp h + 

with 

1 
Db =;(-+&I), 

a =  2 cosh4 kp h( 1 + kp h/sinh Ic4p kp h cos Ic, h)2 [ ‘Osh2 ‘P + + sinh k,tc,sh kp h] ’) 
4k,h 

= tanh kp h( 1 + kp hlsinh k, h cosh kp h)2’ 
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Limiting values me 
D a + - a ,  Db-+CO for h+O; 

Da-+-sF, Db+O for h+m. 
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