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Abstract 

A study on the applicability of ERS-l wind and wave data for wave models is carried out 

using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR 

data. A series of global wave hindcasts are made using as input driving fields: 

(i) the six-hourly averaged surface stress fields derived by Atlas et al. (1987) for the full 96-

day SEASAT period 7 July - 10 October 1978 by assimilation of scatterometer data with 

conventional meteorological data using the Goddard Laboratory of Atmospheres 4' x 5', 

9 level atmospheric model, 

(ii) the 1000 mb wind field from the same GLA analysis for August, 1978, 

(i i i) the 1000 mb wi nd fi eld derived by Anderson et al. (1987) for the peri od Septem ber 6 - 17, 

1978, using more sophisticated assimilation techniques and the higher resolution T63 

(1.875' X 1.187', 19 layer) model of the European Centre for Medium Range Weather 

Forecasts, and 

(iv) a subjectively analysed scatterometer wind field produced by Woiceshyn et al. (1987) for 

the period September 6 - 20. 

The four hindcasts are intercompared and verified against altimeter wave height and 

wave buoy data. In the northern hemisphere the hindcasts agree reasonably well with each other 

and with the observations. However, strong deviations between the hindcast for the GLA stress 

field and the other three hindcasts are found in the high wind belts in the southern hemisphere. 

This is tentatively attributed to the six-hourly averaging applied in the computation of the 

surface stress fields. 

It is concluded that wave models provide a very sensitive mechanism for identifying 

inconsistencies in wind field analyses. The simultaneous operation of a wave model in 

conjunction with an atmospheric model in a joint wind and wave data assimilation system 

therefore provides a valuable data validation tool. 

Comparisons are also made between SEASATSAR image spectra and theoretical SAR spectra 

derived from the hindcast wavespectra by Monte Carlo simulations. Good overall agreement is 

found for 32 cases representing a wide variety of wave conditions. In rnosl cases the input wave 
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with confidence for wave studies. However, SAR data can be meaningfully interpreted only in 

conjunction with a realistic wave model and detailed computations of the mapping of the two­

dimensional ocean wave spectrum into the SAR image spectrum. 

A new, closed nonl inear integral expression for this spectral mapping relation is derived 

which avoids the inherent statistical errors of the Monte Carlo approach. The method may also 

prove to be more efficient numerically. This is an important consideration in view of the 

extensive computations required for the analysis of the global SAR spectral data set produced by 

the ERS-1 AMI instrument operating in the wind/wave mode. 

A theoretical framework is developed for the simultaneous assimilation of arbitrary wave 

data (e.g. wave heights, buoy spectra or SAR image spectra) in numerical weather prediction and 

wave models. Both wind and wave fields are modified simultaneously in accordance with the 

constraints imposed by the wave model. The explicit integration of the adjoint wave equation 

required in the general formulation ofthe problem is avoided by using an approximate 

(diagonal) Green function, the elements of which are already computed as part of the wave 

model's implicit integration scheme. 

An example of a simplified wave data assimilation scheme is presented in which only the 

wave field is modified. The assimilated wave data are the global SEASAT altimeter wave heights 

for August, 1978. A considerable improvement in the wave forecast is achieved in the tropics and 

northern hemisphere, where most of the wave energy consists of swell. However, the errors are 

only partially reduced in the principal generating regions of the higher latitude southern 

hemisphere, where the unmodified surface stress field regenerates incorrect windseas. These 

deficiencies would presumably be remedied in a joint wind/wave assimilation scheme. 
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1. Introduction 

1.1 Background 

The present study contract represents a complementary investigation to a 

previous ESA two-part study on the feasibility of developing and implementing a 

comprehensive data assimilation system for the near real time analysis of ERS-1 wind 

and wave data. It should therefore be viewed in the context of these study contracts 

(ESRIN Contract No. 6297/86/HGE-I(SC), Part I, Anderson et aI., 1987; Part II, Janssen et 

aI., 1988). The work carried out in these three studies must also be seen in a broader 

perspective within the framework of a longer term international programme to use 

ERS-1 wind and wave data, together with conventional weather network data and 

other in situ data, to compute the global fields of all fluxes at the air/sea interface on 

a continual, operational basis, beginning 1991. These activities are coordinated in the 

Global Assimilation Programme for Air/Sea Fluxes by the JSc/CCCO Working Group 

on Air/Sea Fluxes (d. Appendix). In the following a brief summary is given of earlier 

work which has provided the basis for the studies carried out in the three ESA 

contracts and for the planning ofthe Global Assimilation Programme for Air/Sea 

Fluxes. 

1.2 Need for a data assimilation system 

The extensive oceanographic surface data which will be provided by the suite of 

sensors on ERS-l open exciting new opportunities to the oceanographic community. 

But the preparation for the effective use of these data also poses a severe challenge. 

This is well illustrated by SEASAT. The wave hindcasts presented in this study and in 

the companion study contract (Part II, P. Janssen et aI., 1988) represent the first 

application of SEAS AT data to a global ocean wave hindcast - fully nine years after 

the launch of SEASAT! The computation of the surface stress fields used in these 

hindcasts for the 96-day period during which the SEASAT scatterometer was 

operating was only completed, with considerable effort and perseverance, eight 

years after launch (Atlas et aI., 1987). The analysis was based on an off-line data 

assimilation system using the non-operational, relatively low resolution GLA 

(Goddard Laboratory of Atmospheres) atmospheric model. These data processing 

problems would have been still more apparent if SEASAT had flown, as planned, for 

several years ratherthan three months. Although SEASAT provided an impressive 

demonstration of the great scientific and operational potential of ocean satellites, it 

also clearly revealed the problems the scientific community faces in using satellite 

data if provisions are not made for the timely implementation of an effective 
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operational data assimilation system capable of processing all incoming satellite and 

conventional data in a single quasi real-time operation. 

It should be stressed that the main delays in the production of the level III final 

SEASAT data set were not caused by the processing of the raw data or the provision 

of appropriate algorithms, but by the last, most complex element ofthe data 

processing chain: the data assimilation system. The assimilation systems used by Atlas 

et al. (1987) and Anderson et al. (1987) can furthermore still be viewed only as a first 

step. Ideally, such a system should combine all the wind and wave data provided by 

the satellite with all relevant data from other sources to construct simultaneously 

global fields of the surface wind and sea state. Both in the GLA system and in the 

more sophisticated ECMWF (European Centre for Medium Range Weather Forecasts) 

data assimilation system, wave information was not used in constructing the wind 

field. Another important feature of an effective assimilation system is that it should 

be implemented in an operational global wind and wave forecasting environment. 

Although evidence of deficiences in the SEASAT scatterometer data had already been 

pointed out earlier (Woiceshyn et aI., 1987), the present study, together with the 

previous ESA assimilation studies, revealed many further sources of error and data 

inconsistencies. These can be routinely identified and corrected only by carrying out a 

complete data assimilation and data validation cycle within a quasi-operational 

setting, using state-of-the-art, high resolution atmospheric circulation and global 

wave models. 

1.3 Previous work 

The scientific community has long been aware of the potential but also the 

difficulties of implementing an effective ocean satellite data assimilation system. 

Accordingly, since the early conception of ERS-1 it has been preparing a programme 

and some of the necessary tools for the development and implementation of a 

comprehensive, quasi real-time, operational data assimilation system for the satellite. 

The first step in this programme was the development of a realistic global wave 

model. While the ERS-1 community had access to the world's foremost global atmo­

spheric model and atmospheric data assimilation system at the ECMWF, a global 

wave model of similar capability did not exist. The only global wave models in 

operation in the early eighties were first or second generation models, whose basic 

shortcomings have been identified in the Sea Wave Modelling Project (The SWAMP 

Group, 1985). In recognition of these deficencies, the WAM (Wave Modelling) Group 
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was formed to develop a third generation ocean wave model. One of the main 

motivations of the WAM Group was to apply the model later for ERS-1. 

The development of the WAM model involved an extensive series of investi­

gations, including improved computations of the nonlinear transfer which governs 

the evolution of the windsea spectrum (Hassel mann and Hasselmann, 1981, 1985), 

the application of the improved nonlinear transfer computations to study the energy 

balance of the wave spectrum and derive improved representations of the input and 

dissipation source functions (Komen et aI., 1984), and the development of simpler 

parameterizations of the nonlinear transfer applicable in a global wave model 

(Hassel mann et aI., 1985). This work was partly supported by ESA through Study 

Contract N' 68751871HG E-I (SC). Finally, it required the translation of these research 

results into a reliable numerical global wave model (Hasselmann and Hasselmann, 

1985 - WAM-Report). The model has been implemented at the Max-Planck-Institute 

and ECMWF, where it is used in a quasi-operational mode (Janssen et al., 1988). It has 

now been extensively tested in a series of hindcast cases and in quasi-operational 

forecasts. A detailed presentation of the model and its application to ten hindcast 

studies is given in WAMDIG (1988). The model has meanwhile been distributed, 

together with a users' manual (Hassel mann, 1987) to more than twenty groups. The 

cycle 1 version of the model runs on both a CRAY XMP (ECMWF) and a CYBER 205 

(MPI) vector computer (an improved cycle 2 has recently been completed). 

Another important task which has been addressed is the interpretation and appli­

cation of SAR wave images. The incorporation of SAR wave data in the general data 

assimilation system poses a number of problems. While SEASAT provided impressive 

evidence that waves can be imaged from a spaceborne SAR at 800 km height, the 

interpretation of SAR wave images has long been a subject of intense debate. In the 

last years a reasonable consensus has emerged on the imaging mechanism as such 

(el. Section 4.1). The principal backscattering mechanism in the range of incidence 

angles olthe SAR on ERS-1 is Bragg backscattering by short ripples in the 5 - 10 em 

wave length range. The SAR is able to image long ocean waves because the Bragg 

backscattering by the short ripples is modulated by the longer waves. The 

modulation is caused by three processes: hydrodynamic interactions; changes in the 

local angle of incidence by the long wave till variations, and variations in the long 

wave orbital velocity. The last process gives rise to Doppler shifts in the backscattered 

signal which produce azimuthal displacements of the apparent positions of the 

backscattering elements in the SAR image plane (velocity bunching). Whereas the 

hydrodynamic and tilt modulation can be regarded as linear processes, at least to first 
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Another important task which has been addressed is the interpretation and appli-

cation of SAR wave images. The incorporation of SAR wave data in the generai data

assimilation system poses a number of problems. While SEASAT provided impressive
evidence that waves can be imaged from a spaceborne SAR at 800 km height, the

interpretation of SAR wave images has long been a subject of intense debate. In the

last years a reasonable consensus has emerged on the imaging mechanism as such

(cf. Section 4.1). The principai backscattering mechanism in the range of incidence

angles of the SAR on ERS-1 is Bragg backscattering by short ripples in the S - 10 cm

wave length range. The SAR is able to image long ocean waves because the Bragg

backscattering by the short ripples is modulated by the longer waves. The

modulation is caused by three processes: hydrodynamic interactions; changes in the

iocal angle of incidence by the long wave tilt variations, and variations in the long

wave orbital velocity. The Fast process gives rise to Doppler shifts in the backscattered

signai which produce azimuthal displacements of the apparent positions of the

backscattering elements in the SAR image plane (velocity bunching). Whereas the

hydrodynamic and tilt modulation can be regarded as linear processes, at ieast to first



order, the velocity bunching process can become strongly nonlinear. For steep 

windseas the nonlinearity can even result in a complete loss of the wave image 

through azimuthal smearing. 

One of the main tasks in preparing for the application of ERS-1 SAR wave data 

was therefore to develop nonlinear transformation algorithms relating the SAR 

image spectrum to the surface wave spectrum. Significant progress in this question 

has been made by Bruening and Alpers (1985) and Bruening et al. (1988). The authors 

computed the nonlinear mapping from the surface wave spectrum to the SAR image 

spectrum by direct Monte Carlo simulations. Unfortunately, this method is too costly 

in computer time to be routinely applied to all ERS-1 SAR wave data collected in the 

SAR wave mode. However, in the course of the present study a new closed, nonlinear 

integral expression has been derived describing the mapping of the surface wave 

spectrum into the SAR image spectrum. It is hoped that computations of this integral 

transform can be carried out sufficiently rapidly to be routinely applied for the 

assimilation of ERS-1 SAR image spectra. The computation also has the advantage of 

avoiding the statistical scatter which arises in Monte Carlo simulations. However, it 

should be stressed that effective methods for the inverse mapping from the SAR 

spectrum to the wave spectrum have not yet been developed. Such techniques will 

presumably involve some form of iteration, which implies that in practice SAR image 

spectra can be usefully assimilated only if first guess wave spectra are available from a 

wave model. 

With the development and implementation of a reliable third generation global 

wave model and the clarification of the relation between the ocean wave spectrum 

and the SAR image spectrum, important first steps for the implementation of an 

ERS-1 wind and wave data assimilation system have now been completed. However, 

further major tasks still need to be undertaken. 

General overviews of the complete data assimilation problem have been given in 

several position papers prepared by working groups and individual discussants in a 

number of recent ESA workshops (d. Proe. Conf. Alpbach and Schliersee). A compre­

hensive summary may be found in the Global Data Assimilation Programme for 

Air/Sea Fluxes (an excerpt is given in the Appendix). The relation of this programme 

to the present study contract is discussed in the next section. 
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1.4. The Global Data Assimilation Programme for Air/Sea Fluxes (GDAP) 

This programme has been initiated by the JSc/CCCO 1) Working Group on Air/Sea 

Fluxes, in response to the needs ofthe WOCE2) and TOGA3) scientific community, to 

provide continuous, gridded, global fields of all physical fluxes at the air/sea interface 

(momentum, sensible and latent heat, water, and solar and infra-red radiation). The 

fluxes determine the coupling between the atmosphere and the ocean, the under­

standing of which is an essential component of the WOCE and TOGA programmes. 

The goal of the GDAP is to provide continuous 6 hourly, I" x I" global flux fields, 

beginning in the early nineties with the deployment of ERS-l, the first of the next 

generation ocean satellites. In developing the programme, the JSc/CCCO Working 

Group on Air/Sea Fluxes has drawn heavily on the contributions of other working 

groups, such as the Working Group on Numerical Experimentation (WGNE) and the 

JSC Working Group on Radiation, which are providing important contributions to 

special aspects of the overall programme. 

The programme is sub-divided into two phases (d. Appendix): a preparatory 

phase, from 1988 - 1990, and an implementation phase, from 1991 onwards. Principal 

assimilation centres are to be established in Europe, at the European Centre for 

Medium Range Weather Forecasts and in the U.S., at the National Meteorological 

Center, with further assimilation systems at other national weather centres. 

Within the two programme phases, fourteen major tasks are identified. It should 

be noted that the present ESA study contracts address only a small sub-set of these 

tasks (projects 4.3, 4.10,4.12 - d. Appendix). The impact of the ESA study contracts on 

the overall programme and the inferences which may be drawn from these 

investigations for the future development of the programme are discussed briefly in 

Section 8 (Conclusions). 

1) Parent bodies of the Working Group on Air-Sea Fluxes are the Joint Scientific Committee 

(JSC) of the World Climate Research Programme and the Committee on Climatic Changes and 

the Ocean (CCCO). 

2) World Ocean Circulation Experiment 

3) Tropical Ocean/Global Atmosphere Project 
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1.5 Relation of present study contract to previous ESA data assimilation study contracts 

The common purposes of the previous ESA study contract, Part I (Anderson et aI., 

1987) and Part II (Janssen et aI., 1988), and the present contract were 

to establish the general feasibility of llsing a combined wind and wave data 

assimilation system for the analysis of ERS-1 wind and wave data, 

to gather experience in the operation of such systems through experiments with 

SEASAT data, 

to define more clearly the requirements for the implementation of a wind and 

wave data assimilation system in time for the launch ofthe ERS-1, and 

to investigate the value of applying a wind and wave data assimilation system in 

support of measurement campaigns and during the ERS-1 calibration and 

validation phase. 

Within this general framework, the individual study contracts addressed the 

following tasks: 

Part 1- Wind Scatterometer Data (Anderson et al., 1987) 

investigation of methods of assimilating wind scatterometer data together with 

the FGGE data set using the ECMWF higher resolution forecast model and 

operational assimilation system, 

validation of the SEASAT scatterometer data, 

intercomparison of scatterometer winds with ship winds, 

investigation of the impact of scatterometer winds on the analysis and forecast, 

intercomparison of different scatterometer dealiasing algorithms. 
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Part II - Use of scatterometer and altimeter data in wave modelling and assimilation 

(Janssen et al., 1988) 

application of ECMWF wind fields produced in Part I to a global wave hindcast, 

intercomparison of global wave hindcasts produced by wind fields from the 

ECMWF data assimilation system (Part I) and by wind fields obtained at JPL by 

subjective analysis of SEASAT scatterometer data (Woiceshyn et aI., 1987), 

comparison of global wave hindcast with wave buoy data and SEASAT altimeter 

data, 

wave data assimilation experiments using altimeter data. 

Present Contract - SAR image spectra and altimeter wave height data assimilation 

system for ERS-1. 

Most of the numerical experiments in Parts I and II of the study contract were 

carried out for the 11-day period September 6 - 17, 1978. This limitation was imposed 

by the expense of the atmospheric data assimilation exercise and the limited period 

covered by the subjectively analyzed JPL wind data set. In contrast, most of the 

investigations of this study contract were carried out for the full 96-day period July 7-

October 10, 1978, for which the SEASAT scatterometer was operating. The global 

wind and surface stress fields for this period were kindly provided by the Goddard 

Laboratory of Atmospheres. They were produced by a data assimi lation exercise 

(Atlas et aI., 1987) similar to that carried out by ECMWF, but using the significantly 

coarser resolution GLA model (4° x 5°, 9 layers, as compared with 1.875° x 1.875°,19 

layers for the ECMWF model). 

The following investigations were carried out: 

global wave hindcast for the full 96-day SEASAT period using the GLA surface 

stress field as driving field, 

intercomparison of assimilated wind fields and altimeter wind speeds for this 

period, 
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intercomparison of the GLA surface wind and surface stress fields with the 

ECMWF and JPL fields for the common period of overlap, September 6 - 17, 1978, 

intercomparison of the global wave hi ndcasts for the three wind fields for the 

same common period, 

intercomparison of the 96-day global wave hindcast with SEASAT altimeter wave 

heights, wave buoys and SEASAT SAR image spectra, 

comparison of theoretical relation between surface wave spectra and SAR wave 

image spectra with measured SEASAT wave image spectra, 

development of a new theoretical integral transformation expression describing 

the nonlinear mapping from a surface wave spectrum into a SAR image spectrum, 

an example of wave data assimilation for the month of August, 1978, 

development of general methods for the assimilation of wave data in wave 

models, 

recommendations for future actions, 

definition of requirements for the future implementation of a general data 

assimilation system for ERS-1 wind and wave data. 

The results ofthese investigations are presented, in the order listed, in the 

following sections. 
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2. Global wave hindcast for the 96-day SEASAT period 

To test the impact of the simultaneous use of satellite wind and wave data in a wave 

model, a global wave hindcast was carried out for the full SEASAT scatterometer period 

July 7 - October 10,1978, using as input the global surface stress field of Atlas et al. (1987) 

(the wave model requires surface stresses rather than the surface winds as input). The 

stress field was constructed through the assimilation of SEASAT scatterometer wind data 

and conventional atmospheric data using the GLA atmospheric model. The global hindcast 

was carried out on the CYBER 205 at the MPI using the WAM third generation model, 

which is described in detail in WAMDIG (1988) (see also Part II ofthe previous ESA study 

contract, Janssen et aI., 1988). 

In this section we compare the model hindcast with the SEASAT altimeter wave 

heights and wave buoy data. A detailed comparison with SAR wave data is given later in 

Section 5, following a presentation of SAR imaging theory in Section 4. 

2.1 Comparison with averaged SEASAT altimeter wave height fields 

Figures 2.1 - 2.5 show (approximately) monthly averaged fields forthe GLAwind 

stress, hindcast significant wave height and direction (Custer diagram), sub-divided 

into the contributions forthe total wave field, windsea and swell, and the SEASAT 

altimeter wave heights (provided by JPL). The averaging periods (d. Table 1) are the 

same as the periods selected by Mognard et al. (1983) (except for a data gap of 10 

days at the end, in October, due to a faulty tape; other gaps are due to missing 

altimeter data). 

The separation of the total wave spectrum F(f,O) into windsea and swell contribu­

tions in Figs 2.3, 2.4 was based on the criterion 

( 
1.2· 28· u. cos (9 - 9 ) 
----c----"-'" - I ) 

0: windsea component 

0: swell component 

where c = phase velocity, 9 = wave propagation direction, 8w = wind direction. 
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(2.1) 
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heights and wave buoy data, A detailed comparison with SAR wave data is given later in

Section 5, following a presentation of SAR imaging theory in Section 4.

2.1 Comparison with averaged SEASAT altimeter wave height tieids

Figures 2.1 — 2.5 show (approximately) monthly averaged fields for the GLA wind

stress, hindcast significant wave height and direction (Custer diagram), sub—divided

into the contributions tor the totai wave field, windsea and sweli, and the SEASAT

altimeter wave heights (provided by JPL). The averaging periods (cf. Table 1) are the

same as the periods selected by Mognard et al. (1983) (except for a data gap of 10

days at the end, in October, due to a faulty tape; other gaps are due to missing

altimeter data).

The separation of the total wave spectrum F(f,0) into windsea and swell contri bu-

tions in Figs 2.3, 2.4 was based on the criterion

> 0:windsea component
(1.2.28~ u„cos(6—Bm) - (2.1)mm _ r )r < 0 : swell component

where c 2 phase velocity, 9 = wave propagation direction, 8w : wind direction.
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Fig. 2.2 a Averaged significant wave height and mean direction for the hindcast totai
wave field for Juiy 1978 (averaging periods are given in Table 1). Wave
heights are indicated by isoiines and lengths of wave direction arrows
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heights are indicated by isoiines and lengths of wave direction arrows
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Averaged significant wave height and mean direction for the hindcast 
wi ndsea for July 1978 (averagi ng periods are given in Table 1) Wave heights 
are indIcated by isollnes and lengths of v"ave direction arrows. 
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Averaged significant wave height and mean direction for the hindcast 
windsea for August 1978 (averaging periods are gIven in Table 1) Wave 
heights are indicated by Isoli nes and lengths of wave di recti on arrows. 
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Averaged significant wave height and mean direction for the hindcast 
windsea for September 1978 (averaging periods are given In Table 1) Wave 
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Averaged significant wave height and mean direction for the hindcast swell 
for September 1978 (averaging periods are given,in Table 1). Wave heights 
are indicated by isoli nes and lengths of wave di rection arrows, 
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The hindcast and altimeter wave heights are seen to agree rather well in the 

northern hemisphere, but the wave heights are significantly underestimated by the 

hindcast in the high wind belts of the winter-time southern hemisphere (400 S - 60" S). 

This is seen more clearly in Fig. 2.6, which shows the ratios of the hindcast to the 

altimeter wave heights. The causes of these discrepancies will be discussed in more 

detail in Section 3. However, we point out here already that it appears unlikely that 

they can be attributed to the altimeter wave height measurement or the wave 

model, since both have been well verified under rather high wind conditions. The 

problem therefore presumably lies in the surface stress field. The wave height under­

estimate corresponds to an underestimation ofthe wind stress by approximately 20-

30 %. This example clearly demonstrates the advantage of operating a wave model in 

conjunction with a wind data assimilation system. The wave model provides a 

valuable cross validation of two sensor systems, the scatterometer wind measurement 

and the altimeter wave height, in this case revealing an inconsistency of the 

assimilated stress field in a climatically important region of the globe in which very 

few other independent measurements exist. 

Figs 2.2 - 2.4 illustrate an interesting property of open ocean surface waves which 

is familiar to ocean wave researchers but is perhaps less widely known otherwise: 

most of the wave energy in the open ocean, even in the high wind belts, is associated 

with swell, the windsea energy being concentrated locally in relatively small regions 

of high winds. This is due to the fact that swell can propagate for a few weeks over 

many thousands of km in the ocean without significant dissipation (cf. Snodgrass et 

aI., 1966), so that the windsea energy generated in rather short lived storm events is 

retained for a long time by the ocean as swell. 

The concentration of the windsea energy in local regions is less apparent in the 

monthly averaged data in Fig. 2.3 than in the instantaneous wave height distribution, 

an example of which is shown in Fig. 2.7, together with the instantaneous surface 

stress field, for August 19, 1978,00:00 GTM. 

The fact, that most of the wave energy in the open ocean is associated with swell 

rather than windsea is an advantage for the assimilation of wave data in a wave 

forecast model. A swell field, once corrected by a measurement update, propagates 

from then onwards in the model at its corrected value, while a windsea update 

relaxes back to the original incorrect value unless the wind field is also properly 

corrected at the same time (see Section 6). 
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Fig 27 d Swell for August 19, 1978,00:00 GMT. 
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2.2 Statistical comparison with altimeter wave height data 

The above comparison of the averaged global fields of wave heights was comple­

mented by a more detailed statistical intercomparison. A linear regression analysis 

was carried out between the model hindcast and altimeter wave height for a set of 

8 periods of 10 to 11 days covering the time span ofthe experiment (d. Table 2). 

In the standard regression analysis for a set of pairs of variables (Xi, y), i = I, ... N, 

the regression coefficient e in the linear relation 

y. = ex. 
I I 

(2.2) 

is determined by minimizing the average error «y - cx)2 > with respect to the y 

coordinate, where 

< ... > = 
1 N 

N L 
i= 1 

One obtains then the regression coefficient 

<xy> 
(2.3) c = 

y <x2> 

(We have left out the optional additive constant in (2.2), as we are interested in the 

mean factor relating the two variables.) 

One can, of course, equaliywell interchange x and y, minimizing the error 

«x_y/c)2> with respect to the x coordinate. This yields the regression coefficient 

e = x 

<i> 

<xy> 

The two estimates satisfy the inequality 

since 

e 
2 

c ~ c 
y x 

34 

(2.4) 

(25) 

2.2 Statistical comparison with altimeter wave height data

The above comparison of the averaged global fields of wave heights was comple-

mented by a more detailed statistical intercomparison. A linear regression analysis

was carried out between the model hindcast and altimeter wave height for a set of

8 periods of 10 to I 1 days covering the time span ofthe experiment (cf. Table 2).

In the standard regression analysis for a set of pairs of variables (xi, yi), i : I, N,
the regression coefficient c in the linear relation

y; i “a (2.2)

is determined by minimizing the average error <(y - ex)? > with respect to the y

coordinate‚where

<...>:—“ 2|
M

NZ
i=1

One obtains then the regression coefficient

<xy>
c : (2.3)
y <x2>

(We have ieft out the optionai additive constant in (2.2), as we are interested in the

mean factor relating the two variables.)

One can, of course, equally well interchange x and y, minimizing the ermr

<(x»y/c)2 > with respect to the x coordinate. This yields the regression coefficient

2_ <y > (2.4)
x <xy>

The two estimates satisfy the inequality

C S c (2.5)

since

2.2 Statistical comparison with altimeter wave height data

The above comparison of the averaged global fields of wave heights was comple-

mented by a more detailed statistical intercomparison. A linear regression analysis

was carried out between the model hindcast and altimeter wave height for a set of

8 periods of 10 to I 1 days covering the time span ofthe experiment (cf. Table 2).

In the standard regression analysis for a set of pairs of variables (xi, yi), i : I, N,
the regression coefficient c in the linear relation

y; i “a (2.2)

is determined by minimizing the average error <(y - ex)? > with respect to the y

coordinate‚where

<...>:—“ 2|
M

NZ
i=1

One obtains then the regression coefficient

<xy>
c : (2.3)
y <x2>

(We have ieft out the optionai additive constant in (2.2), as we are interested in the

mean factor relating the two variables.)

One can, of course, equally well interchange x and y, minimizing the ermr

<(x»y/c)2 > with respect to the x coordinate. This yields the regression coefficient

2_ <y > (2.4)
x <xy>

The two estimates satisfy the inequality

C S c (2.5)

since



where r represents the correlation coefficient (defined here without subtraction of 

the means, consistent with the similar definition of the regression line slope (2.2) 

without an additive constant). 

The regression coefficient may also be defined symmetrically by the relation 

_ '( </»' e = (e e)' = --
x y <x2> 

We will adopt this definition in the following. The asymmetrical regression 

coefficients cx, cy may be determined from e and the (similarly symmetrical) 

correlation coefficient r through the relations 

c = c·r 
)' 

e = elr 
x 

(26) 

(2.7) 
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Fig. 2.8 shows the regression coefficients c and correlations r for the 8 periods 

listed in Table 2, subdivided into three regions: the northern hemisphere (2' N to 

70' N), the southern hemisphere (70' 5 to 2' 5) and the tropics (between 22' Nand 

22' 5). The abscissa axis represents the mean altimeter wave height in the relevant 

region for each of the averaging periods. 

The statistical analysis confirms quantitatively the general impression gained 

already from Figs 2.2 - 2.5: the model hindcast is reasonably consistent with the 

altimeter wave height data in the northern hemisphere, but produces wave heights 

which are too low in the southern hemisphere by a factor of order 0.6 - 0.7, the bias 

increasing with wave height. Fig. 2.9 gives an example of a typical scatter diagram of 

Hs (hindcast) vs. H, (altimeter) from which the regression and correlation coefficients 

were derived. One data point represents an average over one day. 
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1 ) 78071000 78072000 

2) 78072000 78080100 

3) 78080100 78081100 

4) 78081100 78082100 

5) 78082100 78090100 

6) 78090100 78091100 

7) 78091100 78092100 

8) 78092100 78100102 

Table 2: Averaging periods used for the regression 

analysis of altimeter vs. model data 

(Hs and wind speed). 
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6) 78090100 - 78091 100

7) 78091100 - 78092100

8) 78092100 — 78100102

Averaging periods used for the regression
analysis of altimeter vs. model data

(H5 and wind speed).
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2.3 Regional comparison with wave buoys and altimeter data 

At six NODC buoy locations in the North Pacific (4) and North Atlantic (2) 

(d. Fig. 2.10) three-way inter-comparisons were made between the wind and wave 

data of the model hindcast, the altimeter and the wave buoys. The data from three 

sources were brought into a comparable format as follows: 

Model hindcast: The values of each model parameter (friction velocity u*, significant 

wave height H s, mean frequency 1. mean direction 8) was determined from a 

weighted average, where the weights correspond to the inverse distance between 

the grid point and buoy location. Close to land boundaries, only three or two grid 

points were used. 

Buoy: From the spectral data, Hs and the mean frequency {were recalculated 

including an f-4 tail in the same manner as in the WAM model (d. WAMDIG, 1988). 

The wind velocity was reduced to 10m winds if necessary and then converted to u* 

values by applying the expressions given in WAMDIG (1988). In order to determine a 

suitable averaging time for the buoy data, which was available every three hours, the 

correlation coefficients were computed for all variables using the actual buoy values 

at model output times for noon and midnight, then the values at 3 hours before, at, 

and 3 hours after the model output times, 6 hours before, .... etc., up to an averaging 

time of one day. Plots of the correlation coefficients revealed that the optimum 

averaging time was around 12 hours, where correlation coefficients typically peaked 

around 0.6 - 0.8 depending on the variable. This result is consistent with the 

averaging incurred by the model, since the energy of a 10 second wave propagating 

at its group velocity would take about 12 hours to travel a distance of 3 degrees, the 

grid resolution in the model. 

Altimeter: The altimeter data set co-located with the buoys was determined byavera­

ging values of Hs and u* over five values (- 70 km track length) along the altimeter 

track which was closest to the buoy and within a three hour time window of the buoy 

measurement. Altimeter wind speeds were reduced to 10m winds and then conver­

ted to "* as described above. Extreme values in FIs were deleted from the data set. 

Tables 3 and 4 summarize the principal statistics (the bias is the mean of the 

difference between the first and second variables, the scatter index SIthe ratio of the 

rms differences between model parameters and observations tothe mean of the 

observations (in %}). In general, the agreement between the model hindcast and 
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buoy data is comparable with the agreement between the altimeter and the buoys. 

The open ocean stations in the N. Pacific (e.g. buoy 46006, d. Fig. 2.12) generally 

show better agreement than the stations closer to shore (e.g. buoy 41 001, Fig. 2.11), 

for which the 300 km model resolution was presumably insufficient. A comparison of 

the friction velocity and wave height time series in Figs 2.11 and 2.12 suggests that 

much of the discrepancy between the different instruments can be attributed to 

local, relatively short-lived wind events which, on the one hand, are not adequately 

resolved by the altimeter and model and which, on the other hand, are not 

representatively sampled by a point measurement. Although the general consistency 

of the intercomparison gives support to all three measurement systems, the scatter is 

nevertheless greater than is typically found in model-measurement intercomparisons 

involving either larger averaging areas (d. Section 3, for example) or point 

measurements accompanied by a higher resolution determination of the 

surrounding wind field (d. hurricane and North Sea hindcast studies discussed in 

WAMDIG,1988). 

From the viewpoint of an optimal measurement strategy forthe validation and 

calibration of ERS-l during the initial commissionary phase, as well as the long term 

monitoring of the satellite sensor system, we therefore recommend giving higher 

priority to (i) global verification methods, based on combined scatterometer, 

altimeter, and SAR wave mode data, as outlined in Sections 2.1,2.2,3 and 5, and 

(ii) measurement campaigns, in which in situ measurement stations are deployed in 

arrays, rather than as single stations. However, where available, long term single 

station buoy measurements can nevertheless usefully augment these other 

approaches. 
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AVE Bias U SI AVE Bias 0' SE AVE Bias 2: 0 Si

u* (m/s) 0.27 —0.016 0.100 36.7 0.16 0.156 0.116 74.0 0.22 0.003 ' 0.097 44.9

Hs(m) 1.62 —0.190 0.502 1.58 0.770 0.530 33.5 1.37 0.060 0.3833 28.0

f(Hz) 0-11 0.058 0.020 17.9 0.17 —0.025 0.030 17.7 0.17 w0.001 E 0.023: 13.3

6 (°) 162.09 17.522 32.038 19.8 110.12 9.239 58.174 52.8 215.09 12.175 64.269 29.9

Table 4 Statistics of model vs. buoy intercomparisons for individual buoys (to be continued next page)



.". 

"" 

BUOY 46001 BUOY 46005 

56°N 212°E 46°N 229°E 

Variable (56 observations) (145 observations) 

u.(m/s) 

I Hs(m) 

I 
I 

I 
I f(Hz) 

len 
I 

AVE Bias I a I 51 AVE_l Bias a 51 

I 

0.071 10.099 40.4 

I 

0.25 

I 
I 1. 107 1 0.451 
I ' 
1- : 

I 

30.2 1.49 

I 
I . 

0.12 0.011 10.021 116.8 
I 1 

I I 
I 

284.44 i 
I 
I 

I 

10.562135.447112.5 

I I 

I 

0.27 0.010 0.089 132.7 
I 

I 
I 

1.82 0.358 I 0.393 21.6 

I 
! 
I 

0.13 0.013 I 0.014 11.4 

I ! 
12.280 i 30.697138.6 

I I 
79.53 

I 
'I 

I 
I 
I 
I 
I 

I 
I 

AVE 

0.25 

1.78 

BUOY 46006 

41°N 222°E 

(145 observations) 

~ 
I 
I 

Bias a 

I 0.023 0.099 

~ 
I 

! 
i 

0.378 i 0.475 

I 51 

39.5 

26.7 

0.12. I 0.022 0.015 12.6 

I ...l.. 

93.36 15.386 34.090 I 36.5 

Table 4 Statistics of model vs. buoy intercomparisons for individual buoys (continued from last page) 

, 

_J 

€17

2Variable

AVE

BUOY 46001
56°N 212°E

(56 observations)

Bias 0 Si AVE

BUOY 46005
46°N 229°E

(145 observations)

Bias U Sl AVE

8 UOY 46006

41 °N 222°E

(145 observations)

Bias 0 E
‘l

S!

Utah/5) 0.25 0.071 0.099 40.4 0.27 0.010 _ 0.089 32.7 0.25 0.023 0.099 ä 39.5

Hs(m) 1.49 1.107 0.451 30.2 1.82 0.358 0.393 21.6 1.78 0.378 0-475 ; 26-7

f(Hz) 0.12 0.011 0.021 16.8 0.13 0.013 0.014 11.4 0.12. 0.022 0.015 12.6

8 (°) 284.44 10.562 35.447 12.5 79.53 12.280 30.697 38.6 93.36 15.386 34.090 36.5

Table 4 Statistics of model vs. buoy intercomparisons for individual buoys (continued from last page)

€17

2Variable

AVE

BUOY 46001
56°N 212°E

(56 observations)

Bias 0 Si AVE

BUOY 46005
46°N 229°E

(145 observations)

Bias U Sl AVE

8 UOY 46006

41 °N 222°E

(145 observations)

Bias 0 E
‘l

S!

Utah/5) 0.25 0.071 0.099 40.4 0.27 0.010 _ 0.089 32.7 0.25 0.023 0.099 ä 39.5

Hs(m) 1.49 1.107 0.451 30.2 1.82 0.358 0.393 21.6 1.78 0.378 0-475 ; 26-7

f(Hz) 0.12 0.011 0.021 16.8 0.13 0.013 0.014 11.4 0.12. 0.022 0.015 12.6

8 (°) 284.44 10.562 35.447 12.5 79.53 12.280 30.697 38.6 93.36 15.386 34.090 36.5

Table 4 Statistics of model vs. buoy intercomparisons for individual buoys (continued from last page)



.." 

.." 

180° 1500 W 1200W 90 0 W 60 0 W 30 0 W 0° 

60° N 

30 0 N 

0° 

30°5 

60 0 S 

";;: I>' -. Al'r-::::c '"'" ~ 
.s c<. ~l?S-<:' ~,2.. k? ~ !-/ I _ 

~ 7 L - I'L:....: L ,,~ po;~ ~,c"'~ 'Id ~ 
--p-O Ell'~ Il> '" ~_ r 

. a ~ iI: ~ ,.. vee 
~, A I 

Un \~ 
~~" ~&. 

Ll. ~ _. ~ . ~~{, 
I -DJ. .• 'r---

~ I~ , ~ 

........ 

D 
~ ( - ( 

I!.. 

~ 
{ 

. ""~p.. t""" ... 

- ... 

600 N 

30 0 N 

0° 

30 0 S 

60 0 S 
180° 150 0 W 1200 W 90 0 W 60 0 W 30 0 W 0° 

Fiq.210 Positions of the six NODe buoys used for model hindcast, altimeter and buoy 
data intercomparison. 

W

180° 150°w 120°W 90°W 00

_1

417,?‘e3 E EL"Atafigfiifi.‚ WEM \Q

' 60°N60°N
"15'?! -

.23!" /"
m

55%V ‘ ‚
e w D8E‘ e T 4c

EB

30°N30°N

Cr‘ \CW/

00

w
"\/

300330°S

m
a

n
“

l"

{f
4::-

' '-{B

60°S60°S
180°

Fig. 210

150°W 120°W 90°W 60°W 30°W

Positions of the six NODC buoys used for modei hindcast, altimeter and buoy
data intercom parison.

00

W

180° 150°w 120°W 90°W 00

_1

417,?‘e3 E EL"Atafigfiifi.‚ WEM \Q

' 60°N60°N
"15'?! -

.23!" /"
m

55%V ‘ ‚
e w D8E‘ e T 4c

EB

30°N30°N

Cr‘ \CW/

00

w
"\/

300330°S

m
a

n
“

l"

{f
4::-

' '-{B

60°S60°S
180°

Fig. 210

150°W 120°W 90°W 60°W 30°W

Positions of the six NODC buoys used for modei hindcast, altimeter and buoy
data intercom parison.

00



360 

180 

0 
20 

1 . 0 

O. 5 

0.0 
20 

7.5 

5. 0 

2.5 

0.0 
20 

0.3 

0.2 

o. I 

0.0 
20 

JUL Y 

Fig.2.11 

BUOY 41001 (35 00 N, 288 00 E) 

AL TIMETER 0 

MODEL x 
BUOY 

FRICTION VELOCITY DIRECTION 

»« X~'Ir"XxX ~ ~ V x 
x x V x x x x x "x x X' x X' • xx x 

"'" 
" (\" x xXxX" x Xx 

x< x x 
"x 

xx<"", 
x 

x x "" x 
'" x 

30 \0 20 30 \0 20 30 

FRICTION VELOCITY (Mis) 

30 \0 20 30 \0 20 30 

SIGNIFICANT WAVE HEIGHT (M) 

" OJ .. 
" OJ 

30 \0 20 30 \0 20 30 

MEAN WAVE FREQUENCY (l/SEC) 

=t I I I II j I I j I II I I H I I I II j I I I I I II I II , II i I I I i I 
30 

1978 

\0 20 ,0 \0 20 

AUGUST 1978 SEPTEMBER 1978 

Time senes wind and wave data from wave hindcast altimeter and wave buoy 
at location of buoy 41001 in N. Atlantic (d. Fig. 2.10). 

45 

30 

BUOY 41001 (55 OO N, 288 OO E)

ALTIMETER o
MODEL x
BUOY —

FRICTION VELOCITY DIRECTION i
’%„wvxöu .

X X
X

JULY 1978 AUGUST 1978 A SEPTEMBER 1978

Fig. 2.11 Time series wind and wave data from _wave hindcast aitimeter and wave bu0y 1

at iocation of buoy 41001 in N. Atlantic (cf. Fig. 2‘ 10).

45

BUOY 41001 (55 OO N, 288 OO E)

ALTIMETER o
MODEL x
BUOY —

FRICTION VELOCITY DIRECTION i
’%„wvxöu .

X X
X

JULY 1978 AUGUST 1978 A SEPTEMBER 1978

Fig. 2.11 Time series wind and wave data from _wave hindcast aitimeter and wave bu0y 1

at iocation of buoy 41001 in N. Atlantic (cf. Fig. 2‘ 10).

45



BUOY 46006 ( 4 1 00 N, 222 00 E) 

AL TIMETER 0 

MODEL x 
BUOY 

FRICTION VELOCITY DI RECTI Ol~ 
360-

"'I 
x 

X "'" X X X X 

x 
x 

x 

180 
XX 

30 10 20 30 10 20 30 

1 . 0 
FRICTION"VELOCITY (Mis) 

K 

X x 

0.5 

0.0 
20 

7.5 
SIGNIFICANT WAVE HEIGHT (M) 

5.0 o 

2.5 

0.0 -l=i<=R<=R<=RFPFFFFFFFFfffff=l+ffH+FFFFFFFFFFFf-f'1 Fi Fi Fi Fi t-i1t-+FRH=j+t=A+1+FFFf=FFrr-tl I I I I I I-I I Ii, t I I I I i I I I lin 
20 30 

0.3-

O. 2 

O. I 

JULY 1978 

Fig. 2.12 

10 20 30 10 20 .l-D 

MEAN WAVE FREQUENCY (1/SEC) 

AUGUST 1978 SEPTEMBER 1978 

Time series wind and wave data from wave hindeast, altimeter and wave 
buoy at location of buoy 46006 in N. Pacific (d. Fig. 2.10). 

46 

BUOY 46006 (41 OO N, 222 OO E)l

ALTIMETER o
MODEL X
BUOY m

FRICTION VELOCITY DIRECTION

xv " x ‚ x x360—— £5

180-

20 so go 2o so 10 i 20 50
JULY 1978 AUGUST 1978 SEPTEMBER 1978

Fig. 2.12 Time series wind and wave data from wave hindcast, altimeter and wave
buoy at location of bu0y 46006 in N. Pacific (cf. Fig‘ 2.10).

46

BUOY 46006 (41 OO N, 222 OO E)l

ALTIMETER o
MODEL X
BUOY m

FRICTION VELOCITY DIRECTION

xv " x ‚ x x360—— £5

180-

20 so go 2o so 10 i 20 50
JULY 1978 AUGUST 1978 SEPTEMBER 1978

Fig. 2.12 Time series wind and wave data from wave hindcast, altimeter and wave
buoy at location of bu0y 46006 in N. Pacific (cf. Fig‘ 2.10).

46



3. Intercomparison of wind fields and wave hindcasts 

3.1 Intercomparison of GLA surface wind and stress fields with ECMWF and JPL surface 

wind fields. 

To determine the possible origi ns of the discrepancy between the model hind cast 

wave heights and SEASAT altimeter wave heights in the sourthern hemisphere, an 

intercomparison was made between the GLA surface wind and stress fields and two 

other wind fields which were available for sub-periods of the 96-day hind cast period: 

the assimilated ECMWF 1000 mb wind fields for the period September 6 - 17 (Anderson 

et aI., 1987), and the subjectively analyzed JPl 19.5 m height wind fields for the period 

September 7 - 20 (Woiceshyn et aI., 1987). Details of the wind and stress data sets are 

given in Table 5. 

In the following two sub-sections we consider first the intercomparison for the 

three wind field data sets and then the GlA stress wind field intercomparison. It was 

found that the main problem appears to lie in the GLA southern hemisphere stress 

field analysis, while the three wind field products are reasonably consistent for all 

regions ofthe globe. This finding is borne out by the intercomparison of the three 

wave hindcasts for the period of common overlap discussed in Section 3.3. 

All following intercomparisons are expressed in terms of the symmetrized 

regression coefficient c relating pairs of fields (Xi, Yi) in accordance with equ. (2.6). 

3.1.1 Wind field intercomparisons 

Table 6 summarizes the results for the three wind field regressions for different 

pairs of the GLA, ECMWF and JPL wind fields. In addition to the global statistics, data 

are also given for the northern and southern hemispheres and the tropics. Figs 3.1 - 3.3 

show the dependence of c and r on wind speed in each of the three latitudinal belts 

for each of the three intercomparisons. Each point in these figures corresponds to an 

average formed for the corresponding region at a particular analysis time. 

The principal conclusion to be drawn from these results is that the three wind 

fields show a surprising level of agreement: the regression coefficient lies close to one 

for all three intercomparisons in all three regions, and the correlation coefficient is of 

the order of 90 - 95 % in all cases. It appears that the discrepancies between the 
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altimeter wave heights and the model wave hindcast in the southern hemisphere 

shown in Section 2.1 cannot be attributed to the wind field analysis. The problem lies, 

in fact, in the southern hemisphere GLA stress fields, as shown in the following sub­

section. 

A similar level of agreement is also found in the wind directions. As example, 

Fig. 3.4a shows the global histogram for the difference in wind direction Ll.8 between 

the GLA and ECMWF wind vectors. Most of the errors are less than 20°. Fig. 3Ab shows 

the distribution of the mean wind speed and the standard deviation of the wind speed 

as function of the directional deviation. As to be expected, larger directional 

deviations are generally associated with weaker wind speeds. Similar results are found 

forthe other two intercomparisons and for the breakdown into the three latitude 

zones. 

3.1.2 Intercomparison of GLA surface wind and surface stress fields 

To test the consistency of the GLA (1000 mb) surface wind speeds v with the GLA 

surface stress values c, a regression analysis was carried out between v2 and tlPa, where 

Pa denotes the density of air. The regression coefficient c then represents an estimate 

of the average drag coefficient CD. Since the local (temperature dependent) Pa values 

were not available on the GLA data tape, p" was taken as constant (Pa = 1.23 kg m·3). 

A problem arose in the assignment of time levels. The wind field analysis at time I" 

represents an instantaneous field obtained by combining the first guess wind field 

provided by the model forecast, derived from the previous analysis time In_I, 6 hours 

earlier, with conventional atmospheric observations and scatterometer winds at (or 

close to) the analysis time I". The surface stress fields, on the other hand, are computed 

as the average values of the model overthe period 1'1.1 to tn. As perhaps to be 

expected, the best correlations were found between t(t,JlPa and v2(1,,_I)' This is 

illustrated in Fig. 3.5, in which the global regression coefficient c and correlation r is 

shown as a function ofthe lag Ll.t = 1(,lp") - II v2). The correlations discussed in the 

following were made for Ll.t = 6 hours. 
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earlier, with conventional atmospheric observations and scatterometer winds at (or
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as the average values of the model ever the period t„_1 to 1‘". As perhaps to be

expected, the best correlations were found between t(t„)/pa and u2(t„_1). This is
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shown as a function of the lag Ar x {(t/pfl) - [(02). The correlations discussed in the
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Source (wind or stress) units 
Grid 

(lat., long) 

GLA (t) in Nm-2 4° x 5° 

GLA (u"oo)in ms- 1 4° x 5° 

JPL (U ,9S) in ms-1 10 x 10 

ECMWF (u"oo) in ms-1 1.875' x 1.875' 

Table 5 Available wind and stress data sets. 

Global extension Time step Period 

90'S - 90'N 6 hours 78/07/07 00:00-
180'W - 175'E 78/1 0/1 0 00:00 

90'S - 90'N 6 hours 78/07/07 00:00-
180'W - 175'E 78/1 0/1 0 00: 00 

70'S - 70'N 6 hours 78/09/07 1200-
1 'E - 360'E 78/09/20 00:00 

90'S - 90'N 6 hours 78/09/06 12: 00 -
O'E - 358'E 78/09/17 12:00 

--5*!

Source (wind or stress) units

GLA(r)inNm-2

Grid
(lat, long)

4°x5°

Global extension

90°S - 90°N
180°W ~ 17S°E

Time step

6 hours H 78/07/07
78/10/10

Period

09::0 .. „.

00:00

GLA(u‘ ‘ -1.ooa)m ms 4°x 5° 90°S ~ 90°N
180°W~ 175°£ 6 hours 78/07/07

78/10/10
00:00-
00:00

JPL(u„‚g.S) in ms"1 1°x1° 70°S - 70°N
1°E - 360°E 6 hours 78/09/07

78/09/20
1200——
00:00

ECMWF (utm) in m5'1 1875" x1.875° 90°S - 90°N
0°E — 358°E 6 hours 78/09/06

78/09/17
12:00-
12:00

Tabie 5 Available wind and stress data sets.
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The cause of the underestimate of the southern hemisphere wave hindcast is 

revealed in Figs 3.6a, b. These show the dependence of the regression coefficient c 
(i.e. the drag coefficient) and the correlation coefficient on the wind speed for the 

northern, southern and tropical regions. We expect an increase of ,,'with wind speed in 

accordance with Charnock (1955) or other similar drag law relations (e.g. Wu, 1982). 

Instead, c decreases with increasing wind speed. The northern hemisphere values of c 
ofthe order of 1.2 - 1. 7'10-3 are reasonably consistent with empirical drag laws for 

the moderate wind speeds characteristic of the northern hemisphere summer. The 

values for comparable wind speeds in the tropics are generally too low. However, the 

biggest bias is found in the southern hemisphere. For mean southern hemisphere wind 

speeds of the order of 11 . 12 mIs, Wu's formula gives CD = (1.52 - 1.58)'10-3 which is 

20 % to 60 % larger than the C values in the range 1.0 - 1.2,10-3• For a fully developed 

spectrum, the significant wave height in the WAM model is proportional to the surface 

stress. Thus, it appears that the bias found in the model wave height hindcast relative 

to the altimeter wave heights in the southern hemisphere, which was of about the 

same magnitude, can be explained by the underestimate of the GLA surface stress 

fields in this region. 

We can offer no simple explanation here for the cause ofthis underestimation. 

However, it appears probable, in accordance with a suggestion of the GLA group, that 

it is related to the 6 hourly averaging involved in computing the stress field. Through 

the nonlinearity in the definition of c, equ. (2.6), this leads to an underestimation of 

the drag coefficient, and a similar nonlinearity of the wave model response leads to a 

comparable underestimation of the wave height. The main conclusion we wish to 

draw from this analysis is that the operation of a wave model in conjunction with 

general data validation cross checking procedures, applied to both model products 

and observed data, can rapidly identify and locate problems in different data sets. The 

operational application of such procedures would clearly be very valuable for 

continually monitoring the performance of the ERS-1 wind and wave sensor system 

and algorithms. 

Other problems related to the original scatterometer winds (which were not 

considered in the present project) have been identified in the previous ESA study 

contract, Part I (Anderson et aI., 1987) and Part II (Janssen et aI., 1988). All three 

investigations demonstrate that the simultaneous application of sophisticated models, 

a general data assimilation system and a wide spectrum of data validation techniques 

on an operational basis is an essential pre-requisite for the im plementation of a 

reliable end-to-end system for ERS-1 wind and wave data processing. 
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3.2 Intercomparison of GLA surface wind field with SEASAT altimeter wind speeds 

For completeness we show in this section an intercomparison of the GLA surface 

winds and the SEASAT alf,meter wind speeds, which were obtained simultaneously 

with the altimeter wave height data shown in Section 2.1. The format of the analysis is 

identical to the intercomparison of the altimeter and wave model hindcast wave 

heights presented in Sections 2.1 and 2.2. 

None of the analysed wind fields considered in this study actually made use of the 

altimeter wind speeds. It is generally accepted that the altimeter wind speeds, which 

are inferred from the altimeter measurement of the rms slope of the sea surface, are 

less reliable than the scatterometer wind speeds derived from the short Bragg 

scattering surface wave ripples. This is confirmed in our analysis. 

Fig. 3.7 shows the global distributions oftime averaged altimeter wind speeds for 

the three approximately monthly averaging periods listed in Table 1. This may be 

compared with the corresponding Fig. 3.8 forthe GLA wind fields. The altimeter winds 

are clearly significantly lower than the GLA winds, particularly in the high wind regions 

in the southern hemisphere. Since it was shown that the GLA wind fields, in contrast to 

the GLA stress fields, are consistent with other data in both hemispheres, the 

discrepancies must be attributed to the altimeter winds ratherthan the GLA wind 

field. 

An underestimation of the wind speed in the SEASAT altimeter algorithm at high 

wind speeds is found also in the statistical intercomparison ofthe GLA and altimeter 

wind speeds shown in Fig. 3.9. The high wind speed bias is of the order of 25 %. A 

recalibration of the altimeter wind speed algorithm (which should be directly 

applicable also to the ERS-1 altimeter) appears called for. Since the altimeter measures 

the rms sea surface slope, which is known to be a function not only of the local wind 

speed, but also of the sea state, an improved algorithm should preferably combine 

wind and wave information. 
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3.3 Intercomparison of wave model hindcasts for GLA, ECMWF and JPL surface 

forcing 

It is of interest to investigate how the comparison between the surface wind and 

surface stress fields for the three wind field analyses discussed above is translated into the 

corresponding wave model hindcasts. As has already been pointed alit, wave model 

simulations generally provide a sensitive test of the input wind fields. 

Rather than repeat the statistical analysis presented in Section 3.1 for the wind speed 

and directions now in terms of the corresponding wave variables, the significant wave 

height and mean propagation direction, we show in Figs. 3.10·3.12 a comparison of the 

three global hindcast fields for the significant wave height, averaged over the common 

period September 6· 17, 1978, of the three hind casts. 

The ECMWF and JPL wind fields were transformed into stress fields required as input 

forthe wave model using Wu's formula (which was also used in the calibration of the wave 

model, d. Komen, 1985, WAM·DIG, 1988): 

where 

CD = 
[1.2875.10.3, 

l (O.8+0.065·U).10·3, 

U< 7.5 m/s 

U", 7.5 m/s 

No distinction was made between the 1000 mb ECMWF winds and the 19.5 m height 

JPL winds. 

Figs. 3.10·3.12 support the general conclusions of Section 3.1: there is reasonably 

good agreement between the three forcing fields in the northern hemisphere, while the 

GLA forcing is clearly significantly weaker than the other two forcing fields in the high 

wind region of the southern hemisphere. A comparison with the altimeter wave heights 

shown in Section 2.1 for the entire 96·day period suggests that the ECMWF and JPL forcing 

fields are probably of about the right magnitude in the mid· and high·latitude southern 

hemisphere, while the GLA stress field is too weak in this region. 
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Apart from these general relations, the figures reveal a number of regional 

deviations, which will not be pursued here, but would clearly be of interest in applying a 

wave model for wind field validation in an operational setting. 
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4. Computation of the linear and nonlinear mapping relation between ocean wave spectra 

and SAR image spectra. 

4.1 Introduction 

ERS-1 will be the first satellite to provide global SAR wave data through the AMI 

wave mode instrument. The potential value of global two-dimensional SAR wave 

image spectra for wave forecasting can hardly be over-emphasized. However, the 

effective use of SAR wave data requires the development of efficient methods for 

recovering the wave spectrum from the SAR image spectrum. This is a non-trivial task. 

The first step, considered in this section, is to derive an efficient method for computing 

the mapping from a surface wave spectrum into a SAR image spectrum. We discuss the 

second step, the solution of the inverse mapping problem, later in Section 6. 

The theory forthe imaging of a moving ocean surface by a Synthetic Aperture 

Radar is reasonably well understood. Although open questions still remain regarding 

finer details of the backscattering mechanism, it is generally agreed that in the range 

of incidence angles between 20' and 60' typical of most SAR operation conditions the 

backscattered return may be represented as a superposition of the statistically 

independent returns from a continuous ensemble of small scale facets. The 

backscattered return from each facet is governed by the Bragg scattering from short 

ripple waves. The backscattering from the short waves in turn is modulated by the 

longer waves, thereby enabling a SAR to image normal ocean waves. 

The long wave modulation consists of three processes: 

(i) the hydrodynamic interaction between short and long waves, 

(ii) the change in the local incidence angle (tilt) of the facet and 

(iii) the advection of the facet by the long wave orbital velocity, which produces 

doppler shifts in the return signal. 

It can be assumed for all of these processes that to first order the backscattering 

ripple waves and the modulating ocean waves are widely separated in scale. The scale 

separation assumption is well satisfied for microwaves (,\-1- 30 cm) and ocean wave 
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spectra (,\- 10 - 1000 m). The two-scale model was first developed by Wright (1968) and 

Bass et al. (1968) and has been extensively tested and verified in field and wave tank 

experiments. On the basis of this model, a rather complete theory of SAR imaging of a 

random ocean wave field can be developed (ef. Alpers et aI., 1979; Hasselmann et aI., 

1985). 

An important feature of this theory is that SAR imaging can become strongly 

nonlinear. Although the hydrodynamic and tilt modulation can normally be regarded 

as linear processes, the motion effects become strongly nonlinear in typical windsea 

situations. The doppler shift arising from the radial component of the orbital velocity 

of a backscattering facet produces an azimuthal displacement of the apparent position 

of the backscattering facet in the image plane. For displacements small compared with 
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In this section an alternative computation is proposed. It is shown that the wave 

spectrum and SAR image spectrum can be related directly in both the linear and 

nonlinear mapping regimes, through a general nonlinear integral equation. The 

transformation can be readily evaluated numerically and can therefore be used in 

routine operational applications. 

At first sight it appears rather surprising - in view of the notorious closure problems 

of strongly nonlinear systems - that a closed expression can be derived relating the 

surface wave spectrum and the SAR image spectrum in the strongly nonlinear regime. 

However, closure is possible in the present case because the input and output fields do 

not interact dynamically, and to a good first approximation the input surface wave 

field itself can be regarded as linear and Gaussian. 

Similar techniques to those developed in Sections 4.3, 4.4 have been applied 

previously in the computation of the dissipation of finite-depth surface waves by 

bottom friction (Hassel mann and Collins, 1968) and in the determination ofthe 

structure of the dissipation source function due to white capping (Hassel mann, 1974). 

The basic concept is to consider the isolated impact on the process of the infinitesimal 

contribution from a single Fourier component of the input field. This can be 

determined rigorously, because for a Gaussian wave field the infinitesimal 

contributions to the continuous spectrum are statistically independent. The resulting 

(nonlinear) integro-differential expression relating the infinitesimal change in the 

surface wave spectrum to the associated infinitesimal change in the image spectrum 

can then be integrated analytically to yield the general nonlinear integral 

transformation from the ocean wave spectrum to the SAR image spectrum. 

In the following Section 4.2 we summarize first the relations for RAR (real aperture 

radar) and SAR imaging, as derived from the standard two-scale scattering theory, and 

introduce notations. The general nonlinear transformation relating the SAR image 

spectrum to the ocean wave spectrum is then derived in Section 4.3. A more detailed 

discussion of the various terms occurring in the transformation is given in Section 4.4. 

4.2 Mapping of the ocean surface into the SAR image plane 

The SAR surface wave imaging process may be divided into two processes: the RAR 

(real aperture radar) imaging processes, consisting of hydrodynamic and tilt 

modulations, and the motion effects, which are specific to the SAR and have no 

influence on RAR imaging. 
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We consider first the RAR imaging process. 

Decomposing the surface elevation ((x, t), and the local backscattering cross 

section a(x, t) sensed by a RAR into discrete Fourier series, 

((x, I) = I ~ exp (i[k· I' - wtJ) + compl. con}. 
k 

a(x, t) = a 0 (1 + [ I mk ~ exp i (k . I' - wi) + c.e 11 
k 

(4.1) 

(4.2) 

where ao is the spatially averaged mean (specific) cross section and mk the cross-section 

modulation factor, the standard two-scale scattering theory for hydrodynamic and tilt 

modulation yields a linear relation 

(4.3) 

between the Fourier components of (and a, with a net RAR complex modulation 

transfer function (MTF) T: = T/'d + T,tiI'which consists of the sum ofthe hydrodynamic 

and tilt modulation transfer functions. For our purposes we regard TkR as given. (it is 

notationally more convenient to work with discrete Fourier sums than with continuous 

integrals as we shall be considering later differentials with respect to individual Fourier 

components. The discrete representation avoids the rather cumbersome functional 

derivative notation.) 

In equ. (4.1) the frequency is given by the free gravity wave dispersion relation 

w = (gk) f, where g is the acceleration of gravity. It should be noted that equations 

(4.1), (4.2) represent three-dimensional wavenumber-frequency spectra which have 

been reduced to two-dimensional spectra because the frequencies are constrained to 

lie on the dispersion surface. In contrast to the two-dimensional wavenumber 

spectrum of a frozen surface considered below (equ. (4.4)), Fourier components of 

opposite sign in k represent waves travelling in opposite directions and are not 

related. 

Radars, on the other hand, produce quasi-instantaneous images of the surface, so 

that the relevant Fourier decomposition of the image 1(.-) at a fixed time, I = 0, say 

takes the form 
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where 

1(1') = [1 + L lit exp Uk . 1') I 
k 

(4.4) 

(4.5) 

and the image intensity is normalized with respect to the mean image intensity. (Note 

that the explicit complex conjugate term of eqns. (4.1). (4.2) is missing here, as it is 

already included in the sum over positive and negative k.) 

For a RAR, the image intensity is simply proportional to the cross section, so that 

(4.6) 

and equations (4.1)-(4.5) yield 

(4.7) 

From equ. (4.7) we find then that the relation between the ocean wave and image 

variance spectra Fk,Pk, respectively, defined by 

<~2> = LFk=2L «~k>2 (4.8) 
k k 

<12> = L Pk = L <I~Ik>2 (4.9) 
k k 

where the cornered parentheses < .... > denote ensemble averages, is given by 

(4.10) 

The RAR image I"(r) corresponds tothe image which a SAR would produce if the 

sea surface were frozen. Consider now the distortion of this image induced by the 

motion effects. These consist of two terms: an azimuthal displacement ~ of the 

75 

Kr) z [1 + Z [katpfik .11)! (4.4)
k

where

ä (4.5)

and the image intensity is normalized with respect to the mean image intensity. (Note

that the explicit complex conjugate term ofeqns. (4.1), (4.2) is missing here, as it is

already included in the sum over positive and negative k.)

For a RAR, the image intensity is simply proportional to the cross section, so that

4.61%); 0R(1‘, Olloa ( )

and equations (4.1)-(4.5) yieid

, (an
IE= Tim (Tuck)

From equ. (4.7) we find then that the relation between the ocean wave and image

variance spectra FBPK, respectively, defined by

>i'<g2> z Z Fk = 2. Z <zk§k>2 (43)
k k

2 _ __ * 2<1 > _ Z Pk— Z <Iklk> (4.9)
k k

where the cornered parentheses < > denote ensemble averages, is given by

”—1: (4.10)
k 2

——+‘T’j

The RAR image [Rm corresponds to the image which a SAR would produce ifthe

sea surface were frozen. Consider now the distortion of this image induced by the

motion effects. These consist of two terms: an azimuthal displacement F, of the

7S

Kr) z [1 + Z [katpfik .11)! (4.4)
k

where

ä (4.5)

and the image intensity is normalized with respect to the mean image intensity. (Note

that the explicit complex conjugate term ofeqns. (4.1), (4.2) is missing here, as it is

already included in the sum over positive and negative k.)

For a RAR, the image intensity is simply proportional to the cross section, so that

4.61%); 0R(1‘, Olloa ( )

and equations (4.1)-(4.5) yieid

, (an
IE= Tim (Tuck)

From equ. (4.7) we find then that the relation between the ocean wave and image

variance spectra FBPK, respectively, defined by

>i'<g2> z Z Fk = 2. Z <zk§k>2 (43)
k k

2 _ __ * 2<1 > _ Z Pk— Z <Iklk> (4.9)
k k

where the cornered parentheses < > denote ensemble averages, is given by

”—1: (4.10)
k 2

——+‘T’j

The RAR image [Rm corresponds to the image which a SAR would produce ifthe

sea surface were frozen. Consider now the distortion of this image induced by the

motion effects. These consist of two terms: an azimuthal displacement F, of the

7S



position of a backscattering element in the image plane. and an azimuthal smearing or 

broadening ox of the (theoretically infinitesimal) backscattering element in the image. 

The azimuthal displacement is proportional to the range component v of the 

average advection (i.e. orbital) velocity of the backscattering element (d. Alpers and 

Rufenach.1979). 

~ = ilv 
(4.11 ) 

where 

il = p/U 
(4.12) 

and p is the slant range. U the velocity of the SAR. The orbital velocity v is defined here 

as the time average velocity over the period during which the scattering element is 

viewed by the SAR. Normally. this is small compared with the wave period. so that. to 

first order. we may set v equal to the instantaneous orbital velocity component in the 

range direction at the median time assigned to the SAR image. 

According to standard surface wave theory (d. Phillips. 1977). 

v = L T~S, exp (ilk,· - wt]) + c.c. 
k 

where the range velocity transfer function is given by 

T~ = w (- icose - sin ek jlkll , 

(4.13) 

(4.14) 

and e, kydenote the radar incidence angle and the wavenumber component in the 

horizontal radar look direction. respectively. 

The smearing term oXv, is normally represented as the sum of an acceleration term 

oXacc and a velocity spread term ox", (d. Hasselmann et al.. 1985). 

The acceleration term oXaccis a second order term arising from the variation of the 

instantaneous orbital velocity component vduring the SAR viewing interval. This yields 

slightly different effective displacements ~ for the beginning and the end of the 

viewing period. The term is generally smaller than the velocity spread term (d. Alpers 

and Rufenach. 1979; Alpers et al.. 1981; Hasselmann et al.. 1985) and. to simplify the 

analysis. will not be considered in the following. 
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The velocity spread term oXvs is identical in physical origi n to the azimuthal 

displacement term. It is distinguished in SAR theory from the displacement term only 

for formal reasons. In a combined microwave backscattering and SAR imaging theory, 

it is convenient to distinguish between two separate two-scale models, the 

hydrodynamicJbackscattering and the SAR two-scale model (ef. Hasselmann et al., 

1986). In the hydrodynamic/backscattering model, which we have been considering so 

far, the separation scale Lhyd corresponds to the dimensions of the backscattering 

'facets'. This must be large compared with the wavelength of the Bragg scattering 

waves but small compared with the wavelength of the modulating long wave field. 

Typically, Lhyd is of order 1 m. In the SAR two-scale model, on the other hand, the 

separation scale LSAR is defined as the SAR resolution scale, which is typically of order 

20 m. The SAR is unable to distinguish between individual backscattering facets within 

a SAR resolution cell, and therefore maps the entire ensemble of backscattering facets 

within a resolution cell into a single image pixel. This is azimuthally displaced by an 

amount tlX = /3v determined by the mean orbital velocity v of the facet ensemble. The 

deviations ox = ~ -(ofthe individual facet displacements from the mean value "(for 

the resolution cell then results in a smearing ofthe image ofthe resolution cell. The 

rms value of this smearing is given by 

R t 
ox =J3.(v-Vl 

V8 
(4.15) 

The term is essentially determined by the contribution to the rms orbital velocity 

from the region ofthe wave spectrum lying between the two separation scales Lhyd 

and LSAR. 

In the present context it is important to note that the introduction of a velocity 

spread term is a formality, which in some cases has conceptual advantages, but is not a 

necessity. In our case it is more convenient to work entirely in the framework of the 

basic hydrodynamicJbackscattering two-scale model, without invoking the velocity 

spread concept. In this picture we consider the SAR image as composed of a 

superposition of the independent images of individual basic backscattering facets, 

rather than of individual resolution cells. 

Each backscattering facet experiences an azimuthal displacement in the image in 

accordance with (4.11) and some defocussing through the face acceleration (which we 

ignore). In addition, the individual facet images will then be smeared by the finite 
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resolution of the SAR. Thus we consider a pure 'velocity bunching' theory with 'explicit 

velocity spreading'. To simplify the analysis, however, we ignore also the smearing by 

the finite SAR resolution and assume the SAR has infinite resolution. The effect of the 

finite SAR resolution can be easily taken into consideration, if necessary, as an 

additional filter at the end of the analysis. Qualitatively, the acceleration smearing 

term can be similarly handled, although its rigorous inclusion in the theory is 

somewhat more complicated. The effects we have retained do, in fact, represent the 

critical processes limiting the ocean wave imaging performance of a SAR in the 

nonlinear imaging regime. 

Applying equ. (4.11) to a continuum of facets, we obtain then as the relation 

between the SAR image and the RAR image in the present 'velocity bunching' model 

(4.16) 

where E, = aE, and a denotes the unit vector in the azimuthal direction. 

Integrating over the a-function, equ. (4.16) yields 

(4.17) 

where the Jakobian 

I 
dr' I = 11 + aE,(r') 1-1 
dr ar' 

(4.18) 

The 'velocity bunching factor' Idr'/ drl represents the variation in the effective 

density of backscattering elements in the image plane resulting from the compression 

or dilatation of the originally homogeneous distribution of facets through the spatial 

variations of the facet azimuthal displacement. This enables the SAR to image ocean 

waves even in the hypothetical situation in which the RAR transfer function vanishes, 

i.e. f' (r) = const. 
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Forthe case 

I 
af, (,,') I 
-- <1 

dr' 
(4.19) 

the velocity bunching filctor Ciln be expanded in a geometrical series and truncated 

after the linear term. If it is furthermore assumed that the modulation of a is small, as 

required for a linear RAR imaging theory, the dominant term in (4.17) is the linearized 

velocity bunching factor, and one obtains for the SAR image amplitude spectrum, in 

accordance with (4.4), (4.13): 

(4.20) 

where the velocity bunching modulation transfer function 

Tub = _ iIlk T U 

k x k 
(4.21 ) 

Thus in the linear approximation 

(4.22) 

and the image variance spectrum is given by 

(4.23) 

where the SAR imaging transfer function 

(4.24) 

The condition (4.19) is generally satisfied for swell spectra. However, in many 

situations, for example for short windseas, the inequality does not hold or is even 

reversed (d. Hasselmann et ai., 1985; BrOning et ai., 1988). In this case, equations 

(4.17),4.18) represent a strongly nonlinear transformation and we must seek 

alternative methods for deriving the relation between the surface wave and SAR 

image spectrum. 
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4.3 The nonlinear mapping from the surface wave to the SAR image spectrum 

The relation describing the nonlinear transformation from the surface wave 

spectra to the SAR image spectra is derived in two steps. First a differential relation 

describing the effect of an infinitesimal perturbation in the surface wave spectrum on 

the SAR image spectrum is developed. This expression is then integrated to yield the 

final nonlinear transformation relation. 

The Fourier componenthS of the SAR image is obtained by taking the Fourier 

transform of (4.17). 

II I dr' I II ~ = - drlR(r') - exp (- ik' r) = - dr'IR (1") e.tp[ - ik(l" + ~(1'1)1 
A dr A 

(4.25) 

Here A denotes the finite area of the sea surface corresponding to our discrete Fourier 

representation (in the final result, we shall, of course, let A -.(0) 

Substituting the Fourier representation (4.4), (4.7) for JR in (4.25), this becomes 

We obtain then for the variation 8Isk induced by perturbing the set of Fourier 

components of the input wave field by the infinitesimal increments 8~k: 

where 

M kk' = ~ I dr' [ e.tp irk' - k) 1" - ikl; (1") 1 
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kI I

exp i(k' —— k) 1" ~— ik§(1")}Me
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where 

T~,k' = T~,- ik)lT~, 

(for k = k',7'\,k' = T'k' as defined in (4.24), (4.21)) 

The summation term in the second parentheses arises from the differentiation of the 

exponential factor exp[-lk~(r')l in (4.26). 

Consider now the perturbation of the variance spectum FSk arising from the 

perturbation (4.27). At this point we make the essential assumption, which will enable 

us to close the moment equations, that the perturbations O~k for different wave­

numbers are statistically independent of each other and are also statistically indepen­

dent of the existing wave field. The assumption is justified by the Gaussian property of 

a surface wave field, which may be regarded as a superposition of an infinite number 

of statistically independent infinitesimal wave components. We shall follow up this 

concept explicitly later by regarding the surface wave field as being gradually built up 

from a zero sea state through the continual addition of statistically independent 

spectral increments. 

Under the stated statistical assumptions, we obtain immediately the differential 

relation: 

1 1
2 (I 12 of k' 1 12 of -k') oPk =< o~ >= ~ < Mkk, >2+< M_k _ k , >-2-

(4.29) 

Before turning to the integration of equ. (4.29), we must first evaluate < 1Mkk'12>. 

The essential nonlinear terms in this computation arise from exponential expressions 

of the form < exp ik(~ (r') - ~(r")) >. Since ~ is a linear functional of~, its probability 

distribution is Gaussian, and the expectation value ofthe exponentials can therefore 

be determined analytically. The computation of < I Mkk'I2 > is given in (4.5) 

(Appendix). 

Let us now construct the prescribed surface wave field by building up the spectrum 

F(k) from zero to the final state through a linearly increasing continuum of wave fields 

~k(lI) = lIFk where 0,;; 11,;; 1, and O~ = FkOll. Denoting the associated SAR image 
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"" A spectrum and matrix Mkk' in the intermediate state ,\ similarly as F'\ (A), Mkk, e\), 

respectively, equ. (4.29) then becomes 

A 

a~ 
- =2:< 
aA k' 1 

,,,\ 12 (F k' F -k' ) 
Mkk, (,\) >. ""2 + -2-

(4.30) 

This can immediately be integrated with respect to 11. to yield 

F;k') . (4.31 ) 

where the transformation matrix 

(4.32) 

The computation of Tkk' is also given in the Appendix. 

The final mapping relation (4.31) between the RAR and SAR image spectra is seen 

to be a quasi-linear transformation. The transformation matrix Tkk' is in general a 

nonlinear function of the wave spectrum. In the limit of a very small wave spectrum, 

the relation becomes linear: T kk, becomes independent of the wave spectrum and 

diagonal. As the wave spectrum is gradually increased, Tkk'developes off-diagonal 

terms and the matrix elements with high azimuthal wavenumber components are 

attenuated (azimuthal high wavenumber cut-off). This is discussed in more detail in 

the following section. 

4.4 Structure of the transformation matrix Tkk' 

In Section 4.5 (Appendix) it is shown that the transformation matrix consists of the 

su m oftwo terms, 

T .. ' Tf + Tb 
kk' - kk' kk' 

(4.33) 

namely the 'filter transformation matrix' 

(4.34) 
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and the 'background transformation matrix' 

b 
Tk,k' = Bk,k'_k + Ck,k'_k 

where the coefficient matrices Ak, k'-k, Bk, k'.k and Ck, k'-k depend on integral 

properties ofthe wave field (d. eqs (A 20) - (A22)). 

(4.35) 

The structure of the transformation matrices becomes clearer when it is recognized 

that the functions <po(y), <PI (y) and <P2(Y) (d. eqs. (A 15) - (A 17)) act as high azimuthal 

wavenumber cut-off filter functions which control the form of the coefficient matrices 

Ak,k'-k and Bk, k'-k .. 

Consider first the filter transformation matrix Tkk" For Y ~ 0, <P, (y) ... 1 and equ. 

(All) yieldsAk,k'_k ... 8 k-k'. Thus in the limit of a very small azimuthal wavenumber kx 

or very small orbital velocities, this term reduces to the linear SAR imaging expression 

(4_ 23)_ As y is increased, the funtion Ak,k'-k is broadened with respect to the second 

variable k'- k. The wave component k is thereby spread in the image spectrum into a 

band around k, and the energy of the band is attenuated. The spreading and 
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A 

4.5 (Appendix) Computation of < IMkk'!2> and Tkk' 

From equ. (4.28) we obtain: 

I Mkk,I
2 

= A -2 f f dr'd,." exp[i(k' -k)(,.' -I''') - ik (f,Cr1 - ~(r'1)J' 

[I T~k,12 + ikJl ~ IZ, [T~'(T~,)* exp(ik" 1"1 - (T~J T~,. exp Uk"r') l (A.l) 

L I~". (l~",)' exp(i(k" r' - k'"1"1)1 
k",k'" 

with IRk as in equ. (4.7) 

To determine the expectation value < IMkk'12> we expand the exponential factor 

exp (-ik(l;( 1") -1;(1"1) with respect to a given pair of infinitesimal Fourier amplitudes ~k'" 

~k'" and their complex conjugate amplitudes ~*-k'" ~*-k'''' We have first 

1;( .. ') - 1;(1"1 = AI; = IlT~" ~,,(expUk"1") - exp (ik"r"» + IlT~".~",exp«ik'''r1 - exp(ik"'r'1) 

(A.2) 
+ IlT~k"~' _ k,,(e.,p(ik"r') - exp(ik",.'')+ JlT~k"l_k.,,(e.,p(ik"'r') - exp(rk'"r")) + A~rest 

where A~ contains the four infinitesimal Fourier components of interest and A~rest is 

the remaining field which contains no components at these wavenumbers. 

Thus 

(A.3) 

The correlation ofthis expression with the amplitudes ~k", ~k"" ~'-k" ,~*-k'" occurring 

in (A.l) then yields 

(A.4) 
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2

2 A"?! i dr'dr"atp[i(k'—k)(r'»— r") — ik (5)0") — E,(1‘"))]-i Mkk'

2
. R+ tlexß E 112"S[i Tm Tik‘(Tll‚C)* evpük" r") - (Tikf TL. exp (ik"r') } (A. i)

Z Ifi„(1ff‚„)‘ „(am r' “ k’"r"))}

with IRk as in equ. (4.7)
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Eh") -- Hr") x Ag 2 BT;.,€k.,(exp(ik”r') — exp (ik"r"))+BT”,,,Ck.,,e:cp((ik'"r') — etp(ik'"r"))

it a: a A.2

+ Md: k" (’3‘ _ k..(avcp(ilvr"1") — exp(ik"1"’)) + ßT”_ WC _ k.„(atp(ik"‘r') ~— exp(z'k’"r")) + AC ( )
rest

:A(+AC
rest

where AC contains the four infinitesimal Fourier components of interest and Aims: is
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. . 2 2 (A3)exp(— 1141M) z meagre“)- (1 ——LkIAF,—kx(A0 12 +

The correlation of this expression with the amplitudes (k... Ck"- ‚ (Hg- ‚flink... occurring

in (A. 1) then yields

2.iMkk, > =Atli drexp[i(k'~»k)r] (A4)

< exp(— ikAE,(r))>- (110+ T1+ T2)
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where 

(AS) 

is independent of the expansion of the exponent 

(A6) 

(1'::::::1" - rtf, r" ::::::rJ 

is derived from the linear term in the expansion of the exponential function, 

(A7) 

is derived from the quadratic terms in the expansion of the exponential function, 

and 

I~,,' exp Uk"1') 
k" 

(pRk as in equ. (4.10)) 

(A.8) 

In deriving (A.4}-(A.8) we have set1' = 1"-1''' in (A.l) and carried out one integration 

over 1" for fixed r, noting that for a statistically homogeneous wave field the integrand 

depends only on r. We have also replaced <exp - ikd~rest> by <exp - ikd~>, since 

d~restand d~ differ only by an infinitesimal quantity. 

A 

Mkk' is obtained from Mkk' by replacing ~k, ~k by ),.112 '~k and ),W ·~k., 

respectively: 
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where

‘2 (ä
_ .‚ . _ s ‚ (AS)TO_ T0(k,k,1)- ‘T tk-llikk'

is independent of the expansion of the exponent

__ L ‚ __ “i s v * 4‘ ‚ s r v ‚A.6TleTl(k,k,1)— Pkr—r)»(Tkk.)-(Tk.) +Pk(1)(Tkk.)-(T.) i l

(rzr' — r", r" 21‘0)

is derived from the linear term in the expansion of the exponentiai function,

2 a A
T2: T2(k‚k’; r) 2 I True . 19km. pk(—r) (A.7)
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‘Q ‘ _ 2 2
Pkk!(l)—kxß

2

. Z Pi, . exp (ik"r)
kl r

TU
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< 1 M'kk,(A) 12 > =A -1 I dl'exp(i(k' - klr)· <e.tp(-ikAtL1~(r» 
(A9) 

We need to determine still the expectation value of the exponental function, 

(A 10) 

where 

l) = l3[v(r~ - v(r")] 
(A 11) 

The variable l) is Gaussian with zero mean and known variance 

(A.12) 

so that the function <I> can be readily evaluated: 

(A.13) 

All terms occurring in equ. (A 1) have now been expressed directly in terms of the 

surface wave spectrum. 

To determine the matrix Tkk ' = f < 1Mkk'12 > dA occurring in the final expression 

(4.31) we need now only to integrate equ. (A9) with respect to A. This yields 

(A 14) 

where 
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2
A

l

< I Mme“) > “VII drexp(i(k' - k)r)- <exp(—uikÄ?AE(r)>

2 A (A9)
S ’A‘ 2( I Tkk' +Ä- (P (r)+ T1(r))+Ä T2(1')kk'

We need to determine still the expectation value of the exponental function,

¢(k,1‘,A) = < atp—ikfi(A§)> = <exp H ikrfill> (A10)

where

n = ß[v(r') — um} (AA 1)

The variable r} is Gaussian with zero mean and known variance

2 2
u

Tk —k 1 — coskr] (A'IZ)vFk+ ‚ T k}<Q2> m 322 {
k

so that the function (1) can be readily evaluated:

q>(k,r, A) = exp(—k:A <112> /2) (A13)

All terms occurring in equ. (A. 1) have now been expressed directly in terms of the

surface wave spectrum.

To determine the matrix Tkkv = f < IMkk'iZ > dA occurring in the final expression

(4.31) we need now only to integrate equ. (AB) with respect to A. This yields

2
STkk’Tkk, z A“1Jdratpi(k'— k)-r)- [ecum- (A14)

5° l+ (bl-(k: r). (PEI-i. (10+ T16.» + 4320‘) r) ' T203)

where
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and 

with 

(AlB) 

Equation (A14) may be written more compactly in the form 

T kk'= Ak,k'_k 1 T~, 12 +Bk,k' -k + Ck,k'_k 
(A 19) 

where 

(A20) 

(A21) 

and 

(A22) 
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1

@002 r): (My) = J (Mk, 1-, AMA =y'111— exp mm)

l

(1)1 (k, r) = W 2 2) Ac!) (1mm x 211—211 —<1+y)ewp(—y)]
0

and

l

¢2<Inr>=<1>2<w= J ficpmn-‚wx:y—3<2—(Y2+y+2>erp(—yn
0

with

Y = k: < r12> /2

Equation (A14) may be written more compactly in the form

+Bk,k,_ +Ck k,k'—k

2_ s
T ” Atmung) T1415,kkl

where

i(k'—k)mAk,k'—k: A—IJ drexp '(I)0(Y)

ä
Bk,k'—k: A—IJ dre‘cp [i(k' — k)-r] ¢1(y)‘{Pkk.(r) + T1

and

Ck,k._k= A“) dr exp[i(k' ... k) r] (132(3)). T2
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5. Analysis of SAR spectra 

In this section we carry out an intercomparison of SEASAT SAR image spectra with 

model hindcast wave spectra and SAR image spectra computed from the hindcast wave 

spectra. Most of the analysis of this section is based on a selection of 32 digitally analyzed 

SAR scenes, listed in Section 5.1. However, we present in Section 5.2 also a brief review of a 

previous analysis of a significantly larger set of optically processed SAR images for the same 

SEASA T orbits (Lehner, 1984). 

Theoretical SAR spectra were computed using the linear transformation 

approximation described in Section 4.2 (Section 5.3) and by Monte Carlo simulations using 

the full nonlinear mapping relations described in Section 4.3 (Section 5.5). In addition, 

empirical transfer functions were determined by fitting the SEASAT 5AR image spectra to 

the hindcast model spectra using a power-law frequency dependent transfer function for 

each wave propagation direction (Section 5.4). The conclusions drawn from these various 

analysis techniques are summarized in Section 5.6. 

5.1 SAR scenes analyzed 

A total of 32 digitally processed 6.4 km x 6.4 km SAR scenes from 7 orbits were 

spectral analyzed. To test for a possible dependence on the SAR incidence angle, 22 of 

these scenes were selected as pairs from the near and far edges of the 100 km wide 

SAR swath. The variance spectrum was computed at 25 m resolution (50 m Nyquist 

wavelength) to the full image wavelength limit and then subsequently averaged in the 

wavenumber domain with a top-hat weighting function extending over 5 x 5 

wavenumber components (yielding 50 degrees of freedom). 

The geographical positions and relevant characteristics of the scenes are given in 

Fig. 5.1 and Table 7, respectively. Orbits 757, 762, 785, and 791 correspond to the same 

meteorological period, while the remaining orbits correspond to essentially 

uncorrelated meteorological situations. It is apparent from the nonlinearity ('velocity 

bunching') parameters and principal wave propagation directions listed in the table 

(inferred from the model hinclcast spectra) that the scenes cover a wide variety of 

imaging situations. 
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WAM ALT nonlinearity wave azimuthal 
Image Orbit Scene Time LAT LONG Hs Hs 

vel.bunch. direction cut-off parameter 

1 Aug. 18 902 22:36 62°22' N 6°57' W 4.11 1.90 strong 1.5 azimuthal SAR image 
757 mis-located 

x 2 15601 N 22:42 53°57' N 1r5'W 5.38 4.26 strong 3.6 azimuthal strong 

3 15604 F 22:42 53°57' N 1r5'W 5.38 4.26 

'" 4 15501 N 22:43 50°59' N 19°44' W 4.01 3.91 strong 1.4 azimuthal- strong 

5 15504 F 22:43 50°59' N 19°44' W 4.01 3.91 range 

6 15301 N 22:44 46°57' N 22°55' W 3.23 3.61 strong 1.2 range strong 

7 15304 F 22:44 46°57' N 22°55'W 3.23 3.61 co X 
'-0 

8 9904 22:47 38°53' N 2r47'W 1.64 2.44 medium 1.1 range medium 
i 

x 

)( 9 Aug. 19 523 06:40 60°12' N 6°41' W 3.98 strong 1.4 range weak 
I 762 

10 20401 N 06:49 61°42' N 9°30' W 5.37 azimuthal- ? 
I 

11 20404 F 06:49 61°42' N 9°30' W 5.37 range 

12 Aug.20 6403 21 :40 48°1' N 3°43' W 1.73 2.36 0.6 785 

13 7704 21 :41 4r27' N 4°10' W 1.73 2.36 0.6 

Table 7 

68

Image

N
J
ä

w
U1

Ch

Orbit

Aug. 18
757

Scene

902

Time

22:36

LAT

62°22' N

LONG

6°57' W 1.90

nonfinearity
vel.bunch.
parameter

strong 1.5

wave
direction

azimuthal

azimutha!
cut—off

SAR image
mis-located

15601 N

15604 F

22:42

22:42

53°57' N

53°57' N

17°5' W

17°5' W

4.26

4.26
strong 3.6 azimuthai strong

15501 N

15504 F

22:43

22:43

50°59' N

50°59' N

19°44' W

19°44' W

3.91

3.91

strong 1.4 azimuthal-

range

strong

15301 N

15304 F

22:44

22:44

46°57' N

46°57' N

22°55' W

22°55' W

3.61

3.61
strong 1.2 range strong

9904 22:47 38°53' N 27°47' W 2.44 medium 1.1 range medium

10

11

Aug. ‘19
762 523 06:40 60°12“ N 6°41' W 3.98 strong 1.4 range weak

20401 N

20404 F

06:49
06:49

61°42' N

61°42' N

9°30' W
9°30' W

5.37
5.37

azimuthal—

range
?

12

13

Aug.20
785 6403

7704

21:40

21:41

48°1' N

47°27' N

3°43' W

4°10' W

1.73

1.73

2.36

2.36

0.6

0.6

Table 7

68

Image

N
J
ä

w
U1

Ch

Orbit

Aug. 18
757

Scene

902

Time

22:36

LAT

62°22' N

LONG

6°57' W 1.90

nonfinearity
vel.bunch.
parameter

strong 1.5

wave
direction

azimuthal

azimutha!
cut—off

SAR image
mis-located

15601 N

15604 F

22:42

22:42

53°57' N

53°57' N

17°5' W

17°5' W

4.26

4.26
strong 3.6 azimuthai strong

15501 N

15504 F

22:43

22:43

50°59' N

50°59' N

19°44' W

19°44' W

3.91

3.91

strong 1.4 azimuthal-

range

strong

15301 N

15304 F

22:44

22:44

46°57' N

46°57' N

22°55' W

22°55' W

3.61

3.61
strong 1.2 range strong

9904 22:47 38°53' N 27°47' W 2.44 medium 1.1 range medium

10

11

Aug. ‘19
762 523 06:40 60°12“ N 6°41' W 3.98 strong 1.4 range weak

20401 N

20404 F

06:49
06:49

61°42' N

61°42' N

9°30' W
9°30' W

5.37
5.37

azimuthal—

range
?

12

13

Aug.20
785 6403

7704

21:40

21:41

48°1' N

47°27' N

3°43' W

4°10' W

1.73

1.73

2.36

2.36

0.6

0.6

Table 7



'-" 
'" 

>( 

x 

x 

)( 

Image 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Table 7 

Orbit 

Aug.21 
791 

Sept. 8 
1044 

Sept. 19 
1149 

Sept. 30 
1359 

Scene Time LAT LONG 

11004 21 :41 46°44' N 4°39' W 

7601 21 :41 46°26' N 4°52' W 

7604 21 :41 467N 5°30' W 

8006 21 :43 407N 9°37'W 

8004 21 :43 39°58' N 9°4'W 

2604 07:29 55°9' N 8°37'W 

701 07:25 59°8' N 11°50' W 

1505 00:19 59°31' N 14°13' W 

401 08:24 59°50' N 1°25' W 

25101 N 01: 16 63°55' N 1°0' E 

25104 F 01: 16 63°55' N 1°0' E 

11204 F 01: 17 62°16' N 1°13' W 

11204 N 01: 17 62°16' N 1°13' W 

-

WAM ALT nonlinearity wave azimuthal 
Hs Hs 

veLbunch. direction cut-off parameter 

1.73 2.36 0.6 

1.66 2.36 weak 0.3 range weak 

1.66 2.36 0.3 

1.94 2.40 0.8 

1.94 2.40 0.8 

2.51 2.90 medium 1.6 range weak 

2.75 2.97 1.7 

2.77 medium 1.3 azimuthal weak 

4.44 4.00 strong 2.2 range weak 

4.02 4.00 1.1 

4.02 4.00 1.1 two peaks 

4.02 4.00 medium 1.1 90° apart strong 

4.02 4.00 1.1 

Image

14‘”
15

16

17

18

Orbit Scene

11004
7601
7604
8006
8004

Time

2154111
21:41

21:41

21:43

21:43

LAT

46°44“ ' ...
46°26' N

46°7'I N
40°?" N

39°58' N

LONG

4°52' W
5°30' W
9°37' W

9°4' W

999W "
nonlinearity
vel.bunch.
parameter

weak 0.3
0.3

0.8

0.8

”d6 "i

wave
directzen

range

azimuthal
cut—off

weak

19

20

Aug.21
791 2 604

701

07:29

07:25

55°9' N

59°8' N

8°37' W

11°50' W

2.51

2.75

medium 1.6

1.7

range weak

06

21 Sept. 8
1044 1505 00:19 59°31'N 14°13'W 2.77 medium 1.3 azimuthal weak

22 Sept. 19
1149 401 08:24 59°50' N 1°25'W 4.44 4.00 strong 2.2 range weak

23

24

25

26

Sept. 30
1359 25101 N

25104F

112041:

11204N

01:16

01:16

01:17

01:17

63°55' N

63°55' N
62°16' N
62°16' N

1°0' E

1°0' E

1°13' W

1°13'W

4.02

4.02

4.02

4.02

4.00

4.00

4.00

4.00

1.1

1.1

medium 1.1

1.1

two peaks

90° apart strong

Table 7

Image

14‘”
15

16

17

18

Orbit Scene

11004
7601
7604
8006
8004

Time

2154111
21:41

21:41

21:43

21:43

LAT

46°44“ ' ...
46°26' N

46°7'I N
40°?" N

39°58' N

LONG

4°52' W
5°30' W
9°37' W

9°4' W

999W "
nonlinearity
vel.bunch.
parameter

weak 0.3
0.3

0.8

0.8

”d6 "i

wave
directzen

range

azimuthal
cut—off

weak

19

20

Aug.21
791 2 604

701

07:29

07:25

55°9' N

59°8' N

8°37' W

11°50' W

2.51

2.75

medium 1.6

1.7

range weak

06

21 Sept. 8
1044 1505 00:19 59°31'N 14°13'W 2.77 medium 1.3 azimuthal weak

22 Sept. 19
1149 401 08:24 59°50' N 1°25'W 4.44 4.00 strong 2.2 range weak

23

24

25

26

Sept. 30
1359 25101 N

25104F

112041:

11204N

01:16

01:16

01:17

01:17

63°55' N

63°55' N
62°16' N
62°16' N

1°0' E

1°0' E

1°13' W

1°13'W

4.02

4.02

4.02

4.02

4.00

4.00

4.00

4.00

1.1

1.1

medium 1.1

1.1

two peaks

90° apart strong

Table 7



WAM ALT nonlinearity wave azimuthal 
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5.2 General comparison with SEASAT SAR image spectra 

A detailed comparison of the global wave hindcast with the 32 digitally processed 

SEASAT SAR images, including a discussion of SAR ocean wave imaging problems and 

the nonlinear surface wave-SAR image spectral mapping relations, is given in the 

following sections. 

For a first overview we show in this section, in Figs 5.2 - 5.5, a comparison of the 

principal wave propagation directions inferred from the variance spectra of a larger 

number of analog processed SAR images (Lehner, 1984) with the Custer diagrams for 

the total sea, windsea and swell of the wave model hindcast. The SAR wave 

propagation rays (panels a) represent the propagation directions of the peak 

wavenumbers ofthe SAR spectra. The principal wave propagation directions inferred 

for the SAR image spectra show some general agreement with the wave model 

hindcast. However, a number of systematic deviations, to be discussed later, are also 

clearly evident: the SAR tends to detect long swell components more readily than the 

short windsea components, the SAR wave propagation direction is often strongly 

rotated towards the range direction (the SAR look direction orthogonal to the satellite 

flight direction}, and range travelling waves are more easily detected than waves 

travelling in the azimuthal (satellite flight) direction. 

One ofthe difficulties to be faced in using SAR wave data in a combined wind and 

wave data assimilation system will clearly be to decide whether discrepancies which 

are found between the SAR image spectra and the model wave spectra are due to the 

SAR imaging process or to errors in the input wind field (or the wave model itself). In 

the case of the altimeter, the situation is considerably simpler, as altimeter wave 

height measurements are relatively free of distortion and calibration uncertainties. 

The effective use of SAR wave data will therefore be critically dependent on the 

development of reliable mapping relations defining the transformation of the surface 

wave spectrum to the SAR image spectrum. The inverse mapping, i.e. the transformat­

ion from the SAR spectrum to the wave spectrum, has as yet not been addressed. The 

inverse transformation may be expected to be non-unique and probably singular. 

Inversion techniques will need to be developed, using general inverse modelling 

methods, employing iterative corrections of the forward mapping relation. These 

questions will be discussed in more detail in Section 6 It IS shown there that the 5AR 

inversion problem may not need to be solved explicitly but can be imbedded in the 

more general inversion problem of determining the wind field modifications required 

to correct errors between predicted and observed wave data in a combined wind/wave 
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data assimilation system. However, it can be concluded already from Figs 5.2 - 5.5 that 

SAR image spectra clearly cannot be interpreted directly but only by comparison with 

SAR spectra computed from a wave model forecast, and that the assimilation of SAR 

spectra in models will require the development of rather sophisticated inverse 

modelling techniques. 

5.3 Comparison with linear theory 

Linear theory should be applicable if the nonlinearity parameter C = Cmax cos8 

:5 1. (C is proportional to the ratio of the rms azimuthal displacement induced by the 

long wave orbital velocity to the dominant wavelength, d. Section 4.2). Table 7 lists a 

number of cases for which this criterion is satisfied. 

However, in practice it was found that linear theory gave unrealistic SAR spectra in 

all cases, analyzed, including cases with quite small values of C. Figs 5.6, 5.7 show two 

examples, corresponding to a strongly nonlinear situation (scene 15601, C = 3.6) and 

the most 'linear' case of the set (scene 11004, C = 0.6). The image spectra are plotted 

in polar coordinates as frequency direction spectra F(f, 8), in accordance with the usual 

wave spectrum format, rather than as wavenumber spectraE (k) = F(f, 8) f/2k 2 . 

In both cases the theoretical SAR spectrum shows a generally monotonic increase 

of the spectrum with increasing frequency, without a distinct spectral peak as found in 

the observed SAR spectra. The origin of this behaviour is readily identified: The 

theoretical velocity bunching SAR MTF is proportional to {J (d. Section 4.2). Thus 

FSAR(f, 8)IFwavlf, 8) - fG. Since the wave model hindcast spectra typically exhibit a high 

frequency dependence - f-4, the SAR spectra increase monotonically as f2 for high 

frequencies. A SAR peak is visible at low frequencies only if the wave spectral peak is 

sufficiently sharp that it overrides the f6 factor, i.e. if 

aF 
f~ (f, 8) < -GF (f, 0) 

a{' wave ' 

(5.1) 

for some frequency on the rear slope of the peak. This is seldom observed, even for 

swell spectra (BrOning et aI., 1988, computed such cases fortheorelical swell spectra 

represented by the JONSWAP formula with very high peak enhancement factors 

y = ]0). 
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The failure of linear theory to reproduce the observed shape of the spectrum is not 

in contradiction with the theoretical range of validity of the theory. Linear theory 

breaks down for short wave lengths of the same scale as the rms azimuthal displace­

ment. The azimuthal displacements associated with these components become 

smeared out by the superimposed displacements of the dominant long waves, which 

shift the small scale velocity bunching pattern back and forth relative to the phase of 

the short waves. The peak occurs in the 5AR spectrum in the region of transition from 

the linear to the nonlinear regime. On the low frequency side of the peak, linear 

theory is still applicable. However, to test the linear theory quantitatively in this 

regime would require an investigation with calibrated images, which was not 

attempted in the present study. (This would not require an absolute calibration of the 

5AR, as the SAR image is defined as the modulation image with respect to the 

background white noise clutter image. However, it would require a more detailed 

investigation of the reference clutter spectrum than was undertaken here.) 

5.4 Empirical transfer function fits 

It is of interest to investigate whether the 5AR image spectrum can be related to 

the surface wave spectrum through an empirical linear transfer function. Although we 

have seen that the purely linear theory is generally inapplicable for the full spectrum, 

it has been argued that the principal effect of the orbital motion is the velocity spread 

term, which can be represented by a linear azimuthal cut-off filter function (d. Beale, 

1983). Also, the exact nonlinear transformation expression (4.2) derived in 5ection 4 

has a quasi-linear (although non-diagonal) form. 

Accordingly, empirical MTFs were determined for a set of 26 SAR spectra (six ofthe 

cases listed in Table 7 could not be analysed as the scenes were received too late) by 

least square fitting the free parameters A and n in a power-law ansatz of the form 

FSAR(f. 8) = A(B) (L)' "IOJ [F (f. 8) + F (f. 8 + 180') I f {(lQue {cave 
o 

(5.2) 

where the reference frequency fa was held fixed at 0.1 Hz. 

Figs 5.8,5.9 show two typical examples of the observed and fitted 5AR spectra, 

together with wave model hindcast spectra and the directional dependence of the 

fitted parameters A(O), n(O). In nearly all cases quite satisfactory fits were obtained. 

The exponents n(8) of the power laws were negative throughout, typically varying 
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between - 5 and - 10, in contrast to the predictions of the purely linear theory. This is 

presumably due to the smearing of the modulation of the shorter waves by the 

superimposed azimuthal displacements induced by the longer waves, as discussed 

above, which produces an attenuation of the shorter waves. This velocity bunching 

effect generally produces a significant attenuation of the spectrum already in the 

intermediate scale range shortly to the right ofthe wave spectrum peak, whereas the 

azimuthal cut-off due to the velocity spread term becomes effective only at higher 

wavenumbers (el. Section 4). 

Fig. 5.10 shows the dependence on wave propagation direction 8 relative to the 

satellite flight direction ofthe mean values and the standard deviation ofthe 

exponent n(8) for the 26 cases studied. The ratio of the standard deviation to the mean 

(the scatter index) is clearly too great for these empirical MTF fits to be applied in 

practice as a method for predicting the SAR spectrum. However, they do summarize in 

a single form the main characteristics of the shape of the SAR spectrum in the energy 

containing range relative to the wave spectrum. 

A closer inspection ofthe data indicated that the scatter seen in Fig. 5.10 cannot be 

significantly reduced by a stratification of the data with respect to the nonlinearity 

parameter C or other spectral parameters. We conclude from this and the previous 

section that a reliable interpretation of SAR image spectra must be based on realistic 

computations of the full nonlinear mapping of the two-dimensional wave spectrum 

into the SAR image spectrum. 

5.5 Monte Carlo computations 

The numerical computation of the closed nonlinear integral transform expression 

(4.31) relating the surface wave spectrum to SAR image spectrum could not be 

implemented within the present project. This is planned for a follow-up study project. 

It is anticipated that the technique, when implemented, will be more accurate and 

efficient than the Monte Carlo methods used hitherto. For the present project 

numerical computations of the nonlinear spectral transformation based on the same 

general SAR imaging expression (4.20) were carried out using the existing Monte Carlo 

technique (Alpers and Bruning, 1986; Bruning et aI., 1988). 
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parameter C or other spectral parameters. We conclude from this and the previous

section that a reliable interpretation of SAR image spectra must be based on realistic

computations of the full nonlinear mapping otthe two-dimensional wave spectrum

into the SAR image spectrum.

Monte Carlo computations

The numerical computation of the closed nonlinear integral transform expression

(4.31) relating the surface wave spectrum to SAR image spectrum could not be

implemented within the present project. This is planned for a follow-up study project.

It is anticipated that the technique. when implemented, will be more accurate and

efficient than the Monte Carlo methods used hitherto. For the present project

numerical computations ofthe nonlinear spectral transformation based on the same

general SAR imaging expression (4.20) were carried out using the existing Monte Carlo

technique (Alpers and Brt‘ming, 1986; Brüning et at, 3988).

102



...... 
0 
W 

WAM MODEL SPECTRUM: ORSIT 7~7. SCENE 1~6D'. 
DATE 78./08./1 B. 22.:20. 
LOCATION: LATBTVDE ~04-.C>N LONCITUDE ~42"W 

."..-- - -::-:.. ::---... 
"'~".. - .::::...::::.. 

"' / /" ----.....:-.,,, " , -.,.. - .... ~ "'" ' , /"'J' ....... ~,\' 
/ I /, - ,,~\\ / /'/i,l-- '-~' 

I , : • ....., ~ \ 

I ,I!f' , ~\y\ 
I ';\1,' . \\\ \ 

I , \,~. ~ ".. ll, 1 • , I . " 
I '/ .',1 

' ,.',IJI \ , ..... '/ ',.... _ .... ,. ! ' ,,- ./ . 
\ , '.... -;;, ...... '/ ", .... - ........ / " , "' / ,'.... "." 

.... -- - - , ' , , ~ , 

SAR SPECTRUM: ORBIT 757. SCENE' 5601. 
DAn: 78./08./1 B. 22.:42. 
LOCATION: LATITUDE 53.I)S7.'N LONGITUDE 17.oS.IW 

---,-- -:::"" , , 
' ,-/ ,- ....., '-

" ,,"'...-::.-- -- ~'" , -~ '" , I " /.o'_ "'-:.. 
I "7-"J'~"'- '\ \ \ -.., "\\, , I I l'" ... .". 

~ \' I I & ' "~ \ \ \ \ I I III ~ ,\\\ \ I I! I. 
I j I '\\\\\.,; 

I !J~ll I \ '\ ~ , I , \ \\\ , 
J'" ... (, " \ \ .... " ---:::;'/""1 I I , \. "'':::>- -.... ~./ / , '\ """:- --........::,/ " \. ............. -_::' ........ ,./ .. -- , " , 

........ _- --

Fig 5.8 a Observed and empirically fitted 5,11.R spectra, together with wave spectrum 
for SAR scene 15601. 

TR.A.NSFORMED JoCOOEt. SPECTRUM:ORBIT 757. SCENE 15601. 

---r -, , 
,"" ,-- --.... " ""' ...., " ,,"' ,- -.... " ' , " ,,"' - - .... , ' " I , .. _=_::-~.~ c::: ::'!!!! , \ 

I "--~, \ {--=- ~ 
I Iii ~~_.~,,-, \ I" ~ 

I 
---L , 

\ 

"T~/" \ , ", -"-7---'", I 
\ \, '.... ."." I ,,, -- _.... " , 

" , ".. " ,,'.... ....", / 
'\ .... _--- / , , , , - --.... _- -

EO
I

WAM MODEL SPECTRUM: ORBIT 757. SCENE 15601. SAR SPECTRUM: ORBIT 757. SCENE 15601.
DATE MEL/034:3. 22.:20. um: 7a./oa./1s. 22.:42. . o .

LOCATION : LATITUDE 51°57. N LONGITUDE 17. 5. wLOCATION : unmet: 5m LONGITUDE 542.‘w

Fig, 5.8a Observed and empirically fitted SAR spectra, together with wave Spectrum
for SAR scene 15601.

WED MODEL SPECTRUmoRBiT 757- SCENE 15501.

EO
I

WAM MODEL SPECTRUM: ORBIT 757. SCENE 15601. SAR SPECTRUM: ORBIT 757. SCENE 15601.
DATE MEL/034:3. 22.:20. um: 7a./oa./1s. 22.:42. . o .

LOCATION : LATITUDE 51°57. N LONGITUDE 17. 5. wLOCATION : unmet: 5m LONGITUDE 542.‘w

Fig, 5.8a Observed and empirically fitted SAR spectra, together with wave Spectrum
for SAR scene 15601.

WED MODEL SPECTRUmoRBiT 757- SCENE 15501.



..... 
0 
-'" 

10~ 10 

9 
A ] -N 

8 

103 I I '\. 7 
.... J " 6 

5 

l. 
10~_ 

3 

2 

1 

10' I ' , I ' , I ' , I ' , I ' , I ' , i 0 
0 30 60 

Fig. 5.8 b 

90 120 150 180 0 30 60 90 120 150 180 

angle [. J angle [. J 

Observed and empirically fitted SAR spectra. togeherwith fitting parameters 
,\(il), n(O) for SAR scene 15601. 

10

170T ES
lb

)
“1

”
II"

-
I

I
l
l
l
l
l
l

1
l
l
i
l
l
l

I
l
l
}
!

01 I'll] IlT‘flrl’}

030

Fig. S‘Bb

I l E I T I I' Y

60 90 150150 180 0 30 50 90 120 150180
angle ['1 angle I

Observed and empir§catiy fitted SAR spectra. together with fitting parameters
MU), 11(0) for SAR scene 15601.

10

170T ES
lb

)
“1

”
II"

-
I

I
l
l
l
l
l
l

1
l
l
i
l
l
l

I
l
l
}
!

01 I'll] IlT‘flrl’}

030

Fig. S‘Bb

I l E I T I I' Y

60 90 150150 180 0 30 50 90 120 150180
angle ['1 angle I

Observed and empir§catiy fitted SAR spectra. together with fitting parameters
MU), 11(0) for SAR scene 15601.



~ 

o 
<.n 

WAJ.4 J.4CO(L SPECTRUM: ORBIT 7a~. SC!N!, 1004. 
DATE 78./08./20. 21.:40. 
LOCATION: LATITUOE 48.

o
N LONGITUOE 3!1-c..'w 

, , 
I 

I 
I 

, 

" / 
/ 

I 
I 

I , 
I 

,. .... _ - -1- - .... 
, 
, 

/ 

" 
'I," Ii; \ , , 

, , , 
, , 

" " 
',. "/ I 

._ •• .,.; ... / I I 
._- / . I 

. ........ / .... / J 
, ... ,~. / 

\ , , 
, 

" , 
" " " 

, 
'-

.... -_1_ 
............ _-_J.._-

, I 

" " " 

SAR SPECTRUM: ORBIT 785. SCENE: 11004. 
CAT! 7a.j0t3./20. 21.: .... '. 
LOCATION: LA.TlTUOE 46.o44.'N LONCITUDE 4.

o
39.'W 

."..".----- .... , , 
, ' '" ........ ' 

........ " " ................. .... '\ -,,,""" , 
',\\\ ' 

,\"-',::-" \:' \ \ \ . \ 

I \ I 1" ~ 

" \\\\' I \ ~'\ " I 
\ .~~~.... J 
'\ .... ,,, '-..... -'~ 

.... .... .......... 
" ' " , ........ _- -_ .... 

Fig 59a Observed and empirically fitted SAR spectra, together with wave spectrum 

for SAR scene 11004 

TRANS~ORI-IED Ma::a. SPECTR!J!'o(: ORBIT 785. SCENE 11 004. 

,~ , 
--!---

t I '\\\\1~\ I 
\ \ \,\~. \.~ I 
\ "\\t..:" I 
\ \ ~'~,'" _."" ,. , I \ '\ ~,:.':"'-:(~ .. ~-... ff' , I 

\ , ~- .... .: ........ \\" / 
'\. "......... .,/ I , ........ . .... - --::.-..... / / 

'.... ....-:::.:::.... "," 
........ .... .... ... _- -_ .... 

I 
\ 

wm Moon. SPECTRUM: onan' 75:. 5cm: 11004. am SPECTRUM: ORBIT 755. SCENE 11004. mmsromenum spec'mwmaan' 735. SCENE 1x004.
DATE 7e./oa./2o. 21440“. on: 75105420. 21.:41. . a
LOCATION : LATITUDE: 43. N LONGiTUDE 3:4.‘w LOCATION : LATITUDE 45.’44. N LONCITUDE 4. 39.'w

‚_s
C)
U1

F 5 9 Observed and empirically fitted SAR spectrar together with wave spectrum

for SAR scene11004‘

wm Moon. SPECTRUM: onan' 75:. 5cm: 11004. am SPECTRUM: ORBIT 755. SCENE 11004. mmsromenum spec'mwmaan' 735. SCENE 1x004.
DATE 7e./oa./2o. 21440“. on: 75105420. 21.:41. . a
LOCATION : LATITUDE: 43. N LONGiTUDE 3:4.‘w LOCATION : LATITUDE 45.’44. N LONCITUDE 4. 39.'w

‚_s
C)
U1

F 5 9 Observed and empirically fitted SAR spectrar together with wave spectrum

for SAR scene11004‘



Fig. 5.9 b Observed and empirically fitted SAR spectra, together with fitting parameters 
;\(0), n(O) for SAR scene 11004. 
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Fig. 5.9 b Observed and empirically fitted SAR spectra, together with Fitting parameters
Am), n(0) for SAR scene 11004.
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Fig. 5.11 a - j shows a comparison of observed and com puted SAR spectra, together 

with the wave model hindcast spectra used for the Monte Carlo computations. The 

selected set of SAR spectra covers a representative cross-section of the 26 cases studied 

(d. Tabel 7). The examples include range and azimuthally travelling waves, weakly and 

strongly nonlinear imaging regimes and single and multiple peaked spectra. 

The agreement between the observed and simulated spectra is generally quite 

remarkable. The significant distortions of the original wave spectrum appearing in the 

SAR spectrum, in particular the pronounced azimuthal cut-off, is well reproduced in 

the simulations. The propagation directions and wavelengths of the peaks in the 

simulated and observed SAR spectra also agree quite wei!. A somewhat earlier 

azimuthal cut-off is generally found in the simulated spectra than in the observed SAR 

spectra. This could indicate a rather too high energy level in the high frequency region 

ofthe wave model spectrum. 

The sequence Fig. 5.11, panels a, b, c, and d, give a good example of the change in 

character of the spectral distortion as one progresses through a region of azimuthally 

travelling waves to a region of range travelling waves along orbit 757 (d. Figs 5.1 and 

5.2). The discrepancies seen in Fig. 5.2 between the mean propagation directions of 

the model wave hindcast and the propagation rays inferred by Lehner (1984) from the 

peak wavenumbers of the SAR spectra are clearly due to the azimuthal cut-off in the 

SAR spectrum of the predominantly azimuthally travelling waves along the north­

eastern segment of the orbit. 

Although it is encouraging that the nonlinear SAR imaging theory is able to 

reproduce the principal features of the observed SAR spectra, Fig. 5.11 also illustrates 

the problems one faces in assimilating SAR image spectra in wave models: the loss of 

information for azimuthally travelling waves, the 1800 di rectional ambiguity (Fig. 5.11, 

panel j, gives a good example of two wave fields propagating in opposite directions 

which are merged together in the SAR spectrum), and the pronounced distortion of 

the spectrum. None the less, the potential information content of the two-dimensional 

SAR spectrum is clearly greatly superior to a single scalar number, such as the 

significant wave height, for example, or even a one-dimensional frequency spectrum, 

if effective techniques for the appropriate exploitation of this information can be 

developed. (It should be noted in this context that SAR wave image spectra are inde­

pendent of absolute SAR calibration uncertainties: The spectra are 'self-normalized' by 

the clutter background leve!.) 
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5.6 Conclusions 

The principal conclusion to be drawn from our SAR studies may be summarized as 

follows: 

(1) The linear SAR imaging theory is not able to reproduce the shape of the observed 

SAR image spectrum, even for low energy sea states. This is due to the unrealistic 

amplification of short waves by the linear theory, which results in a monotoni­

cally increasing SAR spectrum. In reality, the higher wavenumbers (often 

beginning shortly after the spectral peak) are attenuated by nonlinear inter­

actions with the motion induced azimuthal displacements of the longer waves. 

For low energy sea states with small nonlinearity parameter emax, the observed 

peak in the SAR spectrum represents the transition from the linear to the 

nonlinear imaging regime. 

(2) In nearly all cases, the observed SAR spectra can be well reproduced by applying 

individually fitted, directional dependent power law MTFs to the hindcast wave 

spectrum. However, the parameters derived from individual fits show 

considerable scatter from case to case. Thus this method does not appear suitable 

as a general empirical tool for relating wave spectra to SAR image spectra. 

(3) SAR spectra computed from hindcast wave spectra using Monte Carlo simulation 

techniques showed a remarkable agreement with observed SAR spectra. Since 

the nonlinearly distorted SAR spectrum can differ significantly from the original 

wave spectra, and the distortions depend critically on the detailed structure of 

the wave spectrum, a meaningful interpretation of SAR wave image spectra can 

be based only on numerical computations of the exact nonlinear transformation 

relations. 

(4) Starting from the well tested theory describing the nonlinear mapping of the 

ocean wave scene into the SAR image plane which was applied in the Monte 

Carlo simulations, a closed nonlinear integral expression was derived for the 

transformation of the wave spectrum into the SAR image spectrum. Since Monte 

Carlo computations are too time consuming to be applied operationally for the 

analysis of all ERS-1 SAR wave mode data (approximately 1 minute computing 

time per spectrum on a CRAY X-MP). the numerical implementation of the new 

expression should be pursued and tested with high priority as a possible alter­

native for application to ERS-1. 
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(4) The problem of the inverse transformation from the SAR image spectrum to the 

surface wave spectrum has not yet been addressed. Since different backscattering 

elements can be mapped on to the same image pixel, the inversion is in general 

non-unique and singular. The inversion problem must therefore presumably be 

treated locally in the form of a perturbation about a given forward 

transformation. This implies that the operation of a wave model, which can 

provide the first guess wave field needed as input for the forward 

transformation, is an essential pre-requisite for the extraction of useful wave 

information from SAR image spectra. The optimal implementation of the 

inversion procedure will depend on the form in which the SAR wave data is 

assimilated in the overall wind and wave data assimilation system in development 

for ERS-l, which is discussed further in the following section. 
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6. Data assimilation 

As outlined in the introduction, the present study represents a first step towards the 

planned implementation of a comprehensive wind and wave data assimilation system for 

ERS-1. A characteristic feature of this system is the joint analysis of both wind and wove 

data, with consideration of the cross coupling between wind and wave information in the 

different ERS-1 sensor systems and in the assimilation procedure itself. In this study only a 

small sub-set of the questions to be addressed in the implementation of the full system will 

be considered. In the following sub-section 6.1 we discuss briefly the general problem of 

assimilating wave data in wave models and the information which can be extracted from 

wave data, via a wave model, for the wind field. In Section 6.2 we present a simple example 

of the improvement in a wave forecast obtained by assimilating SEASAT altimeter wave 

height data. 

6.1 General considerations 

In contrast to atmospheric data assimilation, which has a fairly long history 

beginning with the introduction of numerical weather prediction, wave modellers 

have only recently begun to address the problem of assimilating wave data in wave 

models (d. studies by Thomas (1988), Komen (1985), Janssen et aL (1988). This is partly 

due to the lack of sufficient wave data in the past to significantly affect the wave field 

analysis. Here ocean satellites will, of course, radically change the situation. But wave 

modellers have also not viewed data assimilation with the same urgency as atmo­

spheric modellers, since wave forecasting, as opposed to weather forecasting, is not 

essentially an initial value problem, but a boundary value problem: the wave field is 

forced by the given wind field, and the initial wave field at some far past time when 

the model was first spun up is irrelevant. Wave data is used not to initialize the wave 

field, but simply as a running correction or update of the model simulation. In fact, it 

could be argued that the main interest in wave data assimilation is not so much in the 

improvement of the wave forecast but in the opportunity it provides for improving the 

wind field analysis. For the wave field is a highly sensitive indicator of the quality of 

the wind field, as demonstrated in Sections 2 and 3. 

The difference in the nature of wave data assimilation compared with standard 

meteorological data assimilation techniques carries a number of implications (d. 

Hasselmann, 1985): 
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(i) The continuous assimilation of wave data during the running of the model creates 

no 'dynamical shock' problems. The local update information simply propagates 

into the forecast in the same way as a change in the external wi nd forcing. 

(ii) If the modified wave field consists primarily of swell (as in most regions of the 

ocean, d. Section 2), the updated swell will continue to propagate at its corrected 

val ue throughout the rest of the forecast: the correction 'sticks'. However, if the 

wave field represents a windsea, and the (incorrect) wind field responsible for the 

wave field error is not modified simultaneously with the wave spectrum, the 

updated wave field will rapidly relax back to its original incorrect state in response 

to the uncorrected wind field. 

(iii) Wave data is typically incomplete. The model requires the field oftwo-dimensional 

wave spectra, which are estimated today at only relatively few locations with 

directional buoys. ERS-l will provide data on a global scale, but only in the form of 

the altimeter significant wave heights and azimuthally clipped, nonlinearly 

distorted and 1800 ambiguous two-dimensional SAR image spectra. The 

assimilation procedure must therefore address the problem of translating this 

incomplete information into optimal spectral updates. 

(iv) The region of influence of a measurement at a given point cannot be taken as 

approximately constant, as in the atmospheric case, but depends strongly on the 

type of spectrum and the spectral component. Swell which was generated in a far 

distant source may be associated with a region of influence of several thousand 

kilometers, while windsea generated by a local intense storm will have a much 

smaller characteristic correlation scale ofthe dimension of the wind field. We show 

in the following that the proper treatment of this problem automatically follows 

from a consistent coupled wind and wave data assimilation approach. 

6.2 Optimal wave data assimilation 

The general task of wave data assimilation is to optimally modify the total wave 

field F({, 0; x, I) predicted by the model up to the time t for all points x on the global 

ocean (or some selected area, in the case of regional applications) on the basis of a 

finite set of measurements <Ii = <j>,(F), i = I, ...... 11. 
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The data di can represent single numbers (e.g. I(,) or a full SAR spectrum, for 

example. It will be assumed that the wave data are assimilated continuously, so that 

we assimilate only wave data given at the time t. 

'Optimal' implies here that the modified wave field should be consistent both with 

the data di and the dynamical constraints of the wave model. In addition, the wave 

field is normally required to satisfy some additional '<esthetic' quality or plausibility 

criterion, such as smoothness or minimal least square deviation from the predicted 

wave field. The dynamical model constraint implies that a consistent modification of 

the wave field can be achieved only if the wind field (at some earlier period) is also 

modified. The quality criterion will therefore be extended to include the requirement 

that the modification of the wind field should also be kept as small as possible. 

6.2.1 General formalism 

Satellites and conventional wave instruments yield various types of wave data 

d/xp, tp) at a given set of measurement positions xp and times tp which are related 

to the two-dimensional wave spectrum F(xp , tp) through functions 

..... 
d. = D(F) , , 

The goal of wave data assimilation is to modify the wave spectrum F(xp , tp) 

predicted by the model in such a manner that the wave data error function 

e = L (d. - d) M. (d. - d) 
w . . I I 1J J J 

'J 

(6.1) 

(6.2) 

defined with respect to some suitably chosen (normally diagonal) positive definite 

matrix MU' is minimized, while maintaining the internal dynamical consistency of 

the overall wave field. 

"'-
The latter condition requires that the wave spectrum modifications c,F should 

be induced through modifications C,ll, in the driving surface stress field, 

tJ'I(X,I) = Jl
p 

dl'J dx'G(x ,I ;x',t')c,u.(x',I') 
p p p p " _on 

(6.3) 

"" or c,F = G(c,u,) 
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The data d,- can represent single numbers (eg, US) or a full SAR spectrum, for
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Here G(xp, Ip; x', I? represents the (Green function) response of the wave field 

to small perturbations of the surface stress field. It is assumed in (6.3) that the wave 

field perturbations are small, so that the relation between 6F and 61l, can be 

linearized. 

In general, the modified stress field will not be uniquely determined by the 

condition"w = minimum. We therefore add an additional constraint: we seek a 

modification of the wind stress field which minimizes "w, while at the same time 

keeping the changes in u, as small as possible. This can be achieved by minimizing 
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equation (6.4) containing at anytime I all measurement points Ip with Ip :5 I. In 
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simplifications. We shall follow instead the direct approach of inverting the wave 

transport equation and develop a very simple approximation for G. 
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6.2.2 Approximate treatment of the Green function G 

The relation between a perturbation QU, of the surface stress field and the 

resulting perturbation induced in the wave spectrum is obtained by perturbing the 

basic wave model transport equation (d. WAMDIG, 1988) 

( i!. +VV)F=S. +S {+S{ =S iJt III 11 (S 
(6.5) 

where v denotes the group velocity and Si,., S,.{, Sds represent the input, nonlinear 

transfer and dissipation source function, respectively. (For simplicity, we here used 

cartesian rather than the spherical coordinates of the global WAM model.) 

One obtains 

(a) all - + vV of = AoF + F - ou. 
at au. 

(6.6) 

where the linear operator A represents the functional derivative of the nonlinear 

source function Srest = Stot - Si,., excluding the wind input term 

a 
A=-(S) 

aF rest 

and the second term on the right-hand side represents the derivative of the linear 

input source function Si,. = [lFwith respect to u •. 

The operator A has been discussed in WAMDIG (1988), since it arises in the 

implicit source function integration scheme used in the WAM model. Because of 

the nonlinearity of the source functions S,,{ and Sds' it is in general non-diagonal. 

This implies that a o-function perturbation ou. introduced at a given grid point and 

time generates not only wave spectrum perturbations propagating away from the 

disturbance point with their appropriate group velocities (as described by the 

diagonal propagation operator on the left-hand side of equ. (6.6)), but also a 

secondary perturbation field produced by scattering from the primary rays into a 

continuum of non-focussed secondary rays. 

This greatly complicates the computation of the Green function. The same 

scattering process arises and is properly computed, of course, in the integration of 
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the fully nonlinear wave model. However, to avoid having to carry out a similar 

computation to determine the Green function, the matrix operator A may be 

simplified by retaining only the diagonal part ,\. The same approximation was 

used in the implicit integration scheme of the WAM model and was shown to be 

quite satisfactory for that application. In this case, equ. (6.6) can be immediately 

integrated to yield the Green function 

M= G(LlIl.) = I' dt'[F( ~ )Llu*l exp[I'dt"A(X",t")] 
_00 Oll,;. x',i' t' 

(6.7) 

where the integrations with respect to I'and I" represent path integrations along 

the individual wave group propagation paths 

x' = x + v '(1' - t) 
(6.8) 

x" = Xl + v' (t" - t') 

terminating in x and x', respectively. 

An inspection of (6.7) reveals that for any given spectral component G has a 

pronounced maximum at a position along the ray corresponding to the last point 

at which the wave component received a significant input from the wind, i.e. in 

the transition region from windsea to swell. For earlier times, the impact of a 

variation ou. is lost through the interaction with the rest of the spectrum, 

expressed by the large (windsea) value for A. In the swell region, after the windsea 

has been transformed into a swell component, the exponential damping vanishes, 

but the wind input factor ajl/all. itself also vanishes. The most effective region for 

modifying a spectral component is therefore essentially identical to the 'region of 

origin' of the wave component as defined heuristically through the 'wave age', 

(d. Booij and Holthuijsen, 1987). 

To a resonable first approximation the Green function may therefore be 

represented as a o-function: 

G(x, t; x', t') = o(x' - x + n)o(t' - 1- LlA (69) 

where A = A(k, x, t) is a weighting factor determined by the speed of transition 

from windsea to swell. 
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The relatively simple structure of the approximate Green function and the 

reduction of its effective 'region of dependence' to a geometrically well defined, 

I imited region governed by the wave age suggests further simplifications in the 

next step of determining the ilu, field which minimizes c. 

6.2.3 Implementation 

We have established linear relationships between the three sets of data 

consisting of the perturbations of the wind stress field ou, == (]la), perturbations of 

" the wave spectra of == (<Pa) and perturbations o(di - di) == (Dv) ofthe deviations 

between predicted and observed wave data: 

<P = " M( 1) ]l 
a L an 0 

a 

D =" M(2) <P 
v L va a 

a 

(6.10) 

(6.11) 

where Maa(1) represents the Green function (equ. 6.9) and Mya(2) represents the 

" derivative ofthe predicted data di with respecttothe predicted spectrum F. The 

indices ofthe vectors <Pa, Dv and]la run through the entire data set involved in a 

given data assimilation cycle, including the spatial and temporal dependence and 

the individual components of the fields (e.g. the set of spectral components in the 

case of wave or SAR image spectra, or the two vector components in the case of 

the wind stress vector). 

In terms of the present notation, the variational problem (6.4) we wish to solve 

takes the form 

£ = "w (D - DO)2 + w "/ = min Lvy voLa (6.12) 
v a 

where 

" " D = d. - d (6.13) 
\. ! I 

represents the deviation between the predicted and observed wave data for the 

unperturbed wave spectra (prior to data assimilation) and wo, Wy are weighting 

factors. 
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Substituting the linear relations (6.1 0). (6.11) into (6.12) we obtain 

8= )

2 
, (31 ."' 2 "')\1 p + w '\:' p :::: min L YO q oL {l 

(6.14) 

v o n 

M(31 = "\.' M(21 MOl 
vn Lvoan (6.15) 

a 

The minimum of (6.12) is given by the solution ofthe linear system of equations 

where 

v 

and 

Co = " w DO M(31 L v v ya 
v 

(6.16) 

(6.17) 

In practice, the minimum of 8 may be obtained more rapidly by applying direct 

minimization methods (e.g. conjugate gradient techniques, d. Navon and Legler, 

1987) to the relatively simple quadratic form (6.12) rather than solving the system 

(6.14). 

The solution ofthe minimization problem yields the entire wind stress 

correction field 0,,*, but the corrected wave field only at points where measure­

ments exist. (The matrix multiplication (6.15) runs over only those indices for which 

Mva(2
) # 0, i.e. only those spectral values which impact the data values di.) To up­

date the entire correction field for the wave spectrum the Green function relation 

(6.10) must be applied for the wave spectra at all grid points. 

We note that the approach outlined here avoids the need for an explicit 

inversion of the wave spectrum ~ SAR spectrum transformation relation. The 

inversion for SAR wave data is considered automatically within the framework of 

the complete inversion problem. We note furthermore that the derivative matrix 

M"a(2
) for SAR image spectral data was derived in Section 5 in the course of the 
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derivation ofthe general nonlinear spectral transformation relation for SAR image 

spectra. 

Since effective numerical procedures have been developed for minimizing 

quadratic forms of the type (6.14) for systems with several thousand degrees of 

freedom (d. Navon and Legler, 1986), it appears feasible to implement the 

approach outlined here in operational framework. 
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7. An example of altimeter wave data assimilation for August, 1978 

As a first step towards the development of a complete wind and wave data 

assimilation system we have investigated the simpler decoupled problem of assimilating 

wave data into the wave model without modifying the wind field. This differs from the 

approach of Thomas (1988) and Janssen et al. (1988), who modify both the wind and wave 

field. As outlined above, our ultimate goal is to modify only the wind field directly, the 

wave field changes being tied to the wind field modifications through the wave model. The 

present decoupled study was carried out as a reference to establish the direct impact of the 

wave data on to the wave model. It may also be interpreted as an implicit wind field modi­

fication exercise in which only the past wind field (which has no influence on the current 

wave field development) is altered. The study provides insight into the characteristic region 

of influence of wave measurements, and the typical relaxation time of new information 

inserted into the model. The assimilated data were the global SEASAT altimeter wave 

height data obtained during the month of August, 1978. This month was chosen as it 

contained relatively few data gaps. 

The data were inserted into the wave model at each propagation time step, i.e. every 

forty minutes. This corresponds to an orbit segment of about 17,000 km, or up to 85 data 

points separated by 200 km. For each wave height data point the model wave spectrum was 

modified over a finite set of surrounding model grid points. Experiments were carried out 

with different scales L for the region of influence. 

Within a region of influence, an updated wave spectrum F new (f, e) was formed by 

applying a correction factor c to the predicted spectrum F pred(!' e), 

F (f, e) = c F (f, e) 
/lew ' pred ) 

(7. 1) 

where 

for Iti<j>1 < L 4>' I ti,\ I < L\ 

c 

1 for or 

and 
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An example of altimeter wave data assimilation for August, 1978

As a first step towards the development of a complete wind and wave data

assimilation system we have investigated the simpler decoupled problem of assimilating

wave data into the wave model without modifying the wind field. This differs from the
approach of Thomas (1988) and Janssen et al. (1988), who modify both the wind and wave
field. As outlined above, our ultimate 9a is to modify oniy the wind field directly, the

wave field changes being tied to the wind field modifications through the wave model. The
present decoupled study was carried out as a reference to establish the direct impact of the
wave data on to the wave model. It may also be interpreted as an implicit wind field modi—

fication exercise in which oniy the past wind field (which has no influence on the current

wave field development) is altered. The study provides insight into the characteristic region

of influence of wave measurements, and the typical relaxation time of new information

inserted into the model. The assimilated data were the giobai SEASAT altimeter wave

height data obtained during the month ofAugust, 1978. This month was chosen as it

contained relatively few data gaps.

The data were inserted into the wave model at each propagationtime step, i.e. every
forty minutes. This corresponds to an orbit segment of about 17,000 km, or up to 85 data

points separated by 200 km. For each wave height data point the model wave spectrum was

modified over a finite set of surrounding model grid points. Experiments were carried out
with different scalesL for the region of influence,

Within a region of influence, an updated wave spectrum Fnew (f, B) was formed by

applying a correction factor c to the predicted spectrum Fpredff, B).

_ (7.1)
Firearm 8) A CFpred (f’ 3)

where

( ( (1 IM)? 1AM2 ä 2
1 + 1 wcmm: . 5-12 + 7 ) ) f0! IACbI < 11¢), |AÄ| < LA

Jib ‚Ä

l for lAcbI >L‘b 0r IAM >I‚\

and
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c = Halt I Hl1!od 
max s s 

(73) 

Here Hs',lt, IIsmod denote the altimeter wave height and the interpolated model 

wave height at the measurement point, respectively, and G</>, G,\ represent the distances in 

degrees latitude and longitude respectively, of the model grid point from the measurement 

point (d. Fig. 7.1). Close to the measurement point, c ~ Cmax, and the model spectrum is 

adjusted to reproduce the observed wave height. The correction factor relaxes bi-lineariy to 

unity at the edge of the rectangular region of influence. 

Assimilation experiments were carried out with L p , LA = 9,9 and 15, 15 degrees, 

corresponding to 3 x 3 and 5 x 5 grid points in a region of influence. The best results, 

shown in Figs 7.2 - 7.5, were obtained for the case L = 15. This scale is compatible with the 

time-space sampling density ofthe satellite and ensures that essentially all points on the 

model grid have received significant impact from the altimeter wave height measurements 

within a 3 day sampling period. 

To remove spin-up effects from the August analysis period, the assimilation run was 

started on July 28, the assimilation run itself being restarted from the run without 

assimilation beginning July 7, 1978. The GLA surface stress field was used as input. 

Figs 7. 2 a - c show the mean wave heights for August, obtained with the assimilation 

run. A comparison with Figs 2.2 b - 2.4 band 2.5 b showing the previous results for the run 

without data assimilation and the significant wave heights derived from the SEASAT 

altimeter demonstrates the significant improvement achieved through data assimilation. 

The relaxation time ofthe assimilation procedure was tested in a further experiment in 

which the assimilation process was switched off in the middle ofthe (3-point) assimilation 

run, on August 15. The characteristic relaxation time for the global model bias error (the 

global mean deviation of the model and altimeter wave height) is of the order of 6 days 

(Fig. 7.3b). In this period the error has grown back to the same magnitude as in the original 

hindcast without data assimilation. 

We note that the characteristic relaxation times found for the present assimi lation 

switch-off experiment are generally larger than those found by Janssen et aL (1988) in a 

similar switch-off experiment. This is due to the larger region of influence chosen in the 

present assimilation scheme. If the region of influence is smaller than the orbit spacing 

corresponding to the satellite repeat period (or characteristic time scale of weather 

patterns, in the case of windsea) only part of the model grid is updated during the 
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assimilation procedure. The propagation of the non-corrected wave field from the missed 

regions into the neighbouring, corrected wave field regions then degrades the update in 

the corrected regions on the relatively short time scale of the wave propagation ti me from 

non-updated to updated regions. 
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assimiiation procedure. The prepagation of the non-corrected wave fieid from the missed
regions into the neighbouring, Corrected wave field regions then degrades the update in
the corrected regions on the relatively short time scaie of the wave propagation time from
non—updated to updated regions.
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8. Conclusions 

Our investigations of SEASAT altimeter and SAR wave data using a global wave model 

driven by wind fields derived from assimilated scatterometer data have provided val uable 

insight into the quality and application of ocean satellite wind and wave data. This SEASAT 

exercise is particularly relevant for ERS-l, which will be carrying a similar suite of sensors. 

We may summarize the principal conclusions of this study, which we regard as a first step 

towards the development and implementation of a comprehensive wind and wave data 

assimilation system for ERS-l, as follows: 

1) Wave models represent an excellent data validation tool, providing a sensitive natural 

consistency check of wind and wave data. The shortcomings of the GLA 6 hourly 

averaged surface stress fields derived by data assimilation from scatterometer and 

conventional meteorological data were immediately revealed by comparing the 

hindcast wave heights with altimeter wave heights. This technique is particular 

valuable in data sparse regions such as the Southern Ocean, when the altimeter wave 

height data may represent the only independent verification of the wind field analysis. 

2) A number of further data validation tests and wave hindcast intercomparisons with 

other wind field products suggested that these shortcomings were not directly related 

to the wind field data assimilation method as such, but resulted from the time 

averaging involved in producing the stress fields. But it is also possible that 

inconsistencies in the scatterometer algorithm (Woiceshyn et aI., 1987; Anderson et aI., 

1987) contributed to the discrepancies. A combination of the data validation 

procedures described in Anderson et aL (1987), Janssen et aL (1988) with those in the 

present report would provide a valuable operational system for real time monitoring 

ofthe performance of the wind and wave sensors of ERS- L 

3) The direct assimilation of altimeter wave height data in wave models has a significant 

positive impact on the skill of the wave forecast. This applies particularly for the swell 

field. The average relaxation time ofthe wave update information is of the order of six 

days. 

4) For windseas, wave data assimilation has little impact on the quality of the longer term 

wave forecast unless the wind field is modified together with the wave field. By 

improving the wind field, this requirement also increases the skill of the weather 

forecast and provides improved air-sea flux fields required for climate research. 
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5) The development of a fully interactive wind and wave data assimilation system 

represents a formidable task, since wave field errors imply errors in the wind field not 

only at the same time level, but also at early levels which can extend back one or two 

weeks. A general variational approach for constructing simultaneously optimized 

wind and wave fields was developed. The models and numerical techniques for 

implementing such a system are now largely available, and it is recommended that 

work in this area is pursued with high priority in order to provide a viable operational 

system in time for the launch of ERS-1. The modifications of the wind field induced by 

wave data in such a system would represent a quantitative, constructive version of the 

wind and wave data mutual consistency tests summarized in 1) above. 

6) SAR wave image spectra normally represent strongly nonlinearly distorted trans­

formations of the wave spectra. This applies for both windsea and swell spectra. SAR 

image spectra cannot be usefully interpreted unless supported by computations of the 

nonlinear transformation from the wave spectrum to the SAR spectrum. This implies, 

in practice, that SAR wave spectra can be used operationally only in conjunction with a 

realistic (third generation) wave model which can provide a good first guess wave 

spectrum. This will be available only in an operational forecasting environment, i.e. in 

weatherforecasti ng centres. 

7) Monte Carlo computations ofthe nonlinear transformation of the wave spectrum into 

the SAR image spectrum, using the hindcast wave model spectrum as input, were in 

excellent agreement with the SEASAT SAR spectra for a set of 32 different scenes. This 

indicates that the long debated theory of the SAR imaging of a moving ocean wave 

surface is now well understood and can be used confidently. 

8) A new closed expression relating the SAR image spectrum to the surface wave 

spectrum was derived. This opens the possibility of computing the nonlinear spectral 

transformation directly, without reverting to the pixel-to-pixel mapping of individual 

scene realizations using Monte Carlo simulation techniques. The Monte Carlo 

technique suffers from statistical sampling errors and is relatively costly in computer 

time (~ 1 minute CRA Y X-MP per spectrum). It cannot be used for the routi ne processing 

of the many SAR image spectra generated globally by the ERS-1 SAR in the wave mode. 

Computations of the nonlinear spectral transformation using the newly derived 

relation were not foreseen and could not be included within the framework of this 

study contract, but should be carried out with high priority in a follow-up study to 

determine whether this approach has operaflonal potential for ERS-1. 
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9) Methods need to be developed for inverting the transformation wave spectrum -> SAR 

spectrum. This question should be approached within the general context of imple­

menting a joint wind and wave data assimilation system as summarized under 5) 

above. The goal of such an interactive assimilation system is to modify only the wind 

field directly, the wind field modifications being chosen such that both the wind field 

and the resultant wave field are optimized with respect to the wind and wave 

observations. In this context a SAR image spectrum can be treated in the same manner 

as any other derived wave information, such as altimeter wave heights or one­

dimensional wave spectra. It follows that the inversion of the transformation wave 

spectrum -> SAR image spectrum need not be carried out explicitly, the general 

inversion procedure being based on iterative corrections including only forward 

transformations. 

In summary, we have found encouraging results with respect to the potential of wave 

models for the routine validation of wind and wave data and the assimilation of altimeter 

wave data. Most ofthese could be readily implemented in an operational system. However, 

we have also identified (and in some cases made some progress in theoretically resolving) a 

number of fundamental issues with respect to the simultaneous, interactive assi milation of 

wind and wave data and the application of SAR wave image data. These questions will need 

to be addressed with high priority within the next two years if ERS-l is to realize the high 

expectation placed by the scientific community in this satellite. 
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GLOBAL DATA ASSIMILATION PROGRAMME FOR AIR-SEA FLUXES 

JSO / CCCO Working Group on Air-Sea Fluxes 

Summary 

The JSC/cCCO Working Group on Air-Sea Fluxes was formed by the Joint 

Scientific Committee (JSC) of the World Climate Research Programme (WCRP) 

and the Committee on Climatic Changes and the Ocean (CCCO) to develop a 

programme for producing, on a contilluous basis, global fields of air-sea fluxes 

,making use, in particular, of the new data which will become available with the 

next generation of ocean satellites. These fields are an essential input for many 

climate studies, including the major WCRP/cCCO projects TOGA (Tropical 

Ocean/Global Atmosphere) and WOCE (World Ocean Circulation Experiment). 

The goal ofthe proposed Global Data Assimilation Programme for Air-Sea Fluxes 

(GDAP) is to provide continuous, 6 hourly, 1° resolution, global fields of the air­

sea fluxes of momentum, sensible and latent heat, water, and solar and infra-red 

radiation beginning 1991. 

To achieve this goal, comprehensive data assimilation systems need to be 

implemented at operational global weather centres capable of processing the 

many different forms of III put data which enter into to the flux field analysis. 

These include data from oceanographic and meteorological satellites, ships, 

buoys and the weather station network. It is proposed that at least one such data 

assimilation system be established in Europe (at the European Centre for 

Medium Range Weather Forecasts) and in the U.S. (at the National 

Meteorological Center). Additional assimilation systems at other weather centres 

could usefully augment the programme. 

The 1991 target date set for the operational Implementation of the system at 

ECMWF and NMC corresponds to the estimated start of the operational phase of 

ERS-1, the first of a series of planned oceanographic satellites. Before the 

operational phase the system will be run in a research and validation mode, with 

no direct interaction with operational analyses and forecasts 
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A number of projects are defined to develop and implement the system within 

this time frame. These include: 

the incorporation of ocean satellite sensor algorithms within the 

assimilation system, 

the quasi real-lime provision of calibrated physical sensor data frorn ocean 

satellites, 

the extension of existing data quality control systems to include the new 

kinds of data available from oceanographic satellites, 

the inclusion of surface wave data and global wave models in the sensor 

algorithms, data assimilation system and flux parameterisation, and 

the improvement of assimilation procedures for the insertion of two­

dimensional surface data into three·dimensional fields 

In addition to the near real-time data assimilation programme carried out within 

the framework of the routine forecasting operations, provision should be made 

through an effective archiving and retrieval system for a possible reanalysis of 

the entire input data set at a later time. Although costly, this could prove to be 

desirable after a few years operational experience in order to provide a 

temporally homogeneous flux data set based on the latest improved algorithms 

and assimilation systems. 

Proposals are also made for upgrading the in situ ocean data collection system. In 

situ data are important both as valuable input data and for calibration purposes. 

Organizational measures are suggested which could significantly enhance the 

quality and quantity of data from these sources. 
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1. Goals 

The fluxes of momentum, heat, radiation and water at the air-sea interface 

drive the ocean circulation and determine the coupling between the atmo­

sphere and the ocean. A reliable determination of these fl ux fields is there­

fore essential for understanding the role of the oceans in climate. The goal 

of the Global Data Assimilation Programme (GDAP) is to develop practical 

oceanographic satellite data retrieval and appropriate data assimilation 

schemes which could be applied routinely in producing optimal global air­

sea flux data sets. 

This activity has been formally constituted as part of the WMO/ICSU World 

Climate Research Programme (WCRP) by the Joint Scientific Committee (JSC) 

for the WCRP and the Committee on Climatic Changes and the Ocean 

(CCCO)' under the guidance of the joint JSClCCCO Working Group on Air-Sea 

Fluxes (WG-ASF members are listed in Appendix 1). This step was taken in 

view ofthe requirement in the WCRP, especially the WOCE and TOGA 

components (as described in Section 2.1) for continuous global gridded air­

sea flux fields exploiting the entire range of available input data including, 

in particular, the new sources of ocean satellite data (e.g scatterometer 

winds and altlmetric information) that are expected to become available 

operationally in the next two or three years 

Although ocean satellites can provide important data on fields at the sea 

surface as input for the flux computations, the derivation of valid geophysi­

cal data from the sensor signals of these satellites is not straightforward. 

Normally, auxilliary meteorological or oceanic data are needed. The satellite 

data therefore needs to be combined with conventional meteorological and 

sea surface data in a comprehensive data assimilation system. This combi­

nation should be performed within the physical constraints of an atmo­

spheric general circulation model, and the expertise for this activity resides 

at the global weather centres. 

In addition to ocean satellite data, an Important data base for air-sea flux 

computations are conventional in situ ocean surface data, which provide a 

calibration reference for ocean satellites and meteorological analyses. The 
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GDAP therefore also includes recommentatlons for upgrading the 

conventional surface data set obtained from ships, buoys and other sources. 

The principal goals of the GDAP may be thus summarized, in accordance 

with the terms of reference of the WG-ASF (d. Appendix 2), as 

1. the development and implementation of comprehensive data 

assimilation systems for the operational computation of global air-sea 

flux fields at global weather centres and 

2. the upgrading of the in situ air-sea flux data collection system. 

1.1 Data assimilation 

The data required for computing global air-sea flux fields originates 

from a variety of sources (satellites, ships, buoys, weather stations) with 

widely differing characteristics regarding coverage, sampling density, 

accuracy and type of variable measured. The reconstruction from these 

data of optimally estimated flux fields which are dynamically consistent 

with the overall atmospheric circulation requires the application of a 

sophisticated data assimilation system based on a high resolution 

global atmospheric model. In view of the known impact of sea state on 

the microwave sensor signals of oceanographic satellites, and also on 

the air-sea transfer processes themselves, it is furthermore desirable to 

incorporate wave data and a global wave model within the 

aSSimilation system. 

The data assimilation requirements for climate research and opera­

tional weather and wave forecastmg are essential identical. It there­

fore appears logical to develop a single comprehensive data assimila­

tion system for both applications. Fig. 1 (from Hasselmann, 1985) shows 

an outline of the proposed structure of such a data assimilation system 

in relation to the ocean satellite receiving stations and off-line data 

processing and archiving facilities. The plan foresees two mam 

extensions of existing operational data assimilation systems. the 

incorporation of the sensor algorithms within the data aSSimilation 

system and the inclusion of a global wave model (GWM). 
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A quasi real-time, operational data assimilation system offers a number 

of advantages: 

The system can provide sophisticated continuous data quality 

control, with the possibility of Immediate feedback to operational 

centres of satellites or other data collection systems if data errors 

are detected. Experience shows that a comprehensive data 

assimilation system encompassing a diverse data set is significantly 

more effective in detecting subtle errors in individual system 

components than quick-look testing of separate sub-systems. 

The system can provide continuous statistical evaluation of the 

performance of satellite sensor algorithms, again offering a rapid 

feedback if algorithm improvements are needed. 

The assimilation system can be applied during measurement 

campaigns, e.g. in the initial calibration and validation phase of a 

satellite, yielding data which can be fed back in quasi real-time 

into the campaign operation. In this way it is possible to 

continually monitor the performance of the satellite or other 

measurement systems during the campaign. 

More efficient satellite sensor algorithms can be developed which 

make use of first guess wind and wave fields provided by the 

models. This is particularly important if the cross coupling of 

different sensor signals (e.g wind and waves) is to be properly 

incorporated in the algorithms. 

Since the analysis system is designed to cope with the complete 

data flux in quasi real-time, it must process the data at least at the 

same rate as it is produced. This avoids one of the recurrent 

problems of off-line processing systems: a continuously increasing 

processing delay, or, as the only alternative, the restriction of the 

data analysis to limited time periods. 

Although a quasi real-time data assimilation system clearly has 

considerable advantages, a basic shortcoming of an operational system 

is that the homogeneity of the data set is endangered through 
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inevitable changes in the analysis procedure as improved assimilation 

systems and sensor algorithms are developed. For applications in which 

data homogeneity is essential, it may therefore be desirable to 

reanalyze the entire past data set with the latest assimilation system. 

Thus, although the major thrust of the GDAP is directed to an 

operational system, the option of a later re-analysis should be kept 

open. This requires the establishment of efficient archiving and 

retrieval mechanisms for all input data. A re-analysis would clearly be a 

costly undertaking, but this may appear less forbidding when more 

powerful computers become available later in the programme. 

The programme required to develop and implement a comprehensive 

air-sea flux data assimilation system is extensive and can be carried 

through successfully only with wide international collaboration. For 

this reason it is proposed that efforts should be concentrated on the 

implementation of assimilation systems at the two major global 

forecasting centres supported by larger scientific communities, namely 

the European Centre for Medium Range Weather Forecasts (ECMWF) 

and the US National Meteorological Center (NMC). However, efforts by 

individual nations to develop similar systems at their national weather 

centres should also be encouraged, since the intercomparison of 

different products from several centres will provide a broader base for 

assessing the reliability of the methods. 

1.2 In situ data 

The second task of the Working Group IS to recommend and initiate 

measures to improve the data base of in situ reference measurements 

which are needed for the validation of flux estimates inferred from 

satellite data or derived from global meteorological analysis. The 

Working Group considers that implementation of improvements in the 

quality, and efficiency of utilization, of existing measurement 

programmes would significantly upgrade the available data base. 

However, where there are potential deficiencies these must be 

identified and, where necessary, the initiation of new scientific field 

programmes to produce in situ reference measurements should be 

encouraged. 
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The operational in situ systems, which include moored and drifiting 

buoys, the Voluntary Observing Ships (VOS). and island and land 

meteorological stations, are the responsibility of the World Weather 

Watch (WWW) of WMO. Recognizing that it is of primary importance 

that the in situ observational systems required for initialization of the 

atmospheric GCMs be continued, and where possible, improved, the 

Working Group strongly supports actions aimed at fulfilling the WCRP 

requirements for WWW systems as defined in the First WCRP 

Implementation Plan (WMO, 1985). 

A specific Working Group project, described in Section 4.12, will 

identify data from previous scientific field programmes suitable for use 

in verifying the model derived surface fields. The project will also assess 

the quality of available in situ data, and determine any additional 

quality control procedures which may be required. The results will 

enable the Working Group to assess the need for further research field 

experiments, and the degree to which, with improvements, the 

existing operational in situ data can be used for verification purposes. 
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3. Overview of Work Plan 

The work plan of the GDAP may be divided into two stages: 

a preparatory phase, from 1988 until 1990, and 

a full implementation phase, from 1991 onwards. 

3.1 Preparatory phase, 1988 - 1990 

During this phase a series of investigations need to be carried out on 

methods of assimilating data from different sources, addressing In 

particular the new forms of data which will become available from 

oceanographic satellites. Methods of assimilating single level data (ie. 

surface data) will require special attention. Other questions which 

need to be addressed include the dependence of the numerical 

satellite sensor algorithms on the assimilation scheme, the incorpo­

ration of the algorithms within the assimilation system itself and the 

interdependence of wind and wave data in both the sensor algorithms 

and the assimilation scheme. 

Alternative flux parameterisations need to be tested with regard to 

their impact on oceanographic models (tropical and global ocean 

circulation models and surface wave models). The appropriate 

numerical experiments will be carried out in collaboration with the 

WOCE and TOGA Numerical Experimentation Groups and the Wave 

Modelling Group (WAM). 

In preparation for a pOSSible later reanalysis project (see Section 4.13), 

investigations will also need to be carried out on different methods of 

reconstructing improved surface flux fields from past data, including 

techniques which do not necessarily require the full data assimilation 

cycle. 

In addition, work will continue on a number of projects initiated 

before the begin of the preparatory phase of the present programme. 

These include: 
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An ECMWF project requested by the TOGA Scientific Steering 

Group to compute all air-sea flux fields beginning 01.01.1985, 

applying the present data analysis schemes of ECMWF to the 

Centre's archived data set (see also Section 2.2 and Appendix III). 

A joint WAM-ECMWF project for the development and testing of 

an ocean satellite data assimilation and quality control system 

using SEASAT altimeter, scatterometer and SAR data in 

conjunction with conventional meteorological data. 

3.2 Full implementation phase, 1991 onwards 

At the end of the preparatory phase, continuous, operational data 

assimilation systems should be implemented at ECMWF, NMC and 

possibly other centres. The assimilation schemes should provide 

6-hourly flux fields at the resolution of the then operational global 

forecast models (- 1° x n. The assimilation scheme should encompass 

all relevant oceanographic microwave sensor data, including both 

wind and wave information, and should also include the ocean satellite 

sensor algorithms. The full operational phase will be preceded by a test 

phase which could coincide with the calibration/validation phase of 

ERS-1. 
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Table 1: Time Table for Global Data Assimilation Programme for Air-Sea Fluxes 

Preparatory Phase . 

No. Project 1988 1989 1990 

4.1 Data archival minor modification of 
data sets archivalspecifi-
cations: definition of 
wave data subsets 

4.2 Scatterometer data Development of. algorithm 
suitable for data assimilation, 
incorporation of algorithm in 
assimilation system 

Test of system against 
SEASAT and synthetic data 

4.3 Coupled wind and Development of coupled 
wave sensor algorithms for scattero-
algorithms meter, SAR and altimeter 

Test against SEASAT data 

APPENDIX IV 

Full Implementation Phase 

1991 1992 1993 

Operational implementation 

Operqtional implementation 

Operational implementation, 
improvement of algorithms 
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No. 

4.4 

4.5 

4.6 

Project 

Wave data assimi-
lation 

Quality control for 
new ocean 
satellite and 
surface data 

Implementation of 
wave dependent flux 
parameterizations (in 
particular surface 
stress and energy flux) 

Preparatory Phase Full Implementation Phase 

1988 1989 1990 1991 1992 1993 

Development of methods for assimilating Operational implementation 
SARalti,meter and buoy wave data in wave 
models 

Test of techniques using 
SEASAT data 

Pre-operational test in global 
wave model 

Development of techniques Op~rational implementation 

Test against SEASAT and 
existing surface data 

Pre-operational implementation [1] Operational implementation of 
agreed upon parameterization 
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No. 

4.7 

4.8 
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I 

Project 
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