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“Mathematicians seem to have no difficulty in creating new concepts faster than the
old ones become well understood.”

Edward N. Lorenz
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Abstract
Faculty of Mathematics, Informatics and Natural Sciences

Department of Earth Sciences

Statistical Mechanical Methods for Parametrization in Geophysical Fluid
Dynamics

by Gabriele VISSIO

Constructing accurate, flexible, and efficient parametrizations of sub-grid scale
processes is a central area of interest in the numerical modelling of geophysical
fluids. Here a recently introduced scale-adaptive approach constructed using
statistical mechanical arguments and composed by deterministic, stochastic
and non-markovian contributions is studied. It is applied first on a modified
version of the two-level Lorenz 96 model and then on the Lorenz 84 model
forced by the Lorenz 63 model.

The former application focuses on the flexibility of the model and its per-
formance compared with a data driven approach. While the parametrization
proposed is universal and can be easily analytically adapted to changes in the
parameters’ values by a simple rescaling procedure, the parametrization con-
structed with the ad-hoc approach used as benchmark needs to be recomputed
each time the parameters of the systems are changed. The price of the higher
flexibility of the method proposed here is having a lower accuracy in each in-
dividual case.

The latter application, lacking a memory term, focuses on the stochastic
forcing provided by the Wouters-Lucarini methodology. It is shown that the
approach allows for dealing seamlessly with the case of the Lorenz 63 being
a fast as well as a slow forcing compared to the characteristic time scales of
the Lorenz 84 model. The results are tested using both standard metrics based
on the moments of the variables of interest as well as Wasserstein distance
between the projected measure of the original system on the Lorenz 84 model
variables and the measure of the parametrized one. By testing these methods
on reduced phase spaces obtained by projection, it is shown that comparisons
based on the Wasserstein distance might be of relevance in many applications
despite the curse of dimensionality.
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The results obtained are encouraging: the Wouters-Lucarini’s parametriza-
tion demonstrates its reliability and flexibility with respect to the models used
which, despite their extremely simplified representations of the atmosphere,
allow to highlight the feasibility of the approach for nonlinear dynamics which
presents similarities - in form of advection, forcing, dissipation, coupling terms
- with more complex and realistic models.

German version:

Die Erstellung genauer, flexibler und effizienter Parametrisierungen von Sub-
Gitter-Skalenprozessen ist ein zentraler Bereich der numerischen Modellierung
geophysikalischer Fluide. Hier wird ein kürzlich eingeführter skalenadap-
tiver Ansatz untersucht, der unter Verwendung statistisch-mechanischer Ar-
gumente und aus deterministischen, stochastischen und nicht-markovischen
Teilen zusammengesetzt wurde. Dieser Ansatz wird zuerst auf eine modi-
fizierte Version des zweistufigen Lorenz 96-Modells und dann auf das Lorenz
84-Modell angewandt, das vom Lorenz 63-Modell angetrieben wurde ist.

Die erste Anwendung konzentriert sich auf die Flexibilität des Modells und
seiner Leistung im Vergleich zu einem datengesteuerten Ansatz. Während die
vorgeschlagene Parametrisierung universell ist und leicht durch analytische
Verfahren an Änderungen der Parameterwerte durch eine einfache Neuskalierung
angepasst werden kann, muss die mit dem als Benchmark verwendeten Ad-
hoc-Ansatz konstruierte Parametrisierung jedes Mal neu berechnet werden,
wenn die Parameter der Systeme geändert werden. Der Preis für die höhere
Flexibilität des hier vorgeschlagenen Verfahrens ist in jedem Einzelfall eine
geringere Genauigkeit.

Die zweite Anwendung, der einen Speicherterm fehlt, konzentriert sich
auf den stochastischen Antrieb, welcher durch die Wouters-Lucarini-Methode
bereitgestellt wird. Es wird gezeigt, dass der Ansatz ermöglicht, nahtlos mit
dem Fall des Lorenz 63 umzugehen, der sowohl ein schneller als auch ein
langsamer Antrieb ist, verglichen mit den charakteristischen Zeitskalen des
Lorenz 84 Modells. Die Ergebnisse werden unter Verwendung sowohl von
auf den Momenten der betreffenden Variablen basierten Standardmetriken als
auch von der Wasserstein-Distanz zwischen dem projizierten Maß des Origi-
nalsystems auf den Lorenz 84-Modellvariablen und dem Maß der parametrisierten
Variablen getestet. Durch Testen dieser Verfahren auf reduzierte Phasenräume,
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die durch Projektion erhalten werden, wird gezeigt, dass auf der Wasserstein-
Distanz basierte Vergleiche in vielen Anwendungen trotz des Problems der
Dimensionalität von Relevanz sein können.

Die Ergebnisse sind ermutigend: Die Parametrisierung von Wouters-Lucarini
zeigt ihre Zuverlässigkeit und Flexibilität mit Bezug auf die verwendeten Mod-
elle, die trotz ihrer extrem vereinfachten Darstellung der Atmosphär die Mach-
barkeit des Ansatzes für nichtlineare Dynamik hervorheben, der Ähnlichkeiten
- in Form von Advektion, Antrieben, Dissipation, Kopplungstermen - mit kom-
plexeren und realistischeren Modellen aufweist.
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Chapter 1

Introduction

1.1 What is a parametrization?

The climate is a chaotic system featuring both external forcings and internal
dissipation. Due to the extreme variety of its different subsystems - atmosphere,
hydrosphere, cryosphere, lithosphere and biosphere -, each composed by countless
parts, and the complexity of the phenomena describing the interactions within
and among these components, the range of the space and time scales covered
by it stretches over several orders of magnitude (Peixoto and Oort, 1992; Hart-
mann, 1994; Holton, 2004; McGuffie and Henderson-Sellers, 2005; Palmer and
Hagedorn, 2006).

The interplay among the components is shown in Fig.1.1. Everything starts
from the Sun which, emitting short wave radiations, acts as an external forc-
ing for the Earth system. This radiation, weakly absorbed by the atmosphere
and eventually reflected by clouds, is then absorbed or reflected by the sur-
face, which wide diversity of composition - soil, vegetation, water, ice, urban
areas, etc. - gives rise to an intricate set of exchanges of energy, momentum
and chemical components among biosphere, hydrosphere, cryosphere and at-
mosphere. The latter is activated by the re-emission in long waves radiation.
The motion of the air triggers new phenomena, like the generation of clouds
- which greatly affects the energy balance and produce precipitations - and
the wind stress. The complex interrelations among all these subcomponents
rapidly develop with nonlinear dynamics, preventing the climate system to be
predictable after a relatively low time span.

Fig.1.2 focuses the attention on the energy budget of the atmosphere. The
above mentioned solar radiation is partially reflected in the space by clouds
and absorbed by the atmosphere. The energy that reaches the ground is partly
reflected - mainly by bright cover like ice -; the rest is absorbed by the ground
and re-emitted in long waves. The atmosphere is not transparent to this kind
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FIGURE 1.1: Schematic view of the components of the climate
system, their processes and interactions (Solomon et al., 2007).

of radiation and absorbs it re-emitting energy both towards the ground and the
space. The energy received by the ground is used also for the release of sensible
heat and evaporation, two important engines for the atmosphere dynamics.

The atmosphere is the most important component of the climate with re-
spect to the aims of this thesis. The majority of weather and climate phenom-
ena affects the first 104 meters in the vertical direction - the troposphere - while
the scale in the horizontal direction is 107 meters. This thin gas layer is forced
and set into motion mainly by the energy received by the Sun, which differ-
ential heating is due to a plethora of surface conditions - e.g. water or soil,
mountains or planes, bare soil or vegetation, etc. - and thermodynamical inho-
mogeneities due to different components with diversified physical and chem-
ical properties.

As a general rule, the tropical area receives more energy than the rest of the
Earth, thus creating a net flow of rising air, heated by the surface below; on the
other hand, the poles on average emit more energy than the one absorbed and
the air above them tends to descend. The differential heating causes a net flux
of energy from the hottest regions - the tropics - to the coldest - the poles - car-
ried on by the ocean and the atmosphere. At the planetary scale even the Earth
rotation plays an important role, since in this non-inertial system the motion of
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FIGURE 1.2: Global mean energy budget under present-day cli-
mate conditions. Numbers state magnitudes of the individual
energy fluxes in W

m2 , adjusted within their uncertainty ranges to
close the energy budgets. Numbers in parentheses attached to
the energy fluxes cover the range of values in line with observa-
tional constraints (Stocker et al., 2013, see also for the sources of

the data).

a point on the surface is affected by an apparent force, called the Coriolis force.
The subsequent acceleration breaks the general circulation of the atmosphere,
which would otherwise be composed by just one cell of rising tropical air and
descending polar air, in three distinct cells for each hemisphere - the equatorial
Hadley cell, the midlatitudinal Ferrel cell and the polar cell (Fig.1.3). The conser-
vation of momentum prevents these cells to be simply oriented in a meridional
direction, giving to the wind stress a zonal component and creating the easter-
lies in the tropical belt and in the polar area and the westerlies in midlatitudes.
Between the cells, at 8− 15 km of altitude, the temperature gradient sets up an
extremely fast flow of air called jet stream. At synoptic scales (∼ 106 meters),
small disturbances induced into the jet by variations in the meridional temper-
ature gradient tend to amplify, developing synoptic scale systems of high and
low pressure - this phenomenon is called baroclinic instability.

The Earth rotation does not take on such an important role when the fo-
cus shifts on smaller scales as the ones interested by convection (the horizontal
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FIGURE 1.3: Idealized atmospheric cells around a rotating Earth
(Lutgens and Tarbuck, 2001).

scale for deep convection, for example, is ∼ 103 meters), since the deflection
due to Coriolis force is negligible for dynamics on a short time scale. Indeed,
the convection is a local physical phenomenon where masses of air lift for var-
ious reasons - heated by the ground or mechanically forced by mountains or
other air masses with different thermodynamical properties - and leads to the
formation of clouds and, eventually, precipitation. The response time - i.e. the
time scale needed for a system to re-equilibrate to a new state after the applica-
tion of a small perturbation - changes from weeks for the large scale circulation
to hours for the convection.

The energy received from the Sun flows from the larger - planetary, synop-
tic, convective - to smaller scales. On very small scales (< 10 meters) it is pos-
sible to observe the onset of a purely dissipative phenomenon, the turbulence
(Pope, 2002; Kundu and Cohen, 2010). The energy cascade - i.e. the transfer of
energy from larger to smaller scales of motion - is dissipated on the molecular
level by the viscosity, that is, the resistance opposed to the flow by a fluid due
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FIGURE 1.4: Typical space and time scales of atmospheric phe-
nomena (Cullen and Brown, 2009).

to internal friction. Turbulent flows must be supplied by a continuous transfer
of energy to compensate for the loss due to viscosity. In the atmosphere the
parcels of air, mechanically or thermally forced, dissipate the energy supplied
by large scales to move with respect to other air parcels, the surface or any
inhomogeneity. This generates fast and short-lived turbulent eddies which are
typically not solved - thus resulting unpredictable - for climate and weather
models but are nevertheless very important in the energy budget of the at-
mosphere - and the entire climate, since this phenomenon occurs even in the
hydrosphere.

A complete and thorough simulation would therefore require a vast amount
of equations - e.g. for the computation of three dimensional moment, humid-
ity, specific entropy - to be simultaneously computed on an extremely fine grid.
Lacking infinite computational power, the standard solution to this conun-
drum is to run models in a reduced phase space representing only variables
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of interest, physical quantities which have particular importance related to
the problem to solve. Furthermore, these processes must be simulated on a
course grained grid, that is a grid where the points in which the calculations
are performed are so far away from each other that a whole set of physical
phenomena, which occur on a smaller spatial scale, is left unresolved. For ex-
ample, a weather prediction model would require hourly precipitation on a
space scale of a few kilometers, while climate models necessitate of daily, or
even monthly, average amounts of precipitation. These models run on a par-
ticular grid, which scale imposes the minimum scale of the phenomena solved
by the equations. Fig.1.4 shows the scales at which atmospheric phenomena
occurs. A model set to solve cyclonic activity is likely built considering con-
vection as an unresolved process, while a weather prediction model, which is
concocted to solve thunderstorms - and therefore convection -, does not solve
every small scale turbulent eddy, which effects on convection itself must be
represented somehow. Therefore, even though the unresolved processes to
approximate are different with respect to the used model, the problem of pa-
rametrization is a conundrum that must be faced on any application, thus a
sistematic methodology is required.

Everything occurring on a smaller space scale than the ones resolved is
called subgrid phenomenon; due to the chaotic feature of the climate system,
this kind of phenomena strongly impacts on the variables of interest through
the transport of energy, momentum or various substances (like water vapour)
and, therefore, must be somewhat represented. The methodologies employed
to deal with this problem, providing a mathematical representation to repro-
duce the influence of the unresolved scales on the resolved ones, are collec-
tively called parametrizations (Peixoto and Oort, 1992). Furthermore, the devel-
opment of parametrizations allows to gain insight related to the complex dy-
namics interacting among multiscale systems like the atmosphere-ocean sys-
tem (Uboldi and Trevisan, 2015; Vannitsem and Lucarini, 2016), where the pa-
rametrization procedure can be applied to represent the effect of oceanic slow
time scale dynamics on atmospheric fast time scales.

Since the problem is basically that the number of equations to be solved is
smaller than the number of variables, the unresolved physical quantities must
be substituted by an expression relating them to computed variables; this is
called closure approximation or parametrization.

Parametrizations are usually divided into two categories:

• Bottom-up, or data-driven: this kind of parametrization is calculated
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through samples of time series of the unresolved system, the resolved
system or observations.

• Top-down: a type of parametrization which necessitates the mathemati-
cal expressions for the evolution of the variables of interest and the unre-
solved variables.

A somewhat peculiar point of view is provided by the so-called super-
parametrizations, mostly used to represent convection (Majda, 2007; Li et al.,
2012). The idea is to have low dimensional (and so computationally much
cheaper) models run in parallel with the main code for resolving at high reso-
lution the dynamics inside each atmospheric column.

1.2 A practical example

The aim of this section is to show a typical case where it is common to ap-
ply a parametrization, the atmospheric convection. Indeed, the Navier-Stokes
equation, which describes the evolution of the fluid momentum, must be nu-
merically integrated on a grid that usually does not allow to solve small scale
phenomena like turbulence, depicted by the eddy transport in the Reynolds
Averaged Navier Stokes equations (hereafter RANS) (Pope, 2002; Holton, 2004;
Plant and Yano, 2016).

The momentum equation for an incompressible fluid, which describes the
velocity variation of a parcel of fluid, can be written as

∂u
∂t

+ u∇ · u = −1
ρ
∇p + ν∇2u, (1.1)

where u = (u, v, w) is the velocity of the parcel, ρ its density, p the pressure
acting on it and ν the kinematic viscosity. Eq.(1.1), written in the case of ab-
sence of external forcings such as gravity, is called Navier-Stokes equation (Chan-
drasekhar, 1961).
When this equation has to be numerically simulated, a widely used method is
to split the terms in two components:

u = u + u′. (1.2)

The first component u is the large scale, slowly changing, velocity field and is
the variable which is going to be computed in the numerical model, while the
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second component u′, i.e. the small scale, fast turbulent component, is one of
the unresolved variables. This latter variable is, by definition, a deviation from
the mean field and is therefore null when averaged in time.
The same decomposition can be applied also to the pressure field, yielding to
p = p + p′.

Applying this decomposition, employing the continuity equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1.3)

and averaging in time leads to

∂u
∂t

+ u∇ · u = −1
ρ
∇p + ν∇2u−∑

i,j

∂u′iu′ j
∂xi

(1.4)

Note that this procedure cancels out several mixed terms since the product of
a deviation with a mean is null when time averaged:

uv = (u + u′)(v + v′) = uv + u′v′. (1.5)

The term ∑i,j
∂u′ iu′ j

∂xi
in Eq.(1.4) is called eddy transport and represents the cor-

rection due to unresolved subgrid variables.
The parametrization of eddy transport is a particularly difficult challenge

which has long deserved scientists effort (Pope, 2002; Holton, 2004; Arakawa,
2004; Plant and Yano, 2016). Since the equation for the evolution of fluctuation
fields is rather complicated (see for example Garratt, 1992), not only providing
a top-down parametrization results an extremely difficult task, but also a sur-
rogate time series is often unavailable. This problem, along with the fact that
the eddy transport is such a volatile quantity that it is practically impossible to
measure, makes also data-driven approaches challenging.

1.3 Mass flux parametrization

One of the main attempts to solve the convection parametrization problem
was proposed by Riehl and Malkus, 1958 and is called mass flux parametrization
(Plant and Yano, 2016). This hypothesis is based on the idea that convection
happens in quasi-isolated areas where a large mass of air rises forming up-
drafts without almost any interaction with the sorrounding environment. This
upward mass flux, a term that indicates the vertical transport rate of air, can
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be written in broad terms as
M = ρσw, (1.6)

with ρ, σ and w defining, respectively, the density of the air, the fractional area
of the updraft and the vertical velocity.

Applying the Reynolds Averaging (see Section 1.2) to the budget equations
for energy and moisture, Arakawa, 1969 expressed the problem in terms of
finding the vertical fluxes of sensible heat and moisture, ρw′s′ and ρw′q′. Ex-
pressing these quantities relatively to the convective updrafts and taking into
account the relative magnitude between updrafts and downdrafts (see Smith,
1997 for a complete dissertation about this topic), he discovered that the rela-
tion between the vertical flux of a quantity φ and the mass flux can be written
as

(ρw′φ′)i ≈ Mi(φ
′
i − φ), (1.7)

where the subscript i indicates the subensebles.
Thus, the problem of parametrization shifts to finding a closure that allows

to express satisfactorily the mass flux, from which it is straightforward to find
heat and moisture fluxes.

Several attempts have been tried to formulate an expression for the mass
flux at the cloud base Mcb, a quantity necessary to calculate the latent heat re-
lease to be used in the microphysical model to determine the physical phenom-
ena occurring in the clouds. A typical approach is the CAPE closure (Fritsch
and Chappell, 1980), named after the Convective Available Potential Energy -
the amount of energy within an air column which can be transformed in ki-
netic energy:

Mcb ∼
CAPE

τ
, (1.8)

where τ is the time scale needed to reduce the CAPE to zero. The flaw of this
approach is that assumes the convection in quasi-equilibrium with the large
scale flow, in contrast to what happens in nature.
Another example is the so-called boundary layer closure (Mapes, 2000; Fletcher
and Bretherton, 2010), where the leading parameter is CIN - Convective INhi-
bition, the energy a parcel requires in order to reach the Level of Free Convec-
tion:

Mcb ∼ we−
CIN
w2 , (1.9)

where w is the typical vertical velocity scale and, therefore, w2 is proportional
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to the total kynetic energy. This model is good for representing shallow con-
vection, but the CIN value is usually very low and this makes difficult to set a
threshold value for the onset of convection.

These two methods, among with several others, provide representations of
reality with severe physical flaws and/or rather limited applications. There-
fore, it is understandable how a great deal of resources has been spent trying
to solve the problem.

The search for an effective parametrization is one of the main intents of the
ARCS (Advancing the Representation of Convection across Scales) a project
which works within the Hans Ertel Centre for Weather Research to deepen the
comprehension of convection phenomenon.

This thesis, which belongs to the ARCS project, aims to give a shifted per-
spective to the problem of parametrization, proposing a mathematical-based
approach to solve this long lasted debate and a proof of concept of its applica-
tion to simple - yet meaningful and preparatory - models.

1.4 Parametrizations so far

Traditionally, the development of parametrizations consisted in deriving de-
terministic empirical laws able to describe the effect of the small scale dynam-
ical processes on the large scale phenomena, which is explicitly solved in nu-
merical simulations. These parametrizations are often optimized - generally
without a sistematic procedure - to have skill on specific variables of interest
for weather or climate studies - e.g. temperature, humidity, pressure. More
recently, it has become apparent the need to include stochastic terms able to
provide a theoretically more coherent representation of such effects including
the fluctuations and, at practical level, an improved skill.

The pursuit of stochastic parametrizations - that is, a parametrization which
uses random terms to represent the fluctuations of unresolved processes - for
weather and climate models has then become an extremely active area of re-
search, see e.g. the recent contributions by Palmer and Williams, 2008; Franzke
et al., 2015; Berner et al., 2017 and the now classical collection of results in
Imkeller and Storch, 2001. The construction of stochastic parametrizations in
geophysical fluid dynamical models is also usually approached using a prag-
matic method: one tries to construct empirical functions able to represent well
the effect of mean state and of the fluctuations of the unresolved variables, see
e.g. the illustrative examples of Orrell, 2003 and Wilks, 2005.
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Mathematical arguments do indeed support the idea of going towards stochas-
tic parametrizations. A first way to derive or at least justify the need for them
comes from homogenization theory (Pavliotis and Stuart, 2008), which leads
to constructing an approximate representation of the impact of the fast scales
on the slow variables as the sum of two terms, a mean field term and a white
noise term. Such an approach suffers from the fact that one has to take the
rather nonphysical hypothesis that an infinite time scale separation exists be-
tween the fast and the slow scales. As the climate is a multiscale system, such a
methodology is a bit problematic to adopt. Yet, this point of view has been cru-
cial in the development of methods aimed at deriving reduced order models
for systems of geophysical interest (Majda, Timofeyev, and Vanden-Eijnden,
1999; Majda, Timofeyev, and Vanden-Eijnden, 2001; Majda, Timofeyev, and
Vanden-Eijnden, 2003; Franzke, Majda, and Vanden-Eijnden, 2005).

A different point of view focuses, instead, on constructing effective dy-
namics comprising deterministic as well as stochastic terms purely from data
(Chekroun, Liu, and Wang, 2015a; Chekroun, Liu, and Wang, 2015b). The
idea proposed by Kravtsov, Kondrashov, and Ghil, 2005 has been to extend
the multilevel linear regressive method, which is suitable for linear problems,
to the nonlinear case, allowing for dealing with the possibility of represent-
ing quadratic nonlinearities in the evolution equations, which are in fact typ-
ical of (geophysical) fluid dynamical processes. The method allows for con-
structing an optimal representation of the deterministic, linear and nonlinear,
dynamics as well as of the stochastic forcing, so that its correlation proper-
ties are suitably recovered without making any assumption on the existence of
time scale separation between resolved and neglected variables. Afterwards,
Kondrashov, Chekroun, and Ghil, 2015 showed how non-markovian data-
driven parametrizations emerge naturally when considering partial observa-
tions from a large-dimensional system.

Mori, Fujisaka, and Shigematsu, 1974; Zwanzig, 1960; Zwanzig, 1961 ana-
lyzed, in the context of statistical mechanics, the related problem of studying
how one can project out the effect of a group of variables, with the goal of
constructing effective evolution equations for a subset of variables of interest.
They reformulated the dynamics of such variables expressing them as a sum
of three terms, a deterministic term, a stochastic forcing and a memory term.
The memory term defines a non-markovian contribution where the past states
of the variables of interest enter the evolution equation. In the limit of infinite
time scale separation such last term tends to zero, whilst the random forcing
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approaches the form of a (in general, multiplicative) white noise, in agreement
with what predicted by the homogenization theory.

In a few recent papers, Wouters and Lucarini (Wouters and Lucarini, 2012;
Wouters and Lucarini, 2013; Wouters and Lucarini, 2016) have provided ex-
plicit formulas for constructing parametrizations able to incorporate the deter-
ministic, stochastic, and non-markovian components. The formulas have been
obtained independently using two rather different approaches, namely a sec-
ond order expansion of the Mori-Zwanzig projection operator, and a rework-
ing of the Ruelle (Ruelle, 1998; Ruelle, 2009) response theory, which allows un-
der suitable conditions to compute the change in the expectation value of any
smooth observable of a system resulting from perturbations of the dynamics
in terms of the statistical properties of the unperturbed flow.

The idea followed by Wouters and Lucarini has been to treat the coupling
between the slow and fast variables as the weak forcing added on top of the
uncoupled dynamics, and then evaluate the impact of the forcings on the sta-
tistical properties of a generic observable of the slow variables. Finally, the
last step has been to retro-engineer explicit formulas for terms that, added to
the uncoupled dynamics of the slow variables, provide up to second order the
same results as the actual coupling.

It is important to note that since explicit formulas are provided, one can
indeed construct the parametrizations ab-initio, and not empirically. Addition-
ally, the parametrization is automatically optimized for all possible observ-
ables of the system. Such an approach seems especially promising in all sys-
tems, as in the extremely relevant case of the climate, where there is no spectral
gap in the scales of motions that justifies the assumption of infinite time scale
separation between fast and slow scales. It seems then in general relevant to
be able to retain and check the relevance of the memory term and to construct
a suitable model for the stochastic forcing, going beyond the approximation of
using white noise or simple empirical autoregressive processes.

Note that the approach discussed here is not per se constructed to deal with
multiscale systems only. In fact, the explicit expressions for the terms respon-
sible for the parametrization (see Section 2.1) are constructed by performing
an asymptotic expansion controlled by a parameter determining the degree
of coupling between the set of variables of interest and those to parametrize.
Clearly, if such a condition is satisfied, it is possible to apply this method also
to multiscale systems. Recently, a parametrization constructed according to
such a statistical mechanical point of view has been tested successfully in a
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simple low dimensional model (Wouters et al., 2016) and in a more complex
yet simple coupled model (Demaeyer and Vannitsem, 2017).
A further degree of flexibility of this approach has been explored in another
recent publication (Lucarini and Wouters, 2017), which provided explicit for-
mulas for modifying the parametrization when the parameters controlling the
dynamics of the full system are altered.

1.5 Objectives of this thesis

A fundamental problem in the construction of parametrizations is that, even
when they are efficient enough to represent unresolved phenomena with the
desired precision, they are typically tuned for being accurate for a specific con-
figuration of a model in terms of numerical resolution, and the operation of re-
tuning needed when a new model version at higher resolution is available can
be extremely tedious and costly in computational terms. The need of achiev-
ing scale-adaptive parametrizations has been recently emphasized in the sci-
entific literature, see e.g. Arakawa, Jung, and Wu, 2011; Park, 2014; Sakradzija,
Seifert, and Dipankar, 2016. Additionally, parametrizations are typically tested
against specific observables of interest and tuned in order to better represent
those observables, but it is not always clear whether optimizing the skill for
such observables might come at the price of reducing the skill on other climatic
properties that might prove crucial for, e.g., modulating the climatic response
to forcings.

The first task of this dissertation is to stress the possibility of having auto-
matically scale adaptive formulations of Wouters-Lucarini methodology, test-
ing at the same time its skills in reproducing the statistics of the model used as
benchmark system to work with, (a modified version of) the Lorenz 96 model
(Lorenz, 1996), which provides a prototypical yet convincing representation of
a two-scale system where large scale, synoptic variables are coupled to small
scale, convective variables. The Lorenz 96 model has quickly become the test-
bed for evaluating new methods of data assimilation (Trevisan and Uboldi,
2004; Trevisan, Isidoro, and Talagrand, 2010) and is receiving a lot of attention
also in the community of statistical physics (Abramov and Majda, 2008; Haller-
berg et al., 2010; Lucarini and Sarno, 2011; Gallavotti and Lucarini, 2014). More
importantly for this specific case, the Lorenz 96 model has been used in the pa-
pers of Orrell, 2003 and Wilks, 2005 to construct explicit models of stochastic
parametrization, so there are previous results to compare to.
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In the second part of the dissertation the WL parametrization has been ap-
plied to a simple dynamical system introduced by Bódai, Károlyi, and Tél,
2011 and constructed by coupling the Lorenz 84 model (Lorenz, 1984) with the
Lorenz 63 model (Lorenz, 1963), introducing the Wasserstein distance (Villani,
2009) as a new statistical methodology to provide a quantitative estimate of
the skill of a parametrization. The aim is to parametrize the dynamical effect
of the variables corresponding to the Lorenz 63 system on the variables cor-
responding to the Lorenz 84 system, changing time scale separation to switch
the roles of slow and fast scale systems between the two models, which evolve
on the same grid-scale (no subgrid phenomenon involved). In order to extend
what investigated in the first part, the study focuses on doing a systematic
comparison of the properties of the projected measure of the original coupled
system on the subspace spanned by the variables of the Lorenz 84 model with
the actual measure of the parametrized model. In particular, the Wasserstein
distance (see Section 2.3) between the coarse-grained estimates of the two in-
variant measures - which are measures µ for which, with respect to a trans-
formation M, µ(A) = µ(M−1A) (see Ott, 1993 for a more detailed discussion
about measures) - has been computed. Roughly speaking, the invariant mea-
sure is the time fraction that a trajectory on an attractor spends in a particular
n-dimensional cube in the phase space, and its analysis allows to determine
the long term statistical properties of the systems studied. Here it is proposed
to test the skill of a parametrization to reproduce those properties through the
computation of the distances between the measures. An additional analysis of
the Wasserstein distance of the measures obtained by projecting on two of the
three variables of interest allows for a comprehensive evaluation of how differ-
ent the one-time statistical properties of the two systems are. The Wasserstein
distance has been proposed by Ghil, 2015 as a tool for studying the climate
variability and response to forcings, and applied by Robin, Yiou, and Naveau,
2017 in a simplified setting.

The results in this thesis are adapted from Vissio and Lucarini, 2018a; Vissio
and Lucarini, 2018b.

1.6 Structure of the thesis

The dissertation is structured as follows.

• Chapter 2 is divided in three main sections. Section 2.1 provides the main
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ingredients of the method for constructing general parametrizations in-
troduced by Wouters and Lucarini, 2012; Wouters and Lucarini, 2013;
Wouters and Lucarini, 2016. Section 2.2 describes the Lorenz 96, Lorenz
84 and Lorenz 63 models, highlighting the modifications applied in the
present work. Section 2.3 briefly introduces the Wasserstein distance, ex-
plaining how it is employed in this study.

• Chapter 3 describes the results of the tests performed on WL parame-
trization. In particular, Section 3.1 shows the application on Lorenz 96
model, discussing the scale adaptive properties, comparing the perfor-
mance with Wilks approach and looking at the statistical properties of
the obtained distributions. Section 3.2 is based on the parametrization of
the Lorenz 63 model as forcing of the Lorenz 84 model, with a discus-
sion on qualitative and quantitative performances and the computation
of the Wasserstein distance between the projected measures of the WL
parametrization and the full model.

• Chapter 4 draws the conclusions of the analysis performed.
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Chapter 2

Mathematical Background

2.1 Wouters-Lucarini’s Parametrization

Wouters and Lucarini (Wouters and Lucarini, 2012; Wouters and Lucarini,
2013; Wouters and Lucarini, 2016) introduced a methodology for constructing
parametrizations for dynamical systems of the form:

dX
dt

= FX(X) + εΨX(X, Y), (2.1)

dY
dt

= FY(Y) + εΨY(X, Y), (2.2)

where the X variables correspond to the dynamics of interest and the Y vari-
ables correspond to the dynamics to parametrize, i.e. the unresolved dynam-
ics. The F vector field on the right hand side of Eqs.(2.1)-(2.2) corresponds to
the uncoupled dynamics of the X and Y variables respectively, while the Ψ
field describes the coupling, with ε being a bookkeeping variable describing
the coupling strength. Note that Eqs.(2.1)-(2.2) do not describe, in general, a
multiscale dynamical system, where the X (slow) and the Y (fast) variables
are essentially characterized by different scales of motion. Nonetheless, it is
possible to bring it to the standard form elucidating multiscale behaviour by
considering the following form for Eqs.(2.1)-(2.2):

dX
dt

= FX(X) + εΨX(X, Y) (2.3)

dY
dt

= γF̃Y(Y) + εΨY(X, Y) (2.4)

where γ � 1 and FY(Y) = γF̃Y(Y). As clear from the later discussion, it is
not important in the cases undertaken in this dissertation to include the factor
γ also for the coupling term affecting the Y variables in Eq. (2.4), because the
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interest lies in separating the time scales of the decoupled (ε = 0) X- and Y-
systems. Following the discussion presented in the introduction, the goal is to
find an approximate equation of the form

dX
dt

= FX(X) + χ{X} (2.5)

able to provide a good approximation of the statistical properties of the X vari-
ables, where χ{X} can in general correspond to an integro-differential contri-
bution with also a stochastic component. It seems relevant aiming at being able
to specify in advance the accuracy of the approximation in terms of the prop-
erties of the coupling and, in particular, of the coupling strength ε. Clearly, if
ε = 0, the resulting χ{X} = 0 provides a (trivial) solution to the problem. The
approach can be seamlessly followed also in the presence of a functional form
for the equations where the parameter γ explicitly controls the scale separation
between the X and Y variables. Note that Abramov, 2016 introduced an exten-
sion of the homogenization method able to deal with a problem formulated as
in Eqs.(2.1)-(2.2).

2.1.1 The method

The basic idea is to consider the dynamical system (2.1)-(2.2) as resulting from
an ε−perturbation of the following dynamical system:

dX
dt

= FX(X), (2.6)

dY
dt

= FY(Y), (2.7)

where the coupling plays the role of the perturbation. The focus is now on the
X variables, considering a general observable A = A(X), i.e. a smooth func-
tion of the X variables only. Making suitable hypotheses on the mathematical
properties of the unperturbed system and taking advantage of the Ruelle re-
sponse theory (Ruelle, 1998; Ruelle, 2009), Wouters and Lucarini have been
able to find a useful expression for the expectation value ρε(A) of the observ-
able A taken accordingly to the invariant measure ρε(dXdY) of the coupled
dynamical system (2.1)-(2.2):

ρε(A) =
∫

ρε(dXdY)A(X). (2.8)
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In what follows, it is assumed that all invariant measures considered are of
the Sinai-Ruelle-Bowen kind (Eckmann and Ruelle, 1985; Young, 2002). This
assumption can be physically motivated by taking into account the chaotic
hypothesis which, in the context of the theory of turbulence (Ruelle, 1978),
allows to consider the attracting set of a dynamical system as smooth surfaces
(e.g. Gallavotti, 2014).

The projected measure is introduced by

ρ∗ε(dX) =
∫

dYρε(dXdY) (2.9)

such that ρε(A) = ρ∗ε(A). In case of smooth and hyperbolic systems, the
chaotic hypothesis implies the ergodic hypothesis. This property subsequently
implies that a natural measure average is replaceable with a time average and
Eq.(2.9) can be calculated as

ρ∗ε(A) = lim
T→∞

1
T

∫ T

0
dτA(x(t)), (2.10)

where x(t) = f̃ tx0, with f̃ t defining the flow determined by the dynamical sys-
tem (2.1)-(2.2). It is possible to find a perturbative expansion of the expectation
value of A taken accordingly to the invariant measure of the coupled system.
One can in fact write

ρ∗ε(A) = ρ0,X(A) + εδ
(1)
Ψ ρ(A) + ε2δ

(2)
Ψ,Ψρ(A) +O(ε3), (2.11)

where the first term ρ0,X(A) is the expectation value of A taken accordingly to
the invariant measure of the X-component of the unperturbed system (2.6):

ρ0,X(A) =
∫

ρ0,X(dX) = lim
T→∞

1
T

∫ T

0
dτA( f τ(x0)), (2.12)

where it was again used ergodicity and defined f t as the flow of the X variables
part of the dynamical system (2.6). The second term εδ

(1)
Ψ ρ(A) and the third

term ε2δ
(2)
Ψ,Ψρ(A) correspond to the first and second order corrections, and can

be also expressed as expectation values on ρ0,X(dX) of explicitly determined
observables, which are constructed non-trivially from A and the vector field Ψ.
All the terms can be computed from the statistical properties of the uncoupled
dynamics of the Y variables given in Eq.(2.7). The explicit expressions can be
found in Wouters and Lucarini, 2012.

While the previous result allows for computing the impact of the coupling
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on the statistics of any given A observable, it is not useful per se for constructing
a parametrization. Nonetheless, it is possible to retro-engineer an educated
guess for the term χ{X} introduced in Eq.(2.5), such that up to second order in
ε the expectation value of A according to the invariant measure ρ′ε(dX) of the
system:

dX
dt

= FX(X) + εD(X) + εS{X}+ ε2M{X} (2.13)

is the same as the expectation value of A according to ρε, or, more explicitly:

ρε(A) = ρ′ε(A) + O(ε3). (2.14)

Therefore, Eq.(2.14) provides a useful basis for defining a parametrization
where it is possible to control the error on the statistics of the surrogate dynam-
ics with respect to the full dynamics as a function of ε, and where this applies
for all possible observables A.

The three perturbation vector fields D, S and M correspond to, respectively,
a mean field term, a stochastic forcing and a non-markovian memory term.
Note that the stochastic term has a second order effect on the measure even if
its intensity is proportional to ε; see Lucarini, 2012. As shown in Wouters and
Lucarini, 2012; Wouters and Lucarini, 2013; Wouters and Lucarini, 2016, the
explicit expression for these three terms can be obtained also by performing
a second order expansion of the Mori-Zwanzig projector operator, which con-
structs the effective projected dynamics for the X variables only describing the
instantaneous evolution of the trajectories in the phase space. This suggests
that the proposed parametrization, obtained by means of Ruelle response the-
ory and therefore based on the description of long term averages, might have
skill also in terms of prediction on the short time scale (in the sense of weather
forecast). Nonetheless, this hypothesis is not analyzed in this dissertation and
should be investigated elsewhere. In what follows, this approach will be re-
ferred to as the WL parametrization.

The explicit expressions for the three terms providing the parametrization
shown in Eq.(2.13) are given below in Eqs.(2.15), (2.16) and (2.20). Therefore,
once D, S, and M are derived, they can be used to construct parametrizations
for all values of ε within the radius of convergence of the expansion. Addition-
ally, if the coupled model given in Eqs.(2.1)-(2.2) is multiscale, this approach
allows for constructing parametrizations integrating the single scale equation
(2.7). This can significantly ease the computational burden of the problem.
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Deterministic, stochastic, and non-markovian terms

Assuming the coupling terms ΨX(X, Y) and ΨY(X, Y) separable in the X and Y
variables, they can be written as ΨX(X, Y) = ΨX,1(X)ΨX,2(Y) and ΨY(X, Y) =
ΨY,1(X)ΨY,2(Y). As explained in Wouters and Lucarini, 2012; Wouters and
Lucarini, 2013; Wouters and Lucarini, 2016, such an assumption does not really
impact the generality of the results presented here.

D(X) is a deterministic term that accounts for the average impact that the
coupling has on the X variables and it is given by:

D(X) = ΨX,1(X)ρ0,Y(ΨX,2(Y)). (2.15)

The second order contribution is composed of two parts. S{X} represents
a stochastic forcing due to the temporal correlation of the fluctuations of the
forcing exerted by the Y-variables onto the X variables. It can be written

S{X} = ΨX,1(X)σ(t), (2.16)

where σ(t) is a stochastic term and is constructed in such a way to reproduce
the lagged correlation of the fluctuations of the forcing. The statistical proper-
ties of the noise σ(t) can be expressed as:

R(t) = 〈σ(t), σ(0)〉
= ρ0,Y

(
(ΨX,2(Y)− ρ0,Y(ΨX,2(Y)))(ΨX,2( f t(Y))− ρ0,Y(ΨX,2(Y)))

)
,

(2.17)

〈σ(t)〉 = 0. (2.18)

where the brackets indicate the expectation value of the stochastic process and
R(t) is the lagged correlation of the (stationary) noise.

Finally, M{X} is a memory term that describes the effects of the history of
the X variables on their present value through the influence of the Y variables.
This term is essential for capturing the effect of the hidden (Y) variables on
the (X) variables of interest, as clarified by Chekroun, Liu, and Wang, 2015a;
Chekroun, Liu, and Wang, 2015b. It is expressed as:

M{X} =
∫ ∞

0
h(τ, X(t− τ))dτ, (2.19)
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where the integral kernel is given by:

h(τ, X̃) = ΨY,1(X̃)ΨX,1( f τ(X̃))ρ0,Y(ΨY,2(Y)∂YΨX,2( f τ(Y))). (2.20)

Such an average resembles a cross-correlation between the actual state of the
two fields X, Y and the deviation of the trajectory of the same fields evolved at
t = τ.
A remarkable property of this parametrization is its universality, as shown by
Eq.(2.15) through (2.20), because the three factors D, S and M can be computed
for any given expression of the coupling terms or of the uncoupled dynamics.

Another positive aspect of these equations is the scale adaptivity of the
parametrization terms. Considering the case where the equations of motions
can be written as in Eqs.(2.6)-(2.7), one can check that the expectation values
are computed according to the invariant measure of the uncoupled equation
dY
dt = γF̃Y(Y), which can be rewritten as

dY
dτ

= F̃Y(Y) (2.21)

where τ = γt.
The constant D in Eq.(2.15) is clearly not affected by the choice of the time

scale. Instead, the correlation function in Eq.(2.17) and the memory kernel in
Eq.(2.20) are affected by the rescaling in the time and only the rescaled time τ

will appear in their arguments. By substituting τ = γt one then obtains the
actual parametrization for every choice of γ. In particular, large values of γ

will lead to a compression of the time axis for the correlation function and the
memory kernel. In the limit of γ → ∞ (i.e. infinite time scale separation), the
stochastic forcing tends to a white noise and the non-Markovian term vanishes,
accordingly with the predictions of the homogenization and Mori-Zwanzing
theories (see Section 1.4).

Independent coupling case

The special case where the two coupling terms are independent from the vari-
able they are affecting, namely ΨX(X, Y) = ΨX(Y) and ΨY(X, Y) = ΨY(X), is
particularly important for the scopes of this thesis. The three terms discussed
above take the following simpler form:

D(X) = ρ0,Y(ΨX(Y)), (2.22)
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S{X} = σ(t), (2.23)

where

R(t) = 〈σ(0), σ(t)〉 = ρ0,Y((ΨX(Y)− D)(ΨX( f t(Y))− D)),

〈σ(t)〉 = 0,
(2.24)

and
M{X} =

∫ ∞

0
h(t2, X(t− t2))dt2, (2.25)

where
h(t2, X̃) = ΨY(X̃)ρ0,Y(∂YΨX( f t2(Y))). (2.26)

In this special case, the stochastic contribution reduces to a simple additive
noise term - compare Eqs.(2.16) and (2.23) - while the evaluation of the memory
kernel h is significantly easier as a simpler expression appears in the ensemble
average - compare Eqs.(2.20) and (2.26).

Forcing in the fast dynamics

As discussed in Wouters and Lucarini, 2012; Wouters and Lucarini, 2013; Wouters
and Lucarini, 2016, a basic requirement for the proposed approach to allow for
the construction of a parametrization for the Y variables is to have that the
uncoupled dynamics of the Y variables given in Eq.(2.7) features a non-trivial
invariant measure and fast decay of correlations due to the presence of chaos.
Physically, this requires presence of an external forcing, leading to the injection
of energy for the Y variables; this is achieved in the system studied here by
choosing a sufficiently large value for the constant F2. Another way to address
such a problem is shown in Wouters et al., 2016, where a stochastic forcing,
corresponding to the presence of energy injection coming from even smaller,
unresolved scales, is considered.

In order to extent the method to physical situations where energy is in-
jected only in the X variables, a simple mathematical operation, that amounts
to changing the background state around which the perturbation induced by
the presence of coupling is considered, will be applied.

The idea is to rewrite Eq.(2.2) (here for simplicity the case with ΨX(X, Y) =
ΨX(Y) and ΨY(X, Y) = ΨY(X) is dealt with) as follows:

dY
dt

= FY(Y) + εG + εΨY(X)− εG, (2.27)
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such that the vector flows defining the uncoupled dynamics and the coupling
are defined as follows:

F̃Y(Y) = FY(Y) + εG, (2.28)

ε̃ΨY(X) = εΨY(X)− εG. (2.29)

The choice of the artificial forcing G gives a degree of flexibility and must
obey only the requirement that Ẏ = F̃Y(Y) is chaotic. Note that, within the
radius of expansion ensuring the validity of the perturbative approach, the
specific choice of G affects only weakly the final result.

An obvious choice is to choose G = ρ0,X(ΨY(X)), which makes sure that,
at zero order, the uncoupled system has nontrivial dynamics.

2.2 Lorenz Models

In this Section the models used in the thesis, either the original and the modi-
fied versions, are exposed.

2.2.1 Lorenz 96

The Lorenz 96 model (Lorenz, 1996), represented schematically in Fig.2.1, pro-
vides a conceptually meaningful yet extremely simplified representation of the
atmosphere; there are two sets of variables, one describing the dynamics on
large scale (so-called synoptic variables), and one characterizing the dynamics
on small scale (so-called convective variables). The convective variables are di-
vided in as many subgroups of equal size as the number of synoptic variables,
each subgroup being coupled to a different synoptic scale variable. The sys-
tem is then characterized by coupling within and across scales of motions. The
Lorenz 96 model has quickly established itself as one of the reference models
in nonlinear dynamics for testing e.g. data assimilation (Trevisan and Uboldi,
2004; Trevisan, Isidoro, and Talagrand, 2010), schemes and properties of Lya-
punov exponents and covariant Lyapunov vectors and is becoming increas-
ingly popular also within the community of statistical mechanics (Abramov
and Majda, 2008; Hallerberg et al., 2010; Lucarini and Sarno, 2011; Gallavotti
and Lucarini, 2014).
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FIGURE 2.1: A schematic representation of Lorenz 96 model in
the case K = 8 and J = 8, with the inner circle composed by
the slow X variables while the outer circle represents the fast J

variables (adapted from Wilks, 2005).

The evolution equations of the two-layers, coupled Lorenz 96 model can be
written as:

dXk
dt

= Xk−1(Xk+1 − Xk−2)− Xk + F1 −
hc
b

J

∑
j=1

Yj,k, (2.30)

dYj,k

dt
= cbYj+1,k(Yj−1,k −Yj+2,k)− cYj,k +

hc
b

Xk, (2.31)

with k = 1, ..., K; j = 1, ..., J. The boundary conditions are defined as

Xk−K = Xk+K = Xk,

Yj,k−K = Yj,k+K = Yj,k,

Yj−J,k = Yj,k−1,

Yj+J,k = Yj,k+1.

(2.32)
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FIGURE 2.2: Typical longitudinal profiles of Xk and Yj,k.

The latitudinal circle is divided into K sectors, each one corresponding to one
synoptic slow X variable. Each X variable is coupled to J convective fast Y vari-
ables. The constant c defines the time scale separation between the fast and
slow variables (see also the general form of a multiscale system as given in Eqs
(2.3)-(2.4)), while the amplitude of the fluctuations is determined by b, while h
controls the strength of the coupling.

In absence of forcing and dissipation, the sum of the squares of the vari-
ables (the energy of the system) is conserved. For a detailed description of the
statistical mechanical and conservation properties of the system (yet in a sim-
plified version), the reader is encouraged to look into Lucarini and Sarno, 2011;
Blender and Lucarini, 2013; Gallavotti and Lucarini, 2014.

The coupling between the X and the Y terms has the simplified form dis-
cussed in the previous Section (the so-called independent coupling), and is
linear. This simplifies the application of the Wouters-Lucarini parametrization
(see Section 2.1.1), which is nonetheless possible also for more complex forms
of coupling.

The choice of the parameters defining the strength of the external forcing,
the number of sectors and subsectors, the strength of the coupling, the relative
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amplitude of the fluctuations and the time scale separation between the two
systems determines the properties of the dynamical system.
The original parameters chosen by Lorenz are c = 10.0, b = 10.0, h = 1.0,
K = 36 and J = 10 - providing therefore a total of 36 X variables and 360
Y variables. Following the original derivation of the model, 1 unit of time is
equivalent to 5 days, while the usual integration time step is 0.005, correspond-
ing to 36 minutes. In Fig.2.2 a typical profile both of the Xk’s and of the Yj,k’s is
shown.

When one is well within the chaotic regime (e.g. F1 is sufficiently large)
and considers a sufficiently large number of sectors (and subsectors), it is rea-
sonable to expect to be able to define intensive properties that are stable with
respect to the specific choice of K and J, see discussion in Gallavotti and Lu-
carini, 2014 for a simpler version of the model.

Another version of Lorenz 96 is the one-layer model:

dXk
dt

= Xk−1(Xk+1 − Xk−2)− Xk + F1, (2.33)

where the effect of subgrid scale is neglected. This uncoupled Lorenz 96 model
works as a useful benchmark to assess the influence of fast scales and, conse-
quently, parametrizations based on their dynamics.

Modifications to the model

Two modifications to the standard Lorenz 96 model have been implemented
(see Fig.2.3):

• The introduction of a forcing term also in the equations describing the
dynamics of the Y variables (see Eq.(2.35)), in order to represent the direct
effect of forcings at small scales (mimicking, e.g., the impact of direct
solar forcing on convective motions). This has the effect of making the
fast variables an active component of the system: they can also pump
energy into the X variables and are not exclusively dissipating energy
coming from larger scales.

• The modification of the boundary conditions on the Y variables in such
a way that the fast variables of different sectors do not interact with each
other, in the spirit of having the fast variables representing sub-grid scale
phenomena (see Eqs.(2.36)). Note that if J � 1 and in chaotic dynamics
regime, it is reasonable to think that this change has negligible impact on
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FIGURE 2.3: A schematic representation of the modified Lorenz
96 model used in this thesis (adapted from Wilks, 2005). Note
the presence of the external forcing F2 and the division of the Y

variables in non interacting subsections.

the statistics of the system, as information does not propagate efficiently
between convective variables belonging to neighbouring sectors. Addi-
tionally, the parametrization becomes easier to implement, because, fol-
lowing the basic idea behind super-parametrization, subgrid variables
belonging to different X sectors are independent and equivalent in the
uncoupled case (see Eqs.(2.6)-(2.7)).

Therefore, the evolution equations (2.30)-(2.31) are modified as follows:

dXk
dt

= Xk−1(Xk+1 − Xk−2)− Xk + F1 −
hc
b

J

∑
j=1

Yj,k, (2.34)

dYj,k

dt
= cbYj+1,k(Yj−1,k −Yj+2,k)− cYj,k +

c
b

F2 +
hc
b

Xk, (2.35)
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FIGURE 2.4: Probability density of the X variable for the original
(black line) and the modified (red line) Lorenz 96 model.

with modified boundary conditions

Xk−K = Xk+K = Xk,

Yj−J,k = Yj+J,k = Yj,k.
(2.36)

The parameter ε in Eqs.(2.1)-(2.2) is hc
b and the coupling terms are ΨX = −ε

J
∑

j=1
Yj,k

and ΨY = εXk, b defines the ratio between the typical size of the X and Y vari-
ables, while the parameter γ controlling the scale separation is given by c. The
external forcings are set as F1 = 10.0 and F2 = 6.0, so that chaos is realized in
the uncoupled version of the system (obtained from Eqs.(2.34)-(2.35) by setting
h = 0) for both the large and small scale variables of the system separately. For
h, b, c, K, and J the standard values mentioned above are chosen.

Changes in the boundary conditions for the Y variables have a negligible
effect on the statistical properties of the X variables: the probability distribu-
tion of each X variable (Fig.2.4), its time correlation (Fig.2.5a), and the spatial
correlation of the X variables at zero time lag (Fig.2.5b) are virtually identical
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FIGURE 2.5: a) Time autocorrelation; b) Spatial autocorrelation of
the X variable for the original (black line) and the modified (red

line) Lorenz 96 model.

for the original and the modified Lorenz 96 model. The presence of chaos and
of a corresponding nontrivial invariant measure for the Y variables are neces-
sary for being able to construct the WL parametrization.

Wilks Parametrization

Wilks proposed an empirical, data-driven parametrization (Wilks, 2005) of the
fast dynamical variables specifically for the Lorenz 96 model deriving a fourth
order polynomial and a stochastic term to replace the coupling in the X vari-
ables equation.

The idea is to fit the unresolved tendencies of the X variables (i.e. the cou-

pling terms hc
b

J
∑

j=1
Yj,k in Eq.(2.30)) using a polynomial regression in the form

gU(Xk) = b0 + b1Xk + b2X2
k + b3X3

k + b4X4
k + ek, (2.37)

where the bs are the regression coefficients, while ek is a stochastic function
constructed according to the following AR(1) process:

ek(t) = φek(t− ∆) + σe(1− φ2)1/2zk(t), (2.38)

written in term of the fitting parameters φ (lag-1 autocorrelation of ek), σe (stan-
dard deviation of the process ek), where zk is a Gaussian uncorrelated process
with zero mean and unitary variance.
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FIGURE 2.6: Example of scatterplot with related fit in the case of
Lorenz 96 model.

The polynomial regression in Eq.(2.37) is computed from the scatterplot ob-
tained with the values of the coupling from a time series of the coupled model
plotted with respect to the corresponding values of the X’s. Then, fourth order
fit reveals the desired coefficients (see Fig.2.6), while the parameters φ and σe

in Eq.(2.38) must be calculated using the same time series.
The parametrized model is then written as follows:

dXk
dt

= Xk−1(Xk+1 − Xk−2)− Xk + F1 − gU(Xk). (2.39)

Eq.(2.39) represents the general form of a data-driven parametrization, with
gU(Xk) depending on the case studied. Note that for the example studied by
Wilks all terms are markovian and there is no clear justification of why the
stochastic residual is captured by an AR(1) process, nor of why a fourth order
polinomial is chosen. On the other side, the WL parametrization provides
a simple constant as deterministic term D(X) (see Eq.(3.4)), which seems an
oversimplification compared to the fourth order polynomial used by Wilks.

As previously stated, Wilks developed this approach for the Lorenz 96
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FIGURE 2.7: Schematic representation of the Lorenz 84 model.
The blue arrow represents the westerlies, therefore the X variable,
while the orange arrow represents the poleward heat transport

and is therefore related to the Y and the Z variables.

model; one of the aims of this study is to check the performance of this pa-
rametrization against the WL methodology.

2.2.2 Lorenz 84

The Lorenz 84 model (Lorenz, 1984) provides an extremely simplified repre-
sentation of the large scale atmospheric circulation:

dX
dt

= −Y2 − Z2 − aX + aF0, (2.40)

dY
dt

= XY− bXZ−Y + G, (2.41)

dZ
dt

= XZ + bXY− Z. (2.42)

where the variable X describes the intensity of the westerlies, while the vari-
ables Y and Z correspond to the two phases of the planetary waves responsible



2.2. Lorenz Models 33

0 0.5 1 1.5 2 2.5 3

X

0

0.5

1

1.5

2

2.5

3

Y

FIGURE 2.8: Poincaré section in Z = 0 of Lorenz 84 model.

for the meridional heat transport (see Fig.2.7 and Section 1.1). Thus, Eq.(2.40)
describes the evolution of the westerlies, subject to the external forcing F0,
dampened both by the linear term −aX and by nonlinear interaction with the
eddies −Y2 and −Z2. This interaction amplifies the eddies through the terms
XY and XZ in Eqs.(2.41)-(2.42). Furthermore, the eddies are affected by the
westerlies through the terms −bXZ and bXY. The constant b regulates the
relative time scale between diplacements and amplifications. Eqs.(2.41)-(2.42),
as Eq.(2.40), show a linear dissipation, whilst the symmetry between the two
equations is broken by the external forcing G.

A commonly used method to visualize Lorenz 84 dynamics consists in plot-
ting its Poincaré section in Z = 0 (Fig.2.8).

2.2.3 Lorenz 63

The Lorenz 63 model is probably the most iconic chaotic dynamical system
(Saltzman, 1962; Lorenz, 1963; Ott, 1993) and was developed through a severe
truncation of the partial differential equations describing the two-dimensional
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FIGURE 2.9: Convective roll in Rayleigh Bénard convection
model. The flux of rising fluid in the right convective plume is
balanced by a downward flux of fluid in the descending plume

on the left.

Rayleigh-Benard convection (see e.g. Hilborn, 2000 for a complete, yet sim-
ple, derivation of the model) and describe the evolution of three modes corre-
sponding to large scale motions and temperature modulations in the Rayleigh-
Bénard problem.

Rayleigh Bénard convection is a simple type of natural convection where a
heated plate displaced horizontally warms up the fluid immediately above it,
forcing it to raise due to the difference in density with respect to the colder air
above. In atmospheric sciences the hot plate can be seen as the Earth surface,
which is heated by short waves radiation coming from the Sun and in turn
heats the air by long waves radiation emission. In the example treated by
Lorenz the upper boundary layer is another plate at a lower temperature with
respect to the bottom one. This setting creates convective plumes of raising
fluid which reach the upper plate pushing down the cold fluid, where it will
be in turn heated by the ground. These masses of fluid, spinning around a
horizontal axis, are called convective rolls (see Fig.2.9).

The three equations of the Lorenz 63 model are:

dx̃
dt

= σ(ỹ− x̃), (2.43)

dỹ
dt

= ρx̃− ỹ− x̃z̃, (2.44)

dz̃
dt

= −βz̃ + x̃ỹ, (2.45)
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FIGURE 2.10: Lorenz attractor drawn by Lorenz 63 model.

where x̃, ỹ and z̃ are proportional, respectively, to the intensity of the convec-
tive motions, to the difference between temperatures of upward and down-
ward fluid flows and to the difference of the temperature in the center of a
convective cell with respect to a linear profile (since Eqs.(2.44)-(2.45) derive
from thermal diffusion equation). The constants σ, ρ and β depend on kine-
matic viscosity, thermal conductivity, depth of the fluid, gravity acceleration,
thermal expansion coefficient; specifically, σ is also known as the Prandtl Num-
ber.

The three dimensional attractor which, together with Bradbury’s short story
A Sound of Thunder, forged the idiomatic expression "butterfly effect" is the
most emblematic representation of Lorenz 63 (Fig.2.10).

2.2.4 Lorenz 84 forced by Lorenz 63

It is possible to forge a multi scale model coupling Lorenz 84 and Lorenz 63
(Bódai, Károlyi, and Tél, 2011), where the latter acts unidirectionally as a forc-
ing on the former, which represents the dynamics of interest. The dynamics of
the two systems has a time scale separation given by the factor τ and can be
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written as follows:

dX
dt

= −Y2 − Z2 − aX + a(F0 + hx̃), (2.46)

dY
dt

= XY− bXZ−Y + G, (2.47)

dZ
dt

= XZ + bXY− Z, (2.48)

dx̃
dt

= τσ(ỹ− x̃), (2.49)

dỹ
dt

= τ(ρx̃− ỹ− x̃z̃), (2.50)

dz̃
dt

= τ(−βz̃ + x̃ỹ). (2.51)

It is important to underline that the coupling between the Lorenz 84 and
the Lorenz 63 is unidirectional: the latter model affects the former acting as an
external forcing, with no feedback acting the other way around.

In what follows, the parameters are chosen from the common setting: a =

0.25, b = 4, σ = 10, ρ = 28, β = 8/3; the two forcings are set as F0 = 8 (cor-
responding to the so-called winter conditions) and G = 1. The parameter h is
a modulation coefficient that defines the coupling strength and it is chosen as
h = 0.25 in order to provide a stochastic forcing between two and four orders
of magnitude smaller (on average) than the tendencies of the X variable.
The parameter τ defines the ratio between the internal time scale of the two
systems: in case of τ > 1, the Lorenz 63 provides a forcing that is typically on
time scales shorter than those of the system of interest, while if τ < 1 the forc-
ings can be interpreted as a modulating factor of the dynamics of the Lorenz
84 model. In the first case, in particular, the Lorenz 63 can be interpreted as
the forcing exerted by convective motions in the synoptic scale dynamics de-
scribed by the Lorenz 84 model.

Fig.2.11 shows the effect of forcing the Lorenz 84 model with the Lorenz
63 model on the Poincaré section in Z = 0 (compare with Fig.2.8) in the case
τ = 5.

The numerical integration scheme used is a Runge-Kutta 4 with a time step
of 0.005 (Bódai, Károlyi, and Tél, 2011).

In the tests related to these models, the standard Lorenz 84 will be called
uncoupled model, whilst the Lorenz 84 subject to the coupling with the Lorenz
63 will take the denomination of coupled model.
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FIGURE 2.11: Poincaré section in Z = 0 of Lorenz 84 model cou-
pled with Lorenz 63 model.

2.3 Wasserstein Distance

One of the aims of this dissertation is to assess how well a parametrization
allows to reproduce the statistical properties of the full coupled system. At
this regard, it seems relevant to quantify to what extent the projected invariant
measure of the full coupled model on the variables of interest differs from the
invariant measures of the surrogate models containing the parametrization. In
order to evaluate how much such measures differ, their Wasserstein distance
(Villani, 2009) is computed. Such a distance quantifies the minimum "effort"
in morphing one measure into the other, and was originally introduced by
Monge, 1781 to study problems of military relevance, and later improved by
Kantorovich, 1942.

Starting from two distinct spatial distribution of points, described by the
measures µ and ν, the optimal transport cost (Villani, 2009) is defined as the
minimum cost to move the set of points corresponding to µ into the set of
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points corresponding to ν:

C(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y), (2.52)

where c(x, y) is the cost for transporting one unit of mass from x to y and
Π(µ, ν) is the set of all joint probability measures whose marginals are µ and
ν. The function C(µ, ν) in Eq.(2.52) is called Kantorovich-Rubinstein distance.
In the rest of the thesis, Wasserstein distance of order 2 will be considered:

W2(µ, ν) =

{
inf

π∈Π(µ,ν)

∫
[d(x, y)]2dπ(x, y)

} 1
2

. (2.53)

The Wasserstein distance can be defined also in the case of two discrete
distributions

µ =
n

∑
i=1

µiδxi , (2.54)

ν =
n

∑
i=1

νiδyi , (2.55)

where xi and yi represent the location of the different points, which mass is
given, respectively, by µi and νi. Recalling the definition of Euclidean distance

d(µ, ν) =

[
n

∑
i=1

(xi − yi)
2

] 1
2

, (2.56)

the order 2 Wasserstein distance for discrete distributions can be constructed
as follows:

W2(µ, ν) =

{
inf
γij

∑
i,j

γij[d(xi, yj)]
2

} 1
2

. (2.57)

where γij is the fraction of mass transported from xi to yj.
This latter definition of Wasserstein distance has already been proven ef-

fective (Robin, Yiou, and Naveau, 2017) for providing a quantitative measure-
ment of the difference between the snapshot attractors of the Lorenz 84 system
in the instance of summer and winter forcings.

Hereby it is proposed to further assess the reliability of WL stochastic pa-
rametrization by studying the Wasserstein distance between the projected in-
variant measure of the original system on the first three variables (X, Y, Z) and
the invariant measures obtained using the surrogate dynamics corresponding
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to the first and second order parametrizations. Nevertheless, since the numer-
ical computations for optimal transport through linear programming theory
are not cheap, a new approach is required. In order to accomplish it, a stan-
dard Ulam discretization (Ulam, 1964; Tantet, Lucarini, and Dijkstra, 2018) of
the measure supported on the attractor is performed by coarse-graining on a
set of cubes with constant sides across the phase space.

The coordinates of the cubes will then be equal to the location xi, while the
corresponding densities of the points are used to define γij; finally, all the grid
boxes containing no points at all are excluded by the computation and the dis-
tance is rescaled.
The calculations are performed using a modified version of the software for
Matlab written by Gabriel Peyré and made available at
http://www.numerical-tours.com/matlab/optimaltransp_1_linprog/, con-
veniently modified to include the subdivision of the phase space in cubes and
the assignment of the corresponding density to those cubes.

http://www.numerical-tours.com/matlab/optimaltransp_1_linprog/
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Chapter 3

Results

3.1 Wouters-Lucarini’s parametrization on Lorenz 96

3.1.1 Constructing the Parametrization

Here it is shown how to apply the parametrization introduced in Section 2.1 to
the specific case of the Lorenz 96 model. The scale-adaptive parametrization
shown here provides us with a great deal of flexibility and extremely parsimo-
nious numerical costs. The uncoupled evolution equation for the Y variables
(Eq.(2.7)) can be written in a universal form. In fact, it is easy to check that,
operating on Lorenz 96 model the substitutions

τ = ct (3.1)

and
Zj,k = bYj,k, (3.2)

the uncoupled evolution equation for the rescaled Y variables becomes:

dZj,k

dτ
= Zj+1,k(Zj−1,k − Zj+2,k)− Zj,k + F2. (3.3)

Therefore, for all values of h, b, and c it is feasible to construct the parametri-
zation just by resorting to the invariant measure of Eq.(3.3) and adopting the
suitable rescaling. Note that in the case of this specific system it is possible to
rescale also the size of the Y variable and achieve a higher degree of flexibility
than in the general case discussed above. This emphasizes the scale-adaptivity
of the approach proposed here, and makes sure that only modest computation
effort is needed to deal with the problem of parametrization.

Note that, compared to the general case of multiscale system discussed be-
fore, in this case the additional problem that changing the value of c = γ leads
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also to an increase in the value of ε arises, so that large values of c might break
the weak coupling hypothesis. The problem can be circumvented by increas-
ing at the same time the value of b or considering smaller values of h.

The first order term in the parametrization is recovered using ergodicity
and averaging D(X) in Eq.(2.22). By symmetry, the coupling is the same for all
the X variables:

Dk(Xk) = D(X) = D = −1
b

lim
T→∞

1
T

∫ T

0

J

∑
j=1

Zj,k(τ)dτ, (3.4)

where k = 1, . . . , K and the average is performed by integrating Eq.(3.3).
The value of this term is −20.12

b for all k′s; choosing b = 10 leads to Dk(Xk) =

−2.012. Therefore, the coupling between fast and slow scales leads on the
average to a reduction in the effective forcing applied to the slow variables. In
other terms, this indicates a net energy flux from slow to fast variables. Despite
the simplicity of the model considered here and of the coupling between the X
and Y variables, this corresponds to the effect of introducing eddy viscosity in
more complex fluid dynamical models.

The kth component of the stochastic term S{X} in Eq.(2.23) is constructed
as an additive noise σ(t) featuring the following lagged covariance:

Rk(τ) = Rk(ct) = lim
T→∞

1
T

∫ T

0
(−

J

∑
j=1

Zj,k(τ1)

b
− D)(−

J

∑
j=1

Zj,k(τ + τ1)

b
− D)dτ1,

(3.5)
where the evolution of the Z variables is given by Eq.(3.3) and the covariance
is reported in Fig.3.1. The production of time series of σ to be used for the
parametrized simulation is achievable either from properly resampling time

series of the fluctuation term −
J

∑
j=1

Zj,k
b − D or by reproducing them using sim-

ple stochastic models like those belonging to the AR(n) family. This latter
route was chosen for this application, taking advantage of the software pack-
age ARFIT (Neumaier and Schneider, 2001; Schneider and Neumaier, 2001).
This term describes the backscatter of energy from the small towards the large
scales.
Note that, as the argument of the function is ct, in the limit of c→ ∞ the auto-
covariance tends to zero for all t > 0, because the function R tends to zero for
large values of its argument, while one has for all values of c that R(0) is finite.
As a result, one obtains as limit a white noise of vanishing amplitude for any
fixed value of ε.
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FIGURE 3.1: Time lagged autocovariance of the noise term σ(t)
with b = 10 and h = 1.

It is useful to provide an explicit expression of the kth component of the
non-markovian term M{X} given in Eq.(2.25). The memory kernel hk(τ, X̃k)

(where τ = ct) can be expressed as follows:

hk(τ1, X̃k) = −
1
b

X̃kH(τ1), (3.6)

where

H(τ1) = limΩ→∞
1
Ω

∫ Ω

0

J

∑
j=1

∂

∂Zj,k(ω)
Zj,k(τ1 + ω)dω. (3.7)

The factor H on the right hand side of Eq.(3.6) is plotted in Fig.3.2; this
clarifies that the kernel weighs less states of the X variables with larger time
separation, as expected. Increasing the value of c leads to a compression of the
time axis by a factor of c. Since H(τ)→ 0 in the limit of c→ ∞, h vanishes for
all values of t > 0. Hence, memory effects disappear in this limit.

For a given value of ε, the larger the value of c, the more dominant is the
contribution to the parametrization coming from the deterministic first order
term.
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FIGURE 3.2: Memory effects as measured by the factor H, see Eq.
(3.7), with b = 10 and h = 1.

Note that Abramov, 2016 addresses the problem of parametrizing a mod-
ified version of the Lorenz 96 system similar to the one presented here by a
modified version of the homogenization method. The derived parametrization
is different from what obtained here as the homogenization method assumes
infinite separation of scales between the fast and slow variables. Abramov ob-
tains a stochastic contributions that is always white (yet its variance depends
on the time scale separation), and an extra deterministic linear term that, from
construction, might point at a surrogate way to implicitly deal with memory
effects.

3.1.2 Performance on Lorenz 96

In this section a series of statistical tests is performed in order to check the
skill of the WL parametrization applied on Lorenz 96 model. In what follows,
Eqs.(2.34)-(2.35) indicate the coupled model. The uncoupled model is, instead,
given by the evolution equations of Eq.(2.33) or, equivalently, Eq.(2.34) where
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FIGURE 3.3: Probability density of the X variable for the different
models considered.

the last term is excluded (or h is set to 0). The model with first order parame-
trization is obtained by inserting expression (3.4) in Eq.(2.13) and disregarding
the other terms. The model with second order parametrization is obtained by
inserting in Eq.(2.13) both the first and second order terms. The skill of the
parametrization is tested reproducing the statistical properties of the coupled
model and comparing it to the performance of the parametrization constructed
according to the method proposed by Wilks, 2005. For this test the standard
values of the parameters c = 10, b = 10, h = 1 are chosen; every other possible
choice for these factors can be covered through a proper rescaling of the values
for D, S and M.

The first tests consist in checking the ability of the parametrizations in re-
producing the probability density function of the variable Xk, the lagged tem-
poral correlation Corr(t) = 〈XkXk(t)〉, and the spatial correlations at zero time
lag Sp(l) = 〈XkXk+l〉.

Fig.3.3 shows the probability density of the Xk variables for all considered
models. It is clear how the second order parametrization offers a better result
with respect to the first order, which is in turn a clear improvement of the
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FIGURE 3.4: Temporal autocorrelation of the X variable for the
different models considered.
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FIGURE 3.5: Spatial autocorrelation of the X variable for the dif-
ferent models considered.
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basic uncoupled system. Both Wilks’s approach and the WL parametrization
provide rather good approximations of comparable quality for the distribution
of the X variable of the original system.

Considering normalized second order properties for the X variables, the
first look at the lagged time autocorrelation (see Fig.3.4) shows how higher or-
der parametrizations lead to a better agreement with the coupled model, even
if the improvement in the skill is most evident for small time lags. Neverthe-
less, the Wilks method provides very good results also for lags larger than 0.4
time units.

Fig.3.5 shows the performance of the parametrization in simulating the spa-
tial correlation of the Xk variable. Considering higher order approximations in
the parametrizations does not imply a substantial improvement of the results,
even if the first and second order parametrizations lead to an improvement
with respect to the uncoupled case. In this case Wilks’s parametrization fol-
lows closely the full coupled model and overperforms the parametrizations
constructed according to the method discussed here.

The analysis of the second and higher order moments is shown in the next
section.

Sensitivity to the Strength of the Coupling

As Wouters-Lucarini expansion is based on assuming the presence of weak
coupling between the slow and the fast variables, it is crucial to test its perfor-
mance as the value of the coupling strength h = ε b

c (see Eqs.(2.34) and (2.35))
changes with respect to its standard value of 1. Note that in the case treated
here b = c = 10 are held fixed, so that h = ε is changed in what follows. The
focus will be on the first moment and on the second, third and fourth central
moments of the variable Xk.

Fig.3.6a) shows that all parametrizations perform rather well in terms of
representing the first moment of Xk for all considered values of h < 1.4. Larger
values of h lead to a qualitative change in the properties of the system and fall
outside the range of interest.
Surprisingly, the first order parametrization constructed using the WL method
overperform the second order model for h / 1, which hints at the importance
(at least in this case) of possibly developing a theory for the third order scheme,
beyond the WL parametrization.

Figs.3.6b)-d) portray the performance of the parametrizations in reproduc-
ing the values of the second, third and fourth centered moments, respectively.
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FIGURE 3.6: a) First moment; b) Second centered moment; c)
Third centered moment; d) Fourth centered moment as functions

of the coupling strength for the different models considered.

It is consistently found that, while all methods are quite successful, the Wilks
parametrization provides the best results, with the second order model con-
structed with the WL method coming close second.

It is important to underline that the Wilks parametrization needs to be con-
structed from scratch for each different value of h (as well as of b and c). This
marks a fundamental difference with the parametrization tested in this study,
where just a linearly rescaling of the first order term and a quadratical rescaling
of the two second order terms are needed. Another problem shown by Wilks’s
method is the lack of stability in case of high values of h; as a matter of fact,
in order to obtain results for h > 1.2 the time step in the numerical integration
had to be drastically reduced, thus having a much higher computational cost.
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TABLE 3.1: Values of the constants determining the parametri-
zation according to the Wilks method for various values of the

model’s parameter c.

c b0 b1 b2 b3 b4 σe φ

1 1.694× 10−1 1.619× 10−2 7.507× 10−4 −7.868× 10−5 3.06× 10−7 1.04× 10−1 0.9995
5 9.122× 10−1 9.419× 10−2 −5.644× 10−3 4.025× 10−5 1.852× 10−5 4.659× 10−1 0.9996
10 1.81 1.467× 10−1 −1.357× 10−3 1.446× 10−3 −1.313× 10−4 8.965× 10−1 0.9997
20 3.721 4.861× 10−1 2.752× 10−2 −2.38× 10−2 2.427× 10−3 1.47 0.9997
100 1.317× 101 1.059 2.969× 10−1 6.534× 10−2 3.421× 10−3 9.905× 10−2 0.9998
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FIGURE 3.7: a) Probability density of the X variable in the case of
c = 1, b = 10 and h = 1. b) Zoom on the peak of the distribution.

Scale adaptivity

The most relevant advantage of the WL approach proposed here is that it al-
lows one to construct general parametrizations by suitably rescaling the three
terms - deterministic, stochastic and non-markovian - after having estimated
them through a single numerical simulation.
The method proposed by Wilks is more precise for each given choice of the
system’s parameters but lacks such a flexibility, which might be of crucial rele-
vance when trying to develop self-adaptive parametrizations. The coefficients
appearing in the Wilks parametrization (see Table 3.1) cannot be readily pre-
dicted with suitable expressions.

Using the general results for the first and second order terms of the WL
parametrization and adopting the suitable rescaling for the amplitude and the
time axis discussed in the previous section, it is possible to explore an infinite
range of scenarios for the values of b, c, and h. Some examples are presented
below.

In Fig.3.7 it is shown that the probability densities of Xk obtained through
the different parametrizations in the case c = 1 are in good agreement with
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FIGURE 3.8: a) Probability density of the X variable in the case
of c = 100, b = 10 and h = 0.1. b) Zoom on the peak of the

distribution.

what shown by the coupled model. Note that choosing c = 1 implies also
assuming that there is no scale separation between the X and the Y variables.
In fact, as discussed before, the WL method does not actually require a scale
separation between the parametrized and the resolved systems.

Since in the case treated here the coupling should not be too strong com-
pared to the unperturbed vector flow (this is the condition under which it is
possible to use the WL method), as said before, increasing the value of c can
be problematic unless the value of h is reduced accordingly (or the value of b
is increased). Fig.3.8 shows the probability density function of the X variable
in the case c = 100, b = 10, h = 0.1, with a much stronger coupling than the
previous case of Fig.3.7. In this case, it is clear that considering a parametri-
zation is crucial for reproducing satisfactorily the statistics of the X variable,
and the first order parametrization is already rather successful. Note that as
c becomes larger, the memory term has a less and less relevant role and the
stochastic contributions is rather similar to a white noise forcing.

As last test (Fig.3.9) the rescaling of the model is stressed applying the
transformation to all the parameters at the same time, shifting from the c = 10,
b = 10, h = 1 to the c = 5, b = 8, h = 1.1 scenario.
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FIGURE 3.9: Probability density of the X variable in the case of
c = 5, b = 8 and h = 1.1.

Forcing the fast scale dynamics

As stated in Section 2.1, the WL methodology can be applied also in the case
where no forcing is acting on the fast scales. This procedure can be repeated
also in the case, like the one analyzed here, where the requirement of shift-
ing the background state is not strictly necessary, and the natural definition
of the uncoupled dynamics of the Y variables given in Eq.(2.7) can be used.
This hypothesis is tested here by using the framework given in Eqs.(2.28)-
(2.29) and choosing the standard values for the system’s parameters and G =

ρ0,X(ΨY(X)) = 2.57. Figs.3.10 and 3.11 show that, at the second order, the
results obtained are almost undistinguishable with respect to what shown in
Fig.3.3 for probability density and Fig.3.4 for the time autocorrelation using
F2 = 6 and c

b F2 + G = 8.57 as forcing of the uncoupled Y equation.
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FIGURE 3.10: Probability density of the X variable calculated
adding G to uncoupled Y equation. The standard case is the one

shown in Fig.3.3.
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3.2 Wouters-Lucarini’s parametrization on Lorenz 84

forced by Lorenz 63

3.2.1 Constructing the Parametrization

For the sake of readability, Eqs.(2.1)-(2.2) are rewritten performing the substi-
tution (X, Y)→ (K, J):

dK
dt

= FK(K) + εΨK(K, J), (3.8)

dJ
dt

= FJ(J) + εΨJ(K, J), (3.9)

In the case of Lorenz 84 model forced by Lorenz 63 model, the coupling
strength ε, shown in Eqs.(3.8)-(3.9) and in Eq.(2.13), assumes the value ε =

ah, while the couplings are, with respect to the vector (X, Y, Z) in Lorenz 84
phase space, ΨK(K, J) = ΨK(J) = (x̃, 0, 0) and ΨJ(K, J) = ΨJ(K) = (0, 0, 0).
Note that this is another case of independent coupling - i.e. a coupling that
depends only on the variable of the other equation -, for which the application
of the methodology is simpler than the dependent coupling case (Wouters and
Lucarini, 2012).

The deterministic term D in Eq.(2.13) is a measure of the average impact of
the coupling on the K dynamics and can be written as:

D(K) = ρ0,J(ΨK(J)) = lim
T→∞

1
T

∫ T

0
ΨK(J)dτ = ρ0,J((x̃), 0, 0)

= lim
T→∞

1
T

∫ T

0
(x̃(τ), 0, 0)dτ = (D, 0, 0), (3.10)

where ρ0,x(A) (x = K, J) is the expectation value of A computed according
to the invariant measure given by the uncoupled dynamics of the x̃ variables
and ergodic averaging has been implemented. The expression of the coupling,
requested to compute the ensemble average as time average on the ergodic
measure of x̃, is given by Eq.(2.46). Since the measure of Lorenz 63 is symmet-
ric for x̃ → −x̃, one could think of choosing D(K) = (0, 0, 0). Nevertheless,
this is the limit for a run of infinite time length, while in a numerical simulation
a finite number of steps is required - in this case 146000, ten years in Lorenz
models. Therefore, it seems appropriate to calculate D using the time series
given by the uncoupled Lorenz 63 and Eq.(3.10), as done for the second order
of the parametrization.
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Since the coupling shown in Eq.(2.46) depends only on one of the variables
(in this case the x̃) of the system to parametrize, the stochastic term can be
written as

S{K} = (ω(t), 0, 0), (3.11)

where the properties of ω(t), a stochastic noise, are defined by its correlation
R(t) and its time average 〈ω(t)〉:

R(t) =〈(ω(0), 0, 0), (ω(t), 0, 0)〉
= ρ0,J((ΨK(J)−D(K))(ΨK(f

t(J))−D(K))),

= ρ0,J(((x̃(0), 0, 0)− (D, 0, 0))((x̃(t), 0, 0)− (D, 0, 0))), (3.12)

〈ω(t)〉 = 0. (3.13)

As discussed in Wouters and Lucarini, 2012; Wouters and Lucarini, 2013, for
more complex couplings the stochastic term assumes the form of a multiplica-
tive noise. To construct time series of noise with the desired properties - de-
fined by Eq.(3.12) - the software package ARFIT (Neumaier and Schneider,
2001; Schneider and Neumaier, 2001) has been used.

The last term in Eq.(2.13) is the non-markovian contribution to the parame-
trization and can be written as follows:

M{K} =
∫ ∞

0
h(t2, K(t− t2))dt2, (3.14)

where

h(t2, K) =ΨJ(K)ρ0,J(∂JΨK(f
t2(J)))

=(0, 0, 0) · ρ0,J(∂J(x̃( f t2(x̃, 0, 0)), 0, 0)). (3.15)

As discussed in Section 2.2.4, the evolution of the variables of the Lorenz 63
model - see Eqs.(2.49)-(2.51) - are independent of the state of the variables cor-
responding to the Lorenz 84 model. As a result, the first factor on the r.h.s. of
Eq.(3.15) vanishes, so that the derived parametrization is fully markovian.

After the implementation of Wouters-Lucarini’s procedure, Eq.(2.46) will
be parametrized as

dX
dt

= −Y2 − Z2 − aX + a[F0 + h(D + S)]; (3.16)

Eq.(3.16), together with Eqs.(2.47)-(2.48), will be henceforth indicated as the
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FIGURE 3.12: Poincaré section in Z = 0 of a) coupled model;
b) uncoupled model; c) 1st order parametrization; d) 2nd order

parametrization.

system constructed with second order parametrization, whilst the same equations
without the stochastic term (therefore comprehending the first order, deter-
ministic term only), namely

dX
dt

= −Y2 − Z2 − aX + a[F0 + hD], (3.17)

will be called first order parametrization.

3.2.2 Performance on Lorenz 84 forced by Lorenz 63

Parametrizing the fast system

In the first part of this section the parametrization is applied to the Lorenz
84 model forced by a Lorenz 63 model with a time scale separation τ = 5.
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FIGURE 3.13: Poincaré section in X = 1 of a) coupled model;
b) uncoupled model; c) 1st order parametrization; d) 2nd order

parametrization.

Therefore, Lorenz 84 and Lorenz 63 are seen as, respectively, the slow and the
fast dynamical systems.

A qualitative overview of the performance of the parametrization is given
by investigating a few Poincaré sections, which provide a convenient and widely
used method to visualize the dynamics of a system in a two-dimensional plot
(Eckmann and Ruelle, 1985; Ott, 1993); typically, the plane chosen for the sec-
tion of Lorenz 84 is Z = 0. Fig.3.12a) shows the Poincaré section at Z = 0
of the variables X, Y of the coupled model given in Eqs.(2.46)-(2.51). Panels
b) of the same figure show the Poincaré section of the Lorenz 84 model ob-
tained by removing the coupling with the Lorenz 63 model. Finally, Panels c)
and d) show the Poincaré sections of the modified Lorenz 84 models obtained
by adding the first and second order parametrizations, respectively. Visual
inspection suggests that the second order parametrization does a good job in
reproducing the properties of the full coupled model.
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FIGURE 3.14: 3D view of the attractor of a) coupled model; b)
uncoupled model; c) 1st order parametrization; d) 2nd order pa-

rametrization.

Metaphorically, here WL parametrization aims at describing as accurately
as possible the impact of "convection" on the "westerlies". It is insightful to
look at how it affects the properties of the two variables - Y and Z - that are not
directly impacted by it. This amounts to looking at the impact of the parametri-
zation of "convection" on the "large scale planetary waves" and, consequently,
on the "large scale heat transport". Therefore, a closer look into X = constant
Poincaré section allows to highlight the properties of Y and Z. The four panels
in Fig.3.13 are structured as in Fig.3.12 and depict the Poncaré section of X = 1.
Also in this case the second order parametrization provides a far better match
to the coupled model, featuring a remarkable ability in reproducing the main
features of the pattern of points.

In order to provide further qualitative evidence of these results, the four
panels of Fig.3.14 show the trajectories in the phase space of the X, Y, and Z
variables for the four considered models. For the sake of clarity, the plots are
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created using just 5 years (365 time units). In the case of the coupled model
the attractor spans over more extreme values of the variables and the second
order parametrization successfully imitates this feature, while the simple de-
terministic correction, once again, is completely inadequate.

Further to the qualitative inspection, quantitative comparisons to support
this study have been performed. All the remaining simulations in this section
are run for 100 years (7300 time units) with a time step of 0.005; thus, each
attractor is constructed with 1460000 points. It has been tested that the results
presented below are virtually unchanged when considering a smaller time step
of 0.001.

The first look investigates the probability densities (PDFs) of the variables
X, Y and Z, which describe, loosely speaking, our climate. Fig.3.15 shows the
PDF of the X variable for the four considered models. As expected, the second
order parametrization allows for reconstructing with great accuracy the statis-
tics of the coupled model. The bimodality of the uncoupled Lorenz 84 model is
reproduced by the model featuring the first order parametrization, while the
second order model predicts accurately the unimodal distribution shown by
the coupled model. The PDFs for Y and Z variables are shown in Figs.3.16-
3.17, respectively. Also here, where the external forcing does not modify the
bimodality of the distributions found in the uncoupled case, WL parametri-
zation leads to a very good approximation of the properties of the coupled
model. In particular, the tails of the distributions are represented with a high
level of precision, making possible to seemingly reproduce with good accuracy
the extreme values of the variables. Note that, since the WL parametrization
is constructed to have skill for all observables, it is not so surprising that it can
perform well also far away from the bulk of the statistics (see discussion in
Lucarini et al., 2014).

Aside from the analysis of the PDF, a further statistical investigation can be
provided by looking into the numerical results provided by first moments of
the variables and their uncertainty, which is computed as the standard devia-
tion derived from the analysis of an ensemble of runs. Due to the robustness of
the results, ten runs were enough. The results for the statistics of the first two
moments are reported in Table 3.2: all the quantities inspected clearly show
that the second order parametrization allows for reproducing very accurately
the moments statistics of the coupled model.

If the considered PDFs depart strongly from uni-modality, the analysis of
the first moments can be of little utility, and it becomes hard to have a thorough
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FIGURE 3.15: Probability density of the X variable.
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FIGURE 3.16: Probability density of the Y variable.
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FIGURE 3.17: Probability density of the Z variable.

understanding of the statistics by adopting this point of view. As discussed
above, this simple analysis is integrated with a more robust evaluation of the
performance of the parametrizations by taking into account the Wasserstein
distance. A first issue to deal with in order to compute the Wasserstein distance
consists in carefully choosing the number of cubes used for the Ulam projec-
tion. Fig.3.18a shows the Wasserstein distance between the invariant measure
of the coupled model projected on the XYZ space, used as reference measure,
and the invariant measure of the uncoupled Lorenz and of the models obtained
using the first and second order parametrization. For all choices of the coarse-
graining the measure of the model with the second order parametrization is,
by far, the closest to the projected measure of the coupled model. Instead, the
deterministic parametrization provides a negligible improvement with respect
to the trivial case of considering the uncoupled model, as expected given the
discussion following Eq.(3.10). What shown here gives a quantitative evalua-
tion of the improved performance resulting from adding a stochastic parame-
trization. The second piece of information is that the estimated Wasserstein
distance has only a weak dependence on the degree of the coarse-graining and
seems to approach its asymptotic value for the finest (yet still pretty coarse)
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TABLE 3.2: Expectation values for the ensemble average of the
first two moments of the variables X, Y, and Z. The uncertainty
is indicated as standard deviation (std) σ over the ensemble of

realizations. All the values are multiplied by 102.

Observables Uncoupled
model (×102)

1st order pa-
rametrization
(×102)

2nd order pa-
rametrization
(×102)

Coupled model
(×102)

X± σX 101.5± 0.4 101.3± 0.5 97.2± 0.3 97.1± 0.3
Y± σY 6.1± 0.8 6.5± 1.2 13.7± 0.7 13.9± 0.4
Z± σZ 27.0± 0.2 26.9± 0.3 31.0± 0.2 31.3± 0.5
var(X)± σvar(X) 34.9± 0.8 35.2± 1.0 43.6± 0.7 43.5± 0.3
var(Y)± σvar(Y) 84.4± 0.1 84.4± 0.1 82.8± 0.4 82.6± 0.3
var(Z)± σvar(Z) 82.6± 0.1 82.6± 0.2 81.5± 0.3 81.4± 0.3
cov(XY)± σcov(XY) −5.4± 0.8 −5.7± 1.1 −11.1± 0.6 −11.2± 0.3
cov(XZ)± σcov(XZ) −3.7± 0.1 −3.4± 0.2 −8.0± 0.2 −8.3± 0.4
cov(YZ)± σcov(YZ) −7.7± 0.2 −7.7± 0.4 −1.6± 0.4 −1.3± 0.2

Ulam partitions considered here. This is encouraging as the findings one can
obtain at low resolution seem to be already very meaningful and useful.

A well-known problem of Ulam’s method is the fact that it can hardly be
adapted to high dimensional spaces - this is the so-called curse of dimension-
ality. Additionally, evaluating the Wasserstein distance with a high number of
dimensions becomes itself computationally extremely challenging. In order to
partially address these problems the analysis shown in Fig.3.18a) is repeated
for the measures projected on the XY, XZ and YZ planes, thus constructing the
so-called sliced Wasserstein distances. Results are reported in panels b), c), and
d) of Fig.3.18, respectively. Unsurprisingly, the distance of the projected mea-
sure is strictly lower than the distance in the full phase space, ceteris paribus.
What is more interesting is that all the observations made for Fig.3.18a) apply
for the other panels. Therefore, it seems reasonable to argue that studying the
Wasserstein distance for projected spaces might provide useful information
also on the full system.

Parametrizing the slow system

In order to extend the scope of this study the analysis described above has
been repeated for the case τ = 1

6 . Such a choice implies that the model respon-
sible for the forcing has an internal time scale which is larger than the one of
the model of interest. The WL parametrization, as discussed in Vissio and Lu-
carini, 2018a, is not based on any assumption of time scale separation between
the variables of interest and the variables to parametrize.
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FIGURE 3.18: Wasserstein distances from the coupled model with
respect to the number of cubes per side: a) 3D case; b) Projec-
tion on XY plane; c) Projection on XZ plane; d) Projection on YZ

plane.

Figs.3.19a)-d) and Figs.3.20a)-d) show the Poincaré sections, respectively,
in Z = 0 and X = 1 on all the considered models. In the case of the coupled
system, most of the fine structure one finds in the uncoupled model is lost, and
this emerges from a cloud of points with weaker features than what shown in
Figs.3.12-3.13 for τ = 5. Nonetheless, also in this case the model with the
second order parametrization reproduces (visually) quite well what shown in
Panel a), and, in particular, shows matching regions where the density of the
points is higher. An inspection of Fig.3.21 allows to draw similar conclusions
regarding the three dimensional trajectories in the phase space.

The PDFs shown in Figs.3.22-3.24, along with the moments written in Ta-
ble 3.3, demonstrate that, notwithstanding the still very good approximation
provided by the second order WL parametrization, the match between para-
metrization and full coupled model is not as good as in the previous case.
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FIGURE 3.19: Poincaré section in Z = 0 of a) coupled model;
b) uncoupled model; c) 1st order parametrization; d) 2nd order

parametrization.

The analysis performed considering the Wasserstein distance between the
measures is shown in Fig.3.25. Without going into details, one finds that the
same considerations made for τ = 5 are still valid for τ = 1

6 regarding the per-
formance of the parametrization schemes and the role of coarse graining. Ad-
ditionally, for each choice of coarse-graining the distance between the measure
of the parametrized models and the actual projected measure of the coupled
model is larger for τ = 1

6 , thus indicating the parametrization procedure per-
forms worse in this case. This fits with the intuition one can have by checking
out how well Panels b)-d) reproduce Panel a) in Fig. 3.19 versus the case of
Fig. 3.12.
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FIGURE 3.20: Poincaré section in X = 1 of a) coupled model;
b) uncoupled model; c) 1st order parametrization; d) 2nd order

parametrization.

TABLE 3.3: Expectation values for the ensemble average of the
first two moments of the variables X, Y, and Z. The uncertainty
is indicated as standard deviation (std) σ over the ensemble of

realizations. All the values are multiplied by 102.

Observables Uncoupled
model (×102)

1st order pa-
rametrization
(×102)

2nd order pa-
rametrization
(×102)

Coupled model
(×102)

X± σX 101.4± 0.3 101.4± 0.4 87.6± 0.5 90.7± 0.7
Y± σY 6.3± 0.7 6.2± 0.8 26.8± 0.9 22.9± 1.1
Z± σZ 27.0± 0.2 27.0± 0.2 29.1± 0.4 32.6± 0.7
var(X)± σvar(X) 35.0± 0.6 35.0± 0.8 50.9± 0.6 54.0± 0.6
var(Y)± σvar(Y) 84.4± 0.1 84.4± 0.2 85.2± 0.3 82.0± 0.3
var(Z)± σvar(Z) 82.6± 0.1 82.6± 0.2 78.0± 0.4 80.0± 0.2
cov(XY)± σcov(XY) −5.5± 0.7 −5.5± 0.8 −21.0± 0.7 −17.6± 0.9
cov(XZ)± σcov(XZ) −3.7± 0.1 −3.7± 0.1 −6.6± 0.3 −9.5± 0.6
cov(YZ)± σcov(YZ) −7.6± 0.2 −7.7± 0.2 −0.1± 0.3 −0.4± 0.2
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FIGURE 3.21: 3D view of the attractor of a) coupled model; b)
uncoupled model; c) 1st order parametrization; d) 2nd order pa-

rametrization.
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FIGURE 3.22: Probability density of the X variable.
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FIGURE 3.23: Probability density of the Y variable.
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FIGURE 3.24: Probability density of the Z variable.
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FIGURE 3.25: Wasserstein distances from the coupled model with
respect to the number of cubes per side: a) 3D case; b) Projec-
tion on XY plane; c) Projection on XZ plane; d) Projection on YZ

plane.
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Chapter 4

Conclusions

The vast amount of scales on which the climate system evolves makes impos-
sible to completely simulate it. Thus, the construction of reliable parametriza-
tions that take into account the effect of the unresolved scales on the variables
of interest is a fundamental task in climatological and meteorological sciences.
Despite the extended effort and the ample available resources, a uniform and
methodical approach to this issue has been unattainable so far. Indeed, these
approximations are usually built to optimize some specific observable or prop-
erty of interest, making the models ineffective on a whole range of physical
phenomena. Furthermore, these parametrizations are attained in a way that
does not normally allow for much flexibility, making necessary to compute
them again in case of different settings.

As main objective, this thesis aims to apply the parametrization developed
by Wouters and Lucarini, 2012; Wouters and Lucarini, 2013, in which the cou-
pling between the variables of interest and the variables to parametrize is seen
as a small perturbation to the uncoupled dynamics of the former ones, thus
taking a weak coupling hypothesis. This parametrization, which describes the
dynamical impact of the neglected variables, can be written as the sum of as a
deterministic term (mean field effect), stochastic term (impact of fluctuations),
and non-markovian term (role of memory). No hypotheses are taken on the
scale separation between the systems. Furthermore, it is shown that the WL
method can be used in general for constructing scale-adaptive parametriza-
tions when multi-scale systems are considered.

The first application of this parametrization is on a slightly modified ver-
sion of the two-layer Lorenz 96 model (Lorenz, 1996), which is a prototypical
multi-scale system of great interest for nonlinear sciences in general. The cou-
pling in the X variable equation of the Lorenz model is therefore substituted by
a scale adaptive parametrization able to describe accurately the coupling be-
tween slow and fast scales, to describe conditions of finite scale separation and
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to reach the infinite time scale separation limit. In particular, the properties of
the noise term responsible for the stochastic component of the parametrization
and the memory kernel responsible for the non-markovian term are explicitly
constructed.

The parametrization does a very good job in surrogating the effects of the
fast variables, as tested by evaluating the expectation value and the correlation
properties of the slow variables, and shows a great deal of flexibility when the
coupling strength is set on different intensities.

The parametrization discussed is also tested against the heuristic approach
previously proposed by Wilks, 2005. The Wilks method allows for constructing
detailed parametrizations for each choice of the systems parameters, and out-
performs the parametrizations constructed following Wouters and Lucarini.
Nonetheless, the Wilks parametrization is not scale adaptive and needs to be
retuned each time one or more parameters of the system are changed, whereas
the WL parametrization is universal within the approximation defined by Eq.(2.14),
except for the application of an algebraic rescaling, as proved by last tests. In-
deed, the flexibility of this approach has been demonstrated by changing by
two orders of magnitude the time scale separation and also in the most gen-
eral case when all the parameters c, b and h are changed with respect to the
original values.

Depending on the specific problem one needs to address, an accurate ad-
hoc method or the flexible but less precise method proposed here might prove
more advantageous.

In the second part of the thesis the WL parametrization is applied to a sim-
ple yet meaningful six-dimensional system constructed by coupling a Lorenz
84 model and a Lorenz 63 model, with the latter acting as forcing to the for-
mer, and the former being the subsystem of interest. A parameter controlling
the time scale separation of the two systems and a parameter controlling the
intensity of the coupling have been included. The second order scheme in-
cludes a stochastic term, which has proven to be essential for radically improv-
ing the quality of the parametrization with respect to the purely deterministic
case (first order parametrization), as already qualitatively shown by looking
at suitable Poincaré sections and at the three dimensional attractors and quan-
titatively by looking at probability density functions and first two moments.
Remarkably, the WL approach flawlessly reproduces the change in modality of
the distribution and, as expected, provides strong approximations for a wide
range of observables.
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One of the main novelties of the thesis lies in using the Wasserstein dis-
tance as a comprehensive tool for measuring how different the invariant mea-
sures ("the climates") of the uncoupled Lorenz 84 model and of its two ver-
sions with deterministic and stochastic parametrizations are from the projec-
tion of the measure of the coupled model on the variables of the Lorenz 84
model. The Wasserstein distance provides a robust tool for assessing the qual-
ity of the parametrization and, quite encouragingly, meaningful results can be
obtained when considering very coarse grained representations of the phase
space. A well-known issue of using a methodology like the Wasserstein dis-
tance is the so-called curse of dimensionality: the procedure itself becomes un-
feasible when the system has a number of degree of freedom above few units.
This issue has been (partially) addressed by looking at the Wasserstein dis-
tance of the projected measures on the three two-dimensional spaces spanned
by two of the three variables of the Lorenz 84 model. The properties of the
Wasserstein distance in the reduced spaces follow closely those found in the
full space. As a result, it is found that diagnostics based on the Wasserstein dis-
tance in suitably defined reduced phase spaces could become standard in the
analysis of the performance of parametrizations and in intercomparing models
of any level of complexity.

The work done in this thesis is a first approach towards a new way of
constructing parametrizations through statistical mechanical considerations.
From the empirical, data-driven parametrizations, built ad-hoc for the partic-
ular systems studied, here the focus has been moved to top-down, mathemat-
ically sounding parametrizations. The aim is to reach a more sistematic and
methodical way to represent the effects of the unresolved variables on the re-
solved ones, regardless of the system studied since, as seen in Chapter 1, the
parametrization is a conundrum that crosses a wide range of different scales,
both temporal and spatial.

The parametrization tested here has proven to be flexible and accurate,
even though in the limited framework given by the simple Lorenz 96 model
and the low order Lorenz 84 model forced by Lorenz 63 model. Nevertheless,
useful evidence has been shown to support the feasibility of the application of
the methodology to more complex and physical relevant models.
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