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S0 Computation

The results in this paper were obtained using a number of different software pack-

ages. The command line tool known as Climate Data Operators (CDO) [Schulzweida,

2019] was used to aggregate output and perform routine calculations on those files (e.g.,

the calculation of temporal and spatial means). For more complex analysis and visualiza-

tion, a Python distribution called Anaconda was used. A Python library called xarray was

used for reading/writing netCDF files and data analysis. The xarray-wraper climpred was

co-developed by Aaron Spring and Riley X. Brady and is publicly available at https://climpred.readthedocs.io/.

In addition to Matplotlib (the default Python plotting library [Hunter, 2007]), Cartopy

[Met Office, 2010] was used to generate the figures.

To facilitate the reproducibility of the results presented here, please find scripts, raw

input and intermediate results files archived at http://hdl.handle.net/21.11116/0000-0004-8276-4.

This computation section is inspired by Irving [2015] to foster reproducibility in

geosciences.
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S1 Predictability horizon at atmospheric C02 measurement stations

Lon Lat PH RMSE PH ACC

Alert 82 -62 0 3

Point Barrow 71 -156 0 3

La Jolla 32 -117 4 3

Mauna Loa 19 -155 4 3

Christmas Island 2 -157 3 6

American Samoa -14 -170 3 3

Kermadec Islands -29 -177 3 3

Baring Head -41 174 3 3

South Pole -89 -24 3 3

Table S1. RMSE- and ACC-based predictability horizon atmospheric CO2 mixing ratio of loca-

tion of long-standing atmospheric CO2 measurement stations in years. Station locations are taken from

https://cdiac.ess-dive.lbl.gov/trends/co2/sio-keel.html.
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Figure S1. (a, b) Evolution of the annual mixing ratio of atmospheric CO2: (a) globally-averaged and at

Mauna Loa. The ensemble mean (dark green) is taken from individual ensemble members (green), which

are branched off a pre-industrial control run (black) at different ensemble initialization years (7 out of 12

shown in dotted gray). (c) Comparison of the mean potential prediction skill of the initialized ensemble

(red) versus random uninitialized ensembles (blue) of prognostic atmospheric CO2 at Mauna Loa, Hawaii

with Anomaly correlation coefficient (ACC) on the y-axis and root-mean-square-error (RMSE) on the x-axis

for lead years represented as dots. Errorbars show 95% confidence intervals based on bootstrapping with

replacement (N=5000). The last lead year with a bootstrapped p-value (which represents that uninitialized

ensembles beat initialized ensembles) lower than 5% marks the predictability horizon. Black stars with white

integer denote significant lead years in ACC and RMSE, gray stars if only one metric is significant and lead

years non-significant in both metrics are blurred. For comparison with Betts et al. [2016, 2018], ones show

predictability skill of the statistical model for lead-year one for the transient forecast (blue) and the detrended

forecast (orange). Non-significant lead years are blurred.
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S2 RMSE-based predictability skill surface CO2 flux

For completeness and comparison, we calculate predictability skill maps of RMSE

(for comparison to manuscript Figs. 2 and 4 in ACC) for atmospheric CO2 mixing ratio

and surface CO2 flux. Predictability skill has similar patterns as ACC, but initialized fore-

casts perform better than uninitialized forecasts for fewer lead years. Furthermore, there is

no emergence in ACC-based predictability skill of surface atmospheric CO2.

Figure S2. Spatial distribution of RMSE-based surface CO2 flux predictability: (a-e) predictability skill

over the first five lead years. White areas indicate unpredictable areas where the uninitialized predictability

skill exceeds the initialized skill at 5% probability based on bootstrapping with replacement (N=1000). (f)

The predictability horizon marks the last significant lead year.
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S3 Statistics

All skill metric results are based on means over all initialisations and every mem-

ber is used in turns as verification. Furthermore, we exclude the member being used as

verification when calculating the ensemble mean forecast. This approach relies on a super-

vector comprised of all available initializations and members and is also used in [Bushuk

et al., 2018] to calculate ACC over non-continuous initialization years. Calculating first a

distance metric over members or initializations first and then average over the remaining

makes only little difference in for perfect-models.

MSE-based predictability has been mostly used in the past to assess potential pre-

dictability [Griffies and Bryan, 1997; Pohlmann et al., 2004; Séférian et al., 2018]. How-

ever, here for atmospheric CO2 mixing ratio, ACC (also used in [Bushuk et al., 2018])

predictability comes closer to the raised expectation when predicting something and is

therefore primarily used in this study when assessing atmospheric CO2 predictability.

S3.1 ACC

The anomaly correlation coefficient skill score (ACC) is defined as:

ACC(x) =
cov(x, x̂)√

var(x), var(x̂)
=

1
NM

∑N ,M
i, j=1 (xi, j − xi, j)(x̂j − x̂j)√∑N ,M

i , j=1 (xi , j−xi , j )
2

MN ·

√∑M
j=1(x̂ j−x̂ j )

2

M

where xi and represent the forecast and reference for each of the N lead years i and x̂ de-

notes the member mean, assess the synchronous evolution of the forecast and the reference

[Jolliffe and Stephenson, 2011].

S3.2 RMSE

The root-mean-square-error (RMSE), defined as:

RMSE(x) =

√∑N ,M
i, j=1 (xi, j − x̂j)2

N M
,

measures the second-order distance between forecast and reference [Jolliffe and Stephen-

son, 2011].
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S3.3 Comparison of predictability horizon definitions

The differences in predictability horizon between Séférian et al. [2018] and our

study arise from different interpretations of what defines the predictability horizon. While

Séférian et al. [2018] define the limit at the saturation level of later lead years close to the

magnitude of the standard deviation, we define the predictability horizon above a thresh-

old value at which initialized forecasts cease to perform better than random, uninitial-

ized forecasts as defined by [Buizza and Leutbecher, 2015]. The break-point fit of Séférian

et al. [2018] resembles a 50% bootstrapping and results therefore in by design longer pre-

dictability horizons compared to this study [Fig. S3].
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Figure S3. Evolution of global CO2 flux RMSE over lead time. Definitions of predictability horizon used

in Séférian et al. [2018] (orchid) leads to systematically higher predictability horizon than when using the

methodology from our study (blue).
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S4 RMSE-based predictability skill surface atmospheric CO2

Figure S4. Spatial distribution of RMSE-based atmospheric surface CO2 predictability: (a-e) predictability

skill over the first five lead years. White areas indicate unpredictable areas where the uninitialized predictabil-

ity skill exceeds the initialized skill at 5% probability based on bootstrapping with replacement (N=1000). (f)

The predictability horizon marks the last significant lead year. Red crosses show location of long-standing

atmospheric CO2 mixing ratio measurement stations [Keeling et al., 2005].
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S5 Influence of ENSO on variability

Figure S5. Spatial distribution of surface CO2 flux: (a) annual mean, (b) inter-annual variability deter-

mined as standard deviation (c, d) the composite of the positive/negative ENSO 3.4 index states. Colored

areas indicate that the composite is different from the neutral ENSO 3.4 state assessed with a t-test at 95%

significance.
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Figure S6. Spatial distribution of atmospheric CO2 mixing ratio overlain with 10m wind indicated as ar-

rows: (a) annual mean, (b) inter-annual variability determined as standard deviation (c, d) the composite of

the positive/negative ENSO 3.4 index states. Colored areas indicate that the composite is different from the

neutral ENSO 3.4 state assessed with a t-test at 95% significance.
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S6 Comparison of modelled inter-annual variability with observations

Transferring the time-scales of perfect-model predictability to the real Earth system

assumes that the model can reproduce observed variability. Here, we compare internal

variability of MPI-ESM from the 300-year pre-industrial control simulation with detrended

observation-based products under the transient climate. Due to the shorter time period of

34 to 62 years, the observation-based products are likely to show less variations compared

to the modelled inter-annual variability.

Furthermore, observations are subject to the climate change trend whereas our con-

trol simulation is stable. To compare the variability of the model with observations-based

products, we need to remove the trend from the data products. Here, the choice of the de-

trending polynomial introduces an additional uncertainty. Also changing from a linear to

a 4th order polynomial trend removal is not a priori more correct and lead to varying re-

sults.

S6.1 oceanic CO2 flux

Figure S7. Spatial distribution of inter-annual variability computed as standard deviation of annual mean

oceanic CO2 flux: (a) MPI-ESM pi-esmControl, (b) linear detrended SOM-FFN (1982-2015) [Landschützer

et al., 2016].

Hotspots of oceanic CO2 flux variability in SOM-FFN [Landschützer et al., 2016]

in the Southern Ocean and North Pacific are captured by MPI-ESM. MPI-ESM under-

estimates oceanic CO2 flux variability in the equatorial pacific with respect to the de-

trended SOM-FFN. This feature is less pronounced after 4th-order detrending. Further-

more, SOM-FFN is just one of several SOCOM data products [Rödenbeck et al., 2015]

which fill the various gaps of the gridded measurement data. Given the existing uncer-

tainty in data filling methods, a precise estimation of variability is not conclusive. Further-

more, Landschützer et al. show that the length of the observational records is insufficient

to fully capture natural variability signals.
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S6.2 terrestrial CO2 flux

Figure S8. Spatial distribution of inter-annual variability computed as standard deviation of annual mean

atmospheric CO2 mixing ratio: (a) MPI-ESM pi-esmControl, (b) second-order detrended atmospheric CO2

inversion Jena CarboScope sEXTocNEET_v4.3 (1957-2018) [Rödenbeck et al., 2018].

Terrestrial CO2 flux variability is highly unconstrained, as there is currently no di-

rect observation-based terrestrial CO2 flux product available. However, for comparison

here, we use the observations-based atm. CO2 inversion [Rödenbeck et al., 2018] as an

estimate for spatio-temporal gridded terrestrial CO2 flux. While MPI-ESM generally over-

estimates the magnitudes in terrestrial CO2 flux variability, the origins of high variability

in the tropics and mid-latitudes are well captured.

S6.3 surface atm. CO2

Figure S9. Spatial distribution of inter-annual variability computed as standard deviation of annual mean

atmospheric CO2 mixing ratio: (a) MPI-ESM pi-esmControl, (b) second-order detrended atmospheric CO2

inversion Jena CarboScope sEXTocNEET_v4.3 (1957-2017) [Rödenbeck et al., 2018].

The effect of the internal variability of both oceanic and terrestrial CO2 flux on at-

mospheric CO2 is well captured by MPI-ESM. The higher variability over the northern

Hemisphere based on observations may be explained by the anthropogenic emissions not

present in MPI-ESM esm-piControl. The other hotspots of variability from the CO2 inver-

sion also appear in the model.
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S7 Drivers of terrestrial CO2 flux predictability

Figure S10. Spatial distribution of the contributors to RMSE-based terrestrial surface CO2 predictabil-

ity: the vertical row shows skill at different lead years, the horizontal rows show different variables: total

CO2 flux, CO2 flux due to net primary production, CO2 flux due to heterotrophic respiration, CO2 flux due

to herbivory and CO2 flux due to fires. White areas indicate unpredictable areas where the uninitialized

predictability skill exceeds the initialized skill at 5% probability based on bootstrapping with replacement

(N=1000).

Figs. S10 and S11 show the dominance of net primary production for terrestrial

CO2 flux in RMSE-based predictability in the first lead years. The metric RMSE is used

here to show that large magnitude in RMSE, which shows the large spread between en-

semble members. However, the predictability horizon of heterotrophic respiration, the sec-

ond strongest contributor to terrestrial CO2 flux predictability, can extend until lead year 3

in the tropics.
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Figure S11. Spatial distribution of the predictability horizon of contributors to RMSE-based terrestrial

surface CO2 predictability: total CO2 flux, CO2 flux due to net primary production, CO2 flux due to het-

erotrophic respiration, CO2 flux due to herbivory and CO2 flux due to fires.
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S8 Re-emergence

The ACC-based predictability of all ENSO indices seems to have a small rebound

from lead year 2 to lead year 3. We attribute these slightly constrained ENSO states to the

weak atm. CO2 re-emergence pattern in lead year 4. Note that until lead year 3 tropical

CO2 flux is still quite high (above .5) [Figs. 2, S12], whereas in the other areas over land

predictability dropped earlier. Also we see that the larger share of positive ENSO initial

conditions dominates the predictability skill. However, due to the meridional and zonal

transport of atm. CO2 by wind and the time lag between ENSO and the terrestrial CO2

flux response a clean attribution of ENSO to atm. CO2 is quite challenging.

Figure S13 shows the temporal evolution of the Nino 3.4 index and equatorial (35S-

35N) terrestrial CO2 flux of the ensemble members after a few initializations. Here, we

can see a weak re-emergence two to four years after initialization. The distance between

members in each initialization is the RMSE metric used. Fig. S14 also shows the re-

emergence in RMSE skill in Nino 3.4. This re-emergence in Nino 3.4 is not totally sur-

prising as the autocorrelation based on the control simulation shows a oscillatory be-

haviour with negative autocorrelations for lead two and three in Nino 3.4 [Fig. S15]. The

equatorial (35S-35N) terrestrial CO2 flux responds to El Nino [Jones et al., 2001; Zeng

et al., 2005, 2008].
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Figure S12. Area-average ACC-based predictability of positive/neutral/negative ENSO 3.4 initial states

for different ENSO indices and impacted variables in the tropics 30◦S-30◦N: (from top left to bottom right)

Nino 1.2, Nino 3, Nino4, Nino 3.4, Nino, oceanic CO2 flux, terrestrial CO2 flux, surface air temperature,

precipitation, terrestrial CO2 flux due to heterotrophic respiration, terrestrial CO2 flux due to net primary

production.

Figure S13. Evolution of the annual Nino 3.4 index as in Fig. S1(a).
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Figure S14. Inter-member distance for all initializations of the annual (a) Nino 3.4 index and (b) 35S-35N

terrestrial CO2 flux.
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Figure S15. Autocorrelationfunction of the annual (a) Nino 3.4 index and (b) 35S-35N terrestrial CO2 flux.
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