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Abstract. The late Palaeocene to the middle Eocene (57.5
to 46.5 Ma) recorded a total of 39 hyperthermals – periods
of rapid global warming documented by prominent nega-
tive carbon isotope excursions (CIEs) as well as peaks in
iron content – have been recognized in marine cores. Doc-
umenting how the Earth system responded to rapid climatic
shifts during hyperthermals provides fundamental informa-
tion to constrain climatic models. However, while hyperther-
mals have been well documented in the marine sedimentary
record, only a few have been recognized and described in
continental deposits, thereby limiting our ability to under-
stand the effect and record of global warming on terrestrial
systems. Hyperthermals in the continental record could be
a powerful correlation tool to help connect marine and con-
tinental deposits, addressing issues of environmental signal
propagation from land to sea. In this study, we generate new
stable carbon isotope data (δ13C values) across the well-
exposed and time-constrained fluvial sedimentary succession
of the early Eocene Castissent Formation in the south central
Pyrenees (Spain). The δ13C values of pedogenic carbonate
reveal – similarly to the global records – stepped CIEs, cul-
minating in a minimum δ13C value that we correlate with the
hyperthermal event “U” at ca. 50 Ma. This general trend to-

wards more negative values is most probably linked to higher
primary productivity leading to an overall higher respiration
of soil organic matter during these climatic events. The rela-
tive enrichment in immobile elements (Zr, Ti, Al) and higher
estimates of mean annual precipitation together with the oc-
currence of small iron oxide and iron hydroxide nodules dur-
ing the CIEs suggest intensification of chemical weathering
and/or longer exposure of soils in a highly seasonal climate.
The results show that even relatively small-scale hyperther-
mals compared with their prominent counterparts, such as
PETM, ETM2, and ETM3, can leave a recognizable signa-
ture in the terrestrial stratigraphic record, providing insights
into the dynamics of the carbon cycle in continental environ-
ments during these events.

1 Introduction

From the end of the Palaeocene, a period of global warming
reached its climax during the Early Eocene Climatic Opti-
mum (EECO) (Westerhold and Röhl, 2009; Hyland and Shel-
don, 2013). The EECO started ca. 53 Ma ago and lasted un-
til ca. 49 Ma ago (Westerhold et al., 2018), after which the
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climate began to cool (∼ Eocene–Oligocene transition; Za-
chos et al., 2001, 2008). Superimposed on, and coeval to,
this globally warm epoch, brief periods of pronounced global
warming known as “hyperthermals” standout as anomalies
outside of background climate variability (Kirtland-Turner
et al., 2014; Dunkley Jones et al., 2018). The Palaeocene–
Eocene Thermal Maximum (PETM; ∼ 56 Ma) was the first
of these events to be identified globally because of its excep-
tional magnitude and preservation in both marine and con-
tinental deposits (Koch et al., 1992). To date, for the late
Palaeocene – early Eocene period, a total of 39 hyperthermal
events of lesser magnitude have been identified from marine
cores (Lourens et al., 2005; Sexton et al., 2011; Kirtland-
Turner et al., 2014; Lauretano et al., 2015, 2016; and West-
erhold et al., 2018), among which the most prominent and
studied are the Eocene Thermal Maximum (ETM) 2 and 3,
H2, and I1 and I2 events (Cramer et al., 2003; Lourens et
al., 2005; Nicolo et al., 2007; Lunt et al., 2011; Deconto
et al., 2012; Kirtland-Turner et al., 2014; Lauretano et al.,
2016; and Westerhold et al., 2017) (Fig. 1). In the marine
stratigraphic record, these events are primarily characterized
by paired negative excursion in carbon and oxygen isotope
data exceeding background variability (Cramer et al., 2003;
Nicolo et al., 2007; Zachos et al., 2008; Sluijs and Dick-
ens, 2012; and Lauretano et al., 2016), i.e. typically with
amplitude greater than the standard deviation (SD) of pre-
hyperthermal background values.

In deep marine settings, the carbon isotope excursions
(CIE) are typically paired with an increase in iron concen-
tration and decrease in carbonate content, indicating ocean
acidification potentially linked with high atmospheric CO2
concentrations (Nicolo et al., 2007; Slotnick et al., 2012;
and Westerhold et al., 2018). In coastal marine sections,
early Eocene hyperthermal events are generally associated
with an enhanced flux of terrigenous material, interpreted as
linked to accelerated hydrological cycle and higher season-
ality (Schmitz et al., 2001; Bowen et al., 2004; Nicolo et al.,
2007; Slotnick et al., 2012; Payros et al., 2015; and Dunk-
ley Jones et al., 2018), although several studies document a
spatially heterogeneous hydrological climatic response dur-
ing the PETM (Bolle and Adatte, 2001; Kraus and Riggins,
2007; Giusberti et al., 2016; and Carmichael et al., 2017). In
fluvial systems, the abrupt warming of the PETM was found
to be associated with expansion and coarsening of alluvial
facies combined with an increase in the magnitude of flood
discharge (Foreman et al., 2012; Pujalte et al., 2015; and
Chen et al., 2018), as well as enhanced pedogenesis (Abels
et al., 2012). Yet, how continental systems reacted to the
other, smaller-magnitude hyperthermals of the early Eocene
remains to be documented. In particular, because of the sub-
aerial nature and lateral preservation dynamics of alluvial
systems (e.g. Foreman and Straub, 2017; Straub and Fore-
man, 2018), the extent to which fluvial successions can pro-
vide complete and faithful archives of past climatic events,
especially those with the smallest magnitudes, is still largely

unknown (Foreman and Straub, 2017; Trampush et al., 2017;
and Straub and Foreman, 2018). Addressing this question is
particularly critical for studies focussing on environmental
signal propagation in source-to-sink systems (e.g. Castelltort
and Van Den Driessche, 2003; Duller et al., 2019; Romans
et al., 2016; and Schlunegger and Castelltort, 2016), which
require high-resolution continental-marine correlations such
as those provided by the PETM (e.g. Duller et al., 2019) or
by other hyperthermals of the early Eocene.

To address these issues, we explored the geochemical sig-
nature (carbon and oxygen stable isotopes; major and trace
elements) and the sedimentology of the fluvial deposits of the
Ypresian Age Castissent Fm. (south central Pyrenees, Spain,
Fig. 2). First, we generated a new carbon isotope profile from
a palaeosol succession rich in carbonate nodules across the
Castissent Fm. in order to compare these results with a global
δ13C record. The data suggest that this fluvial succession pre-
serves a record of hyperthermal “U” event at ca. 50 Ma, pro-
viding important constraints to its depositional the age. Sec-
ond, we used the major and trace element composition of
bulk floodplain material in order to explore the climatic im-
pact of such a hyperthermal, including empirical reconstruc-
tions of mean annual precipitation, allowing us to discuss
soil dynamics during global warming. This study identifies
for the first time in a continental succession an event so far
only recorded in marine sediments, thereby demonstrating
the global breadth of these climatic events and the comple-
mentarity of oceanographic and terrestrial archives.

2 Geological setting

The Castissent Formation comprises fluvial deposit of Ypre-
sian age cropping out in the Tremp-Graus Basin (South Pyre-
nean foreland basin; Marzo et al., 1988, Fig. 2). The Castis-
sent Fm. is defined by its prominent overall sand-rich char-
acter and is composed by three coarse-grained channel com-
plexes (labelled as Members A, B, and C) separated by four
marine incursions (M0 to M3) inferred from the observa-
tion of marginal coastal bioclast-rich horizons developed up
into the upper deltaic plain and correlative with finer dark-
grey mudstones and calcretes in the fluvial segment of the
Castissent (Marzo et al., 1988). This major fluvial progra-
dation is correlated westwards with deep-water turbidite se-
quences of the Arro and Fosado Formations in the Ainsa
Basin (Fig. 3, Mutti et al., 1988; Nijman and Nio, 1975; Ni-
jman and Puigdefabregas, 1978; and Pickering and Bayliss,
2009). In the upstream, eastern counterparts of the Castis-
sent Fm., the channel complexes are intercalated with yellow
to red coloured palaeosols. Sub-spherical to slightly elon-
gated carbonate nodules with diameters ranging from 1 mm
to 4 cm are omnipresent in the palaeosols (Fig. S1 in the Sup-
plement). Studies of the Castissent Fm. tentatively attributed
their occurrence to an important pulse of exhumation and
thrust activity in the hinterland at ca. 50 Ma, in possible com-
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Figure 1. Late Palaeocene and early Eocene benthic carbon isotope record from Sites 1209, 1258, 1262, and 1263. Top of Chron C22r and
top of T. orthostylus zone from site 1263 from Westerhold et al. (2017). Hyperthermal nomenclature from Cramer et al. (2003), Lauretano et
al. (2016), and Westerhold et al. (2017). Castissent Fm. extension in green.

Figure 2. Simplified situation and geological map of the study area with main depositional palaeo-environments (e.g. Nijman, 1998). The
Castissent Fm. is a prominent fluvial unit particularly well exposed in the Noguera Ribagorçana and Isáabena river valleys. (1) Chiriveta
section (2) Mas de Faro (3) La Roca section. Main palaeoflow directions indicated in orange (from Nijman and Puigdefabregas, 1978).
Regional map after Teixell (1998).

www.clim-past.net/16/227/2020/ Clim. Past, 16, 227–243, 2020
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Figure 3. (a) Time constraints on the Castissent Fm. MP zone from the continental section from Checa Soler (2004) and Payros et al. (2009).
SBZ and NP in the Campo section from (Schaub, 1966, 1981; Kapellos and Schaub, 1973; and Tosquella, 1995), magnetostratigraphy
from Bentham and Burbank (1996). SBZ in El Pueyo section from Payros et al. (2009). Magnetostratigraphy in El Pueyo from Poyatos-
Moré (2014). (b) Extended map of the study area. For map legend and references, see Fig. 2.

bination with a late Ypresian sea-level fall (Puigdefabregas
et al., 1986; Marzo et al., 1988; Whitchurch et al., 2011; and
Castelltort et al., 2017), both resulting in reduced available
accommodation space enhancing progradation and amalga-
mation (Chanvry et al., 2018).

The Chiriveta section, encompassing the Castissent Fm.,
is situated in a continental palaeogeographic position prone
to pedogenesis and slightly off-axis from the more “in-axis”
amalgamated sand-rich-type section of Mas de Faro (Fig. 2);
for palaeo-position and correlation see also Figs. 10 and 12
in Marzo et al. (1988).

In the Chiriveta location, stratigraphic constraints are lim-
ited to the identification of European Mammals zone MP10
(Badiola et al., 2009), which provides an age range of 50.73
to 47.4 Ma (GTS2012). This age span is refined by bio- and
magnetostratigraphic data from the Castissent Fm. outcrops

of the Campo location, about 40 km further west (Kapel-
los and Schaub, 1973; Tosquella, 1995; Bentham and Bur-
bank, 1996; Tosquella et al., 1998; and Payros et al., 2009)
(Fig. 3). Because of its outcropping extent, the Castissent
Fm. has been mapped from west to east across these sec-
tions (Nijman and Nio, 1975; Nijman, 1998; Poyatos-Moré,
2014; and Chanvry et al., 2018). The low slope of the Castis-
sent Fm. (ca. 2.3× 10−4 m m−1; see Supplement Table S1)
indicate an elevation drop of ca. 1 m between the Chiriveta
section and the Campo section. Given average flow depths
of 3.75 m in the Castissent channels based on measurement
in the Chiriveta and La Roca sections, we thus assume no
significant time lag of deposition between both sections. In
the Campo section, Kapellos and Schaub (1973) find the
transition between the D. lodoensis and the T. orthostylus
nannoplankton (NP) zones at ca. 200 m below the base of

Clim. Past, 16, 227–243, 2020 www.clim-past.net/16/227/2020/



L. Honegger et al.: Alluvial record of an early Eocene hyperthermal 231

the Castissent Fm. and the transition between the T. orthosty-
lus and the D. sublodoensis NP zones in the transgression
ca. 100 m above the uppermost member of the Castissent
Fm. This indicates that the Castissent Fm. was deposited dur-
ing NP13. Magnetostratigraphic data of the same section by
Bentham and Burbank (1996) place the transition between
the C22r and C22n magnetozones closely above the top of
the Castissent Fm. We thus used the recent astrochronolog-
ical age models of Westerhold et al. (2017), which obtain
numerical ages of 50.777± 0.01 and 49.695± 0.043 Ma for
the base and top of C22r, respectively, and obtain a numer-
ical age of 50.534± 0.025 Ma for the base of NP13 based
on the Ocean Drilling Program site 1263. Considering the
data available and their resolution, we suggest a deposi-
tional age span between 50.5 and 49.7 Ma for the Castissent
Fm. (reported in green on Fig. 1). According to global iso-
topic records (Fig. 1), this period was marked by four hy-
perthermals labelled S/C22rH3, T/C22rH4, U/C22rH5, and
V/C22nH1 (Cramer et al., 2003; Lauretano et al., 2016; and
Westerhold et al., 2017).

3 Material and methods

3.1 Sampling

A total of 74 samples were collected from the lower Eocene
Chiriveta section for geochemical studies. All samples con-
sist of floodplain material and were taken below the weather-
ing depth (∼ 50 cm), with an average resolution of 1 m. Reso-
lution was increased by a factor of 2 in specific horizons such
as red beds. When important sandbodies occurred, lateral
equivalent floodplain material or intercalated palaeosol hori-
zons were sampled. Each sample was split in two aliquots,
one for major and trace element analysis and the other for
carbon and oxygen stable isotope analysis on pedogenic car-
bonate nodules. The carbonate nodules were extracted from
the bulk palaeosol material by sieving and then cleaned by
repeated washes with deionized water in an ultrasound bath.
From each cleaned nodules set, subsamples of one to four
nodules were taken, leading to a total of 149 subsamples of
pedogenic carbonate nodules.

3.2 Carbon and oxygen stable isotopes

Pedogenic carbonate nodules were crushed and powdered in
an agate mortar and analysed for stable carbon and oxygen
isotope composition at the Institute of Earth Surface Dy-
namics of the University of Lausanne (Switzerland) using
a Thermo Fisher Scientific (Bremen, Germany) carbonate-
preparation device and Gas Bench II connected to a Thermo
Fisher Delta Plus XL isotope ratio mass spectrometer. The
carbon and oxygen isotope compositions are reported in the
delta (δ) notation as the per mil (‰) isotope ratio variations
relative to the Vienna Pee Dee Belemnite standard (VPDB).
The analytical reproducibility estimated from replicate anal-

yses of the international calcite standard NBS-19 and the
laboratory standard Carrara marble was better than ±0.05 ‰
(1σ ) for δ13C and ±0.1 ‰ (1σ ) for δ18O.

3.3 Major and trace element composition

Fifty-two bulk palaeosol samples were analysed for major
and trace elements using X-ray fluorescence (XRF) spec-
trometry. Crushed bulk powders (< 80 µm) were mounted in a
plastic cup covered by a thin polypropylene film (4 µm thick)
and analysed in the laboratory with a Thermo Fisher Niton
XL3t® portable XRF analyser fixed on a test stand. Analyses
were performed with a beam diameter of 8 mm, to determine
the concentrations of 34 major and trace elements (from Mg
to Au). Each measurement took 120 s, consisting of two 60 s
cycles on four different filters (15 s on low, main, high, and
light ranges), operating the X-ray tube at different voltages
to optimize the fluorescence and peak/background ratios of
the different elements. The limits of detection were of tens
of parts per million for most elements, except for Mg, Si,
and Al which are at wt % level. Sodium is too light to be de-
tected. The acquired spectra were transferred to a computer
using NDT software version 8.2.1. (Thermo Fisher Scien-
tific, Waltham, Ma, USA). The same material has been anal-
ysed for 23 major and trace elements on fused and pressed
discs, respectively, using a PANalytical PW2400 XRF spec-
trometer with a copper (Cu) tube at the University of Lau-
sanne to cross-calibrate the compositions measured with the
Niton XL3t® portable XRF analyser.

3.4 Mean annual precipitation

The mean annual precipitation estimate (MAP) used in this
study was estimated from the empirical relationship between
MAP and CaO/Al2O3 ratio for Mollisols from a national sur-
vey of North American soils according to the following equa-
tion: MAP (mm)=−130.9×ln(CaO/Al2O3)+467 (Sheldon
et al., 2002). CaO and Al2O3 concentrations were measured
on bulk palaeosol material. Climate linked to the MAP esti-
mate was classified based on the following boundaries: arid
to semiarid at 250 mm and semiarid to subhumid at 500 mm
(Bull, 1991).

3.5 Grain-size estimation

The relative grain-size variation in the sediment samples was
estimated from their major element compositions. Si, Ti, and
Zr are more concentrated in the coarse fraction of the sedi-
ment as they are found in larger mineral grains, whereas Al
is more concentrated in the finer fraction of the sediment be-
cause it is mostly linked to clay minerals (Lupker et al., 2011,
2012; Croudace and Rothwell, 2015). Grain size variation
throughout the section was estimated using Si/Al, Ti/Al, and
Zr/Al ratios, therefore, an increase in these ratios suggests a
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relative increase in the proportion of coarser material in the
sample.

3.6 Correlation with target curves

The measured δ13C dataset was compared with a time-
equivalent ODP 1263 global δ13C record reported by West-
erhold et al. (2017) using the AnalySeries software (Paillard
et al., 1996). The δ13C record of site 1263 was favoured over
those of ODP 1209 and 1258 covering the Castissent Fm.
time period, because it is continuous and has a higher resolu-
tion. Correlations between the δ13C record of site 1263 and
the δ13C record of the Chiriveta section were performed in
order to optimize the Pearson correlation coefficient (r) and
to minimize abrupt variations in sedimentation rates. Well-
defined peaks in both δ13C records were used as tie points
for the correlation and the number of tie points was kept to a
minimum (< 10) so as to not force the correlations.

4 Results

4.1 Sedimentology of the Castissent Formation at
Chiriveta

We describe here the section logged and sampled in this work
(Fig. 4). At Chiriveta, the Castissent Fm. is a palaeosol-rich
succession, which shows greyish-yellow to red-brown mot-
tled floodplain palaeosols (Fig. 4a–b), corresponding later-
ally to thick, medium to coarse-grained quartz-rich channel-
fill deposits (width/depth ratio = 20–50; Marzo et al., 1988)
and overbank deposits flowing parallel to the main structures
of the growing Pyrenean orogeny (Marzo et al., 1988). At
the base of the section, the first marine incursion M0 is sit-
uated at the top of a 20 m thick coarse-grained tidal bar de-
posit with herringbone cross-stratifications and oyster shells
(Fig. 4c). In the Chiriveta section, the Castissent Member
A is a 48 m thick interval comprising two main medium-
grained sandbodies of light colouration of 5.40 and 1.5 m in
thickness respectively. Bedforms observed in the first sand-
body have a mean height of 24 cm (n= 9). The second ma-
rine incursion M1 is located at 48 m just below the Castis-
sent B Member and consists of a 2 m thick grey interval in-
terpreted by Marzo et al. (1988) as brackish–lagoonal water
facies (Fig. 4b–f). The Castissent B Member (Fig. 4g) is a
12 m thick and laterally extensive (width/depth ratio ≥ 250;
Marzo et al., 1988) amalgamated sandbody with a micro-
conglomeratic erosive base. Grain size is overall larger than
in Member A and ranges from fine sand to large pebbles.
Sandbody tops show a fining-upward trend and are capped
by mottled siltstone packages. Mottled siltstone layers are
interpreted as pedogenized overbank deposits based on roots
traces and their capping relationship with underlying sand-
body deposits (observed at 26, 76, 89, and 96 m in Figs. 5
and 4h). More regular and sheet-like sandbodies interbedded
with mottled siltstone layers are observed upwards. The sec-

tion ends with a 23 m thick, medium to very coarse, tidally in-
fluenced sandstone deposit interpreted as the equivalent M3
marine incursion by Marzo et al. (1988). Although Castis-
sent Member C was not interpreted by Marzo et al. (1988)
in this section, a 2 m thick fine-grained sandbody at ca 80 m
in our section could be the condensed lateral equivalent of it
(Fig. 5).

4.2 Stable isotopic record

Carbon and oxygen isotope ratios from the carbonate nod-
ules are presented in Fig. 5. The δ13C values vary between
−10.9 ‰ and −1.9 ‰ with a mean value and 1 SD of
−7.7± 1.6 ‰. Six CIEs (named A to F in Fig. 5 and colour
coded in Fig. 6) are more negative than−9.3 ‰ (i.e. the mean
value – 1 standard deviation) amongst which one (CIE D)
is below 2 SDs. The values are −9.6 ‰, −9.8 ‰, −9.9 ‰,
−10.9 ‰,−9.9 ‰, and−9.4 ‰ for CIEs A to F respectively.
At the bottom of the section, CIE A is followed by a relatively
constant interval of mean δ13C values. CIE B, situated in the
first red bed, marks the beginning of a stepped δ13C trend
(around ±1 SD) leading to the minimum CIE D. The second
part of the section shows two more CIEs separated by the
highest δ13C value at 74 m. CIE F is the least prominent of
all CIEs. The δ18O values vary between−7.0 ‰ and−5.0‰
with a mean value of −6.0± 0.4 ‰, which makes them less
dispersed than the δ13C record. Nine negative oxygen iso-
tope excursions are more negative than the mean value minus
1 SD, amongst which one is below 2 SD reaching a minimum
value of −6.8 ‰ at 19 m. The oxygen isotope excursions do
not correspond with CIEs described above.

4.3 Major and trace elements

Titanium (Ti), aluminium (Al), and zirconium (Zr) concen-
trations measured on bulk palaeosols are plotted in Fig. 5.
These elements are commonly considered as immobile and
are expected to concentrate in more weathered soils. Ti val-
ues vary between 0.18 % and 0.52 % with a mean value of
0.34 % and a standard deviation of 0.08. Al values vary be-
tween 3.03 % and 9.35 % with a mean value of 5.85 % and
a standard deviation of 1.53. Zr values vary between 67 and
204 ppm with a mean value of 128 ppm and a standard devi-
ation of 35. Mean annual precipitation (MAP) estimates val-
ues vary between 185 and 754 mm yr−1 with a mean value
of 376 mm yr−1 and a standard deviation of 111. Ti, Al, Zr,
and MAP show a similar trend starting from the base of the
section with a global increase for all values toward CIE C
and a decrease afterwards. All CIEs show higher values of
Ti, Al, Zr, and MAP except CIE F. Based on Bull (1991),
an average value of 387 mm yr−1 for the MAP in the Chiriv-
eta section represents a semi-arid climate (Fig. 5). All CIEs
show an increase in MAP.
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Figure 4. Field images of the Chiriveta section (42◦7′56.57′′ N, 0◦41′19.45′′ E). (a) Outcrop view of Members A and B of the Castissent
Formation. (b) Close-up view of the upper part of Castissent A Member. Fluvial channel-fill deposits, intercalated in reddish floodplain and
overbank deposits and regional marine incursions (M1). (c) M0, first marine incursion at the base of the Castissent Fm. described by Marzo et
al. (1988) expressed in the Chiriveta section by a tidal-influenced coarse sandstone with herringbone cross-stratification. (d) Yellow mottled
palaeosol between CIE C and D. (e) Red floodplain interval equivalent of the CIE C. (f) 2 m thick grey interval interpreted as poorly drained
brackish water facies and equivalent to the marine incursion M1. (g) An ∼ 6 m thick laterally extensive Castissent B sandbody incised in the
underlying floodplain deposits. (h) Mottled silt, interpreted as pedogenetic fluvial channel overbank deposits.
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234 L. Honegger et al.: Alluvial record of an early Eocene hyperthermal

Figure 5. Isotopic and geochemical data from the Chiriveta section. For the isotope dataset, the curves passes through the mean values at
each sample position. Samples with minimum in δ13C values below 1 and 2 standard deviations are labelled A to F. Mean annual precipitation
(MAP) was estimated from the empirical relationship between MAP and CaO to Al2O3 ratio (Sheldon et al., 2002).

5 Discussion

5.1 Carbon and oxygen isotopic record

5.1.1 Identifying the CIE

In continental successions, the carbon isotope composition
of pedogenic carbonate nodules – which consists of calcare-
ous concretions between 1 mm and 4 cm diameter formed in
situ in the floodplain – have been shown to be sensitive to
environmental conditions during their formation (e.g. Mil-
lière et al., 2011a, b) and are therefore a promising tool to
track how environments respond to carbon cycle perturba-
tion. The carbon isotope composition of the soil carbonate
nodules depend on the δ13C value of the atmospheric CO2
and soil CO2, which in turn is a function of the δ13C of the
atmospheric CO2 and the overlying plants, as well as the soil
respiration flux and the partial pressure of atmospheric CO2
(Cerling, 1984; Bowen et al., 2004; Abels et al., 2012; and
Caves et al., 2016).

The δ13C vs. δ18O diagram for the pedogenic carbon-
ate nodules from the Chiriveta section (r =−0.26, n= 149)
suggests a good preservation of the primary isotopic sig-
nal (Fig. 6), with an average value of δ13C =−7.7± 1.6 ‰
similar to mid-latitude late Palaeocene to Eocene continen-
tal δ13C values (excluding the PETM samples) observed
elsewhere (e.g. McInerney and Wing, 2011; and references
therein) and a spread comparable with δ13C values from car-
bonate nodules analysed for the same period in the Bighorn
Basin (Bowen et al., 2001). Figure 6 emphasizes that lower

Eocene carbonate nodules display overall more negative
δ13C values than the Holocene nodules, which is consis-
tent with a large compilation of data from eastern Eura-
sia (Caves Rugenstein and Chamberlain, 2018). Pre-PETM
δ18O values from carbonate nodules from the same area
(−4.5± 0.4‰) (Hunger, 2018) show values similar to mea-
surements from the Chiriveta section (−6.0± 0.4‰). Oxy-
gen and carbon isotopes are not coupled during hyperthermal
events in continental record as already observed by Schmitz
and Pujalte (2003) Bowen et al. (2001) for the PETM isotopic
excursion. Though the precise mechanisms that produce sta-
ble δ18O during CIE are still debated, mid-latitude precip-
itation δ18O appears to be relatively insensitive to changes
in atmospheric pCO2 and warming, particularly in green-
house climates (Winnick et al., 2015). In contrast, the sta-
ble δ18O values of soil carbonates from the Pyrenean fore-
land basin (−5.5± 0.9‰) are likely additionally stabilized
by its position close to the coast (Cerling, 1984; Kukla et
al., 2019) compared for example to those of the Bighorn
Basin (−9.0±0.6‰). This is in line with a more continental
palaeogeographical position of the Bighorn Basin compared
to the Tremp-Graus Basin at the time (Seeland, 1998).

A hyperthermal event recorded in marine sediments is de-
fined by paired negative carbon and oxygen stable isotope
excursions that are more negative than the mean value mi-
nus 1 SD (Kirtland-Turner et al., 2014). This definition may
not be applicable to continental deposits, because continen-
tal systems respond differently than marine systems to the
carbon cycle perturbations. Though the marine δ13C record
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Figure 6. Continental δ13C and δ18O values from the early Eocene
Castissent Fm. in the Chiriveta section (this study) plotted with
pre- and syn-PETM δ13C and δ18O values from the same area
(Khozyem Saleh, 2013; Hunger, 2018) and pre-, syn-, and post-
PETM values from the Bighorn Basin (Bowen et al., 2001) as well
as recent pedogenic carbonate isotopic values (Cerling and Quade,
1993; Gallagher and Sheldon, 2016).

is thought to record the global CO2 δ
13C, the δ13C value

of the marine dissolved inorganic carbon is also influenced
by dissolution of carbonates at depth (McInerney and Wing,
2011). In contrast, δ13C in pedogenic nodules varies with
soil properties, atmospheric and soil pCO2 and δ13C, and the
rate and nature of carbon input and/or output by soil respira-
tion (Bowen et al., 2004; Sheldon and Tabor, 2009). These
processes create complexities in estimating CIEs in soil car-
bonate nodules and in marine carbonates (McInerney and
Wing, 2011). Nevertheless, we used the hyperthermal defi-
nition from Kirtland-Turner et al. (2014) as a starting point
to filter the high-resolution variations in the Chiriveta sec-
tion. We identify 16 samples with CIE values more negative
than the mean minus 1 SD. Among these 16 samples, we
recognized six discrete CIEs (named A–F in Figs. 5 and 7).
Both marine incursion M1 and M2 show an abrupt shift from
−9 ‰ to −10 ‰ in continental δ13C values towards more
(positive) marine values of −4 ‰ to −2 ‰; this points to a
progressive higher contribution of seawater to the formation
of the carbonate nodules.

Six correlation options with the global record were ex-
plored in the time window of the Castissent Fm. (Figs. S2
and S3). The correlation presented in Fig. 7a was favoured as
it shows (i) reasonable sedimentation rates variations, (ii) a
similar amplitude to the CIE in the global record, and (iii) the
highest correlation coefficient (r = 0.65, n= 71). Moreover,
it plots along the same trend regarding hyperthermal CIE am-

plitudes in marine and continental environments, suggesting
a common mechanism of global climatic change with events
I1, I2, H2, and ETM2 (Fig. 7b). Based on these observations
and obtained correlation, we suggest that only hyperthermal
U is preserved in the Chiriveta section and that it is correlated
with CIE D. Sedimentation rate obtained with the favoured
correlation (Fig. 7) varies between 0.1–0.29 mm yr−1, con-
sistent with sedimentation rates reported for other Eocene
floodplain successions (Kraus and Aslan, 1993). The corre-
lation coefficient of r = 0.65 suggests an overall good signal
preservation in the studied continental section for a 40 kyr
climatic event.

5.1.2 Mechanisms causing the CIE

An increase in temperature could potentially release a sig-
nificant amount of CO2 into the atmosphere (Trumbore et
al., 1996; Melillo et al., 2014). The amplitude and duration
of Eocene CIEs are approximately 30 % of the one recorded
for the PETM; we hypothesize that the climatic effects of
smaller-scale hyperthermals can be linearly scaled to the
PETM. Based on this assumption and in order to get a rough
approximation without considering a nonlinear sensitivity re-
sponse, a smaller-scale hyperthermal would imply a release
of approximately 500 to 1500 Gt of carbon to the ocean and
atmosphere reservoir and a global temperature rise of about
1.5–2.5 ◦C. This estimation corresponds to the 1500–4500 Gt
of carbon released during the PETM, causing a rise of 5–8 ◦C
(Bowen et al., 2006), and is in line with previous estimations
of ∼ 3 and ∼ 2 ◦C warming for ETM2/H1 and H2 events re-
spectively (Stap et al., 2010). A release of 500 to 1500 Gt of
carbon in the form of methane would imply a marine CIE of
0.8 ‰ to 2.3 ‰ or 0.3 ‰ to 0.9 ‰ if the carbon origin is dis-
solved organic carbon (DOC) (Sexton et al., 2011). The lat-
ter seems more plausible regarding the observed amplitude
of ∼ 1 ‰ measured in the marine record for hyperthermal U
(Westerhold et al., 2017) and the supposed origin linked to
the oxygenation of deep-marine DOC of post-PETM hyper-
thermals (Sexton et al., 2011). A global shift of−1 ‰ in δ13C
can however not fully explain the 3 ‰ shift in δ13C observed
in this study.

The δ13C mean value in the Chiriveta section is −7.7±
1.6 ‰. This value reflects an overall equilibrium with a mean
atmospheric CO2 of −7 ‰ (Koch et al., 1995) and is coher-
ent with pre-PETM δ13C values of−7.1±0.9‰ found in the
same area (Hunger, 2018; Fig. 6). It is possible to calculate
from the (small-scale) hyperthermal δ13C excursions in the
marine environment the shift to be expected in soil carbonate
nodules by using known fractionation coefficients (Koch et
al., 1995, 2003); the expected δ13C value in carbonate nod-
ules, only considering the respiration of organic matter, is
−11 ‰ (Fig. 8). This value is within the range of those mea-
sured from the Chiriveta section, where some nodules reach
values as low as −10.9 ‰. We suggest that the bacterial res-
piration of organic matter, enhanced by warmer temperatures
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Figure 7. (a) Scaling of the Chiriveta isotopic section with the time equivalent interval of site 1263 (Westerhold et al., 2017). The correlation
was calculated using the AnalySeries software (Paillard et al., 1996) and centred on CIE D and hyperthermal U. Mean, minus 1 and 2 SD
lines on the global record were calculated sets over the selected time period. The correlation coefficient (r) between the two curves is 0.65.
(b) Hyperthermal U amplitude in palaeosol carbonate and benthic foraminifera (inset B after Abels et al., 2016).

Figure 8. Components influencing the δ13C values of pedogenic carbonate nodules. Mean early Eocene bulk marine carbonate and small-
scale hyperthermal (all except PETM) are from Westerhold et al. (2018). Fractionation value between organic matter and carbonate nodules
are based on Sheldon and Tabor (2009). All other fractionation values are based on Koch et al. (1995). Mean carbonate nodule values come
from this study.

(e.g. Davidson and Janssens, 2006; Trumbore et al., 1996),
may also have contributed to the lower δ13C values of nod-
ules during the CIEs (Fig. 8). On geological timescales, soil
organic carbon can be considered at steady state with equal
organic carbon inputs and outputs from the soil (Koven et
al., 2017). Respiration (carbon output after mineralization as
CO2) is thought to be more sensitive to global warming than

gross primary productivity (organic carbon input as organic
matter), leading to a depletion of the total soil carbon pool
with time during transient global warming events; although
the precise sensitivity of gross primary productivity remains
poorly constrained (Davidson and Janssens, 2006). Large un-
certainties remain about carbon dynamics and their timescale
in the soils during climate changes. Parameters such as the
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vegetation type (Klemmedson, 1989), temperatures (Koven
et al., 2017), soil geochemistry (Torn et al., 1997; Doetterl
et al., 2015), and soil water content (Davidson et al., 2000)
have been shown to be important controlling factors within
historical timescales.

Considering these caveats, we estimate the maximum pos-
sible contribution of enhanced soil carbon respiration to neg-
ative δ13C excursions during the CIEs. Using typical values
for the organic carbon reservoir comprising fast and slow cy-
cling carbon in soils in arid to semi-arid ecosystems of 5.6–
19.2 kg C m−2 (Klemmedson, 1989; Raich and Schlesinger,
1992), respiration fluxes starting at a steady-state value of
0.5 kg C yr−1 and a respiration rate sensitivity ca. 5 % per de-
gree (Raich and Schlesinger, 1992) (Q10 = 1.5), we estimate
that all of the organic carbon in soils would be consumed
within 250 to 850 years, given an increase of 1 ◦C and with-
out changing the carbon input rate. Though there are a num-
ber of assumptions in this first-order estimate, the timescale
of soil carbon depletion is substantially shorter than our es-
timate of the timescale of the CIE (∼ 36 kyr) (Fig. 7). As
evidenced by this calculation, an increase in soil respiration
triggered by warmer temperatures cannot be the sole mecha-
nism driving the CIE shift over multi-millennial timescales.
Instead, we suggest that during these transient warmings, this
mechanism is associated with a high primary productivity –
resulting in a greater input of carbon to the soil – leading
to an overall higher soil respiration of organic matter. Cou-
pled with lower atmospheric δ13C during hyperthermals, this
mechanism caused a pronounced CIE in soil carbonate nod-
ules.

5.2 Geochemical signature of hyperthermal events

Major and trace elements compositions of floodplain sedi-
ments is a function of river dynamics, climate, and sediment
grain-size (Lupker et al., 2012; Turner et al., 2015). Based
on the CIEs, we defined six intervals showing a relative en-
richment (up 10 % to 30 % compared to the average value)
in immobile elements such as Ti, Al, and Zr (Fig. 5). To en-
sure that major and trace concentrations are not grain-size bi-
ased, we plotted grain-size proxies Si/Al, Ti/Al, and Zr/Al
(Lupker et al., 2012; Turner et al., 2015), which all exhibit a
relatively stable trend, not connected with the immobile ele-
ment concentrations (Fig. S4). The enrichments in Ti, Al, and
Zr suggest mature palaeosols with potential intense weath-
ering due to enhanced humid climatic conditions; but this
may also correspond to a longer exposure time on a stable
floodplain, allowing leaching of mobile elements and rela-
tive enrichment of immobile elements (Sheldon and Tabor,
2009). Pedogenic nodules are frequent in well-drained soil
profiles associated with a climate regime where the poten-
tial evapotranspiration is greater than the mean annual pre-
cipitation rate (Slessarev et al., 2016) and with a mean an-
nual precipitation < 800 mm yr−1 (Cerling, 1984; Retallack,
1994; and Sheldon and Tabor, 2009). These conditions cor-

respond to climate ranging from arid to subhumid conditions
(Hasiotis, 2004; Prochnow et al., 2006; Hyland and Sheldon,
2013). This agrees with MAP values obtained for the palaeo-
precipitation estimate (Fig. 5) and with a smectite/kaolinite
> 1 assemblage dominating some of the studied soils (Nico-
laides, 2017, Table S2); all suggestive of a semi-arid to sub-
humid climate with seasonal humidity (Arostegi et al., 2011).
Associated with CIEs C and D in red bed deposits, sub-
millimetric iron-oxide and iron-hydroxide nodules made of
concentric hematite and goethite were found together with
carbonate nodules (Fig. S1). This suggest a seasonal cli-
mate as hematite forms under more arid soil condition than
goethite (Kraus and Riggins, 2007). Together, these observa-
tions are in line with an acceleration of the hydrological cy-
cle and a higher seasonality, as has been observed during the
PETM, H1, H2; I1 and I2 hyperthermals (Bowen et al., 2004;
Nicolo et al., 2007; Slotnick et al., 2012; and Dunkley Jones
et al., 2018). Therefore, combined with CIEs, we suggest that
small-scale hyperthermals in continental records can be rec-
ognized by an increase in the weathering index (Hessler et
al., 2017) and by an increase in the immobile element con-
centrations, both related to an increase in precipitation inten-
sity.

5.3 High-resolution hyperthermal signal

The high-resolution isotopic and elemental record of the
Chiriveta profile allow us to highlight the dynamics and vari-
ability in a hyperthermal event. We do not observe a unique
peak in δ13C but rather a stepped isotopic signal suggest-
ing, together with above-discussed geochemical data, a cli-
matic oscillation alternating with variably intense precipita-
tions and leaching conditions during a climax spanning ca.
150 kyr (interval CIE B to D). Such a climatic behaviour,
was already described for the PETM, during the pre-onset
excursion (Bowen et al., 2015) and in the core CIE of the
PETM (Giusberti et al., 2016). Moreover, the δ13C climax
(CIE D) does not correspond to the highest concentrations
of immobile elements or maximum MAP estimates, which
we estimate occur during CIE C, which predates the CIE D
by ca. 50 kyr (Fig. 7) . The minimum δ13C value therefore
does not seem to be coeval with the most extreme climatic re-
sponse, suggesting a complex environmental response. How-
ever, because sedimentation in floodplain depositional set-
tings is a function of the channel position and flood fre-
quency, the relative concentration of elements may reflect
the changes in river dynamics instead of climatic variability,
which could explain the mismatch between minimum values
in CIE and the climatic response. More high-resolution hy-
perthermal studies in coeval continental sections are needed
to better understand the relationships between proxies.
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5.4 Possible implication for the preservation potential of
hyperthermals in continental sections

Major events such as the PETM have proven to be detectable
in both marine and continental environments (e.g. Abels et
al., 2016; Koch et al., 1992), but the signal and preservation
potential of smaller-scale climatic events (e.g. hyperthermal
events L to W in Lauretano et al., 2016) may be more dif-
ficult to detect (Foreman and Straub, 2017) because of the
inherent highly dynamic nature of sedimentation in fluvial
deposits. To address this issue in the present case study, we
calculated the compensation timescale (Tc) of the Castissent
Fm. Tc is a timescale characteristic of an alluvial basin be-
low which stratigraphic signals with shorter durations may
be of autogenic origin, thereby giving a scale below which al-
logenic forcing should be interpreted carefully (Wang et al.,
2011; Foreman and Straub, 2017; and Trampush et al., 2017).
In other words, an external forcing signal with a duration
smaller than Tc will be challenging to identify from back-
ground variability; the external forcing must be therefore of
a duration longer than Tc and optimally twice Tc (Foreman
and Straub, 2017). The Tc max can be calculated by divid-
ing the topographic roughness or maximum channel depth
by the average subsidence or deposition rate (Wang et al.,
2011). Using an average sedimentation rate of 0.17 mm yr−1

and an average channel depth of 3.75 m, we obtained a mean
Tc of 22 000 years, which means that hyperthermal events
of 40 kyr duration (timescale of hyperthermal U and pre-
ceding CIE) have the potential to be recorded despite flu-
vial system dynamics. Our estimate of preservation poten-
tial assumes steady sedimentation rates throughout the sec-
tion. But, sedimentation in terrestrial records is not uniform
(steady) but rather highly variable, resulting in spatial and
temporal changes in facies and deposition rates ranging from
< 0.1 to 1–2 mm yr−1 (Marriott and Wright, 1993; Bowen et
al., 2015; Kraus et al., 2015). However, mean accumulation
rates give a reasonable estimate approximating more realistic
(i.e. variable) sedimentation rates as observed in the Bighorn
Basin (Bowen et al., 2015). Additionally, we analyse the ver-
tical movement of the nearby structures to evaluate their po-
tential influence on disrupting deposition at Chiriveta during
Castissent times. The Chiriveta section was deposited near or
at the axis of the Tremp-Graus basin (Nijman, 1998), which
is bounded by the Bóixols thrust in the north and the in the
south (Marzo et al., 1988). The Tremp-Graus basin is trans-
ported as a piggyback basin on the Montsec thrust emerging
at the time approximatively 4 km south of the studied section
(Nijman, 1998). In the basin axis, subsidence is the highest
with rates of 0.1 to 0.29 mm yr−1 (this study and Marzo et al.,
1988). Taking into account a vertical movement rate of the
Montsec thrust of 0.03 to 0.1 mm yr−1 during the Castissent
time-interval (based on a horizontal displacement of 7 km,
a period of activity lasting 26 Ma, and a thrust dip between
6 and 20◦; Farrell et al., 1987; Nijman, 1998; Clevis et al.,
2004; and Whitchurch et al., 2011), we estimate that the ver-

tical displacement is no more than equal to sedimentation
rates in the basin axis. This is consistent with the general
absence of growth strata in the basin axis, although growth
strata can indeed be observed closer to the Montsec (Nijman,
1998).

The rates of accumulation, distance to the main struc-
tures, and characteristic compensation timescale together
suggest that hyperthermal events of ca. 40 kyr duration can
be recorded in the Castissent Fm. These results confirm that,
despite its highly dynamic nature, fluvial sedimentation may
contain valuable record of high-frequency events, even in ac-
tive tectonic contexts.

6 Conclusions

A new high-resolution isotopic record from the palaeosol-
rich deposits at the Chiriveta section identified a prominent
negative carbon isotope excursion (CIE) in continental set-
tings. We suggest that the CIE recorded in fluvial succes-
sion of the early Eocene Castissent Formation is the “U”
event, identified for the first time in continental deposits. This
climatic event reaches δ13C values of 2σ (standard devia-
tion) below the mean and is heralded and followed by sev-
eral smaller-scale stepped CIEs, which are interpreted as mo-
ments of enhanced primary productivity, leading to an overall
higher soil respiration. We show that all these CIEs are rel-
atively enriched in immobile elements (i.e. Ti, Zr, and Al)
and display an increase in MAP estimates. These observa-
tions coupled with the presence of iron oxide nodules on an
overall weathered succession, suggest an increase in precip-
itation rates during these events. The data presented in this
study suggest a period of ca. 150 kyr of contrasted climate
alternating average and above background weathering condi-
tions. Finally, the results of this demonstrate the importance
of hyperthermal events in continental successions as well as
in the preservation potential of such deposits.
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