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Abstract. The trajectories of soil carbon in our changing cli-
mate are of the utmost importance as soil is a substantial
carbon reservoir with a large potential to impact the atmo-
spheric carbon dioxide (CO2) burden. Atmospheric CO2 ob-
servations integrate all processes affecting carbon exchange
between the surface and the atmosphere and therefore are
suitable for carbon cycle model evaluation. In this study, we
present a framework for how to use atmospheric CO2 obser-
vations to evaluate two distinct soil carbon models (CBAL-
ANCE, CBA, and Yasso, YAS) that are implemented in a
global land surface model (JSBACH). We transported the
biospheric carbon fluxes obtained by JSBACH using the at-
mospheric transport model TM5 to obtain atmospheric CO2.
We then compared these results with surface observations
from Global Atmosphere Watch stations, as well as with col-
umn XCO2 retrievals from GOSAT (Greenhouse Gases Ob-
serving Satellite). The seasonal cycles of atmospheric CO2
estimated by the two different soil models differed. The es-
timates from the CBALANCE soil model were more in line
with the surface observations at low latitudes (0–45◦ N) with
only a 1 % bias in the seasonal cycle amplitude, whereas
Yasso underestimated the seasonal cycle amplitude in this
region by 32 %. Yasso, on the other hand, gave more realis-
tic seasonal cycle amplitudes of CO2 at northern boreal sites

(north of 45◦ N) with an underestimation of 15 % compared
to a 30 % overestimation by CBALANCE. Generally, the es-
timates from CBALANCE were more successful in captur-
ing the seasonal patterns and seasonal cycle amplitudes of
atmospheric CO2 even though it overestimated soil carbon
stocks by 225 % (compared to an underestimation of 36 %
by Yasso), and its estimations of the global distribution of
soil carbon stocks were unrealistic. The reasons for these
differences in the results are related to the different environ-
mental drivers and their functional dependencies on the two
soil carbon models. In the tropics, heterotrophic respiration
in the Yasso model increased earlier in the season since it is
driven by precipitation instead of soil moisture, as in CBAL-
ANCE. In temperate and boreal regions, the role of tempera-
ture is more dominant. There, heterotrophic respiration from
the Yasso model had a larger seasonal amplitude, which is
driven by air temperature, compared to CBALANCE, which
is driven by soil temperature. The results underline the im-
portance of using sub-annual data in the development of soil
carbon models when they are used at shorter than annual
timescales.
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1 Introduction

The terrestrial carbon cycle consists of the uptake of CO2
by vegetation for photosynthesis and release of carbon
by plants’ autotrophic respiration, soil decomposition by
heterotrophic organisms and natural disturbances (Bond-
Lamberty et al., 2016). Soils store twice as much carbon
as the atmosphere (Scharlemann et al., 2014), and its fate
in a changing climate remains uncertain (Crowther et al.,
2016). For example, while Crowther et al. (2016) concluded
from a data-based analysis that large carbon stocks will lose
more carbon due to warming conditions, van Gestel et al.
(2018) questioned this view with an analysis based on a more
comprehensive dataset. To have reliable predictions of future
carbon stocks, a process-based understanding of the below-
ground carbon cycle is needed (Bradford et al., 2016).

One way to evaluate soil carbon models has been to use
observations of soil carbon stocks (Todd-Brown et al., 2013).
At small scales, rates of gas exchange measured in cham-
bers have also been used (Ťupek et al., 2019), but the separa-
tion of heterotrophic and autotrophic respiration is laborious
(Chemidlin Prévost-Bouré et al., 2010). It is anyhow chal-
lenging to find reasons for differences in heterotrophic res-
piration between large-scale models as the litter input to the
soil influences heterotrophic respiration, and this litter input
varies between the models. One way forward is to use a test
bed for these models, as done by Wieder et al. (2018).

An alternative, regionally integrated approach is using ob-
servations of atmospheric CO2 which integrate all processes
involved in global surface–atmosphere carbon exchange. The
surface observation network of atmospheric CO2 has been
used in benchmarking global carbon cycle models (Cad-
ule et al., 2010; Dalmonech and Zaehle, 2013; Peng et al.,
2015). Recent advances of satellite technology have enabled
retrievals of space-born, dry-air, total column-averaged CO2
mole fraction (XCO2), quantifying CO2 in the entire atmo-
spheric column between the land surface and the top of the
atmosphere. These observations reveal a more spatially in-
tegrated CO2 signal compared to surface site observations,
and together they provide a complementary dataset. These
two data sources have been used together to study the carbon
cycle with “top-down” inversion modelling (Crowell et al.,
2019). This kind of modelling framework uses atmospheric
CO2 observations to constrain a priori biospheric and ocean
fluxes based on the Bayesian inversion technique, which
results in optimised estimates (a posteriori) of the fluxes
(Maksyutov et al., 2013; Rödenbeck et al., 2003; van der
Laan-Luijkx et al., 2017; Wang et al., 2019). Estimates for
fossil emissions are often assumed to be known, i.e. not op-
timised in the inversion.

In this study, we present a framework of how to use at-
mospheric CO2 observations to evaluate soil carbon models
implemented in a land surface model. We apply this to two
state-of-the-art soil carbon models as a “proof of concept” for
a more universal application. Basile et al. (2020) did similar

work within a biogeochemical test bed and concluded that
heterotrophic respiration can be a valuable benchmark in car-
bon cycle studies. They emphasised that the seasonal phasing
of heterotrophic respiration relative to the net primary pro-
duction (NPP) influences the net ecosystem exchange (NEE)
and therefore potentially introduces bias to atmospheric CO2
that hampers its use as a benchmark.

To obtain the atmospheric CO2 profiles from our simu-
lations with the land surface model, we applied an atmo-
spheric transport model. In this work, we used the three-
dimensional atmospheric chemistry transport model TM5
(Krol et al., 2005; Huijnen et al., 2010). Generally, trans-
port models like TM5 contain errors caused by, for example,
poorly resolved advection and heavily parameterised trans-
port schemes (Gaubert et al., 2019). With TM5, we calcu-
lated the column-averaged CO2 that can be used to eval-
uate model results versus the satellite observations. Satel-
lite observations can also include errors. The uncertainty of
GOSAT (Greenhouse Gases Observing Satellite) observa-
tions has been estimated to be around 1 to 2 ppm (Oshchep-
kov et al., 2013; Reuter et al., 2013). Contributors to un-
certainties in the retrieval algorithms originate, for example,
from the solar radiation database and the handling of aerosol
scattering (Yoshida et al., 2013). Lastly, the column XCO2
profiles are also influenced by, for example, advection and
global-scale gradients driven by weather systems (Keppel-
Aleks et al., 2011). A model evaluation performed with the
column XCO2 observations enabled a more thorough study
of the fluxes and atmospheric physics of a modelling system
(Keppel-Aleks et al., 2011).

We use in this work JSBACH, the land surface model of
the Max Planck Institute’s Earth system model, one of the
models participating in CMIP6. The JSBACH model has two
distinct soil models implemented in it (CBALANCE, CBA,
and Yasso, YAS). We are interested in seeing if the two soil
carbon models lead to markedly different CO2 signals and in
exploring which conclusions on model performance and pro-
cess representation can be drawn that could help to improve
this land surface model (and potentially other similar mod-
els) and our understanding of the land carbon cycle. The two
model versions only differ with respect to the underlying soil
processes and do not include major feedbacks between soil
and vegetation (apart from a small effect of litter accumula-
tion on fire emissions). Thus, the difference in the release of
carbon to the atmosphere originates only from the soil car-
bon models. The two soil carbon models are both first-order
decay models. However, they have different pool structures,
as well as environmental drivers, and have differing response
functions. CBALANCE uses soil moisture and soil tempera-
ture as driving variables, and Yasso uses precipitation and air
temperature. In the analysis, we also use a simple box model
calculation to further understand the main causes in the dif-
ferent outcomes of the models. Our framework combining a
land surface model with a transport model allows us to inves-
tigate how these above-mentioned differences in soil carbon
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models influence atmospheric CO2. Specifically, we aim to
answer the following questions.

– How can we use a land surface model together with a
transport model to evaluate soil carbon models and what
problems do we face when doing that?

– What is the role of soil carbon stocks, the variables driv-
ing their decomposition and the functional dependen-
cies of those variables on modelled heterotrophic respi-
ration at global scale and how does this lead to differ-
ences in the atmospheric CO2 signal?

2 Materials and methods

We used the land surface model JSBACH (Giorgetta et al.,
2013) to obtain net land–atmosphere CO2 exchange and fed
that, together with ocean, fossil and land use fluxes, into a
transport model, TM5, which simulates the resulting atmo-
spheric CO2 at selected surface sites, as well as column inte-
grated values, for a comparison with satellite-derived column
CO2.

2.1 Model simulations: JSBACH with two soil carbon
models

JSBACH is the global land surface model of the Max Planck
Institute’s Earth system model (Giorgetta et al., 2013), sim-
ulating terrestrial carbon, energy and water cycles (Reick
et al., 2013). In this study, JSBACH was run with two dif-
ferent soil carbon sub-models that are described below. The
older model, CBALANCE, has been used in Coupled Model
Intercomparison Project Phase 5 (CMIP5) simulations of JS-
BACH (Giorgetta et al., 2013). The newer model, Yasso, has
been used in simulations for the annual global carbon budget
(Le Quéré et al., 2015, 2018) and is used in CMIP6 simula-
tions of JSBACH (Mauritsen et al., 2019). It is also used in
JSBACH4, a re-implementation of JSBACH for the ICOsa-
hedral Non-hydrostatic Earth system model (ICON-ESM)
(Giorgetta et al., 2018; Nabel et al., 2019).

Independent of the sub-model used for soil carbon, JS-
BACH uses three carbon pools for living vegetation: a wood
pool containing woody parts of plants and green and reserve
pools that contain the non-woody parts. JSBACH simulates
different processes that lead to losses from the vegetation
pools, such as grazing, shedding of leaves, and natural or an-
thropogenic disturbances. Depending on the process, some
of the vegetation carbon is lost as CO2 into the atmosphere,
while the remaining part is transferred as dead vegetation
into the litter and soil pools of the sub-model for soil car-
bon, where it is then subject to the internal processes of the
soil carbon sub-model. The only process outside of the soil
carbon sub-model that influences dead material is fire which
burns parts of above-ground litter carbon.

2.1.1 The soil carbon model CBALANCE

CBALANCE (CBA) is the original soil carbon sub-model
of JSBACH (Raddatz et al., 2007), which has been used
in CMIP5. The environmental drivers for decomposition in
CBA are soil temperature (at soil depths of 30 to 120 cm be-
low the surface) and relative soil moisture, α, of the upper-
most soil layer, which is 5 cm thick. The value of α varies
between 0 and 1.

The function for soil temperature dependence, fCBA,Tsoil ,
of decomposition follows a Q10 formulation as follows:

fCBA,Tsoil(Tsoil)=Q
Tsoil
10 ◦C
10 , (1)

with a Q10 value of 1.8 and Tsoil as soil temperature (in
◦C) (shown in Fig. S1a in the Supplement) (Raddatz et al.,
2007). The dependency on relative soil moisture α is linear
(Fig. S1b), and it is calculated as follows:

fCBA,α(α)=MAX
(
αmin,

α−αcrit

1.0−αcrit

)
, (2)

where αcrit is 0.35 and αmin is 0.1 (Knorr, 2000).
Together these functions are modulating the rate of decom-

position so that the heterotrophic respiration (Rh) from each
pool (denoted by i) is as follows:

Rh(Tsoil,α)= fCBA,α · fCBA,Tsoil ·
Ci

τi
, (3)

where Ci is the carbon content of each pool and τi is the
turnover time of each pool in days. CBA uses five different
carbon pools having different turnover times:

– two green litter pools, one above ground and one below
ground, in which the non-woody plant parts decompose
with turnover times of between 1.8 and 2.5 years (Goll
et al., 2015);

– two woody litter pools, one above ground and one below
ground, in which the woody plant parts decompose with
turnover times of several decades;

– one slow pool receiving its input from the four litter
pools and having a turnover time in the order of a cen-
tury.

2.1.2 The soil carbon model Yasso

The original soil carbon model of JSBACH was replaced
by Yasso (YAS) (Thum et al., 2011; Goll et al., 2015). JS-
BACH’s YAS implementation is based on the Yasso07 model
(Tuomi et al., 2009). Development of Yasso07 relied heavily
on litter bag and other observational datasets that were used
to estimate model parameters (Tuomi et al., 2009, 2011).
Owing to its strong connection to experiments, its environ-
mental drivers are quasi-monthly air temperature and precip-
itation.
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The decomposition dependency on air temperature is as
follows:

fYAS,Tair(Tair)= e
β1Tair+β2T

2
air , (4)

where Tair is air temperature (◦C), parameter β1 is 9.5×
10−2 ◦C−1, and parameter β2 is−14×10−4 ◦C−2 (Fig. S1c).

The decomposition depends on precipitation Pa (m) as fol-
lows:

fYAS,Pa(Pa)= (1− eγPa), (5)

where γ =−1.21 m−1 (Fig. S1d). The environmental drivers
for YAS (precipitation and air temperature) are averaged for
30 d periods.

Similar to CBA, YAS has slowly and rapidly decompos-
ing pools, but its pool dynamics are more structured. First,
all the pools are divided into woody and non-woody mate-
rials. The difference in the calculation of the decomposition
rates between non-woody and woody pools is an additional
parameter that decreases the turnover rates of the woody lit-
ter, which is dependent on its plant-functional-type-specific
(PFT) size parameter (Tuomi et al., 2011).

YAS takes the chemical composition of the incoming lit-
ter into account. The incoming litter is divided into differ-
ent chemical pools according to the PFT-dependent factors.
Information on the PFT-dependent factors for the litter de-
composition has been derived from observations (Berg et al.,
1991a, b; Gholz et al., 2000; Trofymow et al., 1998). YAS
uses four chemically distinct pools: acid soluble, water solu-
ble, ethanol soluble and non-soluble. For each of these four
chemical compositions, one above-ground and one below-
ground pool is used. In addition, there is one humus pool (di-
vided into woody and non-woody pools as with all the other
pools). Dynamics of the YAS carbon pools are described in
Tuomi et al. (2009) with decomposition fluxes causing redis-
tributions among the pools or losses to the atmosphere. Each
of the pools has a decay constant which is modified by the
environmental dependencies in Eqs. (4) and (5).

2.2 The model simulations: the JSBACH set-up

JSBACH model simulations followed the TRENDY v4 pro-
tocol in terms of the JSBACH version, simulation protocol
and forcing data (Le Quéré et al., 2015; Sitch et al., 2015).
Climate forcing was based on CRUNCEP v6 (Viovy, 2010),
and global atmospheric CO2 was obtained from ice core and
National Oceanic and Atmospheric Administration (NOAA)
measurements (Sitch et al., 2015). For each set-up, the model
was run to equilibrium, i.e. until the soil carbon pools of the
applied carbon sub-model were at steady state. The two dif-
ferent transient simulations were then done for 1860 to 2014.
Anthropogenic land cover change was forced by the LUHv1
dataset (Hurtt et al., 2011) and was simulated as described
in Reick et al. (2013). While fire and windthrow were simu-
lated, natural land cover changes and the nitrogen cycle were

not activated. Simulations were done at T63 spatial resolu-
tion (approximately 1.9◦ or∼ 200 km). For further details on
the spin-up and the model version, please refer to the Sup-
plement.

2.3 The model simulations: TM5

To estimate atmospheric CO2, we used the global Eulerian
atmospheric transport model TM5 (Krol et al., 2005; Huij-
nen et al., 2010) in an available pre-existing set-up. TM5 was
run globally at 6◦× 4◦ (latitude× longitude) resolution with
two-way zoom over Europe, where the European domain was
run at 1◦× 1◦ resolution. The 3-hourly meteorological fields
from ECMWF ERA-Interim (Dee et al., 2011) were used as
forcing to run TM5. Linear interpolation was done to obtain
CO2 estimates at the exact locations and times of the obser-
vations.

We fed TM5 daily biospheric, weekly ocean and annual
fossil fuel fluxes to obtain realistic atmospheric CO2. Values
of gross primary production (GPP) and total ecosystem respi-
ration were taken from the JSBACH simulations for the two
different soil model formulations. Also, carbon release from
vegetation and soil owing to land-use change, fires and her-
bivores was taken from the JSBACH model results as part of
terrestrial biospheric carbon fluxes. In addition, we used the
a posteriori biospheric flux estimates from CarbonTracker
Europe (CTE2016, later referred to as CTE; van der Laan-
Luijkx et al., 2017) to provide some guidance on the abil-
ity of TM5 to represent the individual site observations. The
ocean fluxes were the a posteriori estimates from the same
study.

Fossil fuel emissions are from the EDGAR4.2 database
(EDGAR4.2, 2011) and Carbones project (http://www.
carbones.eu, last access: 14 February 2017), with scaling
to global total values like for the global carbon budget as
described in van der Laan-Luijkx et al. (2017). The an-
nual fossil fuel flux to the atmosphere was approximately
8.63 PgCyr−1, and ocean uptake of carbon was approxi-
mately 2.33 PgCyr−1 when averaged over 2001–2014. An-
nual values are summarised in Table S1 in the Supplement.
Simulations with TM5 were done for 2000–2014.

2.4 The surface observations

Surface observations of atmospheric CO2 from NOAA
weekly discrete air samples (ObsPack product: GLOB-
ALVIEWplus v2.1; ObsPack, 2016) were used to evaluate
the effect of different soil carbon models on tropospheric
CO2 seasonal cycles at sites around the globe. The sites used
in the evaluation are shown in Fig. 1. The uncertainties of
NOAA flask air measurements for the period of this study are
±0.07 ppm (with 68 % confidence interval). From the data,
samples reflective of well-mixed background air were se-
lected (based on flag criteria) similar to van der Laan-Luijkx
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Figure 1. Locations of Global Atmosphere Watch stations, denoted
by black dots, and different TransCom regions (different numbers
denote the different TransCom regions in this study), denoted by
different colours.

et al. (2017) to minimise the influence of transport model er-
rors in our analysis.

2.5 The satellite retrievals

GOSAT (Greenhouse Gases Observing Satellite) from Japan
Aerospace Exploration Agency (JAXA) was launched in
2009 and observes column XCO2 with the TANSO-FTS
instrument (Kuze et al., 2009). These data were used
to evaluate the different simulations and to assess model
performance at larger spatial scales. XCO2 from the
TM5 simulation was calculated using global 4◦× 6◦× 25
(latitude× longitude× vertical levels) daily average three-
dimensional atmospheric CO2 fields. For each satellite re-
trieval, the global, three-dimensional, daily mean, gridded
atmospheric CO2 estimates were horizontally interpolated to
the location of the retrievals to create the vertical profile of
simulated CO2. Averaging kernels (AKs) (Rodgers and Con-
nor, 2003) were applied to model estimates to ensure a reli-
able comparison with GOSAT retrievals:

Ĉ = ca + (h ◦ a)
T (x− xa), (6)

where Ĉ is XCO2, scalar ca is the prior XCO2 of each re-
trieval, h is a vertical summation vector, a is an absorber-
weighted AK of each retrieval, x is a model profile and xa
is the prior profile of the retrieval (Yoshida et al., 2013).
The retrievals for different terrestrial TransCom (TC) regions
(Fig. 1) were compared with those calculated from the two
model simulations. For the comparison with GOSAT XCO2,
the estimates of three-dimensional fields at 6◦× 4◦ resolu-
tion were used but not those from the zoom grids due to tech-
nical reasons. Differences in XCO2 due to model resolution
were not significant within the context of this study. In this
work, GOSAT observations (National Institute for Environ-
mental Studies retrieval V02.21 and V02.31) between July
2009 and the end of 2014 were used.

2.6 Global datasets for evaluating simulated soil
carbon and gross primary productivity

For the evaluation of the JSBACH model results, we ad-
ditionally used data from two soil carbon databases and
the FLUXCOM project (Jung et al., 2019). We used the
gross primary production (GPP) produced by FLUXCOM,
in which eddy covariance flux observations are upscaled us-
ing machine learning methods and meteorological and re-
mote sensing data. The FLUXCOM GPP has a 0.5◦ spatial
resolution and 8 d temporal resolution for 2001–2014. Ad-
ditionally, we used two different soil carbon datasets: Soil-
Grids (Hengl et al., 2014) and one based on the Harmonised
World Soil Database (HWSD) (Batjes, 2016). For the soil
carbon data, we used the preprocessed datasets from Fan
et al. (2020) that provide values for organic soil carbon down
to 1 m depth.

3 Results

3.1 Global carbon fluxes and stocks with the two model
formulations

3.1.1 Carbon fluxes

Since the two different model formulations differ only in
their soil carbon module formulation, the incoming flux to
the ecosystem from photosynthesis is the same in both cases.
We analysed results for 2000–2014, and we show here av-
eraged values for that period. The main target variable of
our analysis is the heterotrophic respiration, but, to better
elucidate how it influences the atmospheric CO2, we also
show net primary production (NPP) and net ecosystem ex-
change (NEE). NPP is obtained from the gross primary pro-
duction (GPP) by subtracting autotrophic respiration. NEE is
obtained by subtracting from GPP the total ecosystem res-
piration, direct land cover change, and fire, harvest and her-
bivory fluxes, as shown in Table 2.

Even though annual total global values of heterotrophic
respiration are close between the different model formula-
tions (Table 2), their global seasonal cycles are different
(Fig. 2c). The YAS version has a 66 % larger variation of Rh
during the year than CBA. Both model versions have their
minimum value of Rh in February. While CBA has a max-
imum in August, YAS reaches its maximum value 1 month
earlier, and global Rh also stays high during August. YAS
clearly has a steeper increase and decline in its seasonal cy-
cle than CBA. The higher peak of heterotrophic respiration
by the YAS model leads to higher global NEE values dur-
ing June and July (Fig. 2e). In the first 4 months of the year,
NEE is higher in the simulations of the CBA model, which is
caused by the higher heterotrophic respiration values at this
time (Fig. 2e). Autotrophic respiration (which, as explained
above, like GPP and NPP is the same for both model formu-
lations) has its highest values in July and August (Fig. S2a).

https://doi.org/10.5194/bg-17-5721-2020 Biogeosciences, 17, 5721–5743, 2020
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During 2000–2014, both CBA and YAS predict increases in
heterotrophic respiration, but only YAS has a significantly
increasing trend (p value< 0.005) (Fig. 2). CBA has a larger
standard deviation in the annual values (0.87 PgC) than YAS
(0.73 PgC). The annual NEE time series do not have signifi-
cant trends, and CBA has larger interannual variability (stan-
dard deviation of 0.84 PgC vs. 0.79 PgC by YAS).

In addition to the comparison of the global results, we in-
vestigated how the two soil modules differed for broad lati-
tudinally separated regions. The NPP is the same in the dif-
ferent latitudinal regions (Fig. 3a, b). The global total magni-
tudes of Rh are comparable, while the seasonal cycles show
clear differences that are also visible in different latitudinal
regions (Fig. 3c, d). The YAS model shows, however, a larger
amplitude in the seasonal cycle in all of the regions. In the
two most northern regions of the Northern Hemisphere, the
amplitude in Rh of YAS is approximately twice the ampli-
tude than that of CBA. In both of these regions, YAS has
clear maximum values of Rh in July and August, while the
seasonal cycles of CBA are more shallow and do not include
such clear maximums. The seasonal cycle of Rh is quite dif-
ferent between the model formulations in the tropics. At 0–
30◦ N, YAS has a seasonal cycle shifted earlier compared to
CBA. In this region, YAS has a 42 % larger seasonal ampli-
tude for Rh than CBA. In the Southern Hemisphere regions
of 0–10 and 10–30◦ S, CBA predicts higher values of Rh dur-
ing the first months of the year after which it stays lower until
the end of the year, whereas YAS shows a clear lowering be-
tween June and September. In the 10–30◦ S region, YAS has
a 54 % larger amplitude in Rh than CBA. The differences in
heterotrophic respiration lead to pronounced differences in
the NEE within the tropics (Fig. 3e, f).

The variation in Rh seasonal dynamics of these two model
formulations can be linked to the differences in their en-
vironmental drivers and functions. In Table 3, the correla-
tion between heterotrophic respiration and the environmen-
tal drivers of each specific model formulation are shown for
the different latitudinal regions. Figures S3–S7 in the Supple-
ment show these same relationships. The Rh from CBA has
a strong correlation with soil moisture α in the tropical re-
gion (30◦ S–30◦ N) and a high correlation with soil tempera-
ture Tsoil at high northern latitudes (30–90◦ N) and lower, but
significant, correlation at high southern latitudes (30–60◦ S).
For other combinations of regions and drivers, the r values
are low for CBA, and in three regions, the dependency be-
tween α and Rh is negative. In two of these regions with a
negative relationship between α and Rh (located at high lati-
tudes), the variability of α is quite small, and the plot shows
high scatter (Fig. S3). The shape of the Tsoil dependency on
the CBA decomposition is exponential, and the relationship
is significant when the range of the Tsoil values is 15 ◦C,
which is larger than what is occurring in the tropics (Fig. S4).

For the YAS model, on the other hand, Rh shows a strong
correlation to its environmental drivers (Table 3). The r val-
ues between Rh and precipitation are over 0.90 in all regions

except the 30–60◦ S region. In this region, the correlation
is still significant, but the variability of the precipitation is
lower than in the other regions (Fig. S5). Therefore, the expo-
nential relationship (Fig. S1d, Eq. 5) between decomposition
and precipitation does not lead to a stronger linear relation-
ship in this region. Between air temperature and Rh, the re-
sults are similar with the only small r value in the Southern
Hemisphere tropics. This region has only a small seasonal
variation in air temperature, and the values are also partly
located in the temperature range in which the temperature
sensitivity of decomposition is weaker (Fig. S6, Eq. 4). The
seasonal cycle of Rh predicted by the YAS model does not
correlate significantly with the soil moisture variable α in
any of these regions (Table 3 and Fig. S7). This is not un-
expected as such since α is not the driver of the YAS model.
In the tropical region, soil moisture for CBA and precipita-
tion for YAS are more important drivers compared to soil and
air temperatures. At high latitudes, temperature has a larger
effect on Rh in the results of both models even though in the
Northern Hemisphere precipitation also has a significant role
for YAS.

We also investigated whether the seasonal cycle of the het-
erotrophic respiration is correlated with litter fall. The only
significant correlation occurred at 30–60◦ N for both model
versions. This was because both have similar annual cycles
of Rh and litter fall, but the seasonal cycle of Rh precedes
litter fall (Fig. S8).

The global simulated GPP of 167 PgCyr−1 (Table 2) is
highly overestimated when compared to the upscaled data
product from FLUXCOM, which gives a mean value of
126 PgCyr−1 for this time period (Jung et al., 2019) and
has a range of 106–130 PgCyr−1 for a longer time period.
Despite the overestimation of global GPP by the model, the
comparison to the FLUXCOM product shows that the sea-
sonal cycles in different latitudinal regions are quite simi-
lar, although in the northern boreal region, JSBACH reaches
maximum GPP values later than the FLUXCOM product
(Fig. S9).

The annual net CO2 flux shows a slightly larger land
sink for YAS than CBA (Table 2). Owing to the larger lit-
ter pool, fire fluxes are larger in the YAS model formulation
by 0.50 PgCyr−1; however, they have similar spatial patterns
(Fig. S10). This caused the heterotrophic respiration of YAS
to be 0.56 PgCyr−1 smaller than that of CBA since the model
was spun up to steady state in 1860 which thus leads to a
small discrepancy in net CO2 fluxes between the two model
formulations.

3.1.2 Carbon stocks

The soil carbon stocks simulated by the two models differed
in magnitude and also in their latitudinal distributions. The
global estimate for total soil carbon by CBA was 4.5-fold
larger than that by YAS (Table 1). The global estimate for
litter simulated by the YAS model was larger than that simu-
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Figure 2. The annual cycles of net primary production (NPP) (a), heterotrophic respiration (c) and net ecosystem exchange (NEE) (e)
globally from the CBALANCE (in cyan) and Yasso (in red) model versions. In the sub-panels, annual values are plotted for 2000–2014 for
NPP (b), heterotrophic respiration (d) and NEE (f).

Figure 3. The annual cycle of net primary production (NPP) (a, b), heterotrophic respiration (c, d) and net ecosystem exchange (e, f) in the
Northern Hemisphere and Southern Hemisphere separated into latitudinal zones. CBALANCE (CBA) results are shown as solid lines and
the Yasso (YAS) results as dashed lines.

lated by CBA. Vegetation carbon biomass was similar in both
model formulations (Table 1).

The global distribution of soil carbon is very different be-
tween the model formulations (Figs. S11c, d, S12). The CBA
model has large values of soil carbon at the mid-latitudes of
the Northern Hemisphere. YAS predicts larger values in the

temperate region of the Northern Hemisphere, but the high-
est values of soil carbon are located in arctic regions. The
data-based estimates from SoilGrids and HWSD also predict
the highest values at high northern latitudes (Figs. S11a, b
and S12). The CBA model predicts higher values and dif-
fering latitudinal patterns south of 60◦ N compared to the
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Table 1. Global C storage in the two different model formulations
averaged over 2000–2014. For the YAS model, the eight above-
ground pools are summed to obtain the litter pool, while the remain-
ing 10 pools (below ground and humus) represent the soil pool.

C pool (Pg C) CBA YAS

Litter C 171 263
Soil C 3217 703
Vegetation C 432 432

data-based values (Fig. S12). The YAS model shows a very
similar behaviour to the HWSD latitudinal pattern and mag-
nitude south of 60◦ N. The r2 and the root mean square er-
rors are generally better for the YAS model than the CBA
model when comparing the values along the latitudinal gra-
dient against the data-based products (Table S2).

The turnover times of the two formulations must differ
since the soil carbon pools are of very different magnitudes,
but the annual Rh between the model formulations is similar.
The turnover times, τ , of soil carbon pools can be evaluated
at both grid scale and from global values. This global value
is obtained by dividing the total soil carbon pool (to which
both soil and litter carbon stocks are added) by the annual
Rh. Calculated from the global values averaged for 15 years,
the apparent turnover time for CBA is 51.3 years and for
YAS 14.8 years. The turnover times of CBA are generally
longer and show a large spread across different temperatures
(Fig. 4a). The YAS model shows a large spread of turnover
times at warmer temperatures, but below 0 ◦C the range is
narrower (Fig. 4b). Both models predict the fastest turnover
rates in moist and warm conditions. The anomalies of the
turnover times are presented in Fig. 5. These have been cal-
culated from the carbon pools over the whole time period and
the mean annual Rh. The models show longer turnover times
at high northern latitudes and dry areas. The CBA model
shows longer turnover times in Central Asia where the mois-
ture conditions limit the decomposition. However, the YAS
model does not show such large anomalies in this region.

3.1.3 Box model

To assess whether the larger seasonal cycle amplitude in Rh
by YAS is caused by the larger litter pool or the environmen-
tal response functions, a simple box model calculation was
performed (detailed description is given in the Appendix).
When global respiration was calculated with the turnover
times and soil carbon pools of the YAS model but using the
environmental responses and drivers of the CBA model, the
annual amplitude decreased by 29 % compared to the origi-
nal YAS model (Table A1). However, the yearly maximum
value did not change much. When the opposite was done,
and the turnover time and soil carbon pools of CBA were
used with the environmental responses and inputs of the YAS
model, the magnitude of global heterotrophic respiration in-

Figure 4. The turnover times for different temperature and precipi-
tation regimes for the CBALANCE (a) and Yasso (b) models.

Figure 5. Turnover time, τ , anomalies for CBALANCE (a) and
Yasso (b). The average turnover time that was subtracted was
104 years for CBALANCE and 31 years for Yasso.

creased approximately 1.4-fold (Fig. A1). The increase in the
amplitude was 83 % (Table A1). Therefore, this simple anal-
ysis suggests that the environmental variables and their re-
sponse functions cause the larger global amplitude of Rh in
the YAS model formulation. To further disentangle whether
this change was caused by the different environmental drivers
or their functional dependencies, we made additional tests.

The amplitudes of the seasonal cycle of Rh (difference
between the maximum and minimum values) are shown in
Table A1. For the YAS model, a strong decrease in the
amplitude happens when both driver variables and the re-
sponse functions are changed. When only driver variables
are changed, only a slight decrease occurs. When the re-
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Figure 6. The seasonal cycle amplitudes of atmospheric CO2 (in
ppm) (a) and r2 (b) between the simulations and observations at dif-
ferent Global Atmosphere Watch stations as a function of latitude.
The black circles denote observations, the magenta crosses are the
results from the CarbonTracker Europe 2016 (CTE), the cyan stars
are the results from the CBALANCE (CBA) run, and the red dia-
monds are the results from the Yasso (YAS) run.

sponse functions are changed, the decrease in the amplitude
is more pronounced at 21 %. The amplitude predicted by
the CBA model increases when the driving variables and re-
sponse functions are changed (Table A1). This increase oc-
curs when either driving variables or response functions are
changed individually. However, with the change in the re-
sponse functions, the change in amplitude is larger (74 %).
In summary, the response functions have a more pronounced
role in the changes than the driving variables alone, and this
was true for both models.

3.2 Evaluation against surface observations

Seasonal cycle amplitudes of atmospheric CO2 are success-
fully simulated by the modelling framework across different
latitudes (Fig. 6a). The r2 values of the observed seasonal cy-
cle and the model estimates are high across latitudes despite
some lower values at mid-latitudes of the Northern Hemi-
sphere (Fig. 6b). Averaged over all latitudes, the r2 value,
calculated as the linear correlation of simulated and observed
averaged annual cycles, was 0.93 for CTE, 0.90 for CBA and
0.87 for YAS.

The capability of the model formulations to simulate the
amplitude of the seasonal cycle differs within latitudinal re-
gions (Fig. 6). The CBA model is able to capture the tim-

ing of the seasonal cycle at northern latitudes but has a ten-
dency to overestimate the seasonal cycle amplitude by about
30 % north of 45◦ N. In this region, the underestimation of
seasonal cycle amplitude by CTE is approximately 5 % and
by YAS 14 %. In the 0–45◦ N region, YAS underestimates
the seasonal cycle amplitude, on average, by approximately
32 %, whereas CTE underestimates it by 4 % and CBA over-
estimates it by 1 %. The agreement between estimated atmo-
spheric CO2 and observations was worse in YAS than in CBA
when considering the r2 value and the seasonal cycle. Over-
all, the magnitude of the seasonal cycle amplitude predicted
by YAS had less bias north of 45◦ N compared to CBA but
large underestimations at latitudes of 0–45◦ N where CBA
was very successful in simulating the right seasonal cycle
amplitude.

Four surface observation sites in the Northern Hemisphere
illustrate a similar behaviour in the seasonal cycle and its am-
plitudes as described above (Fig. 7 and Table S3). To confirm
the general quality of the TM5 model used for both YAS and
CBA, we plotted its biospheric a posteriori fluxes from Car-
bonTracker Europe 2016; indeed, deviations between CTE
and observations are much smaller than from the JSBACH
model at all sites. At the high-latitude sites, Alert and Pal-
las (Fig. 7a, e), CBA overestimates the seasonal cycle ampli-
tude, while YAS shows some phase shift of the cycle. The
observed seasonal cycle amplitudes are smaller at the two
more southern sites, Niwot Ridge and Mauna Loa. For those
sites, CBA is generally successful in capturing their magni-
tude (Table S3), whereas YAS underestimates them strongly.
YAS also has difficulty capturing the seasonal pattern at Ni-
wot Ridge. This was happening generally in the temperate re-
gion, as is also seen in the lower r2 values of the YAS model
at the different sites (Fig. 6).

When comparing the overall bias in atmospheric CO2 at
these four sites between the observations and the model sim-
ulations, CBA overestimated CO2 by 3.65 ppm and YAS by
2.27 ppm when averaged over all the measurements within
the study period. A closer look at the bias at Mauna Loa
(Fig. S13) revealed biases in the 2000–2014 trends for CBA
and YAS, whereas CTE shows no bias in the trends. The
CBA overestimates CO2 by 1.76 ppm in the beginning and
by 3.74 ppm in 2014. The overestimates by YAS are smaller:
1.12 ppm in 2000 and 3.14 in 2014. The results at surface
sites show that CBA largely overestimated seasonal cycle
amplitude at high northern latitudes, whereas YAS almost
consistently underestimated the seasonal cycle amplitude in
the Northern Hemisphere. CBA captured the seasonal cycle
patterns better than YAS across different latitudes. Overall,
the YAS model showed biases in the atmospheric CO2 cycle
at temperate latitudes in the Northern Hemisphere, whereas
the CBA model had biases at high latitudes in the Northern
Hemisphere.
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Figure 7. The detrended seasonal cycles of atmospheric CO2 at
four Global Atmospheric Watch sites, Alert (a), Pallas (c), Niwot
Ridge (b) and Mauna Loa (d), for observations (OBS) in black, Car-
bonTracker Europe 2016 (CTE) in magenta and the two JSBACH
model versions with CBALANCE (CBA) with the cyan lines and
Yasso (YAS) with the red lines. The solid grey line denotes the zero
line. The grey shaded area shows the standard deviations of the ob-
servations after detrending. DOY denotes day of year.

3.3 Column XCO2 comparisons for TransCom regions

This evaluation of the two soil modules against satellite col-
umn XCO2 was carried out for the different TransCom (TC)
regions (Fig. 1). The comparison was based on seasonal cycle
amplitudes and r2 values similar to the surface site evalua-
tion. Not all the TC regions show a clear seasonal cycle, such
as regions in South America (TC regions 3 and 4), the north-
ern part of Africa (TC= 5) and Australia (TC= 10). For
completeness, we show the analysis also for these regions in
Table S5. For regions with clear seasonal cycles, we used the
ccgcrv curve fitting procedure available from NOAA (https://
www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html, last ac-
cess: 1 July 2017; Thoning et al., 1989), but for regions with
missing data or no clear seasonal cycle, we averaged over all
years of data.

To further illustrate the results from this comparison, we
show data for two regions that have a clear seasonal cycle.
In TC region 2, the southern part of North America, CBA
is more successful in capturing the observed seasonal cy-
cle amplitude than YAS (Fig. 8a) even though CBA reaches
the minimum XCO2 later than observations. YAS underes-
timates the seasonal cycle amplitude by 56 % and has a dif-
ferent seasonal pattern than observations, so the minimum is
reached earlier than in the observations and also the shape

Figure 8. The seasonal cycles of detrended atmospheric XCO2 at
TransCom region 2, the southern part of North America (a), and
region 11, Europe (b). The grey line shows the standard deviations
of the observations after detrending. The observations are in black,
CBALANCE (CBA) model results in cyan and Yasso (YAS) model
results in red. The solid grey line denotes the zero line, and DOY
denotes day of year.

during the summer period differs from the observations. In
Europe, TC region 11, both models capture the seasonal cy-
cle amplitude (Fig. 8b, Table S4) and the seasonal cycle in
the first part of the year. The increase of CO2 in autumn is
not captured so well by the simulations.

Overall, observed XCO2 and simulated XCO2 differ from
each other in ways similar to the surface site observations.
Estimates of seasonal cycle amplitude by YAS are too small
at mid-latitudes (Fig. 8a) and in TC regions 2, 5 and 8 com-
pared to the observations, and CBA is better at capturing
the observed annual cycles. At TC= 1 (the northern part of
North America), CBA overestimates the seasonal cycle am-
plitude, while YAS better captures it. However, the seasonal
cycle pattern is better captured with CBA (Table S4) than
with YAS. Generally, YAS had smaller seasonal cycle ampli-
tudes than the observations, and CBA was more consistent
with the observations in most TC regions. CBA is also better
than YAS in capturing the seasonal pattern of XCO2 in all
TC regions (Table S4).

There is bias in absolute XCO2 between the GOSAT re-
trievals and the model simulations. When averaged over the
time period used and the TC regions, CBA overestimates the
GOSAT observations by 3.37 ppm and YAS by 2.33 ppm.
These values were in line with the bias in absolute CO2 esti-
mates at the four surface sites.

4 Discussion

In this work, our aim was to use atmospheric observations
to assess whether soil carbon models of a land surface model
can be evaluated with this kind of framework. Our main find-
ing was that the two models predicted different annual cycles
of global Rh with the YAS model having a larger amplitude.
This, in turn, leads to clear differences in the model predic-
tions of seasonal cycles of the atmospheric CO2 concentra-
tion at surface stations and TC regions. To attribute the differ-
ences between the two models to a specific cause, we need to
compare their results from their different aspects and to also
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judge whether our model simulations are reasonable in light
of previous research.

4.1 Evaluation of carbon fluxes

Annual heterotrophic respiration was 66.1 PgCyr−1 for CBA
and 65.5 PgCyr−1 for YAS (Table 2), which fall into
the range of estimates from Earth system models (41.3–
71.6 PgCyr−1) and are close to the observation-based esti-
mate of 60 PgCyr−1 (Shao et al., 2013). Part of the differ-
ence between CBA and YAS is caused by the fire fluxes. The
YAS model has a larger litter pool that behaves as fuel for
fires. Therefore, to have the system at steady state, global
heterotrophic respiration by YAS must be less. Moreover, the
simulation time of 140 years before the beginning of the anal-
ysis might cause some divergence between the model runs.

Moving to monthly timescales, we can see that the global
seasonal Rh cycle had a larger amplitude with YAS than with
CBA (Fig. 2), and a simple box model calculation found that
environmental drivers and their response functions are the
cause, not the large litter pool in the YAS model. It is anyhow
challenging to further disentangle whether this larger ampli-
tude is mainly caused by the differing environmental drivers
of the soil carbon models or the functional dependencies of
those drivers play a bigger role. The analysis by the box
model suggested a stronger role of the response functions
compared to the driving variables at monthly timescales, but
strong conclusions cannot be drawn from such a simple anal-
ysis. Other studies have also shown that the response func-
tions themselves lead to pronounced differences between soil
carbon models (Wieder et al., 2018).

When heterotrophic respiration is compared by latitudinal
zones, differences between the model formulations are vis-
ible in the variability and timing of the seasonal cycles in
many regions (Fig. 3). Rh correlates strongly with the envi-
ronmental drivers of the models in different latitudinal zones
(Table 3). Both models are largely influenced by their mois-
ture dependency in the tropical region (Table 3). CBA is
driven by soil moisture in a linear dependence, and YAS is
driven by precipitation in an exponential relationship. Since
the ranges of precipitation are larger than the variability in
soil moisture and due to the exponential relationship between
precipitation and decomposition in YAS, YAS is more tightly
coupled with moisture than CBA. At annual timescales, for
which the YAS model was originally developed, precipitation
and soil moisture behave similarly. However, the seasonal cy-
cles of the two variables are different. Precipitation begins
earlier in the season in the tropical region, and it causes YAS
to reach yearly maximum heterotrophic respiration earlier
than CBA, which is driven by soil moisture in this region.
Likewise, air and soil temperatures are more similar in the
long term than in the short term. Particularly in the temper-
ate region, where the temperature plays a larger role, the air
temperature has larger variability than soil temperature, and

this leads to a different kind of seasonal pattern of the Rh
predictions by the two different soil models.

The observations show that litterfall has strong influences
on heterotrophic respiration (Chemidlin Prévost-Bouré et al.,
2010). At seasonal timescales in the different latitudinal
zones, there is no clear influence of litterfall driving the het-
erotrophic respiration seen in the models, which primarily
results from the pre-defined turnover times of the fast litter
pools smoothing out individual litter fall events. Changes in
the chemical composition of litterfall are considered to be
one potential reason for changes in the amplitude of atmo-
spheric CO2 (Randerson et al., 1997), and this is something
we could study with the YAS model.

Different moisture dependencies of Rh have previously
been found to be important (Exbrayat et al., 2013). At
the global level, Hursh et al. (2017) recommended using
parabolic soil moisture functions in preference of functions
based on mean annual precipitation. Their study considered
soil respiration; i.e. the autotrophic respiration of roots was
also included. Ťupek et al. (2019) evaluated the YAS model
against Rh observations at two coniferous sites in southern
Finland and found problems in capturing the seasonality in
the observations and the variability in the summertime fluxes.
One reason they mention for this is the response of the simu-
latedRh to soil moisture conditions sinceRh is not attenuated
in very moist conditions, and they found a need to improve
the moisture dependency of the YAS model. This is in line
with our findings in that a model that has been parameterised
at annual timescales requires further development before it
can be reliably applied at shorter timescales. Precipitation
was originally used in the YAS model as a proxy for soil
moisture since enough accurate soil moisture observations
for model development were not available. Clearly, this idea
needs to be reconsidered as our results show that at zonal
spatial scales and monthly temporal scales, Rh from YAS is
not correlated with the soil moisture.

Simulated global GPP (165 PgCyr−1) is notably larger
than the estimated 106–130 PgCyr−1 derived from FLUX-
COM for the time period. However, the simulated value is
still within the range of other data-driven estimates such as
the one from the Carbon Cycle Data Assimilation system be-
ing 146 (± 19) PgCyr−1 (for 1980–1999) (Koffi et al., 2012)
and isotope-based estimates being 150 to 175 PgCyr−1 (for
1980–2009) (Welp et al., 2011). Figure S9 shows that the bias
relative to FLUXCOM exists throughout most of the North-
ern Hemisphere and the tropics but has only a minor influ-
ence on the seasonal cycle of GPP. The high estimate of GPP
will propagate into larger NPP, litter input, and therefore also
simulated heterotrophic respiration and soil carbon stocks.
While this may contribute to a slightly larger simulated sea-
sonal cycle of atmospheric CO2 at northern stations, it is un-
likely that this will affect our conclusions on the impact of the
different soil formulations on the ability of JSBACH to sim-
ulate the seasonal cycle of heterotrophic respiration, the res-
idence time of carbon in soil and, as a consequence, its abil-
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Table 2. Global terrestrial C fluxes from the two different model formulations averaged over 2001–2014.

Row Flux (PgCyr−1) CBA YAS

A Net CO2 flux (A=−B+E+G+H+ I+ J) −1.68 −1.75
B GPP 167 Same
C Heterotrophic resp. Rh 66.1 65.5
D Autotrophic resp. Ra 89.9 Same
E TER (total ecosystem respiration) (E=C+D) 156 155
F NPP (F=B−D) 77.4 Same
G Direct land cover change 2.30 Same
H Fire 1.60 2.10
I Harvest 0.23 Same
J Herbivory 5.54 Same

Table 3. The Pearson correlation r values for the different latitudinal zones between modelled heterotrophic respiration and the environmental
drivers of the CBALANCE (CBA) and Yasso (YAS) models. The environmental drivers are all calculated as monthly means for the latitudinal
zones. Significant correlation (p value< 0.05) have been written in bold; α is the relative soil moisture, Tsoil and Tair are soil and air
temperature, and Pa is the precipitation.

Lat. zone CBA vs. α CBA vs. Tsoil YAS vs. Pa YAS vs. Tair YAS vs. α

60–90◦ N −0.22 0.96 0.95 0.90 −0.48
30–60◦ N −0.81 0.99 0.98 0.95 −0.92
0–30◦ N 0.96 0.49 0.96 0.93 0.58
0–10◦ S 0.92 0.03 0.93 0.52 0.46
10–30◦ S 0.94 0.38 0.93 0.92 0.48
30–60◦ S −0.46 0.76 0.78 0.95 −0.91

ity to reproduce the observed seasonal cycle of atmospheric
CO2 or its long-term trend. Nevertheless, this comparison
shows that in order to further improve JSBACH’s perfor-
mance against these data, GPP biases should be reduced. Fur-
thermore, the high GPP values resulting from the simulations
would likely be lower if the nutrient cycles of nitrogen and
phosphorus were included in the version of JSBACH used
(Goll et al., 2012). Beside using a JSBACH version with nu-
trient cycles, further development work on the phenological
cycle could improve the estimated GPP. The difference of the
modelled GPP to the FLUXCOM product (Fig. S9) suggests
that the maximum leaf area index might be overestimated in
the tropics. Also, the timing of the phenological cycle north
of 60◦ N might benefit from re-parameterisation.

4.2 Evaluation of carbon stocks and turnover times

The two soil models predicted different global soil car-
bon stocks (Table 1) with different latitudinal distributions
(Fig. S12). Similar to earlier studies (Goll et al., 2015; Thum
et al., 2011), in our results the YAS model was more suc-
cessful than CBA in estimating global soil carbon stocks
that are similar to estimates from observations, approxi-
mately 1500 PgC including large uncertainties (from 504 to
3000 PgC) (Scharlemann et al., 2014), as can be seen in the
different estimates from HWSD (1578 PgC) and SoilGrids
(2870 PgC) (see also Tifafi et al., 2018). The YAS model

is widely used in different applications at smaller scales,
and its performance to estimate soil carbon stocks has been
found to be good (Hernández et al., 2017). Comparability be-
tween the model-calculated and the observed carbon stocks
is relevant for any analyses of carbon fluxes because in both
models investigated here, the fluxes are proportional to the
stocks (flux equals decomposition rate times stock). Mod-
elled global vegetation carbon was within the observation-
based estimate of 442± 146 PgC of Carvalhais et al. (2014).

The distribution of soil carbon stocks was also more real-
istic in YAS than in CBA (Fig. S12, Table S2). The large soil
carbon stocks at mid-latitudes predicted by CBA (Figs. S11c,
S12) are unrealistic compared to current data-based estimates
of the global soil carbon distribution (Fig. S12). The large
carbon stocks at high latitudes predicted by the YAS model
(Figs. S11d, S12) are more in line with the observations but
miss the high values observed from peatlands and permafrost
in high-latitude regions. The version of JSBACH used does
not include peatlands and is modelling only mineral soils.
Therefore, the large carbon reservoirs of peatlands are not
captured by the model. This JSBACH version also did not
have permafrost described. If permafrost would be modelled,
the seasonal cycle of heterotrophic respiration at high lati-
tudes would likely be dampened as the depth of the active
layer determines the amount of soil capable of respiring. The
YAS model has been used in a JSBACH version containing
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permafrost in a study concentrating on the Russian far east
(Castro-Morales et al., 2018). Both CBA and YAS were orig-
inally developed for mineral soils and for applications with
organic soil, so model development and testing at smaller
than global scales could be useful.

The environmental responses of the turnover times have
quite different forms for the two soil carbon models (Fig. 4).
The CBA model shows a wide distribution of turnover times
across the whole temperature range, whereas the YAS model
shows a larger spread in the tropical temperature range. This
large spread in warm conditions is also observed (Koven
et al., 2017) and is caused by the saturating temperature func-
tion of the YAS model, as shown in Fig. S1c. The large
spread in turnover times as predicted by the CBA model
might be caused by the fact that CBA is driven by soil tem-
perature in one soil layer. The environmental responses of the
turnover times at annual timescales behave in a similar way
as those at monthly timescales so that moisture is a more
important driver in warm regions and temperature in cold re-
gions, as was seen in Table 3.

The study by Koven et al. (2017) provided an empirically
based turnover time as a function of temperature. At 20 ◦C,
this turnover time was approximately 11± 2 years, which
is closer to the estimate of the YAS model (calculated for
values of 19.5–20.5◦C and their standard deviation) being
22± 21 years and much lower compared to the CBA esti-
mate of 64±37 years. At lower temperatures, at −15 ◦C, the
empirically based turnover time is 200±100 years, and YAS
underestimates this with 82± 41 years (calculated for val-
ues −15.5− (−14.5) ◦C), whereas the prediction by CBA is
closer (150± 80 years). Therefore, the turnover times sim-
ulated with the YAS model are closer to the observations in
warm temperatures, but the turnover times are too low in cold
temperatures. CBA estimated turnover times that are too high
in warm temperatures, but turnover times in colder tempera-
tures were in the same order of the observations.

The global turnover time of soil carbon by CBA was some-
what larger than in an earlier study, where it was estimated
to be 40.8 years (Todd-Brown et al., 2014). This value was
at the higher end of the CMIP5 models. The global turnover
time from YAS, which was 14.8 years, is more in the range
of the other CMIP5 models (Todd-Brown et al., 2014). The
spatial distribution of the turnover time anomalies shows
differences caused by the environmental drivers and their
dependencies at annual timescales. When comparing these
overall turnover times of total soil carbon, it is important to
keep in mind that both models consisted of carbon pools that
had widely varying turnover times. For example, despite the
higher overall turnover time, the turnover time of the most
recalcitrant carbon pool of YAS was an order of magnitude
smaller than that of CBA.

4.3 Evaluation using atmospheric CO2

The differences between the two models in the seasonal cycle
of atmospheric CO2 were strong. CBA better reproduced the
seasonal cycle amplitudes, capturing the shape of the sea-
sonal cycle both for surface sites and comparisons in the
TC regions even though its soil carbon distribution had a
worse performance compared to YAS. CBA exaggerated the
seasonal cycle amplitudes at high northern latitudes, as was
found previously (Dalmonech and Zaehle, 2013). It is impor-
tant to keep in mind that this study was done within a land
surface model and that modelled GPP was biased. The sim-
ulated GPP had a larger magnitude and some bias in its sea-
sonal cycle, and therefore its evaluation against atmospheric
CO2 observations is influenced by it. Even though the at-
mospheric observations provide a valuable and informative
comparison for the model results, their use as a benchmark
metric needs careful consideration.

The differences in absolute CO2 and XCO2 levels against
the surface observations and the satellite retrievals, respec-
tively, with modelled CO2 are caused by the modelling sys-
tem, but this bias does not influence the analysis performed.
We obtained the land surface fluxes (GPP, respiration, fire
and herbivory fluxes and land-use change emissions) from
JSBACH and, together with the rest of the fluxes from Car-
bonTracker Europe2016 (CTE), we used TM5 to obtain at-
mospheric CO2 values. Fossil fuel emissions have not been
optimised in CTE. Therefore, we obtained ocean fluxes that
had been optimised with the land carbon cycle of CTE and
that differ from the JSBACH estimate. The land carbon cy-
cle of CTE is modelled by the SiBCASA-GFED4 model
(van der Velde et al., 2014) and fire emissions that were es-
timated from satellite-observed burned areas (Giglio et al.,
2013). The net global a posteriori land sink of CTE is approx-
imately −2.0(±1.1)PgCyr−1 for 2001–2014. On the other
hand, the JSBACH estimate for the net land sink is approxi-
mately−1.7 PgCyr−1 (Table 2) and is therefore smaller than
the land sink of CTE. The fire flux of JSBACH is modelled,
whereas the estimate of CTE is based on data. As shown in
Fig. S13 for Mauna Loa, the bias in the CO2 develops dur-
ing the study period, and the plot shows consistency so that
YAS, which predicts a net land sink closer to CTE than CBA,
has a smaller bias at the end of the time period. We concen-
trated the analysis on the averaged seasonal cycles that are
not influenced by this linear increase.

The space-borne observations give a similar message as
the surface observations in TransCom regions, which showed
a clear seasonal cycle. Niwot Ridge is located in TransCom
region 2 (southern part of North America); there YAS also
showed an amplitude that was too low, and CBA performed
better, in a similar way as seen in the Fig. 8. The Pallas site is
located in TransCom region 11 (Europe), and at Pallas the
seasonal cycle was more pronounced than in Europe as a
whole, but, similar to the surface observations at Pallas and
TransCom region 11, the models both perform acceptably.
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Using large TransCom regions helped us to interpret the sig-
nal despite the larger variability than in the surface observa-
tions (comparing grey shaded regions in Figs. 7 and 8), and
it has been recommended to use the information content of
the satellites at continental scales (Miller et al., 2018).

The transport model itself also brings uncertainty to the re-
sult. The modelling of atmospheric transport is a challenging
task as open scientific questions in the field remain (Crotwell
and Steinbacher, 2018), and the models contain biases (Gur-
ney et al., 2004). The errors in atmospheric transport models
cause a substantial difference in the inverse CO2 model flux
estimates (Peylin et al., 2013). However, in this study we only
used one atmospheric transport model. It is expected that the
biases, as only one transport model was used, are similar be-
tween the two soil model runs and are not the cause for the
large differences seen in the two simulations.

5 Conclusions

We demonstrated how atmospheric CO2 observations can be
used to evaluate two soil carbon models within the same
land surface model and the different viewpoints offered by
several variables considered. We used two different soil car-
bon models within one land surface model and used a three-
dimensional transport model to obtain atmospheric CO2
while obtaining the anthropogenic and ocean fluxes from
CarbonTracker Europe framework. We evaluated the carbon
stocks of the soil models and compared seasonal cycles cal-
culated with soil carbon fluxes from the soil models to atmo-
spheric CO2 results from both surface and space-born ob-
servations. This work highlighted how the changes in the
heterotrophic respiration transfer to the net ecosystem ex-
change estimates and further to the atmospheric CO2 signal.
We also discussed the importance of the model drivers and
their functional dependencies, which differed for the two soil
carbon models we studied. When considering both surface-
and space-based observations, it is not straightforward to say
which of the two soil carbon models performed better.

The comparison of the two soil carbon models revealed
large differences in their estimates. The YAS model better
captured the magnitude and spatial distribution of soil carbon
stocks globally. However, it was biased in its atmospheric
CO2 cycle at temperate latitudes in the Northern Hemisphere.
The CBA model, on the other hand, showed better perfor-
mance in capturing the seasonal cycle pattern of atmospheric
CO2, but it is biased at high latitudes in the Northern Hemi-
sphere. Rh from the YAS model showed a misalignment with
soil water content in tropical regions as they were negatively
correlated with each other. This suggests that the use of pre-
cipitation as a proxy for soil moisture might not be sensible
at sub-annual timescales and calls for improvement in the pa-
rameterisation of the YAS model. The use of this modelling
system can help us to assess the global consequences of the
new YAS parameterisation if this were done. The drivers of

YAS have larger variability in their values during the sea-
sonal cycle that causes a more pronounced seasonal cycle in
the heterotrophic respiration with the current parameterisa-
tion. Concerning the results, this leads to unrealistic seasonal
cycles of CO2 in temperate regions and the tropics and calls
for model improvement. CBA showed less pronounced sea-
sonal cycles of heterotrophic respiration and had issues with
CO2 amplitude only at high northern latitudes. The linear
moisture dependence therefore seems justified; however, it
likely causes the Central Asian region to have carbon stocks
that are too large. Whether this is caused by drought sensitiv-
ity that is too high or problems in the predicted soil moisture
by JSBACH is difficult to judge. The amplitude that is too
high in the high northern regions might be a result of the bi-
ases in the gross fluxes of the modelling system.

The evaluation was done within a land surface model that
overestimates GPP in comparison to an upscaled GPP prod-
uct, and this hampers doing benchmarking using this mod-
elling system. Since the model is run to a steady state dur-
ing the spin-up procedure, it also leads to other biases in the
modelling system (influencing, for example, autotrophic res-
piration). Overestimated GPP leads to an enhanced litter in-
put to the soil. This causes the comparison of the magnitudes
of the soil carbon pools to the actual observations to be cum-
bersome as the overestimated litter fall causes biases in the
model estimates. In this study, the magnitudes of simulated
soil carbon are therefore not as good as the spatial patterns
as an indicator of the model performance (such as latitudinal
gradient). The other downside of the GPP biases is their in-
fluence on the estimated NEE. Due to the biases in the timing
and magnitude of the other carbon fluxes, it is challenging to
use CO2 as a benchmark for heterotrophic respiration. How-
ever, in our study, the two soil models lead to pronounced
differences in the atmospheric CO2, and we were also able to
locate latitudinal regions where the models had the most is-
sues. Therefore, this approach provides a method to evaluate
how the changes in the heterotrophic fluxes further influence
the atmospheric signal and helps us to track which geograph-
ical areas are contributing to the questionable model perfor-
mance.

Soil carbon models have several development needs
(Bradford et al., 2016; van Groenigen et al., 2017) that
are now partly being answered with next generation mod-
els which include more mechanistic representation of sev-
eral below-ground processes (Wieder et al., 2015; Yu et al.,
2020). The development of moisture dependency from sim-
ple empirical relationships is moving towards mechanistic
approaches which may yield more reliable results in the long
term (Yan et al., 2018). Our results confirm that the moisture
dependency of heterotrophic respiration plays on important
role in the whole global carbon cycle.
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In this study, we used space-born XCO2 observations in
addition to the surface observations of CO2. They were pro-
viding a larger-scale confirmation of the results obtained
from the surface observations and thus provided complemen-
tary information. The number of satellite observations of col-
umn XCO2 are increasing at a fast pace; for example, Orbit-
ing Carbon Observatory-2 (OCO-2) observations started in
2014, and they hold great potential for carbon cycle studies
(Miller and Michalak, 2020).
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Appendix A: Description of the box model

A simple box model calculation was performed to evaluate
the importance of the dependencies of environmental drivers
and the soil carbon pool sizes on the larger global seasonal
cycle amplitude in Rh as predicted by YAS. In this box
model, we assume that heterotrophic respirationRh is a prod-
uct of environmental dependencies and the turnover time as
follows:

Rh,YAS = b · fYAS,Tair(Tair) · fYAS,Pa(Pa) ·
Csoil,YAS

τYAS
,

where b =
6fCBA,Tsoil(Tsoil) · fCBA,α(α)

6fYAS,Tair(Tair) · fYAS,Pa(Pa)
, (A1)

where Rh,YAS is the heterotrophic respiration of model YAS,
b is a scalar that takes into account the different magnitudes
of the response functions, Tair is air temperature, Pa is annual
precipitation,Csoil,YAS is the total soil carbon pools, and τYAS
is the turnover time of the total soil carbon pools. Tsoil is soil
temperature, and α is the relative soil moisture. This formu-
lation in Eq. (A1) refers to the YAS model. The response
functions are as shown in Sect. 2.1.2. For the CBA model,
the formulation is as follows:

Rh,CBA =
1
b
· fCBA,Tsoil(Tsoil) · fCBA,α(α) ·

Csoil,CBA

τCBA
. (A2)

These responses were introduced in Sect. 2.1.1.

Figure A1. Different annual cycles of the heterotrophic respiration (Rh) predicted by the Yasso (YAS) (a) and CBALANCE (CBA) (b)
model and the different alternatives from the box model calculation.

The equations used monthly heterotrophic respiration, en-
vironmental drivers and soil carbon stocks averaged over
2000–2014 to estimate the turnover times for each grid point
for YAS using Eq. (A1) and for CBA using Eq. (A2). Us-
ing these turnover times, we calculated global Rh with the
turnover times and soil carbon pools of each model by mak-
ing different tests. First, we used the environmental responses
and drivers of the other model (lines B in Table A1). Ad-
ditionally, we changed the driving variables but kept the
original response functions (lines C in Table A1). Then we
changed only the response functions of the original model
while keeping the original driving variables (lines D in Ta-
ble A1).

Since the driving variables of soil moisture and annual pre-
cipitation differed in magnitude by approximately 4-fold, soil
moisture was multiplied by 4 when using the function for an-
nual precipitation (fYAS,Pa ), and when annual precipitation
was used in the function for soil moisture (fCBA,α), it was
divided by 4. The annual cycles of Rh are shown in Fig. A1
and the amplitudes in Table A1.
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Table A1. The amplitude of global heterotrophic respiration within a year in different box model formulations. The input variables or
functions that differ from the original model formulation are in bold letters.

Line Option Amplitude (PgCyr−1)

A YAS – original model 3.8
B YAS with inputs Tsoil and α and functions fCBA,Tsoil and fCBA,α 2.7
C YAS with inputs Tsoil and α and functions fYAS,Tair and fYAS,Pa 3.7
D YAS with inputs Tair and Pa and functions fCBA,Tsoil and fCBA,α 3.0

A CBA – original model 2.3
B CBA with inputs Tair and Pa and functions fYAS,Tair and fYAS,Pa 4.2
C CBA with inputs Tair and Pa and functions fCBA,Tsoil and fCBA,α 3.2
D CBA with inputs Tsoil and α and functions fYAS,Tair and fYAS,Pa 4.0
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(http://www.mpimet.mpg.de/en/science/models/license/, last ac-
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continuously updated and available through a GIT repository at
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access: 15 February 2017, van der Laan-Luijkx et al., 2017). For
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port model TM5 is available via https://tm.knmi.nl (last access:
15 February 2017, Krol et al., 2005). For the curve fitting for the
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