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Abstract: The Yeongdong region, located east of the Taebaek Mountains, South Korea, often
experiences severe windstorms in spring, causing a lot of damages, especially when forest fires spread
out rapidly by strong winds. Here, the characteristics and generation mechanisms of the windstorms
in the Yeongdong region on 8 April 2012 are examined through a high-resolution Weather Research
and Forecasting (WRF) model simulation. In the Yangyang area, the steep descent of the isentropes
on the lee slope of the mountain and their recovery farther leeward are seen. Inversion layers and
incoming flow in hydraulic jump regime suggest that the hydraulic jump is responsible for the
downslope windstorm. In the Jangjeon area, the plume-shaped wind pattern extending seaward from
the gap exit is seen when the sea-level pressure difference between the gap inside and the gap exit,
being responsible for the gap winds, is large. In the Uljin area, downslope windstorms pass over the
region with weak wind, low Richardson number, and deep planetary boundary layer (PBL), making
banded pattern in the wind and PBL height fields. This study demonstrates that the characteristics
of the windstorms in the lee of the Taebaek Mountains and their generation mechanisms differ
depending on local topographic features.

Keywords: downslope windstorms; hydraulic jump; gravity waves; gap winds; planetary
boundary layer

1. Introduction

There are many meteorological phenomena directly associated with topography, which include
mountain/valley winds, downslope windstorms, gap winds, lee waves, lee vortices, cold-air damming,
and banner clouds [1]. When winds blow down on the lee slope of a mountain, they become strong,
occasionally producing severe downslope windstorms. Downslope windstorms are observed in many
regions of the world, and they are called with local names, for example, föhn in the Alps, bora in the
Adriatic, and chinook in the Rocky Mountains. When winds blow through a gap of mountains, strong
winds, called gap winds, can be produced. Gap winds are also observed in many regions of the world,
such as the Strait of Juan de Fuca and the Rhine region. Downslope windstorms and gap winds have
received considerable attention because of their fascinating nature as well as damages they cause.

Three different mechanisms have been proposed to explain the generation/development of
downslope windstorms. Summaries of the mechanisms are given in [1,2]. The hydraulic theory, based
on [3], suggests that there is a similarity between hydraulic jumps and downslope windstorms and
that downslope windstorms can be generated when a transition from subcritical flow to supercritical
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flow occurs. For the atmospheric flow to undergo the transition, some circumstance, such as wave
breaking, capping by a mean-state critical layer, or Scorer-parameter layering, is required [2].

The other two generation mechanisms for downslope windstorms, which are related to mountain
waves, are the partial reflection and the critical-level reflection. Eliassen and Palm [4] found that when
upward propagating (internal) gravity waves encounter a region where the Scorer parameter changes
rapidly with height, the waves are partly reflected. Klemp and Lilly [5] considered a multi-layer
atmosphere and suggested that severe downslope windstorms can occur when reflected downward
propagating gravity waves are optimally superposed with upward propagating gravity waves. Clark
and Peltier [6] found that downslope windstorms occur after upward propagating gravity waves break.
At the wave-breaking region, which is characterized by a locally reversed flow and the Richardson
number smaller than 0.25, incident gravity waves are reflected rather than absorbed. The reflection of
upward propagating gravity waves at the critical layer leads to amplifying resonant gravity waves,
producing downslope windstorms. In addition, they found that for reflected and upward propagating
gravity waves to interfere constructively and resonate, the wave-induced critical layer should be
located at heights of z = (n + 3/4) λz, where n = 0, 1, 2, . . . and λz is the vertical wavelength of the
hydrostatic gravity wave.

The generation/development mechanisms for gap winds have also been proposed. In the
beginning, a funnel effect, also known as the Venturi effect, was proposed. According to [7], when air
enters a gap, the speed of the air becomes high within the gap due to mass conservation. However, in
reality, gap winds are in general strongest near the exit of a gap, not in the inner region of the gap.
To explain this, a mechanism taking account of the pressure gradient around an exit was proposed [8,9].
When the flow escapes from a gap, the depth of the flow becomes shallow in order to conserve mass
and accordingly, the pressure at an exit decreases. The resultant horizontal pressure gradient produces
the strongest winds near the exit of the gap.

Many numerical modeling studies have been performed to explain the generation/development
of observed downslope windstorms [10–15]. Decker and Robinson [10] showed that the downslope
windstorm in New Jersey is caused by hydraulic jump or trapped lee waves, using a regime
diagram suggested by [16], and partial reflection is not enough to explain the observed wind
speed. Tollinger et al. [15] showed that the maximum wind speed in the case of March 1972 northwest
Greenland windstorm is mainly explained by hydraulic jump and wave breaking contributes to
maximum wind speed. Shestakova et al. [14] also showed that Novorossiysk bora winds can be
explained by combined mechanisms of hydraulic jump and wave breaking. The relative importance of
these mechanisms depends on elevated inversion-layer strength and mean-state critical-level height.

The Yeongdong region, which is located east of the Taebaek Mountains, South Korea, often
experiences severe downslope windstorms in spring. Springtime windstorms occurring in this region
have been historically called Yang-Gan Winds, Yang-Gan denoting Yangyang and Ganseung which
belong to the Yeongdong region. Since the damages caused by dry and strong Yang-Gan winds are
severe, many studies on Yang-Gan winds have been conducted. Lee [17] showed that downslope
windstorms in the Yeongdong region on 11 February 1996 are mainly caused by the hydraulic jump
mechanism rather than the partial reflection of gravity waves at the tropopause, based on a numerical
simulation. Jang and Chun [18] investigated mechanisms for downslope windstorms in Gangneung,
the Yeongdong region. Using surface and upper-air sounding data, they analyzed 92 cases with
the observed maximum instantaneous wind speed exceeding two standard deviations of the total
mean and showed that most of the cases can be explained by the hydraulic jump, partial reflection
or critical-level reflection mechanism. Lee and In [19] conducted numerical sensitivity experiments
of downslope windstorms to inversion layer and found that the strong windstorms are generated
when the thickness of the inversion layer is thin and the altitude of the inversion layer, which causes
maximum wind speeds, differs depending on the atmospheric stability.

Since topographic features in the Yeongdong region are diverse, generation mechanisms for
windstorms in this region can differ depending on local topographic features. In this study, we examine
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the characteristics of the 8 April 2012 windstorms in the lee of the Taebaek Mountains and their
generation mechanisms according to local topographic features through a high-resolution numerical
model simulation. In Section 2, the synoptic analysis for the selected case is presented. In Section 3,
the numerical model and the simulation design are described. In Section 4, the simulation results are
presented and discussed. In Section 5, a summary and conclusions are given.

2. Synoptic Analysis

The 8 April 2012 windstorm case is analyzed in this study. Figure 1 shows the surface and
850-hPa weather charts at 0900 LT (local time = UTC + 9 h) and 2100 LT on this day. The locations
of Yangyang, Jangjeon, Uljin, and Osan stations and topographic features are shown in Figure 2b.
At 0900 LT, which is a time before the maximum instantaneous wind speed is observed at Yangyang
station, the low and high pressure systems are located north and south of the Korean Peninsula,
respectively (Figure 1a). This synoptic pressure pattern is favorable for strong westerly winds in
spring. The analysis of radiosonde data at Osan, an upstream station, reveals that the prevailing
wind direction in the lower atmosphere on 8 April 2012 is westerly to southwesterly, so it is almost
perpendicular to the ridge line of the Taebaek Mountains which is elongated approximately in the
northwest-southeast direction in the middle eastern part of South Korea. This is a good condition for
the generation of downslope windstorms. The northern low moves southeastward, and the southern
high moves eastward. The pressure gradient in the middle eastern part of South Korea becomes larger
at 2100 LT (Figure 1b). The 850-hPa weather charts (Figure 1c,d) also show a similar synoptic pressure
pattern. In addition, the 850-hPa temperature becomes high over South Korea with time (Figure 1c,d),
indicating the 850-hPa level near the mountain top height becomes more stable.
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Figure 1. Surface weather charts at (a) 0900 LT and (b) 2100 LT and 850-hPa weather charts at (c) 0900
LT and (d) 2100 LT on 8 April 2012. In (a,b), the mean sea-level pressure (blue solid lines) is contoured in
4 hPa intervals. In (c,d), the geopotential height (blue solid lines) is contoured in 30 gpm intervals and
the temperature (red dashed lines) is contoured in 3 ◦C intervals. These weather charts are provided by
the Korea Meteorological Administration [20]. The yellow and green marks on the cloud coverage
symbol in (a,b) represent the fog and rain, respectively.



Atmosphere 2020, 11, 431 4 of 16

On 8 April 2012, the 10-m maximum instantaneous wind speed is 11.3 m s−1 at Osan station and
22.2 m s−1 at Yangyang station, showing a large difference in wind speed between the upstream and
downstream stations of the Taebaek Mountains. This implies that the strong winds on the lee side are
directly related to the mountain.

3. Model and Simulation Design

In this study, the Weather Research and Forecasting (WRF) model version 3.8.1 [21] is used to
simulate the windstorms. The model domain configuration, the terrain height in the innermost domain,
and the areas and cross-section lines for analysis are presented in Figure 2. Five nested domains
centered on the Yeongdong region are considered. The horizontal resolutions of domains 1, 2, 3, 4, and
5 are 27 km (160 × 160 grid points), 9 km (331 × 331), 3 km (601 × 601), 1 km (901 × 901), and 333 m
(1000 × 1000), respectively. There are 59 layers in the vertical direction. The vertical grid size, which
is stretched with height, is ~70 m in the lowest model layer and ~410 m in the highest model layer.
The time steps for domains 1, 2, 3, 4, and 5 are 60, 20, 6.66, 2.22, and 0.3 s, respectively. The model is
integrated over 36 h from 2100 LT on 7 April to 0900 LT on 9 April 2012, and the data on 8 April 2012
are analyzed.
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Figure 2. (a) Five nested domains and (b) terrain height (m) in the innermost domain (domain 5).
The areas enclosed by the red lines, A1 and A2, include Jangjeon and Uljin stations. The red solid lines
C1 and C2 are passing Yangyang and Osan stations and Uljin station, respectively.

For the initial and boundary conditions, the ERA interim reanalysis data with 0.75◦ horizontal
resolution [22] are used. The Shuttle Radar Topography Mission (SRTM) data with a resolution of 3′′

are used to represent fine-scale topographic features [23]. The following physical parameterization
schemes are selected for the windstorm simulation: the Mellor-Yamada-Janjić planetary boundary
layer scheme [24], the unified Noah land surface model [25], the WRF single-moment 6-class cloud
microphysics scheme [26], the Dudhia shortwave radiation scheme [27], the Rapid Radiative Transfer
Model (RRTM) longwave radiation scheme [28], and the Kain–Fritsch cumulus convection scheme [29],
which is applied only to domains 1 and 2.

4. Results and Discussion

4.1. Validation

Using radiosonde data at Osan station, which is located at the upwind side of the area of
interest, the vertical profiles of the simulated wind speed and air temperature are validated (Figure 3).
At 0900 LT, although the WRF model overestimates the wind speed above a height of ~1 km, the
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simulated wind speed profile is similar to the observed profile. The model also reproduces the
temperature profile well. The WRF results and observation both show the elevated inversion layer
below a height of ~1 km, and the simulated inversion layer is thicker than the observed inversion layer.
It seems that the difference of the inversion layer thickness is to some extent caused by the different
vertical resolutions of the radiosonde data and WRF model. Below a height of ~1 km, the vertical
resolution of the WRF model stretches with height from ~70 m to ~200 m, but the vertical resolution of
the radiosonde data varies irregularly from ~20 m to ~400 m. At 2100 LT, the simulated wind speed
above a height of ~1.5 km is slightly higher than the observation. The overall pattern of the simulated
wind speed is similar to the observation. The simulated temperature profile is also well matched with
the observed one, except below a height of ~500 m.
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Figure 4 shows the time series of the 10-m instantaneous wind speed and wind direction at
Yangyang, Uljin, and Osan stations. At Yangyang station, there are two periods in which strong
winds appear in both the observation and the simulation: around 0300 LT and 1800 LT on 8 April.
The maximum wind speed in the first period is 15.9 m s−1 at 0220 LT in the observation, and it is
17.3 m s−1 at 0400 LT in the simulation. In the first period, the model well simulates the maximum wind
speed which is 1.4 m s−1 stronger and occur 1 h 40 m later compared to the observation. The maximum
wind speed in the second period is 22.2 m s−1 at 1950 LT in the observation, and it is 20.5 m s−1 at
1520 LT in the simulation. The maximum wind in the second period is simulated to be 1.7 m s−1 weaker
and occur 4 h 30 m earlier compared to the observation. The reason for the shift in the maximum wind
speed can be attributed to the fact that the upwind flow in the simulation is enhanced earlier than
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that in the observation. The simulated 10-m wind direction is well matched with the observed one.
The wind direction at Yangyang station is mainly westerly to southwesterly for both the simulation
and the observation.
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Figure 4. Time series of (a–c) the 10-m instantaneous wind speed and (d–f) the 10-m instantaneous
wind direction at (a,d) Yangyang, (b,e) Uljin, and (c,f) Osan stations. The black and red lines indicate
the observed data and simulation results, respectively. The blue dashed line in (b,e) indicates the time
series of the simulated 10-m wind speed and the wind direction at the location 10∆x (3.33 km) west of
Uljin station.

The observed 10-m instantaneous wind speed at Uljin station is generally weaker than that at
Yangyang station. However, the strong winds at Uljin station also appear in two periods on 8 April.
The strong winds in the first period appear around 1040 LT in both the observation and the simulation.
The model simulates the maximum wind speed in the first period as 15.7 m s−1, which is very close to
the observed value of 16.2 m s−1. However, the maximum wind speed in the second period, which is
15.1 m s−1 at 1620 LT in the observation, fails to be simulated. The reasons for this will be explained in
Section 4.5. The wind direction at Uljin station is southerly to southwesterly for both the simulation
and the observation.

Osan station, located at the upwind side, has relatively low 10-m wind speed compared to
Yangyang and Uljin stations. It clearly shows that the wind speed increases in the downwind side of
the mountains like Yangyang and Uljin stations. The model reproduces this wind speed difference
well. Although the observed high-frequency fluctuation of the 10-m wind direction does not appear in
the simulation, the model well simulates the overall trend of the 10-m wind direction at Osan station.

Although there are some limitations in simulating the maximum wind speeds at Yangyang and
Uljin stations, they are simulated within an error of 2 m s−1 in wind speed, except for the maximum
wind speed in the second period at Uljin station. The overall trend of the simulated 10-m wind
speed is also similar to the observed one, although the maximum wind speed at Yangyang station
appears at different times in the simulation and observation. The 10-m wind direction shows a
good agreement between the simulation and the observation. Thus, it would be appropriate to
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examine the characteristics of the 8 April 2012 windstorms and their generation mechanisms using the
simulation data.

4.2. Overall Characteristics of the Simulated Winds

To see the overall characteristics of the simulated winds, the 10-m wind speed and wind vector in
the innermost domain are analyzed (Figure 5). At 0900 LT on 8 April, the winds are relatively strong on
the lee slope of the Taebaek Mountains (Figure 5a). The winds on the windward side of the mountain
range are relatively weak. On the lee of the mountain range, there are areas of plume-shaped wind
pattern extending seaward, particularly noticeable north of Jangjeon station. In the East Sea/Sea of
Japan, the southerly winds are predominant. At 1200 LT, the winds on the windward side become
stronger than at 0900 LT and the winds blow approximately perpendicular to the mountain range
(Figure 5b). This is largely because of the enhanced prevailing winds associated with the northern
low and southern high (see Figure 1). Additionally, severe downslope windstorms in the lee of the
Taebaek Mountains are clearly evident. At 1500 LT, just before the simulated maximum 10-m wind
speed appears at Yangyang station, the windstorm along the Taebaek Mountains is extended seaward
and intensified (Figure 5c). At 1800 LT, the banded pattern of strong-wind regions and weak-wind
regions, which is parallel to the coastal line, appears near Uljin (Figure 5d).
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To examine these characteristics in detail, we zoom in on three areas to take advantage of the
high-resolution simulation; (1) Yangyang area for which we focus on the downslope windstorm (C1 in
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Figure 2b), (2) Jangjeon area for which we focus on the plume-shaped wind pattern (A1 in Figure 2b),
and (3) Uljin area for which we focus on the banded wind pattern (A2 and C2 in Figure 2b).

4.3. Downslope Windstorm (Yangyang)

For the analysis of the downslope windstorm in the Yangyang area, potential temperature, wind
speed, wind vector, and vertical temperature gradient at 0900 LT and 1500 LT are plotted in the vertical
cross-section along C1 in Figure 2b (Figure 6). Note that the location of Osan station is denoted by the
red arrow in Figure 6. At 0900 LT, the downslope windstorm appears along/over the downslope of the
Taebaek Mountains (Figure 6a). The isentropes (potential temperature isolines) descend steeply on the
lee slope of the mountain and recover farther leeward. This structure of isentropes suggests that the
hydraulic jump is responsible for the downslope windstorm in the Yangyang area. In addition, the
jump-like motion of the inversion layer over the downslope of the mountain shows that the hydraulic
jump is involved in the downslope windstorm (Figure 6b) [30,31]. The downslope windstorm is
enhanced in the lee of the mountain range at 1500 LT, and the structure of hydraulic jump propagates
leeward, passing Yangyang station. These correspond to the rapid increase of the 10-m wind speed at
Yangyang from 0600 LT to 1500 LT (see Figure 4a).
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Figure 6. Vertical cross-sections of the potential temperature (blue lines in a,c), wind speed (a,c),
wind vector (a,c), and vertical temperature gradient (b,d) along C1 at (a,b) 0900 LT and (c,d) 1500 LT.
The reference point on the horizontal axis (0 km) indicates the location of Yangyang station. The red
arrow on the horizontal axis indicates the location of Osan station. The zero vertical temperature
gradient lines are indicated by black lines.

The hydraulic jump in the Yangyang area is mainly caused by the elevated inversion near the
mountain top height. At 0900 LT, the strong elevated inversions above the upslope and the ridge of



Atmosphere 2020, 11, 431 9 of 16

the mountain range are clearly shown (Figure 6b). The elevated inversion can act as a free surface in
the shallow water theory and help the atmospheric flow to undergo a transition from subcritical to
supercritical flow [32]. At 1500 LT, the elevated inversion is dissipated because of diurnal heating in
the daytime (Figure 6d) and the downslope windstorm is weakened after 1500 LT.

To quantitatively investigate atmospheric conditions for the formation of the hydraulic jump, the
Fr-M diagram [33] is shown in Figure 7. The Froude number Fr and the dimensionless height M are
given as follows:

Fr =
U√
g′H

, (1)

M =
hm

H
. (2)

Here, U is the wind speed, g′ = g∆θ/θ0 is the reduced gravity where g is the gravitational
acceleration, ∆θ is the potential temperature difference between the inversion layer top and the
inversion layer bottom, and θ0 is the potential temperature, H is the inversion layer top height, and hm

is the mountain top height. The inversion layer top (bottom) is defined by the highest (lowest) model
level of the layer in which the vertical temperature gradient is positive. U and θ0 are averaged from
the surface to the inversion layer top height. Note that U is the wind speed in the C1 direction in
Figure 2b. The simulation data at the location of Osan station are used for the calculation, and the
data without the inversion are excluded. The radiosonde data at Osan station are also used for the
calculation. In the Fr-M diagram, regimes I, II, III, and IV represent subcritical flow, hydraulic jump,
supercritical flow, and totally blocked flow, respectively. The Fr-M diagram (Figure 7) shows that the
simulated incoming flows before 0400 LT, when downslope windstorm and the structure of hydraulic
jump are not evident, are mainly in regime IV. After 0400 LT, the simulated incoming flows are in
regime II. The observed incoming flows are in regime II for all times. These results imply that the
incoming flows with a favorable condition for hydraulic jump play an important role in the formation
of the downslope windstorm.
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Figure 7. Diagram for asymptotic solutions to shallow water flow over an isolated obstacle as a function
of the Froude number and dimensionless height. The red and black dots (stars) represent the condition
of simulated (observed) incoming flow before 0400 LT and after 0400 LT, respectively. 69 samples in the
simulation and 4 observed samples are used for this diagram.
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Additionally, an overall feature of the topography is that the topographic height increases
gradually and then decreases rapidly in the downwind direction. This means that the leeward
slope is much steeper than the windward slope. This topographic feature is also favorable for the
downslope windstorm.

The critical-level reflection is not relevant as the generation mechanism for the downslope
windstorm in the Yangyang area. Due to the strong prevailing winds resulting from the synoptic
pressure pattern of the northern low and the southern high, it is difficult for a critical level to be
self-induced. The climatological statistics of springtime windstorms in Gangneung, the Yeongdong
region reveal that only 5% of the downslope windstorms are related to the critical-level reflection [18].

In the Yangyang area, the maximum wind speed appears earlier in the WRF model than
the observation. However, this shift in the maximum wind speed of the WRF model (Figure 4a)
non-significantly impacts the favorable conditions for the downslope windstorm discussed in this
section (e.g., the elevated inversion layer near the mountain top height and the steeper leeward slope).
Therefore, the generation mechanism of the downslope windstorm conjectured from these conditions
remains unchanged.

4.4. Gap Winds (Jangjeon)

Figure 8 shows the simulated 10-m wind fields at 0900 LT and 1500 LT in the Jangjeon area.
At 0900 LT, just north of Jangjeon station, the area of the plume-shaped wind pattern extending seaward
from the mountain gap is apparent (Figure 8a; see Figure 9a for the gap location). As the winds become
strong along the coastal region with time, the plume-shaped wind pattern is less identifiable (Figure 8b).
Notice that the strong windstorms appear on the lee slope of the Taebaek Mountains (Figure 8).
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Figure 8. Simulated 10-m wind speed and the wind vector fields in A1 at (a) 0900 LT and (b) 1500 LT.
The terrain height (blue lines) is contoured up to 1500 m in intervals of 100 m. The red circle indicates
the location of Jangjeon station.

The decrease in the pressure near the exit of a gap is a mechanism for gap winds [34–37].
The present numerical simulation is suitable for revealing such a local pressure change because the
high-resolution grid system and the high-resolution terrain data are used. The local pressure difference
between the gap inside and the gap exit is analyzed using sea-level pressure at 17 points in and out of
the gap (Figure 9a). The sea-level pressure and the 10-m wind speed along the 17 points are shown in
Figure 9b,c. Before 0900 LT, the sea-level pressure differences are large and the local minimum of the
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sea-level pressure and the local maximum of the 10-m wind speed at the gap exit are clearly represented.
Around 1500 LT, the differences of the sea-level pressure and the 10-m wind speed between the gap
inside (points 1–12) and the gap exit (points 13–14) are smaller than around 0900 LT.
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17 points in the gap. Vertical cross sections of the terrain height at the 17 points are added in the lower
panels of Figure 9b,c. The red triangle indicates the location of Jangjeon station.

To examine the relationship between the sea-level pressure and the 10-m wind speed, the difference
of the sea-level pressure and the 10-m wind speed between the gap inside and the gap exit are plotted
in Figure 10. The values of the gap inside and the gap exit are averaged over the points 1–12 and the
points 13–14, respectively. Around 0500 LT, the large sea-level pressure difference (−3.4 hPa) induces
the large 10-m wind speed difference (~12 m s−1). It is well matched with the local maximum of 10-m
wind speed at the gap exit (Figure 9c). When the sea-level pressure difference decreases with time
from 0500 LT, the 10-m wind speed difference also decreases. However, the wind speed near the gap
exit is similar to the one of early morning (Figure 9c). It is because the larger-scale synoptic pressure
pattern increases the wind speed at the gap inside. Accordingly, a plume-shaped wind pattern, which
is an indicative of the wind speed increase at the gap exit, appears better in the morning than in
the afternoon.
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differences between the gap inside and the gap exit. The values of the gap inside and the gap exit are
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4.5. Association with Planetary Boundary Layer (Uljin)

To analyze the banded wind pattern in the Uljin area, the 10-m wind and planetary boundary layer
(PBL) height fields are plotted (Figure 11). In the Mellor-Yamda-Janjić PBL scheme, the PBL height is
determined by the lowest model level above the surface at which TKE decreases to a prescribed lower
bound. At 1800 LT, the well-defined-banded pattern of very strong-wind regions and weak-wind
regions is evident. The banded wind pattern is parallel to the coastal line. In the strong- and weak-wind
regions, the westerly and the southerly winds are prevailing, respectively. Comparison of the wind
field and the PBL height field shows that in the banded wind pattern, the strong-wind region coincides
with the region of shallower PBL, while the weak-wind region coincides with the region of deeper
planetary boundary layer. This implies that strong winds can be related to PBL height.
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To investigate the interaction between the downslope windstorm and the PBL, the potential
temperature, wind speed, wind vector, and the bulk Richardson number smaller than 0.25 at 1800 LT
are plotted in the vertical cross-section along C2 in Figure 2b (Figure 12). In the east of Uljin station, the
weak-wind regions appear in the PBL and have low bulk Richardson number due to strong wind shear.
The downslope windstorm does not penetrate the weak-wind region with low bulk Richardson number,
but instead passes over it. The PBL height also follows this wavy flow pattern and is well matched
with the weak-wind and low bulk Richardson number regions. As with a flow over a mountain, the
wind speed increases on the downwind of these regions. The banded wind pattern appears as a result
of the weak-wind regions and the increased wind speed on the downwind side of these regions.
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Figure 12. Vertical cross-section of the wind speed, wind vector, potential temperature (blue lines), and
bulk Richardson number smaller than 0.25 (black hatch lines) along C2 at 1800 LT. The PBL height is
represented by magenta line. The reference point on the horizontal axis (0 km) indicates the location of
Uljin station.

The interaction between the PBL and the downslope windstorm is unclear. Some studies [38–41]
show that the PBL absorbs downward reflected gravity waves, thus effectively limiting trapped
mountain waves or significantly reducing the drag and momentum flux of mountain waves above.
Accordingly, the strong windstorms due to wave-involved mechanisms can be weakened. However,
the PBL as an effective mountain is reported [42–44]. According to these studies, mountain waves can
be forced by an effective mountain, not by a real mountain only [42–44], and flow regime can also be
influenced by the PBL height [43].

Considering those effects in the present study, the role of the PBL as an energy absorber is unclear.
However, the height with maximum wind speed is near the PBL top height, not near the surface,
suggesting that the PBL could act as an effective mountain [42]. The large vertical displacement of the
isentropes above the PBL in the east of Uljin station and the windstorm appearing at the downslope
of the PBL imply that the PBL could force gravity waves and change flow regime. However, the
aforementioned features do not directly show the effects of the PBL on the windstorm. Additionally, it
is not clear how the role of the PBL as an absorber and the PBL as an effective mountain differently
affect the windstorm. Therefore, further in-depth research about the effects of the PBL on windstorms
is needed.

The time variation of the observed wind speed at Uljin station (Figure 4b) can be explained by
the banded wind pattern coupled with the spatiotemporal variation of the PBL height (Figure 13).
As the deep PBL developed in the afternoon is pushed seaward, it passes over Uljin station and the
wind speed decreases. After the deep PBL passes over Uljin station, the wind speed increases, because
it is located upwind of the deep PBL. However, the WRF model failed, in location, to simulate this
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increase in wind speed well. The time variation of the simulated maximum wind speed at the location
3.33 km west of Uljin station, as illustrated by the blue dotted line in Figure 4b, reasonably simulates
the observed strong winds at 1620 LT. After the strong winds at 1620 LT, the deep PBL returns to Uljin
station, decreasing the wind speed there.
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Figure 13. Hovmöller diagram for the simulated planetary boundary layer height along C2. The black
solid line indicates the location of Uljin station.

5. Summary and Conclusions

In this study, the characteristics and generation mechanisms of the windstorms occurring in
the lee of the Taebaek mountain on 8 April 2012 were investigated using the high-resolution WRF
model simulation. Three different areas (Yangyang, Jangjeon, and Uljin) were selected for the analysis.
In the Yangyang area, the severe downslope windstorm in the lee of the Taebaek Mountains appears.
The steep descent of the isentropes on the lee slope of the mountain and their recovery farther leeward
are typical features of hydraulic jump. Inversion layers near the highest mountain top height and
incoming flow in hydraulic jump regime support the hydraulic jump mechanism for the generation of
the downslope windstorm. In the Jangjeon area, the plume-shaped wind pattern extending seaward
from the exit of the gap is clearly seen. The gap winds are induced by the large pressure gradient
between the inside and exit of the gap. In the Uljin area, the banded pattern of strong-wind regions and
weak-wind regions is distinct. The banded wind pattern is parallel to the coastal line. Interestingly,
we found that the strong-wind (weak-wind) region coincides with the region of shallower (deeper)
planetary boundary layer and that in the weak-wind region, the southerly winds are prevailing. This is
because the downslope windstorm does not penetrate the weak-wind region with low bulk Richardson
number and passes over it. The windstorms and their features are well simulated in our simulation
with the gray-zone resolution (∆x = 333 m). However, we need a scale-aware PBL parameterization or
a large-eddy simulation to better simulate the fine structure and evolution of the windstorms.

In this study, we showed that even if windstorms directly related to topography occur on the
same day, their generation mechanisms can differ depending on the local topographic features. This
suggests that even under the same synoptic conditions, local topographic features should be taken into
consideration in forecasting windstorms in mountainous regions.
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