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“Humanity is currently enacting a narrative that nature is ours to abuse and exploit
and pollute as we see fit, forgetting that we are a part of it. We are part of the web
of life, and when we harm one part of that web, we harm ourselves. We urgently
need a new narrative, where instead of hubris we have humility. Instead of rapacious
destruction we have respect and stewardship. Instead of disconnection, we have deep
connection - to nature, to each other, to ourselves, and to our future.”

Roz Savage
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Abstract

Around half of the ocean’s uptake of anthropogenic carbon from the
atmosphere currently takes place in the Southern Ocean. However, the
variability of this important carbon sink, as well as the drivers behind this
variability, are still debated and it is unclear if the Southern Ocean will
remain a carbon sink in the future. Until this PhD project, the development
of the Southern Ocean carbon uptake at the air-sea interface was unknown
based on observations beyond 2011. Furthermore, the seasonal to
interannual variability of dissolved inorganic carbon (DIC) in the interior
Southern Ocean had not been analyzed based on observations at regional
scale. This dissertation closes these research gaps.

In the first part of my dissertation (Appendix A), I investigate the
Southern Ocean carbon flux and its drivers until 2016 using an updated
observation-based air-sea carbon flux estimate. After a stagnation period in
the 1990s, and a reinvigoration in the 2000s, I find that the Southern Ocean
carbon uptake weakened again since about 2011. My study reveals that the
Southern Annular Mode, the dominant mode of climate variability in the
southern high latitudes, is not the driver behind this weakening due to
opposing effects that cancel each other out. Instead, regional shifts in
surface wind velocity modulate the recent evolution of the carbon uptake in
the Southern Ocean. In the second part (Appendix B), I develop a monthly
climatology of global mapped interior DIC fields using a neural-network
mapping approach. Using this new data product, I describe the seasonal
carbon dynamics at global scale, including the phase and amplitude of the
surface seasonal cycle, how deep seasonal signals are detectable, and I
estimate the net community production. In the third part (Appendix C), I
increase the temporal resolution of my new data product to resolve monthly
fields from 2004 through 2017. I then re-focus on the Southern Ocean to
investigate the interannual variability of DIC in the water column and
determine the potential drivers behind this variability. Using this second
new data product, I demonstrate that sub-surface DIC is subject to
significant decadal fluctuations. These fluctuations extend to at least 500 m
and could be linked to changes in the Meridional Overturning Circulation.

The methods and the publicly available data products I developed
provide an opportunity for further analysis of the global carbon cycle. The
findings from my PhD project represent an updated estimate of the carbon
uptake and storage in the Southern Ocean and enable an improved
description of the processes and drivers of variability. This knowledge
forms an essential part of our understanding of the global carbon cycle and
can, therefore, contribute to more accurate climate projections, forming an
important basis for political decisions aimed at reducing carbon emissions.



iv

Zusammenfassung

Im Südpolarmeer findet derzeit etwa die Hälfte der ozeanischen Aufnahme
von anthropogenem Kohlenstoff aus der Atmosphäre statt. Über die
Variabilität dieser wichtigen Kohlenstoffsenke sowie die Einflussfaktoren
dieser Variabilität wird jedoch debattiert, und es ist unklar, ob das
Südpolarmeer auch in der Zukunft eine Kohlenstoffsenke bleiben wird. Vor
diesem Promotionsprojekt fehlte eine Abschätzung der atmosphärischen
Kohlenstoffaufnahme des Südpolarmeers basierend auf Beobachtungsdaten
die nach 2011 erhoben wurden. Des Weiteren wurde die saisonale und
zwischenjährliche Variabilität des gelösten anorganischen Kohlenstoffs
(DIC) im tiefen Südpolarmeer bisher noch nicht anhand von
Beobachtungsdaten auf regionaler Ebene analysiert. Diese Dissertation
schließt die bestehenden Forschungslücken.

Im ersten Teil meiner Dissertation (Anhang A) untersuche ich die
ozeanische Kohlenstoffaufnahme aus der Atmosphäre und deren
Einflussfaktoren im Südpolarmeer bis 2016 anhand aktualisierter
Beobachtungsdaten, die an der Meeresoberfläche erhoben wurden. Nach
einer Stagnationsphase in den 1990er Jahren und einem Wiedererstarken in
den 2000er Jahren, ermittle ich, dass die Kohlenstoffaufnahme im
Südpolarmeer seit ca. 2011 erneut nachgelassen hat. Meine Studie zeigt,
dass der Southern Annular Mode, der dominante Modus von
Klimaschwankungen in den südlichen hohen Breitengraden, nicht der
Einflussfaktor hinter diesem Abschwächen der Senke ist, da sich
gegensätzliche Effekte aufheben. Stattdessen kontrollieren regionale
Verschiebungen der Oberflächenwindgeschwindigkeit die jüngste
Entwicklung der Kohlenstoffsenke im Südpolarmeer. Im zweiten Teil
(Anhang B) etabliere ich ein Verfahren, das es erlaubt, mithilfe neuronaler
Netzwerke die globale Tiefenverteilung von gelöstem anorganischen
Kohlenstoff als monatliche Klimatologie abzubilden. Mit diesem neu
entwickelten Datenprodukt beschreibe ich die saisonale DIC-Dynamik auf
globaler Ebene. Diese Beschreibung erstreckt sich auf die Phase und
Amplitude des saisonalen Zyklus an der Oberfläche und dessen
Tiefenausdehnung, sowie eine Abschätzung der Nettoproduktion von
organischem Kohlenstoff durch marine Lebensgemeinschaften. Im dritten
Teil (Anhang C) erhöhe ich die zeitliche Auflösung dieses Datenprodukts,
um auch die zwischenjährlichen Veränderungen der monatlichen
DIC-Felder von 2004 bis Ende 2017 aufzulösen. Für die inhaltliche
Interpretation der neu generierten Datensätze lege ich den Schwerpunkt
erneut auf das Südpolarmeer, um hier die zwischenjährliche Variabilität des
gelösten anorganischen Kohlenstoffs in der Wassersäule zu beschreiben und
die möglichen Einflussfaktoren für diese Variabilität zu bestimmen. Anhand
dieses zweiten neuen Datenprodukts zeige ich, dass der gelöste
anorganische Kohlenstoff unterhalb der Meeresoberfläche signifikanten
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dekadischen Schwankungen unterliegt. Diese Schwankungen erstrecken
sich mindestens über die oberen 500 m der Wassersäule und könnten mit
Änderungen der meridionalen Umwälzzirkulation verbunden sein.

Die von mir entwickelten Methoden und öffentlich zur Verfügung
gestellten Datenprodukte eröffnen diverse Möglichkeiten zur weiteren
Analyse des globalen Kohlenstoffkreislaufs. Die Ergebnisse meines
Promotionsprojekts stellen eine aktualisierte Abschätzung der
Kohlenstoffaufnahme und -speicherung im Südpolarmeer dar und
ermöglichen eine erheblich verbesserte Beschreibung der beteiligten
Prozesse und Einflussfaktoren. Dieses Wissen ist ein wesentlicher
Bestandteil unseres Verständnisses des globalen Kohlenstoffkreislaufs und
kann somit zu genaueren Klimaprojektionen beitragen. Damit bilden die
Befunde auch eine wichtige Grundlage für politische Entscheidungen, die
auf die Reduzierung der Kohlenstoffemissionen abzielen.
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Unifying Essay

This thesis is structured as a cumulative dissertation, where the Unifying
Essay precedes three Appendices containing the research articles I produced
as part of my PhD. The Unifying Essay first introduces my PhD project by
providing the scientific background knowledge and then putting my
research into the broader literature context, presenting the current
knowledge and related research gaps. After describing some of the methods
I developed and applied during this PhD, I present my main research
findings and a brief overview of how this study may affect subsequent
research and the implications of my findings.

1 Background

1.1 Basics of the oceanic carbon system

Of the carbon dioxide (CO2) emitted annually by humans, currently, only
about half accumulates in the atmosphere, whereas the land and ocean take
up the rest. Specifically, the Global Carbon Budget (Friedlingstein et al.,
2019) estimates, that between 2009 and 2018, the ocean took up 2.5 ±0.6 PgC
yr−1 from the atmosphere, which is approximately 23% of the annual
anthropogenic emissions for that period (1 PgC = 1 petagram carbon = 1015

grams of carbon). Due to this oceanic uptake of anthropogenic carbon, the
ocean plays an important mitigating role in climate change (Ciais et al.,
2014).

The oceanic uptake of CO2 from the atmosphere occurs at the air
sea-interface (Fig. 1). When gaseous CO2 dissolves in the ocean, the now
aqueous CO2 reacts chemically with water molecules (H2O) and forms
carbonic acid (H2CO3), which can dissociate twice into bicarbonate ions
(HCO3

−) and carbonate ions (CO3
2−) (Sarmiento and Gruber, 2006; Zeebe

and Wolf-Gladrow, 2001). These ‘species’ of inorganic carbon in seawater
are collectively referred to as dissolved inorganic carbon (DIC). In its
dissolved form, the carbon can be transported through currents and
turbulent mixing (Heinze et al., 2015). However, the chemical equilibrium
reactions described here, can occur in both directions and so, carbon can be
taken up by the ocean and stored as DIC, but DIC can also outgas into the
atmosphere.
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FIGURE 1: Schematic of marine carbon chemistry, demonstrating the uptake of atmospheric CO2 and
its reaction in seawater that form the different ‘species’ of carbon that form the DIC pool. Based on

McNeil and Matsumoto (2019) and Sarmiento and Gruber (2006).

The magnitude and sign of the air-sea CO2 exchange, also referred to as
CO2 flux, depend on various factors. Henry’s Law states that “at a constant
temperature, the amount of a given gas that dissolves in a given type and
volume of liquid is directly proportional to the partial pressure of that gas in
equilibrium with that liquid" (Henry and Banks, 1803). Technically, CO2
does not behave like an ideal gas, and so the observed relationship between
its temperature, volume, and pressure is not accurately described by the gas
laws, such as Henry’s law. Therefore, the fugacity of CO2 (fCO2), which is
the partial pressure of CO2 (pCO2), corrected for the non-ideal behavior of
CO2, is commonly used for chemical thermodynamic calculations.
However, due to the nearly ideal behavior of CO2, fCO2 and pCO2 are
numerically very similar, and so, both terms are commonly used to calculate
the air-sea carbon flux (Takahashi et al., 1997). The gas exchange also
depends on temperature, because CO2 is more soluble in colder water than
in warmer water, and on the kinetic gas transfer velocity, associated with the
surface wind speed (Wanninkhof et al., 2013). Overall, the air-sea gas
exchange of CO2 (FCO2) can be expressed by Eq. 1, following Deacon (1977)
and Sarmiento and Gruber (2006) :

FCO2 = kw · SCO2 · ∆pCO2 (1)

where kw is the kinetic transfer velocity, SCO2 the mainly temperature-driven
solubility of CO2, and ∆pCO2 the difference between the pCO2 at the sea
surface and the atmosphere above it.

As part of the natural carbon cycle, there are regions of carbon uptake,
and regions of outgassing, which are nearly balanced in a steady-state
climate. A slight disequilibrium still exists as the result of riverine input of
carbon into the ocean; the ocean releases this additional carbon into the
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atmosphere (Resplandy et al., 2018). In addition to the natural carbon cycle,
the release of anthropogenic CO2 into the atmosphere creates a partial
pressure gradient that results in net oceanic uptake of carbon (Ciais et al.,
2014).

Compared to the ocean, CO2 in the atmosphere is relatively well-mixed,
meaning that the concentration does not vary as much around the globe.
However, different factors modulate the oceanic pCO2, resulting in large
variations that are orders of magnitude larger than the variations in
atmospheric pCO2. Subsequently, at the regional scale, the sea surface pCO2
largely controls the sign and magnitude of the flux (Landschützer et al.,
2014). Different physical and biogeochemical processes drive the variability
in the air-sea carbon flux, and these are superimposed on the positive trend
of increased carbon uptake due to the anthropogenic perturbation
(Sarmiento and Gruber, 2006; Takahashi et al., 2002).

The positive effect of the oceans abating climate change by absorbing
anthropogenic CO2 (Friedlingstein et al., 2019) does not occur without
negative side effects: the reaction of CO2 in sea-water releases hydrogen
ions (H+, Fig. 1), directly lowering the pH of the seawater (Sarmiento and
Gruber, 2006; Zeebe and Wolf-Gladrow, 2001). Subsequently, additional DIC
in the ocean lowers its pH, a process called ocean acidification (Doney et al.,
2009). In more acidic water, calcifying organisms such as calcareous
plankton, corals, and mollusks, struggle to produce calcium carbonate
structures. Thus, ocean acidification endangers these species (Sarmiento
and Gruber, 2006; Zeebe and Wolf-Gladrow, 2001). A decline or loss in
calcifying organisms can then affect species on higher trophic levels and
threaten the ecosystem stability (IPCC, 2013).

1.2 Biogeochemical and physical drivers

Biological activity affects the oceanic pCO2 through photosynthesis,
respiration, and remineralization. At the sea surface, organisms such as
phytoplankton consume CO2, forming organic carbon. This
biological-driven process leaves the surface water under-saturated with
inorganic carbon and allows for additional uptake. Sinking particles and
fecal matter transport the organic carbon from the surface to the interior
ocean. Conversely, remineralization, that is the break-down of organic
matter by microbial organisms, and respiration by organisms ranging from
bacteria to large mammals, dominate below the surface. Both
remineralization and respiration release CO2 back into the inorganic carbon
pool (Sarmiento and Gruber, 2006). The overall biological draw-down of
inorganic carbon is referred to as net community production (NCP) of
organic matter. Changes in light availability and nutrients, for example
through seasonal changes in insolation, riverine input of nutrients, or
upwelling of nutrient-rich waters, affect the biological uptake of carbon
(Heinze et al., 2015).
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The main physical processes affecting the oceanic pCO2, and thereby the
carbon flux, are linked to ocean circulation and temperature. Upwelling
brings deep carbon-rich water to the surface, resulting in a super-saturation
of the surface water, leading to outgassing. Temperature affects the uptake
of CO2; for example, poleward flowing waters are cooled, increasing the
solubility of CO2 in these waters, thus under-saturating them and allowing
for carbon uptake (Takahashi et al., 2002). Similarly, warming through
seasonal forcing increases the oceanic pCO2, which over-saturates the
surface water, leading to outgassing, while cooling under-saturates the
surface water, leading to carbon uptake (Sarmiento and Gruber, 2006).

1.3 The relevance of the Southern Ocean

The Southern Ocean is a key region of both carbon uptake and outgassing,
and variability on various timescales considerably alters the mean field in
this region. In pre-industrial times, the outgassing in upwelling regions in
the Southern Ocean dominated over the carbon uptake, and so, the
Southern Ocean was a net carbon source to the atmosphere (Gruber et al.,
2009). However, due to the anthropogenic perturbation of the carbon cycle,
the mean concentration gradient between the ocean and the atmosphere has
changed direction, resulting in net carbon uptake. The Southern Ocean is
the only basin that has turned from being a net carbon source in
pre-industrial times, to a net carbon sink at present.

The Southern Ocean covers about 1/3 of the world’s ocean, but
approximately 1/2 of the oceanic uptake of anthropogenic carbon takes
place in this region (Landschützer et al., 2016) and approximately 40% of the
anthropogenic carbon that was stored in the ocean until 2008 was taken up
in the Southern Ocean (Khatiwala et al., 2009). In the following section, I
will focus on the processes dominating the air-sea carbon fluxes and storage
in this dynamic region.

2 Current Knowledge and Research Gaps

2.1 Observations of the carbon system in the Southern Ocean

The Southern Ocean is a historically under-sampled region due to its remote
location, and cold, windy, and rough weather conditions (Rintoul et al.,
2012). In addition, excessive cloud cover and darkness in the high southern
latitudes in austral winter render optical satellite data unavailable in this
region (Pope et al., 2017). However, the number of available in-situ
measurements of carbonate system parameters, such as pCO2, DIC, pH, and
alkalinity, has increased substantially in recent years due to a collective
effort in the scientific community.

For the sea surface, the Surface Ocean CO2 Atlas (SOCAT, Bakker et al.,
2016) compiles and quality controls measurements from global underway
ships, as well as fixed moorings and drifting buoys (Fig. 2a). The large
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majority of these measurements are collected from programs such as
Voluntary Observing Ships and among other variables, this database
contains pCO2 data that are used to compute the air-sea carbon flux. Most
of the SOCAT measurements are taken autonomously using an equilibrator
with a continuous sea-water flow (Bakker et al., 2016). Here, the pCO2 is not
measured directly, but the mole fraction of CO2 (xCO2 in parts per million)
is measured, from which the pCO2 (in µatm) can be inferred.

For the water column, the Global Ocean Data Analysis Project for Carbon
(GLODAP, Olsen et al., 2019; Key et al., 2015) compiles and quality controls
global ship measurements of carbonate system parameters at depth (Fig.
2b). The DIC is directly measured using bottled sea-water samples that are
analyzed in the laboratory. There are some research cruises as part of
GLODAP that did not measure the DIC directly; there, the DIC was
calculated based on pH and alkalinity measurements from bottled samples.
As the system of measuring DIC is not autonomous, there are substantially
fewer measurements of DIC available than of the surface carbon
parameters, such as pCO2 (Fig. 2). However, locations with measurements
have often been sampled multiple times through the repeat hydrography
surveys that include the World Ocean Circulation Experiment (WOCE,
http://woceatlas.ucsd.edu/) in the 1990s and CLIVAR
(http://www.clivar.org/) since the 2000s (Talley et al., 2016).

Since 2014, Argo floats equipped with biogeochemical sensors, as a new
type of in-situ observing platform, have substantially increased the number
of carbon measurements in the Southern Ocean. As part of the Southern
Ocean Carbon and Climate Observations and Modeling project (SOCCOM,
https://soccom.princeton.edu/, Fig. 2c), these robotic floats measure
temperature, conductivity (for salinity), pressure (for depth), pH, oxygen,
nitrate, and bio-optics. The DIC can then be calculated using the CO2SYS
analysis tool (Heuven et al., 2011) with pH measurements from the floats
and total alkalinity estimated, for example, with temperature and salinity
measurements and the LIAR algorithm (Carter et al., 2018). Approximately
200 of these autonomous floats have been deployed in the Southern Ocean
to complement shipboard measurements. In the four years from 2014
through 2017, the SOCCOM floats have already considerably increased the
spatio-temporal resolution of carbon measurements in the Southern Ocean
(Fig. 2).

http://woceatlas.ucsd.edu/
http://www.clivar.org/
https://soccom.princeton.edu/
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FIGURE 2: Location of recent carbon measurements in the Southern Ocean between 35◦S and 65◦S.
(a) SOCATv2019 (at the surface, from 2004 through 2017); (b) GLODAPv2.2019 (at 10 m, from 2004

through 2017); (c) SOCCOM floats (at 10 m, from 2014 through 2017).

2.2 The mean Southern Ocean carbon uptake

Although the available measurements have helped to understand the mean
processes in the Southern Ocean, recent studies have demonstrated that the
Southern Ocean is not zonally uniform and many processes in this region
occur in ’hot spots’ (Rintoul, 2018). For example, the downward transport of
anthropogenic carbon tends to cluster in some key subduction regions
within the Southern Ocean (Sallée et al., 2012). Further, dominant fronts in
the Southern Ocean create inter-frontal zones with distinctly different
physical and biogeochemical properties (Freeman et al., 2016; Orsi et al.,
1995) (Fig. 3).

Different, often opposing, processes affect the carbon uptake in the
Southern Ocean (Fig. 3-4). A unique feature in this region is the Antarctic
Circumpolar Current (ACC), which flows eastward near the Polar Front,
unhindered by any continents. Northward Ekman transport at the ACC
creates a divergence of surface waters, resulting in the upwelling of aged,
carbon-rich water to the surface, causing outgassing around the ACC
(Lovenduski et al., 2015). North of the ACC, poleward flowing warm waters
mix with the cold subpolar waters; the cooling of these warm waters
under-saturates them, allowing for carbon uptake. This water is then
subducted north of the Subtropical Front and transported northward
(Takahashi et al., 2002). In addition, near the Antarctic coast, freezing
sea-water forms the cold and saline Antarctic Bottom Water through brine
rejection during sea-ice formation (Talley et al., 2011). As this dense water
mass cools, it under-saturates with carbon, allowing for carbon uptake; it
then sinks, transporting DIC downward. Overall, the Southern Ocean
currently takes up approximately 1 PgC yr−1 (Landschützer et al., 2016, Fig.
3).
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FIGURE 3: Temporal mean Southern Ocean carbon flux from 1982 through 2016 (blue: oceanic carbon
uptake; red: outgassing). The Polar Front (∼55◦) and the Subtropical Front (∼40◦S) from Orsi et al.,
1995 are illustrated as black lines. The air-sea carbon flux data from Landschützer et al. (2014) was

used to produce this Figure.

FIGURE 4: Simplified zonal mean circulation and carbon fluxes in the Southern Ocean.
See in-text description. Modified from Talley et al. (2011).
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2.3 Southern Ocean carbon uptake variability

While the processes involving the mean Southern Ocean carbon sink are
generally well understood, the variability of these processes is not. Recent
studies of the CO2 uptake in the Southern Ocean have suggested a large
carbon sink variability on interannual to decadal timescales, which is not
captured by models (Frölicher et al., 2015) and the physical processes and
drivers contributing to this variability in the various sectors of the Southern
Ocean are still debated (DeVries et al., 2017; Landschützer et al., 2015;
Le Quéré et al., 2007).

A study by Le Quéré et al. (2007) found that in the 1990s, the net
Southern Ocean carbon uptake was not increasing any longer, but had
stagnated despite the continued atmospheric increase in CO2, causing
concern that this crucial carbon sink had saturated. Nearly a decade later,
Landschützer et al. (2015) found that between the early 2000s and 2011, the
Southern Ocean carbon sink had reinvigorated and was taking up as much
carbon from the atmosphere again as would be expected based on the
atmospheric increase (Fig. 5). Observation-based estimates of the net carbon
uptake in the Southern Ocean beyond 2011 had not been established until
this PhD thesis. Consequently, in Appendix A, I answer the following
Research Question:

A.1 How has the Southern Ocean carbon sink developed after 2011?

FIGURE 5: The evolution of the integrated air-sea carbon flux in the Southern Ocean between 35°S
and the Antarctic coast from 1982 through 2011 (purple, left y-axis), illustrating the mean (solid line)
and one standard deviation around the mean (shading). Here, larger numbers mean more oceanic
uptake. The dashed green line (right y-axis) demonstrates the annual global mean atmospheric
marine surface CO2 over the same time period. Data used to produce this Figure: air-sea carbon flux
data from Landschützer et al. (2014), seasonal cycle removed and ESRL globally averaged marine

surface annual mean data from https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html.

https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html
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Several different processes have been proposed as potential drivers for
this large interannual to decadal variability. The Southern Annular Mode
(SAM), defined as the zonal pressure difference between 40◦S and 65◦S, is
the dominant mode of climate variability in the southern high latitudes
(Marshall, 2003). There has been a positive trend in the SAM in recent
decades, causing a strengthening and poleward shift of the westerly winds
(Hall and Visbeck, 2002). These strengthened winds lead to enhanced
outgassing which Le Quéré et al. (2007) argued led to the stagnation of the
net Southern Ocean carbon uptake in the 1990s. However, the positive trend
in the SAM has continued beyond the stagnation period, but the Southern
Ocean carbon sink did not continue to stagnate. Another proposed driver of
the Southern Ocean carbon sink variability is based on recently observed
changes in the upper Meridional Overturning Circulation (MOC, DeVries
et al., 2017). That study argued that a slow-down in the MOC had led to an
overall increase in oceanic carbon uptake in the 1990s through less
outgassing of natural carbon. That weakening was followed by a stronger
MOC in the 2000s, which decreased the net carbon uptake through
enhanced outgassing. In addition, the reinvigoration in the 2000s has also
been also linked to a zonally asymmetric atmospheric circulation that
enhanced the CO2 uptake in that period (Landschützer et al., 2015). Gregor
et al. (2018) argued that biological activity drives the Southern Ocean carbon
sink variability in austral summer, and wind stress in austral winter.
Bronselaer et al. (2020) found that besides the positive trend in the SAM,
increased melting of the Antarctic ice sheet in recent years has led to
increases in oceanic carbon content in the water column. The relative
importance of the potential drivers of the carbon uptake variability in the
Southern Ocean is, however, still debated. Thus, in Appendix A, I address
the following Research Question:

A.2 What are the drivers behind the recent interannual variability of the
Southern Ocean carbon sink?

2.4 Variability in interior Southern Ocean DIC

Previous studies of changes in the oceanic carbon at depth have focused on
the uptake of anthropogenic carbon and the decadal changes thereof
(Clement and Gruber, 2018; Gruber et al., 2019b; Khatiwala et al., 2009;
Sabine et al., 2004). Most recently, Gruber et al. (2019b) found that although
the Southern Ocean took up approximately 1 PgC yr−1, between 1994 and
2007, only approximately 0.6 PgC yr−1 was stored in this region as DIC,
while the rest was transported northward, leaving the Southern Ocean
(DeVries, 2014; Gruber et al., 2019a; Mikaloff Fletcher et al., 2006).

Due to different processes being dominant in sub-regions of the Southern
Ocean, regional studies taking mapped fields into consideration are
necessary to fully reflect the different processes in the Southern Ocean. This
study is the first observation-based study that includes the Southern Ocean
at regional scale to investigate the temporal changes in DIC on time-scales
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shorter than decadal, or changes in contemporary (natural + anthropogenic)
DIC on any time-scale. Subsequently, in Appendices B and C, I answer the
following Research Questions:

B.1 Can we map time-varying fields of DIC using sparse ship data to create
a monthly climatology?

C.1 Can we map time-varying fields of DIC in the Southern Ocean at
interannual monthly resolution?

Knowing about the changes in Southern Ocean DIC allows for an
analysis of these changes, thereby contributing to our collective
understanding of the global carbon cycle and the processes involved. Thus,
in Appendix C, I delve into the data estimate of monthly DIC from 2004
through 2017 to answer the following Research Questions:

C.2 What is the extent of the variability of DIC in the water column?

C.3 What are the drivers behind the variability of DIC at the surface and
below?

3 Machine Learning

As traditional interpolation methods, such as optimal interpolations, had
been unable to resolve time-varying global mapped fields of surface carbon
measurements, various interpolation and mapping methods have recently
emerged, ranging from statistical auto-correlation techniques to machine
learning approaches (Jones et al., 2015; Landschützer et al., 2013; Rödenbeck
et al., 2015). In the field of machine learning, computational algorithms are
statistically trained to classify, predict, cluster, or discover patterns in a
dataset (Reichstein et al., 2019). Neural networks, a sub-branch of machine
learning, can be used to reconstruct and map data that have spatio-temporal
gaps (Gardner and Dorling, 1998).

3.1 Terminology

As the terms gridded, interpolated, and mapped data are often used
interchangeably, I first briefly define them here, following the work by
Lauvset et al. (2016).

Observations are often projected onto a regular grid, using binning and
averaging, but without interpolation or calculations to fill empty grid cells.
One such example is the gridded dataset of SOCAT data (Bakker et al., 2016)
by Sabine et al. (2013). In a classical interpolation, the original observations
do not change, and values are only added between the data gaps, hence
there are no residuals in interpolations. One such example is the vertical
interpolation commonly performed to bring ship-based observations onto
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standard depth levels and Cubic Hermite functions are commonly used for
these interpolations. In a mapped data product, observational gaps are filled
using some form of interpolation or other mapping approaches to produce a
gap-filled map. In some mapping approaches, such as the one described
below, each grid cell, including those containing the original gridded
observations, is computed. In such an approach there are residuals between
the observations and the mapped values, which are set to be minimal.

3.2 SOM-FFN

Landschützer et al. (2013) developed a two-step neural network mapping
approach to overcome the low spatio-temporal density of surface carbon
measurements. In their SOM-FFN approach, the authors first use
self-organizing maps (SOMs) to cluster the oceans into regions of similar
biogeochemical properties, and in a second step, they run a feed-forward
network (FFN) in each of the clusters to compute and apply the statistical
relationship between pCO2 and specific predictor data. The predictor data
are more numerous and spread more evenly around the world than the
target data (pCO2), thereby helping to overcome the low spatio-temporal
density of surface carbon measurements.

SOMs are a type of unsupervised machine learning technique to cluster
data (Kohonen, 1989; Kohonen, 2001). During unsupervised learning, the
algorithm looks for patterns in a data set, that were not labeled as such
before. The SOM-clustering process is as follows (Fig. 6): the variables that
are to be clustered—in the schematic temperature and salinity—are usually
first normalized (Fig. 6a) and the user prescribes the number of desired
clusters (in the schematic: three). The algorithm begins by placing proposed
cluster centers randomly in the grid space around the input variables and
calculates the Euclidean distance between the input variables and their
closest cluster center (Fig. 6b). Next, the centers are iteratively moved
around to minimize the sum of the distances of all the input variables to
their closest cluster center (Fig. 6c-f). The user prescribes a maximum
number of iterations, but the algorithm stops before that number is reached
if the distances cannot be minimized further (Fig. 6f).
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FIGURE 6: Schematic of the SOM clustering process. The x and y-axes are normalized salinity and
temperature for each subfigure (a-f), extending from 0 to 1. In c-f, the color of the data points matches
the color of their closest cluster center. See in-text for an explanation of the SOM-clustering process.
Inspired by Luis Serrano (’A Friendly Introduction to Machine Learning’, https://www.youtube.co

m/watch?reload=9&v=IpGxLWOIZy4).

FFNs are a type of supervised machine learning technique used to
approximate a function describing the relationship between variables
(Gardner and Dorling, 1998). During supervised learning, the algorithm
uses a training data-set from which it can learn a statistical pattern, which it
then applies. FFNs have similar purposes as multi-linear regressions
(MLRs): they approximate and apply the statistical relationship between
multiple predictor and target variables. One of the differences to MLRs is
that in the neural network method, the relationships are allowed to be
non-linear, potentially capturing the complex relationships between the
variables more accurately (Olden and Jackson, 2002).

During the training-step of an FFN that is used for mapping (Fig. 7), the
predictor data (mapped variables) are connected to the target data (a
gridded variable with gaps) by a transfer function that describes their
statistical relationship. The set-up in Fig. 7 has two layers, where the
predictors are first connected to a chosen number of neurons by a transfer
function (e.g., a sigmoid function), and then these neurons are connected by
a second transfer function (e.g., a linear function) to the target data and the
network multiplies each connection with random initial weights. The
output produced with the initial set-up is then compared to the target data,
and the mean squared error (MSE) of the residuals is calculated. The
training step is then iteratively repeated, where the connection weights are
adjusted in each iteration until the MSE reaches a minimum.

https://www.youtube.com/watch?reload=9&v=IpGxLWOIZy4
https://www.youtube.com/watch?reload=9&v=IpGxLWOIZy4
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To avoid over-fitting, usually only a subset of the training data is used
(e.g., 80%), while the remaining data are used for validation. During this
early-stopping approach, the network stops when the MSE between the
training and the validation data does not decrease any more. Next, the
network applies the learned relationship in combination with the mapped
predictor data to infer the target data on the same map grid as the predictor
data.

FIGURE 7: Schematic of a generic 2-layer FFN configuration. Illustrating 7 predictor variables, that
are each joined to five neurons by weighted connections. Each of the neurons is then joined to the
target variable by weighted connections (weight illustrated by the intensity of the grayscale). Based

on Olden and Jackson (2002) and Hsieh (2009).

3.3 Approaches developed and used in this study

To investigate the continued development of the Southern Ocean carbon
sink after 2011, I use an updated version of the mapped air-sea CO2 product
by Landschützer et al. (2015), which is based on the SOM-FFN approach
and extends until December 2016 (Appendix A).

Next, I developed a monthly climatology of global fields of DIC in the
interior ocean, from the surface until 2000 m (Appendix B). As the
SOM-FFN had been demonstrated to work at the surface, I built on that
approach, extending the method from three dimensions (latitude, longitude,
and month) to four dimension (latitude, longitude, month, and depth). I
describe the SOM-FFN approach in more detail in Appendix B, along with
the data used and various validation tests I conducted with independent
data.
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To investigate the interannual variability of DIC in the interior Southern
Ocean, I further built on the method from Appendix B, increasing the
temporal resolution to create a second data set, which consists of global
mapped fields of interior DIC with monthly temporal resolution from 2004
through 2017, from the surface until 500 m (Appendix C).

In my SOM-FFN set-up, the target data of the FFN are the sparse ship
measurements of DIC, while the predictor data are better-constrained
variables that are related to DIC (e.g., temperature, salinity, dissolved
oxygen, and nutrients). These variables exist at a higher spatio-temporal
density than DIC measurements, and so, mapped time-varying data
products of these variables have been produced using traditional
interpolation techniques, such as optimal interpolations.

Mapping the interior DIC poses additional challenges compared to
mapping the surface pCO2. First, the DIC measurements at depth are even
sparser than surface carbon measurements (Fig. 2). Second, while many
predictors can be used at the surface, for example, from satellite
observations, very few variables are available as predictors at depth.
Despite these challenges, the method passes relevant validation tests and
can adequately map the time-varying DIC fields, as demonstrated in
Appendices B and C.

4 Summary of Key Results

4.1 Interannual variability of Southern Ocean carbon fluxes

After a stagnation of the Southern Ocean carbon sink in the 1990s and a
reinvigoration in the early 2000s, I demonstrate in Appendix A, that this
globally important carbon sink has weakened again since 2011 (Fig. 8). I
found that, although previously the uptake in the three sectors of the
Southern Ocean—the Atlantic, Pacific, and Indian Ocean sectors—had
followed the same trend, from 2008 the sectors differ: while the uptake in
the Atlantic and Indian sectors weakened, the uptake in the Pacific sector
stagnated during this period. This answers my Research Question A.1:
’How has the Southern Ocean carbon sink developed after 2011?’

I further demonstrate in Appendix A, that locally within the Southern
Ocean, the SAM plays an essential role on the carbon uptake variability over
the last 35 years, where positive SAM phases enhance outgassing in
upwelling regions, and enhance carbon uptake in subduction regions. These
opposing local effects, however, cancel each other out, leading to a net-zero
effect of the SAM on the overall Southern Ocean carbon trends. Instead, I
find that regional shifts in sea level pressure and the induced changes in
surface wind velocity modulate the recent Southern Ocean carbon sink. This
answers Research Question A.2: ’What are the drivers behind the recent
interannual variability of the Southern Ocean carbon sink?’
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FIGURE 8: Extension of the evolution of the Southern Ocean carbon flux per unit area, between 35°S
and the Antarctic coast from 1982 through 2016 in the Atlantic (green), Pacific (purple), and Indian

(orange) sectors.

4.2 Monthly climatology of global interior DIC

In Appendix B, I demonstrate that it is possible to map time-varying fields
of interior DIC using sparse ship data. I created a monthly climatology of
DIC from the sea-surface to 2000 m, using a 2-step neural-network-based
mapping technique and DIC measurements from the GLODAPv2.2019 data
product. Various tests with an ocean biogeochemistry model, and with
independent observations that were not used to train the network
demonstrate that the method can capture the seasonal cycle of DIC at global
scale with an average root mean squared error (RMSE) of approximately 20
µmol kg−1. This answers my Research Question B.1: ’Can we map
time-varying fields of DIC using sparse ship data to create a monthly
climatology?’

In addition to answering the main research questions in this dissertation,
I also describe the global seasonal carbon dynamics using my new data
product in Appendix B. As the largest signal in the changes in DIC is the
seasonal cycle, it considerably affects the amount of carbon taken up by the
ocean. A study by Mongwe et al. (2018) demonstrated that the Coupled
Model Intercomparison Project phase 5 (CMIP5) models disagree on the
phase and amplitude of Southern Ocean inorganic carbon, while Nevison
et al. (2016) highlighted that the seasonal carbon dynamics in the CMIP5
models significantly affect their climate projections. Thus, understanding
the seasonal carbon dynamics and the underlying processes forms an
important part of climate research.
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The phase of the surface seasonal cycle is approximately opposite in the
two hemispheres and the highest surface DIC concentrations occur in
hemispheric spring (Fig. 9a). In these months, the mixed layer tends to be
deepest (Holte et al., 2017), bringing carbon-rich waters to the surface. I find
the amplitude of this surface seasonal cycle to be between 5 and 20 µmol
kg−1 throughout most of the global oceans (Fig. 9b) and the largest
amplitudes are in the northern high latitudes of the Pacific and Atlantic
Oceans. Opposing processes of photosynthesis near the surface and
respiration and remineralization below, result in a phase shift of the
seasonal cycle of DIC with depth. The surface seasonal pattern described
above extends to a depth of several hundred meters in the subtropics and
less than 50 m in the tropics. Below that depth, named the DIC nodal depth,
the seasonal cycle tends to have a shifted phase compared to the surface, but
with a smaller amplitude (Fig. 9c). Using the change in DIC concentration
between hemispheric spring and autumn, I estimate the summer NCP in the
water column (Fig. 9d). I find the largest summer NCP in the North Atlantic
and the Labrador Sea and estimate that globally, the summer NCP is
6.1±0.9 PgC.

FIGURE 9: Spatial distribution of the seasonal characteristics of seasonal DIC, depicting the month
with the highest DIC values at the surface (a), the amplitude of the surface seasonal cycle of DIC (b),
the DIC nodal depth(c), and the summer net community production (d). Modified from Appendix B.
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4.3 Interannual variability of interior Southern Ocean DIC

In Appendix C, I build on the method from Appendix B, extending the
temporal resolution to monthly mapped fields of DIC at global scale from
2004 through 2017. Focusing on the Southern Ocean, I test this new data
estimate with independent data and find that the method adequately maps
the Southern Ocean DIC, capturing its mean, trend, and interannual
variability, illustrated by the RMSE of 24 µmol kg−1 between my DIC
estimate and the DIC calculated from SOCCOM floats. In addition, tests
with synthetic data from the ocean biogeochemistry model HAMOCC
(Ilyina et al., 2013; Mauritsen et al., 2019) demonstrate that our estimate can
reconstruct the model field with an RMSE of 8 µmol kg−1. This answers
Research Question C.1: ’Can we map time-varying fields of DIC in the
Southern Ocean at interannual monthly resolution?’

Analyzing this new data estimate of monthly mapped DIC fields, I find
that the surface DIC has a very weak interannual variability compared to
the air-sea CO2 flux, and the strongest signal here is the
anthropogenically-driven positive trend. Below the surface, my analysis
reveals a large temporary sub-surface reduction in DIC from 2004 until the
year 2009, which is followed by a recovery until 2012 (Fig. 10). This
reduction is the strongest south of the Polar Front, i.e., near the Antarctic
coast, and extends to 500 m. This answers Research Question C.2: ’What is
the extent of the variability of DIC in the water column?’

I present multiple lines of evidence that link this temporary reduction in
sub-surface DIC to recent changes in the MOC. A weakening overturning
circulation in the 2000s led to less upwelling of Southern Ocean DIC,
creating the sub-surface reduction, allowing for additional carbon uptake at
the surface. While we do not know the evolution of the MOC after 2009, it is
likely that enhanced upwelling aided the recovery of the sub-surface
reduction in DIC, and weakened the carbon uptake at the surface. This
answers Research Question C.3: ’What are the drivers behind the variability
of DIC at the surface and below?’

4.4 Drivers of variability at the surface and below

In Appendix A, I find that the SAM does not have an overall effect on the
recent variability in the air-sea carbon uptake, integrated over the whole
Southern Ocean. Conversely, in Appendix C, I attribute the variability in
sub-surface DIC to changes in the MOC, which is tied to the SAM. These
findings demonstrate that in positive SAM phases, the regional effects of
enhanced outgassing in regions of upwelling is counter-balanced by
enhanced uptake elsewhere at the surface, which creates the overall net-zero
effect of the SAM on the Southern Ocean carbon flux. However, below the
surface, the reduced upward transport is visible in the DIC pool, as
demonstrated in Appendix C.
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FIGURE 10: Changing DIC concentration with time (x-axis) and depth (color) for the Subtropical
Zone (a) and the Polar Zone (b). See Fig. 4 for the location of the fronts. Note that the mean values of
the y-axes differ among a and b, but they have the same scale (maximum value - minimum value =

120 µmol kg−1). Modified from Appendix C.

5 Outlook and Implications

How the Southern Ocean carbon fluxes and storage will continue into the
future remains an open question, due to the Southern Ocean carbon
dynamics being sensitive to processes of which we do not know the future
evolution. This dissertation presented the large fluctuations in the amount
of carbon that is taken up and stored in the Southern Ocean, and one can
speculate that this carbon sink will continue to exhibit such fluctuations in
the next decades, or even centuries.

New insights on regional and global carbon dynamics can be found by
further delving into the two data products that I developed. I have
demonstrated with the analysis of these products that a substantial amount
of information can be gained from these data, which is worth exploring
further. Specifically for the interannual fields, so far I only investigated the
interannual variability of the DIC in the Southern Ocean, while the
interannual variability in the remaining ocean is yet to be analyzed. Key
regions of interest are the tropical Pacific, which experiences large
interannual variability as part of the El Niño Southern Oscillation. The
North Atlantic is another region of interest, as the Atlantic Deep Water is
formed there, taking up large amounts of anthropogenic carbon. Changes in
this uptake could affect the global climate and are worth further analysis.

Furthermore, the SOM-FFN approach, that I described in my analysis,
can be used to produce time-varying global fields of other carbonate system
parameters, such as alkalinity. In combination with temperature and salinity
measurements, the remaining carbonate system parameters (pH, pCO2) can
then be computed and further analyzed, for example, to study the changes
in ocean acidification or the buffering capacity of the ocean. As new
measurements become available, the data products can also be updated to
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extend further in time, allowing for continuous monitoring of the carbon
uptake and storage, as well as its drivers.

It is worth noting that the potential drivers on the Southern Ocean carbon
variability are difficult to disentangle based on observations. As correlation
does not imply causation, it is challenging to determine which drivers are
necessary and which are sufficient. A necessary cause would be an event,
without which the consequence cannot occur, while a sufficient cause would
be an event that is always followed by the consequence (Pearl, 2016). Earth
System Models are potentially capable tools to disentangle these factors
with sensitivity analyses (Pearl, 2016). However, as models currently tend to
underestimate the observed variability (Frölicher et al., 2015), first they have
to be able to capture this variability before being able to disentangle its
drivers.

Another opportunity for further research is the analysis of the statistical
drivers of the seasonal cycle of DIC in observations and models. Different
CMIP5 models substantially disagree on the phase and amplitude of the
seasonal cycle of inorganic carbon in the Southern Ocean (Mongwe et al.,
2018). Using the method from Appendix B (Fig. B.7), the seasonal response
function from the Neural Network in the Southern Ocean could be derived
in models to determine the statistical drivers of DIC in these models. This
method could, for example, be applied with different Coupled Model
Intercomparison Project (CMIP) models to provide us insights into which
models best represent the seasonal cycle of DIC in the Southern Ocean and
demonstrate statistically why they do so (e.g., the biology or circulation
could be too strong or too weak as a driver). This information could then be
used to understand the carbon cycle better and improve climate projections.

Due to the global importance of the Southern Ocean carbon sink
(Friedlingstein et al., 2019; Frölicher et al., 2015), the findings from this
dissertation are crucial for the sustained monitoring and understanding of
not only the Southern Ocean carbon sink, but also of the global carbon cycle,
essential for governmental and economic decisions on carbon emission
reduction pathways.
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Abstract

The Southern Ocean south of 35◦S accounts for approximately half of the
annual anthropogenic carbon uptake by the ocean, thereby substantially
mitigating the effects of anthropogenic carbon dioxide (CO2) emissions. The
intensity of this important carbon sink varies considerably on interannual to
decadal timescales. However, the drivers of this variability are still debated,
challenging our ability to accurately predict the future role of the Southern
Ocean in absorbing atmospheric carbon. Analysing mapped sea-air CO2
fluxes, estimated from upscaled surface ocean CO2 measurements, we find
that the overall Southern Ocean carbon sink has weakened since ∼2011,
reversing the trend of the reinvigoration period of the 2000s. Although we
find significant regional positive and negative responses of the Southern
Ocean carbon uptake to changes in the Southern Annular Mode (SAM) over
the past 35 years, the net effect of the SAM on the Southern Ocean carbon
sink variability is approximately zero, due to the opposing effects of
enhanced outgassing in upwelling regions and enhanced carbon uptake
elsewhere. Instead, regional shifts in sea level pressure, linked to zonal
wavenumber 3 (ZW3) and related changes in surface winds substantially
contribute to the interannual to decadal variability of the Southern Ocean
carbon sink.

1 Introduction

The global oceans absorb ∼25% of the annually emitted carbon dioxide
(CO2) from human activities (Le Quéré et al., 2018). A disproportionally
large part of this uptake is linked to the Southern Ocean south of 35◦S,
which accounts for ∼50% of the annual oceanic CO2 uptake (Landschützer
et al., 2016) and where ∼40% of all emitted anthropogenic CO2 since the
beginning of industrialisation is stored (Frölicher et al., 2015; Khatiwala
et al., 2009; Sabine et al., 2004). Therefore, the Southern Ocean plays a
substantial role in mitigating the effects of human carbon emissions and
understanding this carbon sink and its related processes is crucial for future
climate projections.

A sobering study by Le Quéré et al. (2007) showed that despite the
continued increase in atmospheric CO2, the Southern Ocean carbon sink
saturated in the 1990s, diverging from the expected uptake based on
thermodynamic considerations. The authors explained this saturation with
a positive trend in the Southern Annular Mode (SAM), i.e., the dominant
mode of variability in the Southern Ocean, describing the zonal pressure
difference between 40◦S and 65◦S (Marshall, 2003). This positive trend led to
an intensification and poleward shift of the westerly winds, the driving
force behind the Southern Ocean upwelling of carbon-rich deep water
(Marshall, 2003; Thompson and Solomon, 2002; Thompson et al., 2000). The
link between the saturation of the Southern Ocean carbon sink in the 1990s
and the positive SAM phase was later confirmed by other model and
atmospheric inverse studies (Hauck et al., 2013; Lenton and Matear, 2007;



Appendix A 23

Lovenduski et al., 2008, 2007; Zickfeld et al., 2007).

Further studies have demonstrated that the response of the mixed-layer
depth and temperature to the SAM is not as “annular” (ring-shaped) as
previously thought, and is in fact zonally asymmetric, possibly affecting the
Southern Ocean carbon uptake (Fogt et al., 2012; Sallée et al., 2010; see also
Supplementary Information A_SI.1). Due to the scarcity of observational
data, many previous studies focused on zonal averages of the whole
Southern Ocean. Although this view has helped to understand the mean
dynamics in the last two decades, it is becoming more and more evident
that the Southern Ocean is not zonally uniform and that many key processes
occur in different regions that are averaged out in zonal averages (Rintoul,
2018; Sallée et al., 2012).

Recent technical advancements and efforts by the scientific community
have led to basin-wide observation-based estimates of the sea-air CO2 flux,
sea surface temperature (SST), and sea surface salinity (SSS). To overcome
the paucity of CO2 measurements, novel approaches based on statistical
relationships and machine-learning algorithms have advanced our ability to
extrapolate and basin-wide map the information collected from single
sampling routes (Landschützer et al., 2014).

Using the mapped partial pressure of CO2 (pCO2) data until December
2011, a study established that the saturation trend of the 1990s stopped and
reversed between the early 2000s and 2011 and that the Southern Ocean had
returned to its expected uptake strength (Landschützer et al., 2015). Despite
the shipboard-based pCO2 estimates being heavily extrapolated,
longer-term signals, such as the decadal fluctuations that mark the
saturation and reinvigoration periods were identified as robust features
among different approaches (Ritter et al., 2017; Rödenbeck et al., 2015), and
the reinvigoration of the Southern Ocean carbon sink was later confirmed
by several other studies (DeVries et al., 2017; Gregor et al., 2018; Ritter et al.,
2017).

Despite increasing evidence for the strengthening of the Southern Ocean
carbon sink in the 2000s, the processes behind this strengthening are still
debated, and the future evolution of this important sink region is highly
uncertain. One proposed mechanism is a zonally asymmetric atmospheric
circulation, which led to an oceanic dipole of warming and cooling that in
turn increased the CO2 uptake during the Southern Ocean reinvigoration
period (2002 through 2011; Landschützer et al., 2015). Another explanation
is based on changes in the upper meridional overturning circulation (MOC),
which may be linked to trends in the SAM (DeVries et al., 2017). Another
study argues that the interannual drivers of the Southern Ocean carbon sink
are seasonally decoupled, with wind stress as the main driver in austral
winter and biology in austral summer (Gregor et al., 2018).

Here, we build on previous assessments using neural-network derived
mapped pCO2 estimates based on shipboard measurements to demonstrate
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the temporal evolution of the Southern Ocean carbon sink and its regional
drivers. Finally, we focus on the period after the end of the reinvigoration in
2011 and put our findings from this most recent period in context with
previous findings since the 1980s.

2 Results and Discussion

2.1 The Southern Ocean carbon sink variability

Using an updated observation-based mapped estimate of the sea-air CO2
flux (extended from Landschützer et al. (2016)), we find that the substantial
decadal variability of the Southern Ocean carbon sink persists and is present
in all three sectors: the reinvigoration period of increased CO2 uptake lasted
until ∼2011, and is followed by a reversal of this trend with decreasing
carbon uptake until the end of our study period in December 2016 (Fig.
A.1b,c), consistent with a previous finding (Gregor et al., 2018).

The integrated CO2 uptake (Fig. A.1b) does not differ considerably
between the three sectors despite the large differences in area (Atlantic
sector: ∼2.2·107 km2, Pacific sector: ∼3.7·107 km2, and Indian sector:
∼3.0·107 km2, Fig. A.1a). Specifically, the integrated sea-air CO2 flux from
2012 through 2016 is approximately equal in each of the three sectors with a
mean uptake of 0.3 to 0.4 PgC yr−1 resulting in a total Southern Ocean
carbon uptake of ∼1.1±0.2 PgC yr−1, or approx. 50% of the contemporary
annual mean oceanic carbon uptake. The comparable uptake strength
between sectors is in agreement with previous results, who found a fairly
homogeneous carbon uptake between the three sectors from different model
and inversion estimates (Lenton et al., 2013).

Despite the sectoral similarities in the integrated CO2 uptake, strong
sectoral differences exist in the magnitude of the sea-air CO2 flux per unit
area (Fig. A.1c). In particular, the Atlantic sector, i.e., the sector with the
smallest spatial extent, reveals the largest variability range from ∼-0.7 mol
m−2 yr−1 in the early 2000s to ∼-1.7 mol m−2 yr−1 in 2011. Throughout
most of the time period, the Atlantic sector is the most intense carbon sink
per unit area within the Southern Ocean and from 2012 onward, the CO2
uptake per unit area in the Atlantic sector (∼1.4 mol m−2 yr−1) is nearly
twice the amount taken up by the Pacific sector (∼0.8 mol m−2 yr−1) and
still considerably more than in the Indian sector (∼1.1 mol m−2 yr−1). This
strong mean uptake has been recently challenged using calculated pCO2
from biogeochemical Argo floats (Gray et al., 2018; Williams et al., 2017).
While the differences are not yet fully resolved, a combination of float and
ship data as a next step is required to fully constrain both the seasonal cycle
and the mean uptake in the Southern Ocean. We therefore focus on the
interannual variability and regional differences rather than the integrated
carbon uptake in this study.
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FIGURE A.1: The sectors of the Southern Ocean and the evolution of their carbon sink between 35◦S
and the Antarctic coast for the Atlantic (green), Pacific (purple), and Indian (orange) sectors from 1982
through 2016. (a) The sectors and fronts in the Southern Ocean, illustrating the Atlantic, Pacific, and
Indian sectors in color, and the Subtropical Front (STF) and Polar Front (PF) from Orsi et al. (1995)
solid black lines (from north to south). (b) The integrated sea-air CO2 flux [PgC yr−1]; and (c) the
sea-air CO2 flux per unit area [mol m−2 yr−1]. (b,c Mean (lines) and one standard deviation around
the mean (shading); we removed the mean seasonal cycle from 1982 through 2016, then added the
mean of the same time period, and then smoothed with a 3-month running mean; the first and last 3
months are removed during smoothing. The carbon uptake in Fig. A.1c is weighted by the area each
grid cells covers. Note that we do not discuss the Southern Ocean carbon flux trends before 2012
extensively in-text, as this has been done in previous studies (Landschützer et al., 2015; Le Quéré

et al., 2007).
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Another striking observation is that since the late 2000s, stronger
differences between the sectors emerge. In the saturation period of the 1990s
and the following reinvigoration period in the early 2000s, differences
between the sectors stay within one standard deviation around the mean,
and they agree on the direction of the trend. However, since approx. 2008,
the sink strength in the Pacific sector stalls, whereas the Atlantic and the
Indian sectors continue to take up additional carbon until ∼2011, followed
by a sink reduction thereafter, causing a significant divergence in the uptake
intensity between the Atlantic and Pacific sectors.

It is a possibility that the sectoral differences towards the end of the time
line are partially due to increased observational data in these years. This is
however challenging to test with the available measurements, and
model-based observing system simulations might be required to address the
effect of data sparsity on the past sea-air CO2 exchange.

2.2 The SAM’s effect on the Southern Ocean carbon sink

The SAM, the dominant climate mode of variability in the Southern Ocean,
influences the MOC, and hence the uptake and outgassing of carbon (Hall
and Visbeck, 2002; Thompson and Wallace, 2000; Thompson et al., 2000)
Specifically, in positive SAM phases, the westerly winds in the Southern
Ocean intensify and shift poleward (Hall and Visbeck, 2002). This
intensification leads to enhanced Ekman transport, resulting in an increase
in both upwelling and subduction, and hence outgassing and uptake,
respectively (Downes et al., 2011; Le Quéré et al., 2007; Lovenduski et al.,
2007).

A positive trend in the SAM index polarity was suggested as the driver
behind the Southern Ocean carbon sink stagnation in the 1990s (Le Quéré
et al., 2007). Similarly, a more recent study found that in a region south of
Tasmania, there are regions of both increased carbon uptake and outgassing
in positive SAM phases in austral summer (Xue et al., 2018). When
considering the period from 1982 through 2016, the SAM index illustrates
substantial variations in time; however, it further shows a continuous
positive long-term trend (Fig. A.2a). Therefore, we first investigate if the
SAM affects the Southern Ocean carbon sink as a whole when considering
the entire 35-year period (1982 through 2016). A 2D correlation and
regression analysis confirms the link between the SAM and the carbon
uptake but highlights the contrasting regional differences within the
Southern Ocean (Fig. A.2). The resulting pattern closely reflects the results
of a model-based study (Lovenduski et al., 2007).
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FIGURE A.2: The relationship between the SAM index and the CO2 flux anomaly from January 1982
through 2016. (a) Standardized SAM index, smoothed with a 3-month running mean, and the trend
line in black. Positive SAM indices are illustrated in red, negative ones in blue. The start of the
reinvigoration (Jan 2002) and the most recent period (Jan 2012) are marked with thin vertical black
lines. (a) The correlation coefficients between the sea-air CO2 flux anomaly [mol m−2 yr−1] and the
smoothed, standardized SAM index. Coefficients with significance < 95% are hatched. (c) The slope
of the regression fit between the sea-air CO2 flux anomalies [mol m−2 yr−1] and the standardized
SAM index. As the SAM index is standardized to have a mean of 0 and a standard deviation of 1,
(c) illustrates the change in the CO2 flux [mol m−2 yr−1] per standard deviation of the SAM. (b-c)
The mean positions of the PF and the STF are illustrated as thin black lines, the three Southern Ocean

sectors are delimited by dashed black lines, and coastal areas are masked white.

In agreement with that study (Lovenduski et al., 2007), positive SAM
phases correlate with anomalous outgassing in the region between ∼50◦S
and ∼65◦S, with the exception of the Atlantic sector (Fig. A.2b), potentially
illustrating the recently suggested zonal SAM asymmetry (Fogt et al., 2012;
Sallée et al., 2010). However, we find that for most of the remaining
Southern Ocean, the CO2 flux correlates negatively with the SAM index;
here, positive SAM phases are linked to increased uptake. The general
picture is comprised of alternating zonal bands with positive and negative
correlations. However, the pattern in the Atlantic sector is approximately
opposite to the Pacific sector south of ∼45◦S.

Regionally, the link between the SAM and the air-sea exchange of CO2
derived from mapped shipboard observations is evident. Just north of the
PF in the Pacific sector, anomalous outgassing of approx. 0.5 mol m−2 yr−1

occurs per standard deviation of the SAM (Fig. A.2c). Conversely, south of
the PF in the Atlantic sector, anomalous carbon uptake of ∼0.4 mol m−2
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yr−1 occurs per standard deviation of the SAM.

However, when integrating the total effect of the SAM on the Southern
Ocean carbon uptake south of 35◦S, we find that the regionally opposing
effects cancel each other out: the net effect is 0.0 PgC yr−1 per standard
deviation of the SAM, for the whole Southern Ocean, and the net effect in
each of the three sectors is also 0.0 PgC yr−1. Inversion and model-based
studies have also found a compensation of positive and negative
correlations between the sea-air CO2 flux and the SAM throughout the
Southern Ocean (Hauck et al., 2013; Lenton and Matear, 2007; Lovenduski
et al., 2007). These studies found a slightly positive net integrated uptake of
∼0.1 PgC yr−1 per standard deviation of the SAM in their study periods.
However, our findings based on upscaled observations suggest that the
positive trend in the SAM does not considerably alter the basin-wide net
Southern Ocean CO2 uptake over the past 35 years.

2.3 Physical sea surface properties and the carbon flux from 2012 through
2016

Despite its regional correspondence and its link to the saturation of the
Southern Ocean carbon sink in the 1990s (Le Quéré et al., 2007), the SAM
index polarity does not fully explain the overall Southern Ocean carbon sink
variability over the 35-year period. We therefore continue to investigate
other potential drivers.

As CO2 is more soluble in colder water, one would expect positive
correlations between SST and sea-air CO2 flux anomalies in regions where
the solubility of CO2 is the dominant driver (negative SST anomalies
negative corresponding to negative sea-air CO2 flux anomalies). Instead, the
general picture during this period are alternating zonal bands of positive
and negative correlations. Specifically, warmer SST correspond to less
uptake in the northern region of subduction, to less outgassing in the
upwelling band, i.e., where circulation and/or biology dominate the CO2
flux variability (Landschützer et al., 2014; Takahashi et al., 2002), and
patches of less uptake in the southern regions of deep water formation (Fig.
A.3a, see also Supplementary Information A_SI.4-A_SI.6).

Hence, in the northern zonal band (north of ∼40◦S) solubility drives the
CO2 flux variability. In contrast, south of 40◦S the band of negative
correlations suggests other processes to be dominant, such as variations in
dissolved inorganic carbon (DIC) and alkalinity (Takahashi et al., 2009). This
zonal symmetry suggests different drivers than explored in the
reinvigoration period, where the authors found that in the Pacific Sector of
the Southern Ocean changes in the thermal component dominated over the
non-thermal counterpart (Landschützer et al., 2015).
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In contrast, the correlation between SSS and CO2 flux anomalies reveals
only some significant patches at the 95% confidence level (Fig. A.3b).

FIGURE A.3: The correlation coefficients between the sea-air CO2 flux anomaly (negative is into the
ocean) and SST (a) and SSS (b) anomalies from 2012 through 2016. The trend and seasonal cycle
was removed from all three variables, and then smoothed with a 3-month running average. The
mean positions of the PF and the STF are illustrated as thin black lines, the three Southern Ocean
sectors are delimited by dashed black lines, and coastal areas are masked white. Coefficients with

significance < 95% are hatched.

2.4 Regional shifts in sea level pressure (SLP) and surface winds as CO2
flux drivers

As we have demonstrated in the previous section, changes in the
non-thermal drivers (i.e. DIC, alkalinity or biology), and not solubility, are
the dominant processes behind the recent Southern Ocean carbon sink.
Although the atmospheric forcing on the ocean dynamics is generally
non-linear (O’Kane et al., 2013), the relationship between atmospheric
forcing and ocean dynamics has been suggested in the past to influence the
Southern Ocean carbon uptake (DeVries et al., 2017; Le Quéré et al., 2007).
Here, we demonstrate that regional shifts in SLP and the related winds
affect the MOC, modulating the Southern Ocean carbon sink.

The southern extra-tropical atmospheric circulation is overall zonally
symmetric, but significant asymmetries, such as zonal wavenumbers 1 and
3 (ZW1 and ZW3, respectively) are present within this zonal flow (Hobbs
and Raphael, 2010; Raphael, 2004). ZW1 and ZW3 are quasi-stationary,
where ZW1 is a zonal wave with one ridge in the Pacific sector and one
trough in the Atlantic sector, while ZW3 has ridges south of each of the
three continents and three troughs in between (Hobbs and Raphael, 2010;
Loon and Jenne, 1972). The observed picture is generally a combination of
both ZW1 and ZW3, while ZW1 tends to be considerably more dominant
(Hobbs and Raphael, 2010; Quintanar and Mechoso, 1995).
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From 2002 through 2011, a more zonally asymmetric atmospheric
circulation was suggested to lead to an oceanic dipole of warming and
cooling, which was identified to drive the reinvigoration of the Southern
Ocean carbon sink (Landschützer et al., 2015, see also Supplementary
Information A_SI.7). Due to geostrophic balance, the winds follow this
pattern, resulting in stronger zonal winds in the Pacific sector, and weaker
zonal winds in the Atlantic and Indian sectors. In turn, anomalous
northward advection in the Pacific sector led to enhanced upwelling of cold
water, enabling enhanced carbon uptake due to the solubility of CO2.
Concurrently, anomalous southward advection in the Atlantic sector led to
enhanced downwelling and carbon uptake in that area (Gruber et al., 2019b;
Landschützer et al., 2015) The SLP in this time period resembles the inverse
structure of the typical ZW1 pattern (Landschützer et al., 2015, see also
Supplementary Information A_SI.7) with an additional imprint of the ZW3
pattern (Gruber et al., 2019b).

Based on this finding, it appears plausible that a dominance shift of ZW1
or ZW3 might drive the most recent Southern Ocean carbon sink stagnation.
Indeed, from 2012 through 2016, the trends in SLP and resulting surface
wind velocity have shifted substantially again compared to both the
saturation and reinvigoration periods (Fig. A.4a; see also Supplementary
Information A_SI7). In this period, we find a strong asymmetry in the local
pressure system with a positive SLP trend over the Drake Passage (∼ 30◦W),
south of Africa (∼20◦E), and west of Australia (∼100◦E), and negative SLP
trends in between (Fig. A.4a). This pattern strongly resembles the positive
ZW3 pattern (Hobbs and Raphael, 2010), with the exception that typical
ZW3 patterns are more symmetric, with the third ridge being further east,
just south of Australia (Hobbs and Raphael, 2010; Loon and Jenne, 1972).
This is in line with a recent study by Schlosser et al. (2018), who found that
2016 has a strong positive phase in the ZW3, causing significant decay of
Antarctic sea ice.Due to geostrophic balance, winds tend to follow the SLP,
as seen in Fig. A.4a. We find that south of the PF in the Atlantic and Indian
sectors, the local trends enhance the westerly wind circulation, while at the
same latitudes in the eastern Pacific the local trends counteract the westerly
circulation.

Previous studies have shown that enhanced westerlies enhance the
MOC, while decreased westerlies decrease the MOC (DeVries et al., 2017;
Le Quéré et al., 2007). To investigate the effects of the changes in the MOC,
we consider the changes in pCO2. The ∆pCO2 (oceanic pCO2 – atmospheric
pCO2) trends from 2012 through 2016 are predominantly positive south of
the PF (Fig. A.4b), indicating reduced uptake close to the seasonally
ice-covered regions. In addition, the total ∆pCO2 has mainly a negative
trend north of the STF in all three sectors, while between the PF and the STF,
the trends are mainly positive (i.e., reduced uptake/increased outgassing),
with the most dominant exception being the eastern Pacific sector around
50◦S. The recent decrease in the carbon uptake per unit area in the Atlantic
and Indian sectors shown in Fig. A.1c is hence mainly due to a decrease in
carbon uptake in the higher latitudes, which is slightly offset by the
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increased uptake north of the STF. Similarly, the recent stagnation in the
carbon uptake per unit area in the Pacific sector is largely due to increased
uptake towards the north-eastern Pacific sector being offset by decreased
uptake towards the south-western Pacific sector.

To determine the processes behind the trends in the total ∆pCO2, we
further separate the observed trends in the surface ocean pCO2, using the
CO2 sensitivity of seawater to thermal changes of 4.23%/◦C (Landschützer
et al., 2015; Takahashi et al., 2002). As CO2 dissolves faster in colder water,
areas with negative trends in the thermal component of pCO2 are regions
that enhance the carbon uptake (Takahashi et al., 1993). The trend in the
thermal component (Fig. A.4c) is mainly negative, i.e., surface waters cooled
over the past few years, with a few exceptions, most notably in the eastern
Pacific sector north of the PF, thereby enhancing the solubility of seawater.

The non-thermal component is comprised of the sum of circulation and
biological effects. Regions of upwelling are usually associated with
outgassing, while subduction areas tend to be regions of carbon uptake.
Moreover, regions of high biological productivity tend to be regions of
carbon sequestration. The pattern of the trend of the non-thermal
component of the ∆pCO2 (Fig. A.4d) closely resembles the pattern of the
trend of the total ∆pCO2 (Fig. A.4b), with the thermal component offsetting
the non-thermal component.

Combining the findings from Fig. A.4, we find that in the Atlantic and
Indian sectors, south of the STF, increased winds enhance the westerly
circulation (Fig. A.4a), likely resulting in an increase in Ekman-induced
upwelling of carbon-rich waters from deeper layers, which explain the
observed anomalous outgassing and northward transport of cold and
carbon-rich waters in these two sectors south of the STF (see Fig. A.4b and
d). In contrast, at the same latitudes in the Pacific sector, decreased winds as
a result of the high-pressure area at Drake Passage explain the observed
decreased carbon uptake and decreased outgassing here, likely imposed by
reduced upwelling and subduction. In contrast, the inflow of warmer
surface waters from the north, induced by enhanced westerlies, only in part
counteracts the non-thermal signature. Concurrently, Fig. A.4a reveals
enhanced winds in the west of the Pacific sector leading to enhanced
upwelling and subduction, and hence both increased carbon uptake and
increased outgassing. These opposing effects lead to the overall CO2 flux
stagnation of the Pacific sector in this period.

Our finding that the carbon uptake in the Pacific sector is mainly driven
by the non-thermal component, is somewhat contrary to previous findings
that trends in this region are solubility driven (Landschützer et al., 2015),
but might also indicate that the relative dominance between thermal and
non-thermal drivers is shifting in time, highlighting the complexity of the
Southern Ocean carbon sink.
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FIGURE A.4: Trends of SLP and 10 m wind velocity and the trends of the ∆pCO2, (oceanic pCO2
- atmospheric pCO2) its components during the most recent period (2012 through 2016). (a) Trend
of the SLP (hPa decade−1) (color) and trend of the 10 m wind velocity [m s−1 decade−1] (vectors).
(b) Trend of the ∆pCO2 (µatm yr−1); (c) trend of the thermal component of the pCO2 (µatm yr−1);
(d) trend of the non-thermal component of the ∆pCO2 (µatm yr−1). The mean positions of the PF
(∼ 55◦S) and the STF (∼ 40◦S) are illustrated as thin black lines, the three Southern Ocean sectors are
delimited by dashed black lines. See S7 for the analogous figure for the reinvigoration period (2002

through 2011).

3 Summary and Conclusions

In summary, our study demonstrates that regionally, the Southern Ocean
carbon uptake shows a significant regional correspondence to the SAM
index polarity, although when considering the entire 35-year period, the
SAM does not have a considerable effect on the overall Southern Ocean
carbon uptake. Instead, regional shifts in SLP closely tied to the ZW3
pattern in the Southern Ocean and related surface wind velocity
substantially affect the most recent evolution of the Southern Ocean carbon
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sink. In the Atlantic and Indian sectors, enhanced outgassing in upwelling
regions and decreased uptake in subduction regions dominate after 2011,
causing the carbon sink in these sectors to weaken. In the Pacific sector,
however, regionally opposing trends to the east and the west linked to the
ZW3 pressure asymmetry cause the net carbon sink of this sector to stall. In
particular, towards the eastern Pacific sector, local wind patterns
counteracting the mean westerly flow lead to decreased upwelling of carbon
from deeper ocean layers, while towards the west, local winds enhancing
the westerly flow lead to enhanced stirring and outgassing of carbon. Our
results also reveal a rather complex picture of the Southern Ocean carbon
sink. While from 2002 through 2011 it was suggested that the increase in
solubility led to more carbon uptake in the Pacific sector (Landschützer
et al., 2015), in the subsequent years the wind-driven upward stirring
caused a slow-down of the uptake in the eastern part of this basin. Our
findings therefore suggest that the evolution of the Southern Ocean carbon
sink is not only determined by local weather patterns but further
determined by the relative dominance of thermal and non-thermal drivers
that appear to locally interchange dominance in time.

Our study implies that adequate observations of SLP and winds in the
Southern Ocean are key to better understand the regional processes in this
dynamic region on interannual to decadal timescales. Similarly, future
studies including better representation of regional weather patterns in earth
system models may lead to a better modelled representation of the Southern
Ocean carbon cycle and close the present discrepancies between
model-based and observation-based sea-air fluxes.

It is an open question of how the Southern Ocean carbon sink will
continue to evolve. However, we demonstrate that understanding the
evolution of regional weather patterns is key in monitoring the Southern
Ocean sink strength on interannual to decadal timescales.

4 Data and Methods

We combine data from different platforms in the Southern Ocean south of
35◦S, which we introduce below.

4.1 Ship-based sea-air CO2-flux estimate

We use a neural-network derived mapped estimate of the sea-air CO2 flux,
which is based on data from the Surface Ocean CO2 Atlas database
SOCATv5 (Bakker et al., 2016). To overcome the paucity of shipboard pCO2
observations, this product applies a 2-step neural-network mapping
approach, using a suite of independent predictors as proxy data to infer the
final pCO2 fields. In the first step of this SOM-FFN method, self-organizing
maps (SOM ) cluster the global ocean into biogeochemical provinces. In the
second step, a feed-forward network (FFN) is applied to determine the
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statistical relationships between the SOCATv5 data (Bakker et al., 2016) and
proxy parameters within the provinces to then estimate the pCO2. Lastly,
the sea-air CO2 flux is computed using a bulk flux formulation, where
positive values indicate outgassing, and negative values indicate oceanic
uptake of CO2. The gas transfer is computed using a quadratic wind
dependence (Wanninkhof, 1992) based on ERA-interim wind speeds (Dee
et al., 2011). The gas transfer coefficient is then scaled so that the mean
transfer velocity of 16 cm hr-1 matches a recent estimate by Wanninkhof
et al. (2013) For more information on this method see Landschützer et al.
(2013) and for a discussion on the robustness of this data estimate, see S2.
This mapped estimate is on a 1◦x 1◦ monthly grid, originally created from
1982 through 2011 (Landschützer et al., 2014; Landschützer et al., 2016). We
extend it by five additional years until December 2016. We compute the CO2
flux anomalies by removing the climatological seasonal cycle and smooth
the remaining high-frequency variability using a 3-month running mean.

4.2 The SAM index

We use the SAM index by Marshall (2003), which is based on the observed
pressure difference between six stations at 40◦S and 65◦S. We standardise
the index by subtracting the mean and dividing it by the standard deviation
over the time period (1958 to 2017), following Lovenduski et al. (2007). We
then smooth the standardised index with a 3-month running mean in order
to be able to analyse the interannual signal of the SAM, following Lenton
and Matear (2007). Although some studies do not smooth the SAM index at
all, others smooth with a running mean of 8 or 12 months (Hauck et al.,
2013; Lenton and Matear, 2007; Lovenduski et al., 2007). We tested different
high-pass and low-pass filters and found that the 3-month running mean
can represent the interannual variability of the SAM index without
removing too much of the signal.

4.3 Argo float-based SST and SSS

Argo floats are autonomous profiling floats that measure seawater
properties in the water column (http://www.argo.ucsd.edu/). As such,
they fill large observational gaps in the ocean, especially in historically
under-sampled regions, such as the Southern Ocean. The Roemmich and
Gilson (2009) Argo-based product provides optimally interpolated data of
temperature and salinity of the top 2000 m on a monthly 1◦x 1◦ grid. Due to
the relatively high spatiotemporal density of floats compared to ship data,
this data set is of high confidence and provides reliable in-situ data. We use
the shallowest value at 2.5 m of the temperature and salinity for the SST and
SSS respectively from January 2004 until December 2016 (i.e., 13 years of
data). Based on the data availability of this product, the analysis of the sea
surface properties only extends until 65◦S. It would be interesting to analyse
the region south of 65◦S as well, as this is a region of deep water formation
and hence subduction. However, as this region is partially ice-covered, there
are few Argo profiles with good quality control flags, which results in data

http://www.argo.ucsd.edu/
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with lower confidence than the gridded Argo-based data we use in this
study. It has to be left for future analyses to investigate the relationship
between the physical sea surface properties and the carbon sink in this
region. As for the sea-air CO2 flux, we compute anomalies by removing the
climatological seasonal cycle and we smooth remaining high-frequency
variability using a 3-month running mean.

4.4 SLP and surface wind velocity

To analyse how the SLP and related wind velocity affects the Southern
Ocean carbon uptake, we use reanalysis data between January 2004 and
December 2016. For the SLP, we used the NCEP/NCAR Reanalysis monthly
mean data (www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysi
s.surface.html), and for the wind velocity, we use the monthly mean zonal
and meridional 10 m wind velocity components from Era Interim (http:
//apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/).

4.5 Separation into thermal and non-thermal components and ∆pCO2

Following Takahashi et al. (2002), we separate the thermal and non-thermal
components of the pCO2 at each grid point using Eq. A.1 and A.2:

non − thermal = pCO2 · EXP(0.0423 · (sstmean − sst)) (A.1)

thermal = pCO2mean · EXP(0.0423 · (sst − sstmean)) (A.2)

where at each grid point, pCO2 is the oceanic pCO2 at a given point in time,
pCO2mean is the mean pCO2 over the whole time period, sst is the SST at the
given point in time, and sstmean is the mean SST of the whole time period.
Following Landschützer et al. (2015), we compute ∆pCO2 by subtracting the
atmospheric pCO2 at each grid point from the oceanic pCO2 at the same
grid point. We obtain atmospheric xCO2 from the NOAA marine boundary
layer reference product (https://www.esrl.noaa.gov/gmd/ccgg/mbl/).
From this, we calculate atmospheric pCO2 as outlined in Landschützer et al.
(2013) using the NCEP sea level pressure (Kalnay et al., 1996) and the water
vapour correction by Dickson et al. (2007).

4.6 Ocean sectors and position of fronts

To analyse sectoral differences within the Southern Ocean, we define the
Atlantic sector from 70◦W to 20◦E, the Indian sector from 20◦E to 145◦E, and
the Pacific sector from 145◦E to 70◦W (see Fig. A.1a). We chose to divide the
Southern Ocean into these sectors and not, e.g., into water masses, because
the sectors are separated by fixed lines, while other ways of dividing the
ocean are dynamic and not straight-forward. In addition, similar processes
are at play within each of the sectors. Furthermore, several fronts separate
the Southern Ocean and divide it into inter-frontal zones with unique
biogeochemical and physical properties (e.g., Roemmich and Gilson (2009)).
For our analysis and discussion, we use the Subtropical Front (STF) at

www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
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∼40◦S and the Polar Front (PF) at ∼55◦S as defined by Orsi et al., 1995 (see
Fig. A.1a). Although we use the mean position of the fronts, the positions of
the fronts are not static as they change their position on time scales from
intra- to interannual (Trull et al., 2001).
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Abstract

The seasonal cycle represents one of the largest perturbations of the natural
carbon cycle in the ocean, yet the global seasonal pattern of dissolved
inorganic carbon (DIC) is not well established. Here, we present the first
global monthly climatology of oceanic DIC extending from the surface to
2000 m, obtained by a 2-step neural network method and DIC
measurements from the GLODAPv2.2019 data product. Tests with synthetic
data from an ocean biogeochemistry model and with independent
observations demonstrate that the method successfully captures the
spatio-temporal variability of DIC with an average root mean squared error
of ∼20 µmol kg−1. We find the largest amplitudes of the seasonal cycle of
surface DIC in the northern high latitude Pacific (∼30 to >50 µmol kg−1).
Surface maxima tend to occur in hemispheric spring and minima in late
summer, driven by the input of DIC into the upper ocean by mixing during
winter/early spring, and the subsequent biological draw-down of DIC in
summer. This seasonal pattern extends to a nodal depth of <50 m in the
tropics and several hundred meters in the subtropics, below which the
seasonal cycle has the opposite phase, although with a smaller amplitude.
From the carbon draw-down, we estimate the hemispheric summer net
community production (NCP) from the surface to the base of the euphotic
zone at global scale. We find a global mean summer NCP of ∼1.4±0.2 mol C
m−2 (∼6.1±0.9 PgC) with the highest production rates in the North Atlantic
(up to ∼5 mol C m−2).

1 Introduction

The vast majority of the dissolved inorganic carbon (DIC) that exists in the
ocean is part of the natural carbon cycle. This pool of roughly 36,000 PgC (1
PgC = 1015 g carbon) contains about 90% of the total amount of carbon in
the ocean, atmosphere, and land biosphere system combined (Ciais et al.,
2014). Since the beginning of the industrial revolution, human activities,
mostly through the release of anthropogenic carbon dioxide (CO2) from the
burning of fossil fuels and land-use change, have perturbed these pools
substantially. By the year 2007, the ocean DIC pool had grown by 152±20
PgC relative to the year 1800 through the uptake of this anthropogenic CO2
from the atmosphere (Gruber et al., 2019b). The current oceanic net uptake
rate of 2.5±0.6 PgC yr−1 constitutes approximately 23% of the
anthropogenic CO2 emissions on an annual basis, thereby highlighting the
crucial role of the ocean in ameliorating one of the key drivers of climate
change (Friedlingstein et al., 2019; Le Quéré et al., 2018). Thus, it is not
surprising that nearly all studies in the last four decades investigating
changes in the interior distribution of DIC have focused on this long-term
anthropogenic perturbation of oceanic DIC (Brewer, 1978; Chen and
Millero, 1979; Gruber et al., 1996; Sabine and Tanhua, 2010).

In contrast, changes in the natural carbon cycle, and especially those
changes in oceanic DIC occurring on seasonal timescales have received
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considerably less attention. This is a remarkable shortcoming, as the
seasonal cycle represents one of the strongest perturbations of the natural
carbon cycle in the ocean, creating seasonal variations that in most places far
exceed those occurring on inter-annual to decadal timescales (Bates et al.,
2014; Brix et al., 2004; Gruber et al., 2002). The seasonal cycle of DIC is
driven by the interaction of ocean circulation, vertical mixing, air-sea gas
exchange, and net community production (NCP), i.e., the net exchange of
carbon between the inorganic and organic forms driven by the balance
between photosynthesis and respiration/remineralization (Sarmiento and
Gruber, 2006). Thus, provided that the contribution of the physical
mechanisms can be estimated, the seasonal cycle of DIC can serve as an
important quantitative constraint for biological productivity (Emerson et al.,
2008; Gruber et al., 1996; Keeling et al., 2004; Ostle et al., 2015) and
ultimately its response to a changing climate. These estimates of NCP,
although originally primarily using oxygen (Jenkins and Goldman, 1985;
Riser and Johnson, 2008) and later also isotopes of carbon and oxygen
(Juranek et al., 2012; Quay and Stutsman, 2003) and nutrients (Emerson
et al., 2008; Plant et al., 2016), have revealed a remarkably uniform oceanic
distribution of NCP, which over the annual timescale is very roughly equal
to export production (Emerson and Bushinsky, 2014). So far, the only
attempt to extend such an effort on a global scale was made by Lee, 2001,
who only used data from the sea-surface, using a climatology of surface
pCO2 and alkalinity, to derive the seasonal cycle of DIC. That analysis
revealed a global NCP of 9.1±2.7 or 10.8±2.7 PgC yr−1, depending on the
method used. However, these estimates have a large uncertaintiesas they
were limited to surface data. Using seasonal oxygen data extending
throughout the upper ocean, Najjar and Keeling, 1997 demonstrated that the
seasonal cycle can imprint deep into the upper ocean, with many places
having a nodal depth at which the phase of the seasonal cycle shifts by
∼180◦, owing to the shifting balance between production and
respiration/remineralization.

Furthermore, changes in the seasonal cycle of DIC and other tightly
linked carbonate system parameters such as the surface ocean partial
pressure of CO2 (pCO2) or oceanic pH are predicted to occur in response to
the oceanic uptake of anthropogenic CO2 from the atmosphere (Hauck and
Voelker, 2015; Kwiatkowski et al., 2018; Rodgers et al., 2008). These changes
in the seasonal cycle can be crucial for the onset of critical effects of ocean
acidification on marine organisms (McNeil and Sasse, 2016). While changes
in the seasonal cycle of pCO2 have already been detected (Landschützer
et al., 2018), no such studies of DIC exist.

A further reason to focus on the seasonal cycle of DIC is that this cycle
represents the largest natural perturbation of the natural carbon cycle,
providing perhaps also insights into the sensitivity of this cycle to other
perturbations, especially those associated with climate change. In this
respect, it is a concern that the seasonal cycle of DIC and oceanic pCO2 are
not well captured in the current generation of Earth System Models used to
make projections for the future behavior of the coupled carbon cycle climate
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system. For example, Mongwe et al. (2018) compared the CO2 uptake in 10
Earth System Models from the Coupled Model Intercomparison Project
version 5 (CMIP5) in different sub-regions of the Southern Ocean. In these
sub-regions, the models disagree on both the amplitude and the phase of
the seasonal cycle, and they disagree on the relative importance of DIC and
temperature in regulating the seasonal air-sea CO2 exchange. Additionally,
an Earth System Model’s representation of the present-day seasonal cycle of
DIC has been demonstrated to considerably affect the model’s projected
carbon uptake in the future (Nevison et al., 2016).

Taken together, this illustrates the need to better constrain the seasonal
cycle of DIC from observations and to better understand its drivers, in
particular, the role of biological productivity. This will not only provide a
necessary step towards improving near-term predictions and longer-term
projections of Earth System Models, but also improve our quantitative
understanding of the ocean’s biological productivity at a global scale.

No such global-scale analysis of the observation-based seasonal cycle of
DIC exists, and this is largely due to data sparsity (Fig. B.1). Direct
measurements largely collected during repeat hydrography expeditions
provide a highly accurate basis to track the global-scale and long-term
evolution of the oceanic carbon sink, yet they are sparse in space and time
(Olsen et al., 2019; Talley et al., 2016). An important exception are the DIC
measurements from various time-series sites around the world, which
demonstrate the importance of the seasonal cycle (Bates et al., 1996; Dore
et al., 2003; Gruber et al., 2002; Keeling, 1993; Michaels et al., 1994).
However, there are only seven stations with sufficient coverage to establish
the climatological seasonal cycle without any form of statistical modeling
(Bates et al., 2014). These data also demonstrate that the phase and
amplitude of the seasonal cycle of DIC vary considerably by location, but
for the remainder of the ocean, the seasonal cycle of DIC remains very
weakly constrained.

In recent years, Argo floats equipped with biogeochemical (BGC) sensors
have complemented shipboard observations by measuring pH. These pH
measurements can be used to calculate the DIC when combined with
high-quality hydrography data and empirical algorithms (Bittig et al., 2018;
Carter et al., 2018; Williams et al., 2017). Data assimilation efforts such as the
BGC Southern Ocean State Estimate have begun to use these data to create a
novel state estimate (Verdy and Mazloff, 2017); however, they are currently
limited to the Southern Ocean.

An alternative means to establish the seasonal cycle of DIC is to use a
mapping method based on the available observations. This is the approach
taken by Sasse et al. (2013) who used a single-step neural network method
to produce the first global surface map of DIC at seasonal resolution. These
artificial neural networks can map time-varying data based on complex,
non-linear relationships between the input and output data to overcome the
existing challenges due to data sparsity (Dibike and Coulibaly, 2006; Hornik
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et al., 1989). While representing a major step forward, the DIC climatology
by Sasse et al. (2013) was limited to the surface. In contrast, Lauvset et al.
(2016) provide a measurement-based mapped DIC product extending over
the entire upper ocean. However, their climatology is limited to the annual
mean for a single reference year and is likely seasonally biased owing to the
summer bias of the underlying DIC measurements.

FIGURE B.1: DIC observations at 10 m from GLODAPv2.2019 from 2004 through 2017. Globally (a)
and for the Southern Ocean (b). The month of the GLODAP measurement is illustrated in color.
On repeat hydrographies, the later month is illustrated. The location of independent validation data

from the HOT and BATS time-series stations (a) and BGC Argo floats (b) are marked in black.

Here, we deploy a method based on the 2-step SOM-FFN technique by
Landschützer et al. (2013). We first cluster the global ocean into regions
using self-organizing maps (SOMs), and then apply a feed-forward network
(FFN) in each of these regions, to create the first observation-based monthly
climatology of DIC in the interior ocean. Our resulting data product is
mapped on a 1◦x1◦ grid from 65◦N to 65◦S on 33 depth levels between 2.5 m
and 1975 m.

We demonstrate that the resulting DIC field adequately reproduces
independent measurements from time-series and biogeochemical float
observations. Building on this novel data product we investigate the relative
contribution of each available driver on the seasonal amplitude of DIC.
Finally, we use the seasonal variations in the DIC field to calculate the depth
where primary production dominates over respiration and further calculate
the carbon draw-down linked to NCP, providing the first global estimation
of summer NCP based on DIC measurements.
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2 Data and Methods

2.1 Reconstructing global mapped fields of DIC using SOM-FFN

We use the 2-step SOM-FFN approach by Landschützer et al. (2013) with the
DIC observations from GLODAPv2.2019 throughout the upper 2000 m. The
SOM-FFN method first clusters the global ocean into regions of similar
biogeochemical properties using SOMs. In a second step, it runs an FFN in
each cluster to establish the statistical relationship between the measured
DIC and a set of physical and biogeochemical predictors. Next, global fields
of these predictors are used to project the statistically modeled DIC into the
ocean for each month and depth. This section provides a summary of the
SOM-FFN approach and some of the adjustments made from the approach
described by Landschützer et al. (2013). A more detailed description of our
method and data can be found in the Supplementary Information B_S1 -
B_S4.

Here, we apply and extend the SOM-FFN method using DIC as the target
variable for the mapping. We map DIC not only at the sea surface, but also
throughout the upper water column from the surface until ∼2000 m. We use
the DIC measurements from GLODAPv2.2019 from 2004 through 2017
(Olsen et al., 2019) as the input for the FFN (Fig. B.1). This temporal
restriction reduces the impact of the long-term trend in DIC, driven
primarily by the oceanic uptake of anthropogenic CO2 from the atmosphere.
The method reconstructs the non-linear best-fit relationship between all of
the available observations and a set of physical and biogeochemical
predictor data. These predictor data exist on a global scale, hence the
reconstructed relationship can be applied where no observations exist to fill
the data gaps (see Landschützer et al. (2013) and Supplementary
Information B_S1 - B_S4).

As predictor data, we chose representative proxies for the effect of ocean
physics, chemistry, and biology on the DIC field. We use optimally
interpolated temperature and salinity fields based on Argo floats (Argo,
2019; Roemmich and Gilson, 2009), and optimally interpolated fields of
silicate, nitrate, and dissolved oxygen from the World Ocean Atlas 2018
(Garcia et al., 2019). The predictors have a known interaction with DIC and
are available as monthly global mapped fields in the water column. Our
output consists of monthly mean fields of DIC based on the period from
2004 through 2017, on 33 depth levels between 2.5 m and 1975 m on a 1◦x1◦
grid from 65◦N to 65◦S.

2.2 Smoothing and uncertainty within the method

The internal validation of the SOM-FFN method is based on a randomly
chosen subsample of the available observations by the network (see
Supplementary Information B_S3). Therefore, the resulting DIC fields vary
slightly each time we run the network. To account for potential biases in the
separation between training and validation data, we use a bootstrapping



Appendix B 43

approach and run the SOM-FFN method ten times and take the mean of this
ensemble, resulting in a smoother end product than a single ensemble
member. We define the generalization uncertainty within the method as the
standard deviation across this ensemble. The mapped ensemble mean fields
are further smoothed at each depth level with a scalar function-based
filtering using the mean of the neighboring three grid cells in each direction
except depth (month, latitude, and longitude). We estimate the seasonal
cycle by applying a non-linear least squares harmonic fit at each grid cell, at
each depth level. Our final neural-network derived estimate of DIC is
hereafter called DICNN (Table B.1).

2.3 Test with synthetic data

In addition to validating our method with independent measurements, we
test our method with synthetic data. We take the model field from the ocean
biogeochemistry model HAMOCC (Ilyina et al., 2013; Mauritsen et al.,
2019), which was run on a 1.5◦x1.5◦ grid in hindcast mode with historic
atmospheric forcing for the Global Carbon Budget 2018 (Le Quéré et al.,
2018). We first re-grid the HAMOCC output onto the same grid and format
as the observational predictor and target data (monthly means between 2004
through 2017, 33 depth levels between 2.5 m and 1975 m, 1◦x1◦ grid, from
65◦N to 65◦S). We call the full model field of DIC in HAMOCC hereafter
DICHAMOCC (Table B.1).

To test how well our method reconstructs the full model field, we
subsample DICHAMOCC at the month and location where we have DIC
observations in GLODAPv2.2019. We then use the same SOM-FFN set-up
(as described in full detail in Supplementary Information B_S1 - B_S3) and
run the method using the same predictors, but from HAMOCC, to estimate
the DIC in HAMOCC (hereafter DICNN.HAMOCC). Finally, we compare
DICNN.HAMOCC with DICHAMOCC.

2.4 Test with independent measurements

We further compare our estimate with data from independent time-series
sites that were not fed into the network and have a long enough record to
extract the mean seasonality. Although there are many time-series stations
across the globe (Bates et al., 2014) (See also https://www.nodc.noaa.gov/
ocads/oceans/time_series_moorings.html), only a few stations measured
DIC in the upper ocean from 2004 through 2017 and at locations that are not
excluded in our product (i.e., coastal regions and latitudes poleward of 65◦).
The time-series stations that fall within our temporal and spatial domains
are the Hawaii Ocean Time-Series (HOT) (Dore et al., 2009) and the Bermuda
Atlantic Time Series Study (BATS) (Bates et al., 2014).

https://www.nodc.noaa.gov/ocads/oceans/time_series_moorings.html
https://www.nodc.noaa.gov/ocads/oceans/time_series_moorings.html
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The HOT (http://www.soest.hawaii.edu/HOT_WOCE/ftp.html) and
BATS (http://batsftp.bios.edu/BATS/bottle/A_README_BOTTLE.txt)
databases consist of physical and BGC ship data. The DIC measurements
that form a part of these time-series datasets were taken from bottled
sea-water samples. The HOT time-series extends from 1988 through 2017
for the upper ocean at 22◦45’N, 158◦00’W, north of Hawaii, while the BATS
time series extends from 1988 through 2016 at 31◦40’N, 64◦10’W (Fig. B.1a).

For the validation, we compile all DIC measurements from the HOT and
BATS databases and only keep the data that overlap with the period from
our study (2004 through 2017). At BATS, while conducting our analysis,
data from 2017 were not available, so here the dataset ends in December
2016. We then compute a monthly climatology by taking the mean monthly
values. While the HOT data extends to 1000 m, at BATS, only a few
observations exist below 600 m, so here we only use the top 600 m for our
validation.

We test DICNN at the 1◦x1◦ grid point closest to the HOT location
(hereafter DICNN.HOT) and compare it to the measured DIC at the HOT
station (hereafter DICHOT). We also test how DICHAMOCC at the grid point
closest to HOT (hereafter DICHAMOCC.HOT) compares to our estimate
thereof (hereafter DICNN.HAMOCC.HOT, Table B.1).

Similarly, we test DICNN at the 1◦x1◦ grid point closest to the BATS
location (hereafter DICNN.BATS) and compare it to the measured DIC at the
BATS station (hereafter DICBATS). We then test how DICHAMOCC at the grid
point closest to BATS (hereafter DICHAMOCC.BATS) compares to our estimate
thereof (hereafter DICNN.HAMOCC.BATS, Table B.1).

To test our method in the southern hemisphere, we use data from BGC
Argo floats that take measurements as part of the Southern Ocean Carbon
and Climate Observation and Modelling project (SOCCOM). We compare
the monthly mean DIC concentration calculated from the SOCCOM floats to
our neural-network derived estimate of the DIC concentration at the month
and location of the float measurements (DICNN.SOCCOM). The DIC from the
SOCCOM floats is calculated using a combination of pH measurements,
total alkalinity estimated using the commonly used LIAR algorithm (Carter
et al., 2018), and the CO2SYS analysis tool (Heuven et al., 2011). As the
SOCCOM float data is only available after 2014, we compute the monthly
climatology of DIC from 2014 through 2017 on a 1◦x1◦ grid and linearly
interpolate the result onto our 33 depth levels (hereafter DICSOCCOM). In the
domain until 65◦S, there are, on average, 160 grid cells with SOCCOM floats
in each month of the year (Fig. B.1b). The data density of the SOCCOM
floats is relatively high, although the period of these observations only
extends over four years (2014 through 2017). Lastly, we test how
DICHAMOCC at the grid points closest to the SOCCOM floats (hereafter
DICHAMOCC.SOCCOM) compares to our estimate thereof (hereafter
DICNN.HAMOCC.SOCCOM, Table B.1).

http://www.soest.hawaii.edu/HOT_WOCE/ftp.html
http://batsftp.bios.edu/BATS/bottle/A_README_BOTTLE.txt
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TABLE B.1: Different data sets used for external validation of our method. Unless otherwise stated,
the data sets are on a 1◦x1◦ grid from 65◦N to 65◦S, on 33 depth levels from the sea surface until 1975

m.

Data set Description

DICNN

Our neural-network based estimate of DIC. A monthly
mapped climatology based on the period from 2004
through 2017.

DICLAUVSET
The annual mean mapped climatology by Lauvset et al.
(2016). Reference year: 2002.

DICHAMOCC

The full model field of DIC in the Ocean Biogeochemistry
Model HAMOCC. A monthly mapped climatology based
on the period from 2004 through 2017.

DICNN.HAMOCC Our neural-network based reconstruction of DICHAMOCC.
DICNN.HAMOCC.HOT DICNN.HAMOCC at the 1◦x1◦ grid point closest to HOT.
DICHAMOCC.HOT DICHAMOCC at the 1◦x1◦ grid point closest to HOT.
DICNN.HAMOCC.BATS DICNN.HAMOCC at the 1◦x1◦ grid point closest to BATS.
DICHAMOCC.BATS DICHAMOCC at the 1◦x1◦ grid point closest to BATS.

DICNN.HAMOCC.SOCCOM
DICNN.HAMOCC at the 1◦x1◦ grid point closest to the SOC-
COM floats.

DICHAMOCC.SOCCOM DICHAMOCC at the 1◦x1◦ grid point closest to SOCCOM.

DICHOT
Monthly mean values of the DIC measurements at the
HOT station from 2004 through 2017.

DICNN.HOT DICNN at the 1◦x1◦ grid point closest to HOT.

DICBATS
Monthly mean values of the DIC measurements at the
BATS station from 2004 through 2016.

DICNN.BATS DICNN at the 1◦x1◦ grid point closest to BATS.

DICSOCCOM
Monthly mean values of the DIC measurements from
SOCCOM floats from 2014 through 2017.

DICNN.SOCCOM
DICNN at the 1◦x1◦ grid point closest to the SOCCOM
floats.
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2.5 Seasonal response function

To investigate how each of the predictors contributes to the seasonal
changes in DIC, we compute the seasonal response function for each of the
predictors. We use an approach similar to the “profile method” described in
Gevrey et al. (2003), which is commonly used in sensitivity analyses to
determine how changes in the predictors affect the target data in a neural
network. In the profile method, the network is trained as usual (see
Supplementary Information B_S3), and in the simulation step, one predictor
is consecutively varied while holding the remaining predictors constant. As
we are interested in the seasonal response in different regions, we use a
similar approach to the profile method, but we only hold the time
dimension constant, while varying in space.

Our method works as follows: We first calculate DICbase by training the
network as usual and then apply the network while keeping all predictors
constant in time (i.e., using the time-mean at each grid cell). Next, we
simulate the network again consecutively for each predictor, while keeping
all of the predictors except the predictor under evaluation constant in time.
For example, we calculate DICtemperature by simulating the network with all
of the predictors kept constant in time, except temperature. Lastly, for each
predictor, we calculate ∆DICinput by subtracting the DICinput of that
predictor from the DICbase; for example, for temperature: ∆DICtemperature =
DICbase - DICtemperature. We repeat our bootstrapping approach by
simulating these ten times to calculate the mean response over the
ensemble.

2.6 Nodal depth and summer NCP

To investigate the effect of primary production on the seasonal cycle of DIC,
we first compute the nodal depth. Above and below the nodal depth, the
phase of the seasonal cycle of DIC differs, due to the opposing effects of
primary production near the surface and remineralization below. We
determine the nodal depth as the depth where the amplitude of the seasonal
cycle of DIC is minimal, while it increases both upward and downward of
the nodal depth.

To determine the summer NCP, we solve the following diagnostic
equation following Gruber et al. (1998) and Keeling et al. (2004) (Eq. B.1):∫

NCPdz =
∫ DICnorm

dt
dz + Fair.sea − Fdi f f − Fentr + Fhor.div (B.1)

where
∫

NCP dz is the NCP between the surface and the base of the
euphotic zone,

∫ DICnorm
dt dz is the change in time of the integrated salinity

normalized DIC from the surface until the base of the euphotic zone, Fair.sea
is the integrated air-sea CO2 flux over hemispheric summer, Fdi f f is the
mean vertical diffusive flux over hemispheric summer, Fentr is the mean
entrainment flux over hemispheric summer, and Fhor.div is the horizontal
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divergence of the horizontal transport.

For the following calculations, unless otherwise stated, we use mean
monthly climatologies from 2004 through 2017 on a 1◦x1◦ grid. Hereafter,
April to October and October to April are called hemispheric summer (for
the northern and southern hemisphere, respectively).

We compute the euphotic zone, i.e., where biology acts as a main driver
on the DIC, following Morel et al. (2007), and using SeaWiFS chlorophyll-a
data (from the NASA ocean color website https:
//oceancolor.gsfc.nasa.gov/cgi/l3?sen=S&per=MO&prod=CHL_chlor_a).

We then convert the DIC concentration (in µmol kg−1) to DIC content (in
mol m−3) using the density based on the Argo climatology (Roemmich and
Gilson, 2009). Next, we solve the first term using our DIC estimate, which
we normalize following Friis et al., 2003, and the mean base of the euphotic
zone over hemispheric summer. For the second term, we use the updated
Landschützer et al. (2014) product based on its latest extension in time
presented in Keppler and Landschützer (2019) to calculate the time integral
of the air-sea CO2 flux over the hemispheric summer. We solve the third
term using Eq. B.2 and our DIC estimate:

Fdi f f = −kz
dDIC

dz
(at base o f euphotic zone) (B.2)

where kz is the diffusivity (we use a constant value of -4*10−4 m2 s−1). We
solve the fourth term using Eq. B.3 and our DIC estimate:

Fentr = −dh
dz

dDIC
dz

(at base o f mixed layer) (B.3)

where h is the mixed layer depth (MLD), and dh
dz is the entrainment rate, i.e.

how fast the MLD deepens over hemispheric summer. We use the monthly
climatology of the MLD by Holte et al. (2017) and apply an optimal
interpolation to fill observational gaps and compute the mean MLD over
hemispheric summer. This term is only relevant when the MLD is deeper
than the base of the euphotic zone (i.e., in the high latitudes). We cannot
solve Fhor.div, so we neglect it. Unlike other studies (Ostle et al., 2015), we do
not correct for the formation of calcium carbonite due to the lack of global
available NO3 and total alkalinity data.

Accounting for the air-sea CO2 flux, the vertical diffusive flux, and the
entrainment flux, we obtain an estimate of the summer NCP, i.e. the net
amount of carbon taken up by biology between hemispheric spring and
autumn.

Using standard error propagation, we estimate the error of the NCP
calculation based on Eq. B.4:

error =
√

e2
1 + e2

2 + e2
3 (B.4)

https://oceancolor.gsfc.nasa.gov/cgi/l3?sen=S&per=MO&prod=CHL_chlor_a
https://oceancolor.gsfc.nasa.gov/cgi/l3?sen=S&per=MO&prod=CHL_chlor_a
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where e1 is the percent-error based on the air-sea CO2 flux (∼17%, Roobaert
et al., 2019), e2 is the error within the method, based on our bootstrapping
approach of running the network 10 times. We estimate e2 from the spread
across the ensemble, which amounts to 11.5 µmol/kg or in percent-terms
∼0.5% of the mean DIC field. Lastly, we estimate the error resulting from
the mismatch towards DIC measurements. Our approach per definition
reduces the mean bias towards 0; however we find regionally larger
discrepancies as illustrated by the root mean squared error (RMSE) between
our product and available measurements (see Supplementary Information
Fig. B_SI.4). As we have little knowledge regarding the RMSE where no
observations exist, we use a conservative approach and calculate e3 based
on the maximum RMSE observed from both dependent and independent
data. As identified in Supplementary Information Fig. B_SI.4, the RMSEs
remain below 50 µmol/kg or ∼2% of the mean DIC concentration. We
further remain conservative and assume the RMSE is uncorrelated and
constant throughout the water column, resulting in a percent error of 2% for
e3. We do not add error estimates from the remaining terms (Fdi f f and Fentr)
as we lack a mechanistic understanding of the uncertainties and also
because their contribution to the overall NCP is minor compared to the
other terms we considered. In addition, as mentioned above, we had to
neglect the horizontal transport divergence. This adds further uncertainty,
which we cannot quantify. Solving with e1-e3, we get an overall error of the
NCP of 17%, which is largely due to the error in the air-sea CO2 flux.

3 Results

3.1 Mean DIC fields

Our new data product DICNN portrays the well-known mean DIC
distribution (Fig. B.2 and B.3a,d,g), such as the latitudinal surface gradient
primarily driven by temperature and upwelling (Wu et al., 2019). We find
the lowest DIC concentrations near the ocean surface, and the global
average concentrations increase with depth from 2044 µmol kg−1 at the
surface to 2270 µmol kg−1 at 1975 m. This increase in DIC with depth is
known to be due to the biological uptake near the surface and
remineralization at depth, as well as the accumulation of “older” water (i.e.,
water that has been out of contact with the atmosphere for longer) along the
trajectory flow (Heinze et al., 2015). The isopycnals depicted in Fig. B.3 a,d,g
further demonstrate that the mean DIC profile largely follows the profile of
the water masses.

The DICNN concentration in the top 500 m displays well known spatial
features following the large-scale ocean circulation. For example, in the
upwelling region of the eastern and equatorial Pacific, upwelled carbon-rich
deep water increases the surface DIC concentration in this region. In the
intermediate waters (∼500 m to ∼1500 m), the distribution of DIC becomes
more uniform. Exceptions are in deep-water formation regions such as the
North Atlantic and the Southern Ocean, which have lower DIC
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concentrations than the northern Indo-Pacific. In the deep ocean, the DIC
concentration is the highest and the most uniform, with the most DIC in the
northern Indo-Pacific and the least in the North Atlantic. As the deep water
in the North Pacific is the "oldest,” i.e., it has been out of contact with the
atmosphere for ∼1500 years, the largest amounts of DIC are stored here
(Heinze et al., 2015; Sarmiento and Gruber, 2006).

FIGURE B.2: Spatial distribution of the time-mean DIC. Illustrating DIC on 4 depth levels. a) 10 m,
b), 200 m, c) 700 m, d) 1975 m.

Comparing Fig. B.2 with Fig. B.1 reveals the degree of extrapolation
within our method. Per definition, our global approach minimizes the mean
mismatch between measurements that the resulting mean bias equates to 0.
Regionally, however, we find a larger mismatch illustrated by RMSE
exceeding 40 µmol/kg or roughly 2% in the Atlantic Ocean (see
Supplementary Information Fig. B_SI.4). Additionally, we expect larger
local uncertainties in unsampled (i.e. unsampled after 2004) regions such as
the Indian Ocean north of the equator and the Arabian Sea. The lack of
independent observations, however, prohibits us from quantifying this
mismatch. We, therefore, turn towards a comparison with results from an
extrapolation using a different method.

We compare our annual mean DICNN field to the annual climatology by
Lauvset et al. (2016). That product is on a 1◦x1◦ grid and is normalized to
the year 2002. To compare the two estimates, we linearly interpolate the
Lauvset climatology onto the same 33 depth levels as our product (hereafter
DICLAUVSET) and compute the annual mean of DICNN. Generally, the two
estimates agree on the distribution, but our estimate tends to have higher
concentrations near the surface and lower concentrations in the interior (Fig.
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B.3). The former can be linked to the difference in reference year:
DICLAUVSET is scaled to the year 2002, and DICNN is based on data after
2004, centered around the years 2010/2011. Hence, we expect that DICNN
has more DIC near the surface than DICLAUVSET due to the accumulation of
anthropogenic carbon. The expected increase in surface ocean DIC due to
the atmospheric perturbation is ∼1.1 µmol kg−1 yr−1 or ∼11 µmol kg−1

between 2002 and 2011 (following Sarmiento and Gruber, 2006). The
positive differences near the surface approximately match the expected
increase over one full decade: DICNN in the top 200 m is approximately 13
µmol kg−1 higher than DICLAUVSET, indicating that most of the differences
between the two estimates at the surface can be explained by the
anthropogenic perturbation.

FIGURE B.3: Comparison between DICLAUVSET and DICNN . Zonal mean of the annual
mean DICNN (a,d,g), DICLAUVSET (b,e,h), and the difference between the two (DICNN -
DICLAUVSET) (c,f,j). For each of the three sectors: Atlantic (a-c), Pacific (d-f); Indian (g-i).
Zoomed into the top 200 m (delimited in black). Some isopycnals are illustrated as white lines

in a,d,g (from top to bottom: 24.5, 26.2, 27.6, and 28.4 kg m−3).

In addition to this offset near the surface, our estimate in the interior
(below ∼200 m) is, on average, ∼10 µmol kg−1 lower than DICLAUVSET,
which cannot simply be explained by the difference in reference years.
Furthermore, there is a striking difference between the two estimates in the
Atlantic sector between ∼100 m and 1000 m, where the time-average of
DICNN is lower by ∼50 µmol kg−1 than DICLAUVSET. This region of high
DIC in the Lauvset product may be explained by data availability. All of the
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available information here stems from a single cruise (33MW19930704) as
well as a few calculated DIC values (based on observed total alkalinity and
pH) from cruise 74DI19980423. The DIVA mapping used by Lauvset et al.
(2016) draws no other information apart from the observations directly, the
correlation length scale, and the signal-to-noise ratio. The latter two are
subjectively chosen, and for DICLAUVSET, the signal-to-noise ratio is such
that the observations are considered climatologically representative, and
therefore, closely fit. Our method, however, takes the high DIC values in the
Atlantic in combination with the additional information from the predictor
data, and thus, DICNN might be more representative of the true
climatological state. In addition, the differences in the ocean interior could
be due to the difference in the timespan. While our approach only considers
measurements between 2004 and 2017, the approach by Lauvset et al. (2016)
also includes measurements from earlier campaigns.

The results of the tests, nevertheless, are mostly within the 40 µmol/kg
RMSE spread identified from the direct measurement comparison.
Exceptions include the already mentioned Atlantic Ocean at intermediate
depths, but also the high latitude North Pacific and Indian Ocean, where we
do not have any direct measurements after 2004.

Additionally, we can turn to the synthetic data to estimate the accuracy of
our reconstruction. Run with synthetic data, the SOM-FFN method is
capable of reconstructing the mean DICHAMOCC distribution, as illustrated
in Fig. B.4. The differences between DICHAMOCC and DICNN.HAMOCC
remain within 10 µmol kg−1 for the majority of the ocean, strengthening our
trust in the reconstructed DIC field. However, a few exceptions exist where
differences reach 50 µmol kg−1 and more in the deep Indian and Pacific
Ocean, where fewer observations exist, illustrating again that regional
uncertainties can be significantly larger in this global approach. In
summary, we have confidence that we can reconstruct the mean field locally
within error bounds of 50 µmol/kg (∼2-3%) of the observed concentration.
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FIGURE B.4: Comparison between the DICHAMOCC and DICNN.HAMOCC. Zonal mean of the
DICNN.HAMOCC (a,d,g), DICHAMOCC (b,e,h), and the difference between the two (DICNN.HAMOCC
- DICHAMOCC) (c,f,j). For each of the three sectors: Atlantic (a-c), Pacific (d-f); Indian (g-i). Zoomed

into the top 200 m (delimited in black).

3.2 Regional seasonal cycles of surface DIC

Dividing the ocean into coarse latitudinal bands, we find that the mean
surface seasonal cycle of DIC has the largest amplitude in the temperate
regions, especially in the northern hemisphere with ∼32 µmol kg−1,
intermediate in the subtropical regions with amplitudes of ∼15 µmol kg−1,
and weakest in the tropical regions (∼8 µmol kg−1), where the seasonal
atmospheric forcing is weakest (Fig. B.5a,c). Unsurprisingly, the mean phase
is approximately opposite in the two hemispheres, with the highest surface
DIC concentrations in early spring when vertical mixed layers tend to be
deepest (Holte et al., 2017). The deep mixing brings DIC-rich waters to the
surface, increasing the respective concentration. Conversely, the surface DIC
is lowest in early autumn when vertical mixing tends to be minimal.
However, the phase and amplitude of the seasonal cycle vary regionally and
with the onset of local phytoplankton blooms.

To ensure the seasonality illustrated is not only due to salinity patterns,
we also demonstrate the mean seasonal cycle in the same climate regions as
in Fig. B.5a,c, but for DIC that we normalized with salinity (Fig. B.5b,d),
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following the method by Friis et al. (2003). The surface seasonal cycle of the
normalized DIC agrees relatively well with the surface seasonal cycle of DIC
in terms of its amplitude and phase.

FIGURE B.5: Mean seasonal cycle of DICNN at 2.5 m in different climate regions. Temperate (35◦ to
65◦, blue), subtropical (23◦ to 35◦, orange), and tropical (0◦ to 23◦, yellow) for the northern (a-b) and
southern (b-c) hemispheres. The mean of each region (solid lines) is bound by the standard deviation
within that region (shading); a,c are DIC concentration, and b,d are for DIC normalized with salinity.

The boundaries for the climate regions are illustrated on the map grid in Fig. B.6a.

While throughout most of the ocean, the amplitude of the surface
seasonal cycle of DIC is between 5 and 20 µmol kg−1 (median of 14 µmol
kg−1), some areas with considerably larger signals exist, particularly in the
northern high latitudes, but also in upwelling regions (Fig. B.6a). In the high
latitude near-shore North Pacific, the amplitude extends beyond 50 µmol
kg−1. Likewise, in the high latitude North Atlantic, the amplitude ranges
between 30 and 50 µmol kg−1. In the northern hemisphere, the month of the
largest DIC concentrations is mostly March, but it varies from January to
April (boreal spring, Fig. B.6b).

Amplitudes in the subtropics in both the Pacific and Atlantic Ocean are
considerably lower. Interestingly, this clear and distinct latitudinal pattern
observed in the northern hemisphere does not exist in the southern
hemisphere. Here, the high southern latitudes do not display significantly
higher seasonal amplitudes than the lower latitudes. Plausible explanations
are that upwelled water masses in combination with a weaker biological
uptake dampen the seasonal cycle of DIC in austral spring/summer. In the
southern hemisphere, August and September are mostly the months with
the highest DIC concentrations throughout the year, with some variance
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from July to December (austral spring). The phase of the seasonal cycle of
DIC in the northern Indian Ocean is similar to the southern hemisphere.
This may be a monsoon feature, i.e. the northern hemisphere seasonality
matches the southern hemisphere due to the forcing from monsoon seasons.

FIGURE B.6: The amplitude and phase of the seasonal cycle of DICNN near the surface. (a) Mean
amplitude of the seasonal cycle of DICNN between 2.5 m and 20 m. (b) month with the highest DIC

values at 2.5 m. The latitude grid in (a) delimits the boundaries for the climate regions in Fig. B.5.

Near the sea surface, i.e., where we observe the largest seasonal
amplitude in the different climate regions (Fig. B.7), we find that most of the
seasonal changes of surface DIC are linked to temperature as our main
predictor. Temperature is inversely linked to DIC (Takahashi et al., 2002)
and contributes to the seasonality two-fold. Colder waters are linked to
higher solubility and increased vertical mixing, and both increase the
surface DIC pool (Heinze et al., 2015; Sarmiento and Gruber, 2006). In the
temperate regions, nitrate, representing nutrient input to the surface, also
significantly affects the seasonal cycle of surface DIC, highlighting the
importance of including upwelling and biology in reconstructing the
seasonal cycle. Nutrient availability through vertical mixing or river input
triggers biological production, lowering the DIC concentration at the surface
(Sarmiento and Gruber, 2006; Takahashi et al., 2002). Hence, the effects of
temperature and biology are competing in the temperate regions and both
need to be considered to reconstruct the seasonal DIC cycle faithfully. The
remaining proxies, i.e. salinity, oxygen, and silicate play overall a smaller
statistical role in our reconstruction. The temperature dominance indicates
the possibility to even reconstruct lower frequency signals using this
method. In the tropical regions, where the seasonal forcing is comparatively
weak, the different predictors do not differ significantly in their dominance.

While we can identify some clear large scale patterns, Fig. B.6 remains
still patchy in places. In particular, high amplitudes in the tropical Pacific
and tropical Atlantic suggest that inter-annual variability linked to tropical
modes such as ENSO (Feely et al., 2006) obscure this refined analysis.
Likewise, strong amplitudes in the northern Indian Ocean or Patagonian
shelf might be linked to data paucity. Lacking the observational constraints
to test the uncertainty in our reconstructed seasonal amplitude, we turn to



Appendix B 55

test our reconstruction with our synthetic data set.

FIGURE B.7: The seasonal response function at 2.5 m in different climate regions. Temperate (a,d; 35◦

to 65◦), subtropical (b,e; 23◦ to 35◦), and tropical (c,f; 0◦ to 23◦) for the northern (a-c) and southern (d-f)
hemisphere, ∆DICtemperature (orange), ∆DICsalinity (purple), ∆DICdissolvedoxygen (magenta), ∆DICsilicate
(light green), ∆DICnitrate (yellow). The mean of the 10-member ensemble is illustrated as solid line,
and one standard deviation around the mean in shading. ∆DIC (dark green) is the mean seasonal

anomaly at 10 m from our data estimate.

The surface seasonal cycle of DICNN.HAMOCC in large scale regions
remains close to the seasonal cycle of DICHAMOCC (Fig. B.8), with the
maximum difference between DICHAMOCC and DICNN.HAMOCC of 11 µmol
kg−1 in the northern temperate band, where the full model field is a bit
jagged, and so DICNN.HAMOCC is lower in boreal spring and higher in boreal
summer. For most of the global ocean, DICNN.HAMOCC is in phase with
DICHAMOCC but underestimates the amplitude by up to 10 µmol kg−1. This
is consistent with findings for the sea surface pCO2 from Landschützer et al.
(2014) that the SOM-FFN method underestimates observed seasonal
variability. In the northern subtropics, DICNN.HAMOCC is lower than
DICHAMOCC by up to 9 µmol kg−1, especially in boreal autumn and winter,
while in the southern subtropics, DICNN.HAMOCC is lower by up to 10 µmol
kg−1 in austral winter. In the tropics, DICNN.HAMOCC agrees best with
DICHAMOCC, and this is likely linked to the lack of strong variations.
Overall, this test demonstrates that our method, as well as the number of
available observations, are well suited to reconstruct the climatological DIC
distribution, and in particular, the seasonal representation of DICHAMOCC,
adding confidence to our method.
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FIGURE B.8: Seasonal cycle of DICHAMOCC and DICNN.HAMOCC at 10 m in different climate regions.
DICHAMOCC (dashed line) and DICNN.HAMOCC (solid line): Temperate (35◦ to 65◦, blue), subtropical
(23◦ to 35◦, orange), and tropical (0◦ to 23◦, yellow) for the northern (a) and southern (b) hemispheres.

Next, we investigate how DICNN compares to independent
measurements (Fig. B.9-B.11). Although DICNN.HOT represents the DIC
phase and amplitude at station HOT well, it tends to underestimate DICHOT
at most depths, except at 500 m depth. Most of the concentrations illustrated
in Fig. B.9b are based on only a few observations. Therefore, these
differences might be subject to internal variability at HOT that is not
represented in DICNN.HOT. Both the DICNN.HOT and DICHOT illustrate the
weak seasonal cycle of surface DIC in the subtropics (Fig. B.9d). The
DICHOT signal to noise ratio is high, and hence, no strong seasonal cycle can
be observed here whereas DICNN.HOT demonstrates a slightly stronger
seasonal cycle. Nonetheless, given the locality of the measurements
compared to the global reconstruction, the mean surface values between
DICHOT and DICNN.HOT compare remarkably well (1983 and 1974 µmol
kg−1, respectively at 10 m).

DICHAMOCC.HOT is considerably lower than DICHOT (by ∼80 µmol
kg−1). Nonetheless, our method reproduces the seasonal cycle of
DICNN.HAMOCC.HOT relatively well in terms of the mean and phase, with the
highest DIC concentration in May. However, DICNN.HAMOCC.HOT, as
observed before for the large scale regions, overestimates the amplitude of
the seasonal cycle compared to DICHAMOCC.HOT (∼9 µmol kg−1 compared
to ∼4 µmol kg−1).
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FIGURE B.9: Comparison between the DICHOT and DICNN.HOT . a) DICNN.HOT ; b) DICHOT c)
the difference between the two (DICNN.HOT – DICHOT). d) Seasonal cycle at 10 m from DICHOT
(blue), DICNN.HOT (green), DICHAMOCC.HOT (orange), DICNN.HAMOCC.HOT (purple), illustrating the
calculated value (filled circles) and the least squares fit (solid lines); and a-c are zoomed into the top

200 m.

DICNN.BATS demonstrates a much more pronounced seasonal DIC cycle
compared to the one observed at HOT. Overall, the concentrations are
higher by ∼5 µmol kg−1 than the monthly means of the measured values at
DICBATS in the top 100 m, while between 100 m and 600 m it is lower by up
to 18 µmol kg−1 (Fig. B.10). Again, given the locality of the time-series
station, we find an encouraging agreement regarding the phase and
amplitude of the surface seasonal cycle in DICNN.BATS. (Fig. B.10d). The
surface seasonal cycle of DICBATS has approximately the same mean
concentration as DICNN.BATS (2061 and 2067 µmol kg−1, respectively), as
well as a matching phase of the seasonal cycle (largest value in March).
However, DICNN.BATS underestimates the observed DIC concentrations in
the winter months (up to 13 µmol kg−1). When comparing the mean
seasonal cycle of DICHAMOCC.BATS, we find it again considerably lower than
the DICBATS by ∼90 µmol kg−1. Our method reproduces the
DICHAMOCC.BATS amplitude quite accurately (DICNN.HAMOCC.BATS), but
there is a 2-month phase shift.
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FIGURE B.10: Comparison between the DICBATS and DICNN.BATS. a) DICNN.BATS; b) DICBATS c)
the difference between the two (DICNN.BATS – DICBATS). d) Seasonal cycle at 10 m from DICBATS
(blue), DICNN.BATS (green), DICHAMOCC.BATS (orange), DICNN.HAMOCC.BATS (purple), illustrating
the calculated value (filled circles) and the least squares fit (solid lines); a-c are zoomed into the top

200 m.

Comparing the seasonal cycle in the southern hemisphere, we find that
DICNN.SOCCOM agrees well in phase with the DICSOCCOM, but DICSOCCOM
is, on average, 16 µmol kg−1 higher than DICNN.SOCCOM (Fig. B.11).
Comparatively higher carbon values measured by the SOCCOM floats have
been reported in recent studies by Williams et al. (2017), Gray et al. (2018),
and Bushinsky et al. (2019), who found that SOCCOM floats demonstrated
additional outgassing in austral winter months. The mean surface seasonal
cycle of DICNN.SOCCOM has a lower amplitude by ∼6 µmol kg−1 (Fig.
B.11d), owing to the disagreement in austral winter. Comparing the mean
seasonal cycle of DICHAMOCC with DICHAMOCC.SOCCOM, we find that the
seasonal cycle in DICHAMOCC.SOCCOM has a much larger amplitude (by ∼19
µmol kg−1) than DICSOCCOM, and the phase is shifted backward by ∼2
months. However, DICNN.HAMOCC.SOCCOM compares well with
DICHAMOCC.SOCCOM, in phase, amplitude, and mean concentration.
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FIGURE B.11: Comparison between the DICSOCCOM and DICNN.SOCCOM. (a) DICNN.SOCCOM;
(b) DICSOCCOM c) the difference between the two (DICNN.SOCCOM – DICSOCCOM). (d) Seasonal
cycle at 10 m from DICSOCCOM (blue), DICNN.SOCCOM (green), DICHAMOCC.SOCCOM (orange),
DICNN.HAMOCC.SOCCOM (purple), illustrating the calculated value (filled circles) and the least

squares fit (solid lines); a-c are zoomed into the top 200 m.

Despite differences between DICNN and the various validation datasets,
we demonstrate that DICNN is considerably closer to the independent test
data (HOT, BATS, and SOCCOM) than the DICHAMOCC at those locations
(Fig. B.9d, B.10d, and B.11d). Likewise, when trained with the HAMOCC
data, DICNN.HAMOCC lies close to what the synthetic data set prescribes,
providing confidence in the global ocean DIC field.

In summary, given the assessments above, we demonstrate that our
method can reconstruct the phase of the seasonal cycle at the sea surface
well, with a regional mismatch in the amplitude strength of up to 10 µmol
kg−1 (see Supplementary Information Fig. B_SI.4 for a summary of the
validation tests).

3.3 Nodal depth and summer NCP

Previous studies have found that the phase of biogeochemical cycles does
not simply vary at the surface, but can vary with location and depth due to
primary production near the surface and respiration and remineralization
below. For example, Najjar and Keeling, 1997 found that the phase of the
seasonal cycle of oxygen shifts with depth and named this depth the
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“oxygen nodal depth.” Similarly, we also find a change in the phase and
amplitude of the seasonal cycle of DIC with increasing depth, as illustrated
in Fig. B.12.

To demonstrate this change in DIC with depth, we display the change of
the seasonal cycle of DIC as a function of depth at a chosen location in the
northern high latitudes (55.5◦N, 170.5◦E, marked in Fig. B.12b) with strong
seasonality illustrated in Fig. B.12a. The surface DIC increases from boreal
summer to boreal winter and decreases again from boreal winter to boreal
summer. The seasonal draw-down of DIC in this high latitude location is
largely linked to transport, mixing, and biology (Sarmiento and Gruber,
2006). As the effects of photosynthesis near the surface and remineralization
in deeper water have opposing effects on the DIC, the seasonal cycle of DIC
changes in amplitude and phase with increasing depth. At about 100 m, the
seasonal cycle flattens, and below that depth, the phase of the seasonal cycle
shifts, with the highest values around spring, and the lowest values around
autumn. We define this depth, where the phase of the seasonal cycle shifts,
as the DIC nodal depth. With further increasing depth, the month of the
lowest DIC concentration gradually shifts from autumn towards spring.

FIGURE B.12: Change in the seasonal cycle with depth. (a) The seasonal cycle of DICNN as a function
of depth (color) at 55.5◦N, 170.5◦E (marked as a magenta diamond in b). The highest value at 2.5 m
(February) and at 100 m (November) are marked with an asterisk, and the DIC at the nodal depth (100
m) is highlighted with a thick line. (b) 2D map of the nodal depth (m) around the globe, smoothed
with a scalar function-based filtering using the mean of the neighboring ten grid cells. The nodal
depth is here defined as the shallowest depth level; above it, the amplitude decreases, and below it,

the amplitude increases again.

Fig. B.12b illustrates strong local variations at depth. The shift in the
seasonal cycles usually occurs at depths above ∼50 m in the tropics, where
the seasonal forcing is weak. We find the deepest nodal depths at latitudes
poleward of 30◦, where the nodal depth is in the range of 150 m with few
hot spots where it reaches several hundred meters (Fig. B.12b). The
patchiness is a result of the data extrapolation and the sensitivity of the
analysis towards uncertainties in the amplitude that can be significant, as
illustrated above. Nevertheless, a familiar pattern arises, with deep nodal
depths in the temperate southern hemisphere and the deepest nodal depths
in the subpolar North Atlantic, corresponding to deep mixed layers (Holte
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et al., 2017).

Knowing how deep primary production dominates the uptake of DIC,
we can now isolate the biological draw-down of DIC in the upper ocean
from the seasonal DIC difference. For this analysis, we removed the
equatorial domain from 23◦S to 23◦N due to the weak seasonality there,
resulting in a low signal-to-noise ratio that obscures our analysis. We find
that primary production is responsible for a global mean carbon draw-down
in summer of ∼1.4±0.2 mol m−2 for our reference period (2004 through
2017) (Fig. B.13). There is a striking correspondence between our product
and the global NCP climatology by Lee (2001). When we upscale our mean
NCP of 1.4±0.2 mol m−2, considering the molar weight of carbon of 12.01 g
mol−1 and an ocean area of 361.1 million km2, we find a global NCP of
6.1±0.9 PgC, which is within the range of the findings by Lee (2001), who
estimate the global NCP to be 9.1±2.7 or 10.8±2.7 PgC yr−1.

FIGURE B.13: DIC taken up by biology in summer. (a) Spatial distribution of summer net community
production between April and October (northern hemisphere) and between October and April
(southern hemisphere). (b) Zonal mean summer net community production. The region from 23◦N

to 23◦S is masked due to the weak seasonal cycle here and the related high signal-to-noise ratio.

We find the strongest summer NCP around 45◦S in the Southern
Hemisphere and in the high latitude North Atlantic (the Labrador Sea) and
Northwest Pacific (up to ∼5±1 mol m−2). These three regions are areas of
subduction with deeper nodal depths. Studies by Körtzinger et al. (2008)
and Quay et al. (2012) have also identified that the NCP in the Labrador Sea
and high latitude North Atlantic Ocean as larger than the global mean, and
lie close to our estimate with 4 mol m−2 and 2.8 mol m−2 respectively.
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Comparing our estimate of the summer NCP to long-running time-series
stations, we find comparable smaller biological uptake. At BATS, Gruber
et al. (1998) found a mean annual NCP of 3.8 mol m−2 yr−1, where we
estimate the summer NCP to be 1.2±0.2 mol m−2 yr−1. Similarly, the NCP
at Ocean Station Papa (OSP; 50◦N, 145◦W) was estimated using nitrate and
oxygen to be 1.5±0.7 mol m−2 yr−1 (Plant et al., 2016), which is slightly
higher than our estimate of 0.5±0.1 mol m−2 yr−1. This difference might
reflect the global nature of our approach, which is not always able to fully
reconstruct small regional structures.

4 Summary

We created the first global monthly oceanic DIC climatology and
subsequent summer NCP estimate based on data from the repeat
hydrography synthesis project GLODAPv2.2019 (Olsen et al., 2019). Using a
two-step neural network mapping technique, we first clustered the global
ocean into regions of similar BGC properties and statistical relationships
using SOMs and then ran an FFN in each cluster using various physical and
BGC parameters as predictor data. The resulting monthly climatology is on
a 1◦x1◦ grid from 65◦N to 65◦S on 33 depth levels from 2.5 m to 1975 m and
is based on data from 2004 through 2017.

We test our results in various ways, including with synthetic data from
the BGC component of the Ocean General Circulation Model HAMOCC, an
existing mean annual climatology (Lauvset et al., 2016), and independent
time-series station data (HOT and BATS) as well as SOCCOM floats, all of
which were not used to create our monthly climatology of DIC. We find that
our method performs well in estimating the mean monthly DIC fields. A
large part of the discrepancies near the surface stems from differences in the
period of the compared products and the anthropogenic perturbation. At
the location of the independent observational data, DICNN is always
considerably closer to the measurements than DICHAMOCC.

We find the mean DIC concentration globally at the surface to be ∼2044
µmol kg−1, which increases with depth to a global mean of ∼2270 µmol
kg−1 at 1975 m. While the top ∼500 m demonstrate distinct spatial features
due to upwelling regions, the deeper waters have a more uniform DIC
concentration. The seasonal cycle of DIC has the largest amplitudes at the
northern high latitudes (∼30 to more than 50 µmol kg−1). The remaining
global ocean, including the high southern latitudes, has a median amplitude
of ∼14 µmol kg−1. In both hemispheres, the months of the highest DIC tend
to be in hemispheric spring, when vertical mixing is usually deepest. In the
temperate and subtropical regions, the temperature tends to be the main
driver of the seasonal cycle of surface DIC, and nitrate, representing
biological production, is an important additional driver in the temperate
regions in our method. The nodal depth of DIC, i.e., the depth where the
phase of the seasonal cycle of DIC shifts, is less than 50 m in the tropics, and
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between 150 and several hundred meters at latitudes poleward of 30◦. We
estimate the carbon draw-down in the upper ocean induced by primary
production in hemispheric summer (i.e., the summer NCP) and find the
largest summer NCP in areas of subduction (e.g., around 45◦S, and in the
northern high latitude Atlantic and West Pacific), in line with previous
estimates based on in-situ data. Our estimate suggests a weak but
significant increase in summer NCP with increasing latitude in the northern
hemisphere. Conversely, the maximum summer NCP can be found around
45◦S in the southern hemisphere with the least amount of carbon being
taken up by biology in the high latitude Southern Ocean.

Our monthly climatology provides an advancement to previous
climatologies that have been either limited by their temporal (Lauvset et al.,
2016) or spatial domains (Sasse et al., 2013). It provides the baseline to
initialize model set-ups, to study the seasonal cycle of DIC and its future
changes linked to ocean acidification and to determine the physical and
biogeochemical drivers of the marine carbon cycle. Our DIC-derived
summer NCP estimate of 1.4±0.2 mol m−2 (∼6.1±0.9 PgC) is in line with
previous observation-based assessments and serves as a complementary
approach to estimates based on oxygen, which are historically limited in
their temporal and spatial domains (Emerson and Bushinsky, 2014; Emerson
et al., 2008; Ostle et al., 2015).
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Supplementary Information to Appendix B

B_S1 Predictor data

As a neural network reconstructs the available DIC observations based on
its relationship to the predictor data, the choice of predictors is essential.
Temperature and salinity are known to control the partitioning of DIC into
the chemical species forming the DIC pool: carbonic acid, bicarbonate ions,
and carbonate ions (Heinze et al., 2015). In addition to the link between
temperature and the solubility of CO2 in seawater, both temperature and
salinity also characterize water masses and provide useful additional
information about the transport and mixing of DIC (Sarmiento and Gruber,
2006). As part of the biological carbon pump, nutrients and oxygen are also
important nominees as predictor data (Heinze et al., 2015), and are available
as monthly climatologies from the World Ocean Atlas 2018 (WOA18;
(Garcia et al., 2019)). Therefore, we include temperature, salinity, nitrate,
silicate, and dissolved oxygen as predictor data. We do not include
phosphate or apparent oxygen utilization (AOU), due to the high
correlation between nitrate and phosphate, and dissolved oxygen and AOU
in most regions. Our results indicate that the network does not gain
essential information, while the degrees of freedom substantially increase
by including them. Similarly, we do not include information on the time or
location as predictor data (for example, latitude, longitude, depth, or month
of the year). See B_S4 for a discussion on this.

We use mapped global data on 1◦x1◦ grids from two different platforms
as predictor data. First, we use the optimally interpolated temperature and
salinity fields from the Argo float-based dataset (Argo, 2019; Roemmich
et al., 2015). We compute a monthly climatology from 2004 through 2017 of
these temperature and salinity fields by computing the monthly means. As
the Argo float-based dataset extends from 2.5 m to 1975 m depth, we use
these depth levels as our minimum and maximum depths, respectively. We
chose 2004 as the starting year as it marks the year where the Argo program
provided global and uniform temperature and salinity data resulting in
high confidence in the optimally interpolated dataset by Roemmich and
Gilson (2009).

Second, we use the climatological monthly fields, based on data from
1955 through 2017, of dissolved oxygen, silicate, and nitrate from WOA18,
which were also mapped using optimal interpolation (Garcia et al., 2019).
Here, the dissolved oxygen fields extend until 1500 m, and silicate and
nitrate until 500 m. We split the data into three horizontal slabs (2.5–500 m,
600–1500 m, 1600–1975 m) and only use the predictors for the respective
depth slabs where they are available. We then interpolate the predictor data
onto uniform depth levels and normalize the predictor variables to range
between 0 and 1. See Table B_SI.1 for a summary of the predictor data and
the respective available depth levels.
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TABLE B_SI.1: Input variables for the SOM and FFN for the three different depth slabs (2.5 to 500 m,
600 to 1500 m, 1600 to 1975 m). The depth levels are expressed where 75:25:150 means from 75 m to
150 m in steps of 25 m. For the SOM input variables, clim. DIC refers to the mean annual climatology

by Lauvset et al. (2016).

Depth Depth levels
(m)

Number of
SOM clusters SOM input FFN predictor data

2.5-500 m

2.5:2.5:10
20:10:50
75:25:150
200:50:500
(18 levels)

6
temperature
salinity
clim. DIC

temperature
salinity
dissolved oxygen
silicate
nitrate

600-1500 m 600:100:1500
(10 levels) 4

temperature
salinity
clim. DIC

temperature
salinity
dissolved oxygen

1600-2000 m
1600:100:1900
1975
(5 levels)

4
temperature
salinity
clim. DIC

temperature
salinity

B_S2 Target data

As the target data, we use the DIC ship measurements from the
GLODAPv2. 2019 data product by Olsen et al. (2019). We only keep data
with a WOCE quality control flag of 2 and a secondary GLODAP quality
control flag of 1. We linearly interpolate the data onto a regular 1◦x1◦ grid
and onto the same 33 depth levels as the predictor data (Table B_SI.1),
retaining only the data from the period and grid points in which the Argo
data product overlaps with the GLODAPv2.2019 data (2004 through 2017,
65◦N to 65◦S). The latter is to avoid inconsistencies between predictor and
target data. The final target data set is comprised of DIC measurements
from 417 cruises (see Fig. B.1 in the main text).

B_S3 SOM-FFN

Our neural network method consists of two steps. In a first step, we cluster
the global ocean into regions of similar properties and statistical
relationships using a SOM technique. In the second step, we apply an FFN
in each SOM-cluster to establish and apply statistical relationships between
global fields of physical and biogeochemical properties and available DIC
measurements. We use the monthly climatological fields of temperature and
salinity as predictor data for the SOM, in addition to a mapped annual mean
climatology of DIC (Lauvset et al., 2016). We weigh the mean climatology of
the DIC with a factor of three so that the clusters, to a greater extent,
represent regions of similar BGC properties, and to a lesser extent, water
masses defined by temperature and salinity. We tested different predictor
variables and weights and found that this set-up results in the best
representation of the available observations.

SOMs are a type of unsupervised machine learning that is commonly
used to cluster data (Kohonen, 1989; Kohonen, 2001, Fig. B_SI.1a-d). In this
clustering method, we first arrange each normalized multi-dimensional
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input variable (SST, SSS, climatological DIC; Table B_SI.1) as a 1D vector.
The arrangement of the 1D vector is less important as long as all
multidimensional arrays are arranged in the same way. Next, our network
randomly initializes neurons with the same size as the input vectors
(so-called neuron weights) and identifies the Euclidean distance of the input
vectors to these neurons. Iteratively, during the network training, the
neurons are then moved using the batch algorithm (Vesanto et al., 2000)
towards clusters of input data with the shortest Euclidean distances. After
the training process, all input vectors are assigned the number of the neuron
with the shortest Euclidean distance. This results in a 1D vector with the
same length as our input variables. We then transfer this vector back to a
multidimensional array (latitude, longitude, depth, and month) so that the
clusters can be displayed on our multidimensional grid.

FIGURE B_SI.1: Spatial distribution of the SOM clusters in January for 4 depth levels (a: 10 m, b: 200
m; c: 700 m; d: 1975 m) and the amount of different clusters throughout the monthly climatology at

two depth levels (e: 10 m, f: 200 m).
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The choice of the number of neurons (and therefore the numbers of
clusters) of a SOM is somewhat subjective. Too many clusters will result in
only a few observations in each cluster, while too few will create regions
that are too large and with a wide range of varying properties. As the
surface ocean is less uniform than the intermediate and deep ocean, we
chose six clusters for the surface slab (2.5 m–500 m), and four each for the
intermediate (600 m–1500 m) and deep slabs (1600 m–1975 m; Table B_SI.1;
Fig. B_SI.1a-d). Although the SOMs are computed for each climatological
month, the clusters do not considerably change shape from one month to
the next. Most clusters remain the same throughout the year, but near the
cluster boundary, there is a small amount of variation in the top 200 m (Fig.
B_SI.1e-f). The clusters are seasonally relatively static by design due to our
weighting of the climatological DIC as a predictor variable.

FFNs are a type of back-propagation network that can approximate
nearly any continuous function and are commonly used in Earth System
Science (Hornik et al., 1989). In this step, we run an FFN in each cluster
separately. During the FFN training, the predictor data that are co-located
with the existing DIC measurements are multiplied by randomly initialized
weights of each neuron to produce a DIC output (Fig. B_SI.2). This output is
then compared to the available observations, and the mean squared error
(MSE) is calculated. This step is iteratively repeated using the
Levenberg-Marquardt Algorithm that adjusts the neuron weights until the
MSE reaches a minimum (Levenberg, 1944; Marquardt, 1963).

The input array consists of the predictor data described above (Table
B_SI.1, Fig. B_SI.2). In our set-up, we use two layers, where the first layer (in
the literature referred to as the hidden layer) uses 16 neurons, which are
connected to a second layer via a sigmoid transfer function. The second
layer, consisting of a single neuron, uses a linear transfer function to linearly
extract the hidden layer output to produce the final DIC estimate (Fig.
B_SI.2). This two-layer setup enables the network to represent both linear
and non-linear relationships between predictor and target data (Broullón
et al., 2019; Hagan et al., 2014). The number of neurons chosen in the set-up
of the FFN is related to the complexity of the data sets (Gardner and
Dorling, 1998). While too few neurons result in the network not learning
complex relations, too many neurons may overfit the problem (Broullón
et al., 2019; Velo et al., 2013). We tested several set-ups and found that 16
neurons lead to the best representation of the observations.

For each iteration in the training process, we use only a randomly chosen
subset of the input data to train the network (the training set; here, 80% of
the data), and we use the remaining data for internal validation (the
validation set; here, 20% of the data). The validation set is used to stop the
iterative training once the adjustment of the network weights does not
improve the MSE towards the independent validation set. This process is
often referred to as an “early stopping approach” and ensures that the
network can generalize and prevent the network from overfitting. Note that
our mapped estimate is not scaled to a specific year, because it is based on
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only 14 years of data (2004 through 2017). As our estimate represents the
monthly means of these 14 years, we consider it centered around the years
2010 and 2011.

FIGURE B_SI.2: Schematic of our FFN configuration. Input vectors: silicate and nitrate until 500 m,
dissolved oxygen until 1500 m, temperature and salinity until 1975 m; W: weight matrices; b: bias
matrices, +: sum; f: transfer function; a: output matrices; subscripts indicate the number of the layer;
boxes below the hidden layers indicate the number of neurons used. Modified from Hagan et al.

(2014).

B_S4 Discussion on including information on the time or location as
predictor in FFNs

Some studies include a time-variable, such as the month of the year as a
predictor in FFNs (Bittig et al., 2018; Sauzède et al., 2017; Zeng et al., 2014).
To represent the periodicity of the year, the cosine and/or sine of the
time-variable is usually used (see Eq. B_S.1 and B_S.2 for the computation
of the cosine and sine of the month of the year respectively). The same
procedure is commonly used to represent the periodicity of longitude
(Broullón et al., 2019; Zeng et al., 2014).

cosmonth = cos
π

n/2
month (B_SI.1)

sinmonth = sin
π

n/2
month (B_SI.2)

where n is the number of months there are in a year (12).

However, a problem arises: both the cosine and sine curve cross the
x-axis twice in one cycle (Fig. B_SI.3). Hence, months that are
climatologically different, are assigned the same value. For example, in the
cosine curve, the 3rd and 9th month have the save value (0). Hence, in this
case, March would learn from October and vice versa, although they have
different values in the real world. Similarly, in the sine curve, the 6th and the
12th month have the same value (0) and so June and December would learn
from each other, which is not in line with our knowledge of the seasonal
cycle of carbon.
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FIGURE B_SI.3: The curves of the cosine and sine of the month of the year.

During the set-up of our FFN, we analyzed what would happen if we did
include the cosine and/or sine of the month of the year as a predictor. Our
results were considerably noisier in those set-ups and we could not
reproduce the seasonal cycles. Presumably, the same problem would arise
when using the cosine and/or sine of the day of the year as a predictor.
Instead, the network obtains the seasonal information from the predictor
(especially temperature and salinity) and can produce a seasonal cycle of
DIC without being provided information about the time. Similarly, we
expect the same problem to occur when using the cosine and/or sine of
longitude. Our method overcomes this problem through the clustering with
the SOMs before the FFN is run and so does not need explicit information
on the location.
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B_S5 Summary of validation tests

FIGURE B_SI.4: RMSE as a function of depth for the Atlantic (a), Pacific (b), Indian (c), and Southern
(d) Ocean. Illustrating the difference between DICNN and DICLAUVSET (green). The residuals
of DICNN from the observations (dark blue), and the difference between the DICNN.HAMOCC and
DICHAMOCC (light blue). The basins with independent observational data also demonstrate the
difference between that (i.e. DICBATS (a), DICHOT (b), and DICSOCCOM (c)) and DICNN (magenta).
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Abstract

The Southern Ocean carbon sink is highly variable. However, it is unclear
how this variability is reflected in the dissolved inorganic carbon (DIC) pool,
and the drivers behind this variability are still debated. Here, we repeat
hydrography measurements of DIC from the GLODAPv2.2019 database in
combination with a 2-step mapping approach to obtain monthly global
fields of interior DIC from 2004 through 2017 to investigate the interannual
signal until 500 m depth in the Southern Ocean south of 35◦S. At the sea
surface, the strongest signal is the anthropogenically-forced DIC trend with
little variations resulting from reduced sub-surface DIC transport. Below
the surface, we discover a more pronounced DIC reduction up to ∼20 µmol
kg−1 from 2004 through 2009, followed by a strong recovery until 2012. This
reduction is most prominent south of the Polar Front and extends to 500 m.
These sub-surface variations are largely in line with proposed variations in
the meridional overturning circulation during this period.

1 Introduction

Approximately half of the oceanic uptake of anthropogenic carbon dioxide
from the atmosphere occurs in the Southern Ocean south of 35◦S, although
this region covers approximately 1/3 of the global oceans (Landschützer
et al., 2015). Different, often opposing processes are at play here, affecting
the carbon flux, and the transport and storage of carbon at depth. Close to
the Antarctic coast, sea-water is cooled, which allows for oceanic carbon
uptake due to enhanced solubility, and the down-welling of these
carbon-enriched surface waters stores it at depth. Near the Antarctic
Circumpolar Current (ACC), northward Ekman transport induces
upwelling of carbon-rich waters and thereby outgassing of carbon. North of
the ACC, Subantarctic Mode Waters that are transported northwards cool
the warmer subtropical waters, leading to oceanic uptake of carbon, which
is then subducted and transported northward. However, these processes
display a large degree of variability on time scales from interannual to
decadal (DeVries et al., 2017; Downes et al., 2009; Freeman et al., 2016; Hall
and Visbeck, 2002; Schlosser et al., 2018).

The Southern Ocean carbon uptake at the air-sea interface was found to
have weakened in the 1990s, despite the continued increase in atmospheric
CO2 (Le Quéré et al., 2007). This finding led to concern that the Southern
Ocean carbon sink could have saturated. However, nearly a decade later,
Landschützer et al. (2015) found that this globally important carbon sink
had regained its strength between 2002 and 2011 and was back at the
strength as would be expected due to the increase in atmospheric CO2.
Recently, the trend has reversed again, and from 2012 through 2016 the
Southern Ocean carbon sink weakened again (Keppler and Landschützer,
2019).
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The mechanisms explaining these decadal changes in the Southern Ocean
carbon sink are not yet fully resolved and relate to circulation and biology.
(Gruber et al., 2019a; Keppler and Landschützer, 2019; Landschützer et al.,
2015) proposed that these changes are linked to regional variability in the
local weather pattern, causing different hot spots of air-sea CO2 exchange.
DeVries et al. (2017) linked a weakening of the Meridional Overturning
Circulation (MOC) in the 2000s to a strengthening of the Southern Ocean
carbon uptake due to less upward transport and outgassing of natural
carbon stored at depth. Similarly, Panassa et al. (2018) proposed links
between the Southern Ocean carbon uptake variability and changes in the
summer mixed layer depth in that region, as a deeper mixed layer enhances
vertical mixing and thus, biological uptake of carbon. In line with that
finding, Gregor et al. (2018) found that the biological draw-down of carbon
is the main driver of the seasonal variability in the Southern Ocean carbon
flux. As changes in the MOC and the biological uptake of carbon are
reflected in the dissolved inorganic carbon (DIC) pool, we choose to
investigate the recent development of the interior DIC in the Southern
Ocean.

Most of the oceanic carbon that is taken up from the atmosphere is stored
at depth as DIC, while a smaller amount is drawn down through
photosynthesizing organisms consuming carbon (Heinze et al., 2015;
Keppler et al., in review). Previous studies on the changes in the stored DIC
only focused on the anthropogenic part and did so at decadal time-scales
(Gruber et al., 2019b; Khatiwala et al., 2009; Sabine et al., 2004) as their focus
was the anthropogenic increase rather than interannual to decadal
variations of the DIC pool. Specifically, Gruber et al. (2019b) found that half
of the global anthropogenic DIC occupies the upper 400 m, and the
Southern Ocean has the second-deepest vertical extent of anthropogenic
carbon in the world, only exceeded in the Deep Water Formation region of
the North Atlantic. As the interannual to decadal variability of the carbon
uptake at the surface is quite substantial (Keppler and Landschützer, 2019;
Landschützer et al., 2015; Le Quéré et al., 2007), one would expect to see
some of this variability in the interior DIC. The temporal-mean distribution
of DIC in the water column, as well as the seasonal cycle of DIC, has been
estimated by previous global-scale studies (Keppler et al., in review;
Lauvset et al., 2016). However, the interannual to decadal variations in the
interior Southern Ocean contemporary DIC (natural + anthropogenic) is yet
to be investigated.

The processes of upwelling and subduction, and the associated carbon
fluxes and storage, are not zonally uniform and many processes in the
Southern Ocean occur in ’hot spots’ (Rintoul, 2018; Sallée et al., 2012). To
investigate the variability in the DIC pool at a regional scale, a mapped data
estimate of DIC in the Southern Ocean, based on available but sparse
shipboard measurements, is necessary. Recent progress in the collection and
synthesis of available observations through the Global Ocean Data Analysis
Project for Carbon (GLODAP, Key et al. (2015) and Olsen et al. (2019)) has
led to the compilation of ship-measurements of oceanic carbon in the
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interior ocean from the surface until over 7000 m depth. The data consists of
over 1.1 million direct measurements from bottled sea-water samples across
the world since the 1970s. However, despite an increase in ship
measurements through the repeat hydrography surveys (Talley et al., 2016),
DIC measurements in the Southern Ocean remain sparse.

Here, we combine data from GLODAPv2.2019 with a two-step
neural-network-based mapping technique to reconstruct mapped monthly
interior DIC fields from 2004 through 2017 for the global ocean. Using our
new data estimate, we present the variability of DIC in the top 500 m of the
Southern Ocean and link the observed variability both to processes that
drive this variability and to processes that are driven by it.

2 Data and Methods

This section briefly discusses the novel set-up of our method and the data
used. A more detailed discussion on the method can be found in Keppler
et al. (in review). In the first step, we cluster the global ocean into regions
that have similar biogeochemical properties using self-organizing maps
(SOMs), and in a second step, we run a Feed-Forward-Network (FFN) in
each of the clusters. The FFN first approximates the statistical relationship
between predictor data and target data within each SOM-cluster and then
applies this relationship to infer the oceanic DIC concentration. We use
monthly gridded DIC fields from 2004 through 2017 from GLODAPv2.2019
(Key et al., 2015; Olsen et al., 2019) as target data. Following Keppler et al.
(in review), temperature, salinity, dissolved oxygen, silicate, and nitrate are
all useful predictors of the seasonal cycle of DIC as these predictors not only
drive the partitioning of DIC through the physical and biological carbon
pump but also are statistically tied to DIC by defining different water
masses; hence, we use the same predictors for our updated set-up.

Compared to the monthly climatology by Keppler et al. (in review), we
extend our data product to a monthly temporal resolution from 2004
through 2017 and chose a vertical extent of 500 m. Below this depth, fewer
observations exist, and we expect little variability in the DIC pool on
interannual to decadal timescales (Gruber et al., 2019b). In the SOM-step,
we use six clusters, following Keppler et al. (in review). In the FFN-step, we
use the objectively interpolated interannual fields of temperature and
salinity based on Argo float measurements (Argo, 2019; Roemmich and
Gilson, 2009) as predictors. This data product is on a 1◦x1◦ grid and reaches
from 65◦N to 65◦S, and from 2.5 m to 1975 m. In addition, we use the
objectively interpolated monthly climatologies of dissolved oxygen, silicate,
and nitrate from the World Ocean Atlas 2018 (Garcia et al., 2019). Although
these variables are only available at seasonal resolution, these predictors aid
in the reconstruction of the distribution of interior DIC. To reconstruct the
expected trend from the increase in atmospheric CO2, we further use the
monthly fields of the oceanic surface pCO2 (Landschützer et al., 2014) and
the globally averaged annual mean concentration of atmospheric CO2 at the
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marine surface from the Earth System Research Laboratory
(https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html).

To avoid over-fitting the sparse observations, we apply a boot-strapping
approach following Keppler et al. (in review): We run the SOM-FFN method
ten times, holding back different sets of 20% of the observations each time to
test the reconstruction independently, and then take the mean over this
ensemble as our best guess reconstruction. The standard deviation across
the ensemble represents the generalization uncertainty. We then further
smooth the DIC fields with a scalar function-based filter, which averages
over the neighboring three grid cells in each direction except depth
(latitude, longitude, and month). For our calculations of the interannual
signal, we remove the seasonal cycle of our DIC estimate by applying a
12-month moving average filter and subsequently remove the first and last
six months in the time-series. Hereafter, we refer to our mapped DIC
estimate as DICNN.

For our analysis, we distinguish sub-regions within the Southern Ocean
based on two of the fronts defined by Orsi et al. (1995). We use the
Subtropical Front (∼40◦S) and the Polar Front (∼55◦S) as our regional
boundaries (see Supplementary Information (Fig. C_SI.1) for the location of
the fronts). Here, we refer to the region between 35◦S and the Subtropical
Front as the Subtropical Zone; the region between the Subtropical Front and
the Polar Front as the Inter-Frontal Zone; and the region between the Polar
Front and the southern boundary of our data product at 65◦S as the Polar
Zone.

We test our method with independent observations collected in the
Southern Ocean, i.e., data was not used to train the FFN. We use the
calculated DIC from Argo floats with biogeochemical sensors that are
collecting data as part of the Southern Ocean Carbon and Climate
Observations and Modeling project (SOCCOM,
https://soccom.princeton.edu/). The SOCCOM floats are well scattered
in time and space but only extend from 2014 through 2017 (hereafter
DICSOCCOM). We sub-sample our DICNN when and where SOCCOM floats
collected data (hereafter DICNN.SOCCOM) and compare it to DICSOCCOM.

Due to the lack of independent data before 2014, we further test our
method with synthetic data, following the approach of Keppler et al. (in
review). Here, we take the full DIC model field from the ocean
biogeochemistry model HAMOCC (Ilyina et al., 2013; Mauritsen et al., 2019)
as illustrated in (Le Quéré et al., 2018). For consistency, we interpolate the
output onto the same grid (1◦x1◦, on 18 depth levels between the surface
and 500 m, from 2004 through 2017) and sub-sample the model field of DIC
when and where we have DIC measurements in GLODAPv2.2019. This
data set is hereafter called DICHAMOCC. We then run our SOM-FFN method
using predictor data from HAMOCC to reconstruct the full model field
(hereafter DICNN.HAMOCC). We then compare DICHAMOCC with
DICNN.HAMOCC as an initial test of our method.

https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html
https://soccom.princeton.edu/
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3 Results

We find that the strongest signal in the Southern Ocean surface DIC is a
positive trend (Fig. C.1). From 2004 through 2017, the surface DIC nearly
steadily increases, on average, at a rate of ∼1.3 µmol kg−1 yr−1. This
approximately agrees with the anthropogenically-forced increase in DIC in
the upper 100 m, which Gruber et al. (2019b) estimated to be 1.1 µmol kg−1

yr−1 between 1994 and 2007. However, the significant variability seen in the
Southern Ocean surface pCO2 and hence in the air-sea CO2 flux appears
only weakly reflected in the Southern Ocean surface DIC pool (Fig. C.1) as it
is almost entirely masked by the longer-term trend. Below the surface,
however, we find substantially larger variability superimposed onto the
anthropogenically-forced trend. Here, the DIC concentration has a negative
trend from 2004 onward, peaking around the year 2009, after which the DIC
concentration bounces back to levels higher than before the reduction. This
signal is visible from approximately 50 m onward and increases in intensity
with depth, extending until 500 m. This temporary reduction in DIC is
weakest in the Subtropical Zone, where the reduction from 2004 to 2009
equates to ∼10 µmol kg−1 (Fig. C.1b) and it is strongest in the Polar Zone,
where the reduction is by ∼30 µmol kg−1 (Fig. C.1d).

FIGURE C.1: The changing DIC concentration with time (x-axis) and depth (color) for the whole
Southern Ocean (a), the Subtropical Zone (b), the Inter-Frontal Zone (c), and the Polar Zone (d). See
(Fig. C_SI.1) for the location of the fronts. Note that the mean values of the y-axes differ among a-d,

but they have the same scale (maximum value - minimum value = 120 µmol kg−1).
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This temporary sub-surface reduction in DIC around the year 2009
cannot simply be explained with the surface flux variability. Keppler and
Landschützer (2019) found that the reinvigoration period of the early 2000s,
during which the Southern Ocean took up increased amounts of carbon,
ended around 2011 with a weakening of the sink after that. As the DIC pool
weakens before the surface uptake does, the temporary sub-surface
reduction in DIC cannot directly be driven by the changes in the surface
fluxes but may precede the surface flux. Therefore, we turn to the
GLODAPv2.2019 data that was used to train the network, testing whether
such a decrease can directly be observed in the DIC measurements. We do
indeed find comparably low sub-surface DIC concentrations measured
around the year 2009 (Fig. C.2), nevertheless, we cannot exclude the
possibility that our method amplifies these DIC measurements by
extrapolating them into their vicinity, resulting in an over-estimated DIC
reduction. Therefore, we turn to available independent measurements and
synthetic data to test whether our method is sensitive to the sampling.

FIGURE C.2: The binned GLODAPv2.2019 DIC concentration on 4 depth levels: 10 m (a), 100 m
(b), 300 m (c), and 500 m (d), indication the sub-region within the Southern Ocean in color: the
Subtropical Zone (orange), Inter-Frontal Zone (purple), and the Polar Zone (green). See (Fig. C_SI.1)

for the location of the fronts.
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We test whether our method can reconstruct the calculated DIC from
SOCCOM floats, which was not used to train the network, and therefore
provide an independent dataset. While the SOCCOM floats started profiling
in 2014, they cannot resolve the 2009 reduction, however, they provide a
benchmark test, whether our method is capable of reconstructing the
observed DIC concentration and variability in the later years of our study.
From 2014 onward, the trend and interannual variability in DICNN.SOCCOM
compares remarkably well to DICSOCCOM (Fig. C.3a-d), given the
independent nature of these measurements. There is, however, an offset in
the mean concentration of approximately 10 µmol kg−1, with
DICNN.SOCCOM being generally lower than DICSOCCOM. This offset may, in
part, also be explained by the fact that DIC is not directly measured by the
floats and is calculated from directly observed quantities. The root mean
squared error (RMSE) between DICNN.SOCCOM and DICSOCCOM equates to
24 µmol kg−1 largely owing to the mean offset. Nevertheless, given the
independent nature of the float data and the fact that we compare calculated
DIC from floats to an extrapolation of sparse ship data, we find an
encouraging agreement between them.

To test whether the signal results from data sparsity and a large
signal-to-noise ratio in the measurements, we use synthetic data from a
hindcast simulation of the ocean biogeochemistry model HAMOCC, forced
with real climate (DICHAMOCC). We subsample DICHAMOCC at the time and
location of the GLODAPv2.2019 ship tracks and then reconstruct the model
field using our 2-step neural network method and predictor data from the
HAMOCC model (DICNN.HAMOCC). Both the mean DIC concentration and
the interannual variability of DICNN.HAMOCC in the Southern Ocean
compares well with DICHAMOCC (Fig. C.3e). Unlike the real-world
reconstruction, the model field does not display significantly stronger
variability at depth compared to the surface. Overall, besides a few small
discrepancies, the RMSE between DICNN.HAMOCC and DICHAMOCC is only 8
µmol kg−1, increasing the confidence in our reconstruction. This RMSE is
considerably smaller compared to the SOCCOM comparison, which can be
explained by the larger amount of noise in measurements compared to the
smoother model field.

We can further use the HAMOCC model output to test whether the mean
offset from the SOCCOM float comparison (Fig. C.3a-d) is an artifact of the
shipboard sampling. Therefore, as an additional test, we sub-sample
DICHAMOCC at the time and location of SOCCOM float measurements
(hereafter DICHAMOCC.SOCCOM). The SOM-FFN reconstruction
DICNN.SOCCOM lies considerably closer to DIC SOCCOM than
DICHAMOCC.SOCCOM. However, DICNN.HAMOCC.SOCCOM reconstructs
DICHAMOCC.SOCCOM very well with a small RMSE of 9 µmol kg−1 (Fig.
C.3)a-d) that is in the range of the overall RMSE from the full model
reconstruction above.
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FIGURE C.3: (a-d) Timeline of the DIC that was calculated from SOCCOM float measurements (solid
green line), and our SOM-FFN estimate of DIC at the same time and location (dashed green line) and
the timeline of the DIC in HAMOCC at the time and location of SOCCOM float observations (solid
purple line), and our SOM-FFN estimate thereof (dashed purple line), at different depth levels: 10 m
(a), 100 m (b), 300 m (c), and 500 m (d). (e) Timeline of the DIC in HAMOCC (solid lines), and our

reconstruction thereof (dashed lines) in the Southern Ocean at different depth levels (color).

Overall, we find that when and where we can test our method with
independent data, it performs well. We further find evidence that the
current shipboard sampling is sufficient to reconstruct available
independent constraints faithfully; hence, we have confidence that the
temporary sub-surface reduction in our estimate of the Southern Ocean DIC
concentration is a robust feature.
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To determine what forced the temporal sub-surface reduction in DIC, we
investigate its potential drivers. As biological measurements, such as
nutrients and oxygen, do not yet exist at full basin-scale multi-year
resolution from the surface to the interior Southern Ocean, we are left
investigating the link between DIC and its chemical and physical drivers of
which we have sufficient data, i.e., the ocean surface pCO2, and surface as
well as interior temperature and salinity. Here, we assume that atmospheric
CO2 contributes to the long term DIC trend but has little influence on the
year-to-year variability. As we are primarily interested in the drivers behind
the interannual signal, and not the long-term trend, we remove the linear
trends in our DIC and driver fields for comparison of the remaining
anomalies.

Despite the difference in timing between the variability of the air-sea CO2
flux compared to the interior DIC in the Southern Ocean, we do see a strong
regional correlation between DIC and the oceanic surface pCO2 linked to
the solubility pump (Fig. C.4a,d). As we would expect, this strong
correlation vanishes with depth (Fig. C.4a-c). Near the surface, the
correlation coefficient between DIC and the surface pCO2 is strongly
positive throughout the Southern Ocean. This may be expected as more
oceanic uptake of carbon and its dissolution enhances the formation of DIC.
Similarly, additional DIC brought up from deep waters through upwelling
that warms at the surface enhances the surface pCO2. The strongest
correlations at depth remain near the Antarctic Circumpolar Current, where
the mixed layer is deepest, enhancing vertical mixing (Holte et al., 2017;
Panassa et al., 2018) and so the link between the sub-surface DIC and the
surface pCO2 is evident deeper than in other regions.

Conversely, the temperature near the surface is strongly negatively
correlated with DIC (Fig. C.4d). We expect this negative correlation due to
the solubility CO2, as carbon dissolves faster in colder water than in warmer
water. At latitudes lower than 40◦S, where the correlation between the
surface pCO2 and DIC is negative, temperature dominates the pCO2
anomalies over DIC, in agreement with the findings from Takahashi et al.
(2002). At the same time, the correlation between temperature and DIC
becomes less negative with depth and more regions of positive correlations
emerge around 100 m (Fig. C.4e). South of 40◦S, the areas of negative
correlations are mostly areas of upwelling, where cold, carbon-rich water is
brought up to the surface. Conversely, the zonal band of positive
correlations between DIC and temperature around the Subtropical Front is
an area of mean carbon uptake (Landschützer et al., 2015; Talley et al., 2011).
Here, Subantarctic Mode Water, characterized as being saltier and, due to
the contact with the atmosphere, also warmer and richer in anthropogenic
carbon than the water below, are subducted, in line with the pattern in (Fig.
C.4h) (Talley et al., 2011). At 500 m, the pattern looks similar compared to
the pattern at 100 m, but weaker and slightly shifted northward. Overall,
near the surface, the DIC variability is tightly linked to the variability in the
air-sea CO2 flux and solubility, while below the surface, the DIC correlations
pattern correspond to the larger-scale circulation pattern.
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FIGURE C.4: Spatial distribution of the correlation coefficient between DIC and sea surface pCO2
(a-c), between DIC and temperature (d-f), and between DIC and salinity (g-i) at each 1◦x1◦ grid point

on different depth levels: 10 m (a,d,g), 100 m (b,e,h), and 500 m (c,f,i).

4 Discussion

We have created the first interannual mapped monthly fields of interior DIC
in the Southern Ocean from the surface until 500 m, for the years 2004
through 2017, based on a 2-step neural network technique and
measurements from the GLODAPv2.2019 database (Key et al., 2015; Olsen
et al., 2019). We demonstrate, based on the reconstruction of synthetic data
from a biogeochemistry model and tests with independent measurements,
that the method is capable of reproducing the observed variability despite
the sparsity of ship measurements.
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Our results reveal that variations, as seen in the surface uptake of carbon
(Keppler et al., in review; Landschützer et al., 2015; Le Quéré et al., 2007),
are visible in the water column, albeit near the surface, these variations are
small in comparison to the trend driven by the increase in anthropogenic
CO2. We further find a substantial decadal signal in the DIC below the
surface, with a minimum in 2009, followed by a quick recovery after that.
This signal extends to at least 500 m and is also seen in the direct
GLODAPv2.2019 observations. This signal is strongest in the Polar Zone,
i.e., near the Antarctic coast, which is an area of upwelling and outgassing.

The observed sub-surface variability and the driver correlations line up
with recent findings by DeVries et al. (2017), i.e. that the observed variations
in the global carbon flux are related to changes in the MOC. The authors
used a global inverse model to quantify the MOC and found that a
strengthened MOC in the 1990s enhanced the outgassing of carbon, while in
the 2000s, a weaker MOC led to less outgassing of natural carbon and thus,
larger net oceanic uptake of carbon. Although that study does not extend to
the 2010s, it supports our finding until 2009. The weaker MOC leads to less
sub-surface DIC as suppressed overturning results in a weaker upward
transport of natural carbon from the deep Subantarctic and Antarctic water
masses. Likewise, the sub-surface correlations between DIC, temperature
and salinity, their negative link in upwelling as well as their positive link in
subduction regions further supports the connection to the MOC variability.
Furthermore, Panassa et al. (2018) found that the summer mixed layer depth
deepened by 2 m yr−1 between 2002 and 2011 near the Subtropical Front, i.e.
a region of outgassing in which we find sub-surface DIC positively
correlates with surface pCO2 and negatively with temperature. Thus, the
observed changes in sub-surface DIC can again be linked to physical
sub-surface processes.

Both the variability in the Southern Ocean MOC and the changes in
mixed-layer depth have been linked to variability in the Southern Annular
Mode (SAM), the dominant mode of climate variability in this region
(DeVries et al., 2017; Marshall, 2003; Panassa et al., 2018). During positive
phases in the SAM, the westerly winds strengthen and shift poleward (Hall
and Visbeck, 2002), thus enhancing and shifting the MOC. Between 2004
and 2009, the SAM index polarity was low in comparison to the late 1990s
and 2010s (Supplementary Information (Fig. C_SI.2. This may indicate
further that a slower MOC caused the sub-surface reduction in DIC. Thus,
our study provides further observation-based evidence to the study of
DeVries et al. (2017) that the link between the strong variability in the
Southern Ocean air-sea CO2 flux (Keppler and Landschützer, 2019;
Landschützer et al., 2015; Le Quéré et al., 2007) is linked to the MOC-driven
changes in sub-surface DIC.

The link to the MOC and SAM, might, at first sight, appear contradictory
to the findings by Keppler and Landschützer (2019), as these authors
propose that trends in the SAM have a zero net effect on the overall
contemporary air-sea CO2 flux trends, whereas regional wind variability
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drives the decadal sink trends (Gruber et al., 2019a; Keppler and
Landschützer, 2019; Landschützer et al., 2015). While Keppler and
Landschützer (2019) suggest the air-sea exchange remains unchanged with
increasing index polarity of the SAM as enhanced outgassing in upwelling
areas is counter-balanced by increasing uptake further north, it might
nevertheless alter the DIC pool. As illustrated by DeVries et al. (2017),
increasing strength in the MOC largely enhances the vertical transport of
old DIC to the surface and likewise the subduction of new human-emitted
carbon in the form of DIC further north at intermediate depths. Therefore,
as a result of a slower MOC, the reduced outgassing of natural carbon and
the reduced subduction of anthropogenic CO2 balance at the surface and
vice versa for a faster MOC. In the interior, however, and specifically at
depth, the reduced upward transport is visible in the DIC pool.

One contributing factor we are unable to test is the role of biology as a
potential driver of the sub-surface variability in DIC. A study by Gregor
et al. (2018) suggests that a summer carbon draw-down in the Southern
Ocean is the dominant driver for the seasonal pCO2 variability at the
surface. Biological uptake of carbon would indeed decrease both the pCO2
as well as the DIC pool. Combined with circulation-driven changes in
export production and remineralization, this might explain, at least in part,
the DIC variability at depth. Other mechanisms that may play a role are
freshening Antarctic Intermediate Waters and Subantarctic Mode Waters
from 1982 through 2008 (Haumann et al., 2016). In general, the potential
drivers of the Southern Ocean carbon variability are difficult to disentangle
based on observations alone. Here our interpretation is therefore limited by
the correlation-nature of our analysis.

We have now demonstrated for the first time based on observations, that
substantial variations in the Southern Ocean Carbon cycle are visible in the
interior oceanic DIC pool, providing additional evidence that the marine
carbon sink is subject to considerable decadal variability. Our study
illustrates that coinciding with the increasing air-sea CO2 flux of the
Southern Ocean in the 2000s, we find a decline in the interior DIC
concentration. Likewise, the following sink stagnation coincides with an
increasing DIC pool. Such a simultaneous decline in DIC and surface pCO2,
i.e. the dominant driver for the air-sea CO2 exchange in the Southern Ocean
(Landschützer et al., 2015), suggest that the proposed mechanisms are
indeed related to circulation and/or biology as suggested by DeVries et al.,
2017 and Gregor et al., 2018. Lacking essential biological proxy data at basin
scale, a seasonally resolved analysis of the interior might shed light on the
relative dominance of the processes driving the variability of the carbon
cycle in the Southern Ocean. Additionally, Earth System Models provide a
way forward as a capable tool to disentangle the driving factors.
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Supplementary Information to Appendix C

C_S1. Time-mean of DIC in the Southern Ocean

FIGURE C_SI.1: Time-mean spatial distribution DIC in the Southern Ocean on four different depth
levels: 10 m (a), 100 m (b), 300 m (c), and 500 m (d). The Polar Front (∼55◦) and the Subtropical Front

(∼40◦S) from Orsi et al. (1995) are drawn as black lines.



Appendix C 85

C_S2. Timeline of the recent SAM

FIGURE C_SI.2: Timeline of the recent SAM index from Marshall (2003) (black line), smoothed with
a 12-month running-mean (red/blue).
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