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A criterion for nonlinear wave stability 

By K. HASSELMANN 
University of Hamburg 

(Received 3 July 1967) 

Nonlinear resonant wave triads composed of one finite and two infinitesima1 
components are unstable for sum interactions and neutrally stable for difference 
interactions. A similar criterion holds for tertiary interactions. 

I n  the preceding paper Davis & Acrivos (1967) have discussed conditions under 
which resonant interactions between an internal gravity-wave mode and two 
infinitesimal internal modes lead to an exponential growth of the infinitesimal 
components. The authors’ results for undamped modes can be deduced from the 
following simple stability criterion, which applies to all conservative coupled- 
mode systems independent of the details of the coupling. The nonzinear coupling 
between two inJinitesima1 components 1 and 2 and a Jinite component 0 whose 
wave-numbers and frequencies satisfy the resonant-interaction conditions 

kl k k, = ko, w1 k W ,  = w0, (1) 

is unstable for the sum interaction and neutrally stabk for the difference interaction. 
In  equation ( l ) ,  ki points in the direction of wave propagation and wi > 0. 

The equations of motion of a conservative, coupled-mode system may be 
written in the form (Hasselmann 1966, equation (1.13)) 

(H 1.13) 

VI, Va 

where ai; denotes the time-dependent factor of the suitably normalized normal 
mode v, oi is the mode eigenfrequency and DK&T? is a symmetrical coupling co- 
efficient which is non-zero only for k, + k, + k, = 0. Reality requirements yield 
the relations 

= (ari)*, (H 1.9) 

= (Dzg;1g2:T3)*. (H 1.12) 

The mode indices v and eigenfrequencies wg take two signs, corresponding to 
opposite propagation directions. Thus if the spatial dependence is given by eik.=, 
LJ > 0 is associated with a linear wave solution ai; = A exp { -iwi;t}, A = const., 
w i  > 0, which propagates in the positive k direction; v < 0 corresponds to a wave 
component of negative frequency propagating in the opposite direction. 

0 )  
whose wave-numbers and frequencies satisfy the resonance-interaction condi- 
tions 

Consider now the interaction between three discrete modes v,, v,, vo (vi 

kl+kz = ko, o l + w 2  = a0, 
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where w j  = wvj > 0. (The more easily interpretable sign convention of equations 
( 1 )  is obtained by changing the signs of ki and wi for negative indices vj.) Writing 
$ j  = A,(t) exp { - iwit), where A j  is a slowly varying amplitude, equation 
(H 1.13) yields 

ks < 

(2) 1 A, = - 3iw,D*AoA;, 

A: = 3iw2DA$Al ( D  G .D@P~J. 

A third equation shows that A, = O(AIA,), so that, for ]All, lAzl < /Ao / ,  A,  can 
be regarded as constant. 

The eigenvalues of ( 2 )  are 

h = & ~ ( w , w , ) *  ID( \Ao\. Q.E.D. 

For w, = w2 = &w0, the criterion yields the well-known case of subharmonic 
parametric instability considered, for example, by Kelly (1965). Kelly's (1967) 
results for nonlinear resonant interactions in a shear layer are also in accordance 
with the stability criterion (Kelly's case A is a sum interaction, while his case B 
is a difference interaction). However, it should be noted that the criterion is 
strictly applicable only to conservative wave-wave interactions, and should there- 
fore be applied with caution to wave components coupled to an external energy 
source, such as Tollmien-Schlichting waves. 

Under normal laboratory conditions, the background disturbances are prob- 
ably better represented by a continuous spectrum than two discrete lines. How- 
ever, the continuous case follows by straightforward superposition, since the 
perturbation equations are linear in the infinitesimal components and all inter- 
acting infinitesimal pairs are mutually distinct. The growth of the infinitesimal 
components is limited to a lower-dimensional subspace of the continuum by the 
resonant interaction conditions. (For this reason, the continuum energy transfer 
formalism (Hasselmann 1966) is not applicable to second -order interactions of 
a discrete line with a continuum.) 

In the case of third-order interactions, involving a finite component and three 
infinitesimal components, the perturbation equations are quadratic in the in- 
finitesimal components, so that the eigenvalue approach and the superposition 
principle fail. Nogeneral stability criterion appears to exist. The stability depends 
on the details of the disturbances. In  the case of a discrete gravity-wave com- 
ponent superimposed on a continuum, the stability is determined by the shape 
of the spectrum. Inspection of the general transfer equation (2.5) (Hasselmann 
1966) shows that unstable distributions always exist. (For finite disturbances, 
all distributions are unstable, as follows from the irreversible tendency of all 
distributions to a white spectrum. The same applies to second-order interactions 
of a finite-width line with a finite-energy background.) 

For third-order interaction involving only two infinitesimal components 1 
and 2 and a finite component 0 that enters twice in the interaction (so that 
the resonance conditions are identical with (1) ,  except that k,, w, axe replaced 
by 2k,, Zw,), one obtains the same stability criterion as before in the second- 
order case. This again follows alone from the symmetry of the coupling coeffi- 
cients and is independent of the details of the coupling. 
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In  practice, the interaction (1) k (2) = 2(0) never occurs alone but is accom- 
panied by the interactions (1) - (1) = (0) - (0) and ( 2 )  - ( 2 )  = (0) - (0). Since 
the coupling coefficients D:;I;;$$!, j = 1,3, are real (equation H 1.12), the 
eigenvalues of these interactions are imaginary, hj = inj, say. This corresponds 
to a change in t.he phase velocities, as discussed for the case of gravity waves 
by Longuet-Higgins & Phillips (1962). The superposition of all three interactions 
then yields eigenvalues 

where A,, represents the eigenvalue of the interaction (1) i (2) = 2(0). 
Thus the phase-velocity perturbations appear to have a stabilising influence. 

However, the frequency shifts Szj can normally be neutralised by considering 
slightly detuned interactions for which w, + w2 = 2w0+ 0, + a,, so that their net 
effect is simply to slightly distort the region of instability in the wave-number 
plane. An exception are the singular points for which the frequency sum w1 + w2 
is stationary with respect to wave-number variations (e.g. w1 = w, = wo).  
Here the sign of the frequency detuning is not disposable, and the stability 
depends on the details of the coupling coefficients. 

An application of the theorem are tertiary gravity wave interactions, which 
are of the sum type and therefore unstable. (The instability of gravity waves 
was first found by Benjamin & Feir (1967), Benjamin (1967) and Witham (1966, 
1967). Their analyses applied to side-band interactions close to the singular 
point w1 = w, = wo and thus did involve in this case detailed properties of the 
coupling.) 
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