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Abstract. State-of-the art climate prediction systems have recently included a carbon component. While
physical-state variables are assimilated in reconstruction simulations, land and ocean biogeochemical state vari-
ables adjust to the state acquired through this assimilation indirectly instead of being assimilated themselves.
In the absence of comprehensive biogeochemical reanalysis products, such an approach is pragmatic. Here we
evaluate a potential advantage of having perfect carbon cycle observational products to be used for direct carbon
cycle reconstruction.

Within an idealized perfect-model framework, we reconstruct a 50-year target period from a control simula-
tion. We nudge variables from this target onto arbitrary initial conditions, mimicking an assimilation simulation
generating initial conditions for hindcast experiments of prediction systems. Interested in the ability to recon-
struct global atmospheric CO2, we focus on the global carbon cycle reconstruction performance and predictive
skill.

We find that indirect carbon cycle reconstruction through physical fields reproduces the target variations.
While reproducing the large-scale variations, nudging introduces systematic regional biases in the physical-state
variables to which biogeochemical cycles react very sensitively. Initial conditions in the oceanic carbon cycle
are sufficiently well reconstructed indirectly. Direct reconstruction slightly improves initial conditions. Indirect
reconstruction of global terrestrial carbon cycle initial conditions are also sufficiently well reconstructed by the
physics reconstruction alone. Direct reconstruction negligibly improves air–land CO2 flux. Atmospheric CO2
is indirectly very well reconstructed. Direct reconstruction of the marine and terrestrial carbon cycles slightly
improves reconstruction while establishing persistent biases. We find improvements in global carbon cycle pre-
dictive skill from direct reconstruction compared to indirect reconstruction. After correcting for mean bias, in-
direct and direct reconstruction both predict the target similarly well and only moderately worse than perfect
initialization after the first lead year.

Our perfect-model study shows that indirect carbon cycle reconstruction yields satisfying initial conditions
for global CO2 flux and atmospheric CO2. Direct carbon cycle reconstruction adds little improvement to the
global carbon cycle because imperfect reconstruction of the physical climate state impedes better biogeochemical
reconstruction. These minor improvements in initial conditions yield little improvement in initialized perfect-
model predictive skill. We label these minor improvements due to direct carbon cycle reconstruction “trivial”,
as mean bias reduction yields similar improvements. As reconstruction biases in real-world prediction systems
are likely stronger, our results add confidence to the current practice of indirect reconstruction in carbon cycle
prediction systems.
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1 Introduction

Predicting variations in weather and climate yields numerous
benefits for economic, social, and environmental decision-
making (Merryfield et al., 2020). Carbon cycle prediction
systems have the ability to predict the near-term evolution
of CO2 fluxes (Li et al., 2019; Lovenduski et al., 2019a, b)
and atmospheric CO2 (Spring and Ilyina, 2020; Ilyina et al.,
2021) to constrain the large internal variability of the global
carbon cycle (Spring et al., 2020). Predictions require a fore-
casting model and initial conditions representing observa-
tions. However, due to sparse and temporally incomplete
records, there is currently no global biogeochemical reanaly-
sis product to initialize Earth system models (ESMs). There-
fore, direct initialization of the carbon cycle, i.e., assimilating
carbon cycle variables in ESMs, is not possible. State-of-the-
art carbon prediction systems initialize the carbon cycle in-
directly by nudging the physical climate only, assuming that
carbon cycle follows the initialized climate indirectly. How-
ever, this indirect carbon cycle initialization leaves the initial
conditions of the carbon cycle unconstrained.

Here, we test how well indirect and direct carbon cycle
reconstructions in an ESM initialize the carbon cycle in a
perfect-model framework (Table 1 presents an overview of
which variables are reconstructed in which simulation). We
use the term reconstruction to describe methods of initializa-
tion of climate and the carbon cycle. Reconstructions aim to
reproduce the evolution of the target, like a reanalysis prod-
uct, in the ESM. Furthermore, we use the term “carbon cy-
cle” to describe the processes exchanging carbon across the
surface boundary between land, atmosphere and ocean, rep-
resented here by the air–land and air–sea CO2 fluxes. We ask
the following research questions.

– How well can initial conditions be reconstructed in the
global carbon cycle?

– Can initialization of the carbon cycle improve the pre-
dictive skill of the carbon cycle?

In this perfect-model framework, we have perfect knowl-
edge about the ground truth and a perfect model. Literally
speaking, this study ask how well perfect observations can
be reconstructed in an ESM.

Originally, data assimilation is used to align the model
state to an observations-based state, generally a reanalysis
product (Schneider and Griffies, 1999; Meehl et al., 2009).
However, here we use the same data assimilation technique
to assess how well variables can be reconstructed in an ide-
alized setup.

Thus, reconstruction in a climate model interferes with the
freely running climate model, yielding gains and drawbacks.
The main advantage of climate reconstruction is that the re-
construction forces the climate model to follow the target
(Jeuken et al., 1996; Meehl et al., 2009). The main handicap
associated with reconstruction is that the mass conservation

is violated and that the model dynamics and feedbacks are
obstructed (Zhu and Kumar, 2018). Consequently, circula-
tion fields may change, and this has severe consequences for
the biogeochemical tracer distributions in the ocean and car-
bon pools on land because they are so sensitive and adapted
to the previous climate state (Toggweiler et al., 1989). There-
fore, reconstructions often lead to biases. A partial solu-
tion can be bias removal by post-processing, which is fea-
sible if the bias does not change the climate or ecosystem
regime all together. Another solution is omitting nudging in
regions strongly biased by reconstruction such as the tropics,
as demonstrated by (Park et al., 2018). Even if biogeochem-
ical reanalysis products were available, it is unclear whether
the reconstruction benefits correct these handicaps.

The lack of reanalysis products available for the recon-
struction of carbon cycle initial conditions is often assumed
to be a weakness of current predictions systems (Li et al.,
2016; Séférian et al., 2018; Lovenduski et al., 2019b, a; Li
et al., 2019; Ilyina et al., 2021), but to our knowledge an elab-
orate assessment is missing. The literature presents two alter-
native approaches to test the quality of reconstructed initial
conditions.

In a perfect-model study, Servonnat et al. (2015) nudge
only ocean surface temperature, salinity and sea ice and as-
sess how well this surface reconstruction penetrates into the
subsurface ocean physics without addressing biogeochem-
istry in their analysis. This target reconstruction approach al-
lows us to directly assess the quality of reconstructed initial
conditions, which is useful and practical to know for fore-
casters issuing a forecast. Luo et al. (2017) use an equivalent
simulation design, so-called observing system simulation ex-
periments (OSSEs), in which they assimilate sea surface tem-
perature, sea surface salinity and sea surface height.

In a recent study, Fransner et al. (2020) ask whether the
initial conditions of ocean biogeochemistry or the initial con-
ditions of ocean physics have a stronger influence on multi-
year predictions using perfect-model twin perturbed initial
conditions experiments. In the first set of hindcasts, they take
identical initial conditions of ocean physics to ensure iden-
tical climate evolution but completely different states from
different members for ocean biogeochemistry. In the other
set of hindcasts, they slightly perturb the ocean physics to
force members on differing climate evolutions while keep-
ing the ocean biogeochemistry initial conditions identical.
They find that ocean biogeochemistry initial conditions did
not affect predictive skill later than the first lead year. Their
approach asks the more theoretical question of whether ini-
tial conditions of ocean biogeochemistry matter compared to
ocean physics initial conditions.

We go beyond previous studies by using the methodol-
ogy of Servonnat et al. (2015), with the aim of understand-
ing the quality of initial condition reconstructions. In con-
trast to Fransner et al. (2020), we aim to answer the ques-
tions about the quality of the initial conditions produced by
different reanalysis approaches. We expand the scope by ad-
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dressing the global carbon cycle, including the land, ocean
and atmospheric compartments and the interactive exchange
of CO2 fluxes between them. We then assess the influence
of these previously reconstructed carbon cycle initial condi-
tions for initialized predictions of the natural carbon sinks
and atmospheric CO2. We focus on the global carbon cycle
because the land and ocean carbon cycle control the internal
variability of atmospheric CO2 (Friedlingstein et al., 2020).

After explaining the approach of target reconstruction in
Sect. 2, we separate reconstruction and its implication on
predictive skill into two parts. We first evaluate reconstruc-
tion performance. We start with the physical reconstruction
in Sect. 3.1. Then we show how the ocean and land carbon
cycles are reconstructed indirectly and how direct reconstruc-
tion can improve initialization in Sect. 3.2 and 3.3. We ana-
lyze the combined effects of the ocean and land reconstruc-
tion in the atmosphere in Sect. 3.4. Following this, we assess
the impact of different reconstruction methods on initial con-
dition predictive skill in Sect. 4. Finally, the main findings
and conclusions of this study are summarized in Sect. 5.

2 Methods

2.1 Model description

We use the Max Planck Institute ESM (Mauritsen et al.,
2019, MPI-ESM), which was also used in the Coupled
Model Intercomparison Project Phase 6 (CMIP6) framework
(Eyring et al., 2016). We run the model MPI-ESM1-2-LR,
the low-resolution configuration with 63 spherical harmon-
ics in the atmosphere, a horizontal resolution of about 1.8◦

on land and about 1.5◦ in the ocean with daily coupling of
the compartments. The time steps of the atmosphere–land
and the ocean are 600 and 4320 s, respectively. We run the
model with a prognostic atmospheric CO2 mixing ratio un-
der preindustrial conditions (esm-piControl).

The marine biogeochemical cycle model HAMOCC (Ily-
ina et al., 2013) is embedded in the ocean general circula-
tion model MPIOM (Jungclaus et al., 2013). HAMOCC in-
cludes carbonate chemistry and an extended NPZD-type cy-
cle, including nutrient–light–temperature co-limitation and
nitrogen-fixating cyanobacteria (Paulsen et al., 2017). The
land carbon cycle model JSBACH includes dynamic veg-
etation, wildfires, and soil carbon decomposition and stor-
age (Schneck et al., 2013). The atmospheric general circula-
tion model ECHAM6 transports the three-dimensional atmo-
spheric prognostic atmospheric CO2 tracer with a flux-form
semi-Lagrangian scheme (Lin and Rood, 1996; Stevens et al.,
2013).

2.2 Perfect-model target reconstruction framework

Simulations in a perfect-model target reconstruction frame-
work aim to reproduce the target climate evolution (Griffies
and Bryan, 1997; Servonnat et al., 2015) but are started from

an independent initial state. Therefore, the initial conditions
of the reconstruction simulation and the target do not match,
but both the target and initial conditions share the same cli-
matology. We choose a 50-year target period from model
years 1850 to 1900 and an uncorrelated restart file from
model year 2005 from the preindustrial control simulation
(esm-piControl) submitted for the MPI-ESM1-2-LR model
for C4MIP (Jones et al., 2016) in CMIP6 (Eyring et al.,
2016).

In order to assess how many variables are needed to suf-
ficiently reconstruct climate and biogeochemical cycles, we
first perform reconstruction simulations only reconstructing
physical state variables in atmosphere and/or ocean (Table 1).
In these simulations, the carbon cycle is only indirectly af-
fected by the reconstruction of physical variables. In further
simulations, we test how much carbon cycle states improve
with respect to the target when carbon cycle state variables
are reconstructed directly.

Newtonian or Haney (1974) relaxation, which is often
called “nudging”, is a simple four-dimensional assimilation
technique that dynamically reconstructs variables in an ESM.
A non-physical relaxation term with relaxation coefficient R
(units 1 s−1) is added to the prognostic equation to drag the
model variable X, which is subject to model forcing Fm to-
wards its target Xt:

δX

δt
= Fm(X)+R(Xt−X). (1)

For reconstruction of the dynamics of the ocean, we re-
construct three-dimensional temperature, salinity, and sea ice
concentration and thickness (Table 1). We label this recon-
struction as indirect (Table 1) from the carbon cycle’s per-
spective, as the carbon cycle is not reconstructed directly
but instead indirectly follows the reconstructed physical cli-
mate. Observational ocean data are often not available at
each model time step. Therefore, we interpolate (without
adjustments preserving the temporal mean) monthly model
target output to daily frequency as has been done in pre-
vious studies (Pohlmann et al., 2009). We choose a 60 d
ocean relaxation time (converted to units 1 s−1) like Ser-
vonnat et al. (2015) did in their perfect-model target recon-
struction study. Reconstructions towards observations usu-
ally choose a stronger nudging strength (Pohlmann et al.,
2009; Keenlyside et al., 2008).

We reconstruct the physics of the atmosphere by nudging
temperature, vorticity, divergence and the logarithm of sur-
face pressure (Pohlmann et al., 2019). The high-frequency
6-hourly output serves as the target and is nudged into all
63 spherical harmonics. Temperature and the logarithm of
surface pressure are nudged with a relaxation timescale of
24 h, vorticity is nudged with a relaxation timescale of 6 h,
and divergence is nudged with a relaxation timescale of 48 h.
Relaxation coefficients are converted to units of 1 s−1 and
are taken from previously used setups (Rast et al., 2012;
Pohlmann et al., 2019; Li et al., 2019). Nudging the atmo-
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Table 1. Overview of different reconstruction simulations. The first column title marks the labels of the experiments as used in the paper.
The reconstruction strength of relaxation timescales is noted in brackets, where h denotes hours and d days. The land carbon cycle is not
dynamically reconstructed at each time step but by a hard reset of restart files each 1 January from the target run. These land restart files
include carbon and nitrogen pools, soil physics (moisture, temperature, snow cover), vegetation cover (plant functional types distribution)
and canopy (leaf area index).

Reconstructed variables for each realm (nudging relaxation time-scale)

Reconstruction
simulations

Atmosphere: Ocean (60 d): Sea ice (60 d): Ocean carbon (60 d): Land:
temperature (24 h),
surface pressure (24 h),
vorticity (6 h),
divergence (48 h)

temperature,
salinity

concentration,
thickness

DIC,
alkalinity

all JSBACH
(reset restart files 1 Jan)

indirectATMonly ×

indirectOCEANonly ×

indirect × × ×

direct × × × × ×

sphere with these quite short relaxation times is similar to
the forced simulations, such as the Model Intercomparison
Projects for ocean (OMIP) (Griffies et al., 2016; Orr et al.,
2017) and land (LMIP) (van den Hurk et al., 2016) and
Global Carbon Budget (Friedlingstein et al., 2019) simula-
tions, where (atmospheric) external boundary forcing drives
the carbon cycle.

For reconstructions of oceanic carbon cycle, we use the
same nudging approach and strength as for physical ocean
reconstruction but on different variables. To reconstruct
the components of the carbonate system, we nudge three-
dimensional dissolved inorganic carbon (DIC) and total al-
kalinity (Table 1).

Unfortunately, there is no nudging module available in the
land surface model JSBACH. The current structure of JS-
BACH code is not flexible enough to allow frequent rewriting
of physical variable fields, such as soil moisture or temper-
ature, with external data. Here, we choose to manually reset
the initial conditions every 1 January to the target values in-
stead of the dynamic reconstruction at each time step. We
thereby reconstruct land biogeochemistry and land surface
physics such as soil moisture by resetting all restart variables
every year. In Appendix Sect. D, we provide several sensi-
tivity analyses by resetting land only every 2 or 5 years and
resetting the ocean every year in the same way.

We compare the target with reconstructions in the various
metrics showing different attributes of tracking performance:
bias, anomaly correlation coefficient and root-mean-square
error. The non-physical relaxation terms in the prognostic
equations can disturb the dynamics in the ESM and introduce
biases defined as the differences in the reconstruction com-
pared to the freely running target over time. The anomaly
correlation coefficient skill score (ACC) shows the linear as-
sociation between the reconstruction and the target over time
and therefore measures synchronous evolution while ignor-
ing bias. The root-mean-square error (RMSE) takes into ac-

count bias and measures the second-order Euclidian distance
between reconstruction and target simulation over time. Un-
der the assumption that persistent biases can be removed
by post-processing, we also assess RMSE after having the
mean monthly bias removed. For equations please consult
Appendix A. We calculate tracking performance over run-
ning 10-year chunks to capture the variability within tracking
performance and reduce the influence of drifts over time.

How do we evaluate that a reconstruction is good enough?
While good enough is a subjective judgment, we resample
the target simulation along the time dimension with a block
length of 10 years to check the metric of two randomly com-
pared 10-year chunks. We consider the 95th quantile thresh-
old for ACC and 5th quantile threshold for the remaining
distance-based metrics as a baseline of internal variability
to be a good-enough reconstruction (Efron and Tibshirani,
1993), which we will refer to as “resampling threshold” in
the following.

2.3 Perfect-model predictive skill framework

In the second part of this study, we perform initialized
perfect-model experiments (as in Spring and Ilyina, 2020).
The simulations in the perfect-model framework are started
from the indirect and direct reconstructions as well the tar-
get representing perfect initial conditions. We take 19 initial-
ization states chosen every second 1 January between 1860
and 1896, after allowing a 10-year adjustment phase after re-
constructions were started. From each of those states from
different reconstruction simulations, we fork five ensemble
members and simulate 3 lead years. The perfectly initialized
ensembles are started from the target initial conditions with-
out any previous reconstruction simulation. We generate en-
semble members by perturbing the stratospheric horizontal
diffusion by a factor of 1.0000{member} in the first year,
e.g., the factor is 1.00005 for the fifth ensemble member. This
member-generating approach provokes only tiny initial per-
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turbations to the climate system as the ocean and land initial
conditions remain identical.

We compute predictive skill as the RMSE between the en-
semble mean and the target as verification (Wilks, 2006; Jol-
liffe and Stephenson, 2011) (Appendix A). Please find addi-
tional details about the predictive skill metrics and the unini-
tialized bootstrapping in Spring and Ilyina (2020). Acknowl-
edging that our reconstruction simulation developed biases
and that biases are commonly reduced by post-processing
in predictability research, we also apply a simple lead-time-
dependent mean bias reduction to the initialized ensembles to
show whether skill improvements go beyond what a simple
post-processing could deliver. For each initialization in turn,
we first calculate the mean bias for all but that given initial-
ization and then remove that mean bias from the given initial-
ization. This implies using information about future initial-
izations as in bias-reduced hindcasts (Marotzke et al., 2016).
We also evaluate predictive skill from a perfectly initialized
ensemble, which are started from the perfect initial condi-
tions taken from target simulation, whereas the ensembles
from reconstructed initial conditions are biased with respect
to the target (Fig. 5). This initialized predictive skill is also
compared with uninitialized ensembles randomly generated
from the target simulation representing ensembles without
common initialization and hence no memory. This uninitial-
ized reference skill is used in predictability research commu-
nity to assign whether the skill increase stems from initial-
ization.

3 Reconstruction in an Earth system model

As the carbon cycle is sensitive to the climate evolution, we
first assess how well the physical climate is reconstructed.
Therefore, we first evaluate the physical climate state after
reconstruction in Sect. 3.1. Afterwards, we assess how these
different reconstructions of physical climate indirectly recon-
struct the ocean, land and atmospheric carbon cycle in sub-
sections and how direct reconstruction could improve initial
conditions in Sects. 3.2–3.4.

3.1 Reconstruction of physical climate

Reconstructing the ocean and/or the atmosphere systemati-
cally disturbs the freely evolving model, which leads to an-
nual mean biases with respect to the original target. We iden-
tify atmospheric circulation represented by winds and result-
ing precipitation and temperature to be descriptive for the
impact of circulation on the carbon cycle. The gray stippling
in Fig. 1 shows where this reconstruction bias is larger than
the randomly resampling fifth-percentile mean absolute error
threshold and therefore labels the reconstruction as being not
significantly better than internal variability.

All reconstructions yield identical results for winds
and precipitation tracking performance. Reconstructing the
ocean and/or the atmosphere introduces biases of up to

0.6 m/s in zonal and 0.9 m/s in meridional 10 m wind speed,
depicting a southward shift of the Intertropical Convergence
Zone (ITCZ). This bias results in a significant weakening
of the Equator-ward latitudinal winds, whereas extratropi-
cal latitudinal winds intensify (Fig. 1a). The intensification
and Equator-ward shift of the easterly trade winds and weak-
ening of the Southern Hemisphere westerlies are both not
significant (Fig. 1b). Precipitation is heavily impacted by
these biases in atmospheric transport across many regions
of the globe. Precipitation significantly shifts southward at
the Equator with changes of more than 1 mmd−1 and in-
creases in western Canada, western Russia and southern Aus-
tralia (Fig. 1c). Unlike the previously described variables, the
2 m temperature bias depends on whether the ocean is recon-
structed or not. Just reconstructing the ocean temperature and
salinity (indirectOCEAN only) leads to small, negative and sig-
nificant biases in the tropical Atlantic and West Pacific. In ad-
dition, northern and southern Africa, as well as the Amazon
and China, are subject to a small cold bias, whereas Saharan
Africa and Southeast Asia get substantially warmer. The po-
lar regions cool significantly (Fig. 1d). Only reconstructing
the atmosphere (indirectATMonly) leads to a warm bias across
nearly all oceans but less cold bias over northern and south-
ern Africa and China (Fig. 1e). Combining atmosphere and
ocean reconstruction (indirect) reduces the overall tempera-
ture bias, especially over the oceans (Fig. 1f).

While the biases explained above are liabilities of recon-
structions, the linear association measured by the anomaly
correlation coefficient (ACC) benefits from reconstruction.
Reconstruction recreates climate variability of the target
(Fig. 1g–l). The running 10-year correlation between the tar-
get and the reconstruction in atmospheric variables is in most
grid cells above 0.4 and significantly better than the ran-
domly resampling threshold. Reconstruction over the oceans
is more successful in the tropics than in the extratropics,
where the Northern Hemisphere and Southern Hemisphere
midlatitude westerlies have low but still significant corre-
lation. Generally, the atmosphere above the ocean is better
reconstructed than above land, showing the stabilizing ef-
fect of an internally consistent ocean reconstruction on the
atmosphere (Fig. 1g–l). The Southern Hemisphere tropical
convergence of winds is well reconstructed, but the merid-
ional winds in central Canada and tropical Africa are not sig-
nificantly reconstructed (Fig. 1g). In addition, zonal winds
across North America, southern Africa and Siberia have low
correlation with the target, but the tropical zonal winds are
very well reconstructed (Fig. 1h). Precipitation from the cen-
tral Atlantic over central Africa is reconstructed worse than
the resampling threshold, and the extratropical westerlies
have low correlation with the target (Fig. 1i). Temperature
is well reconstructed in the tropical oceans (Fig. 1j–l). Re-
constructing both atmosphere and ocean (indirect) improves
2 m temperature correlation better than only reconstructing a
single realm. The indirect carbon cycle reconstruction is sig-
nificantly better than the resampling threshold except in cen-
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Figure 1. Spatial distribution of the bias (construction–target) (a–f) and anomaly correlation coefficient (ACC) (g–l) of different indirect
carbon cycle reconstructions relative to the target over 10-year running windows of annual means (see Appendix A). The reconstruction
metrics for 2 m temperature are shown for the indirectATMonly (d, j), indirectOCEAN only (e, k) and indirect reconstruction (f, l). Because of
identical reconstruction skill for all indirect methods, only one indirect reconstruction is shown for other variables, zonal westward 10 m
wind (a, g) and meridional northward 10 m wind (b, h) and precipitation (c, i). Gray stippling shows where the metric exceeds the 5th-
percentile (for a–f) or 95th-percentile (for g–l) threshold from random target block resampling, i.e., the reconstruction is not significantly
better than internal variability.

tral Africa, where the ITCZ shift changes the climate regime
(Fig. 1l).

This physical bias due to reconstruction, especially in the
tropics, can be explained by the sensitivity of atmosphere–
ocean coupling to perturbation induced by nudging (Milinski
et al., 2016). Additionally nudging sea surface height might
improve the El Niño–Southern Oscillation (ENSO) thermo-
cline feedback (Luo et al., 2017). The reconstruction of ocean
and atmospheric variables is perfectly aligned with the model
climatology into that same model. Hence, the reconstruction
error does not arise from inconsistent observations but from
the perturbed interaction of atmospheric and oceanic dynam-
ics. While reconstructing an increasing set of variables shows
that nudging can be an efficient way to reconstruct variabil-
ity (Jeuken et al., 1996), this reconstruction is biasing the
climate state in the tropics at the same time (also explained
in Zhu and Kumar, 2018).

Nudging atmospheric and ocean dynamics including
sea ice all at once (indirect reconstruction), as is often

done in state-of-the-art carbon cycle prediction systems,
brings large-scale improvements over random resampling
and atmosphere-only (indirectATM only) reconstruction, but
strong regional biases remain (Fig. 1).

3.2 Reconstruction of the oceanic carbon cycle

How do these regional physical biases affect the reconstruc-
tion of oceanic carbon cycle? In order to assess the tracking
performance in the indirect reconstruction of the oceanic car-
bon cycle, we focus on air–sea CO2 flux and surface oceanic
pCO2 as the state variable of the ocean carbon sink, which
is the oceanic driver of air–sea CO2 flux (Lovenduski et al.,
2019b).

Reconstructing only the atmospheric dynamics
(indirectATMonly) leads to strong positive biases across
large parts of the global ocean, which can be reduced by also
reconstructing oceanic temperature and salinity (indirect)
(Fig. 2a, b, d, and e). The weakening of the Southern Hemi-
sphere westerly winds decreases the magnitude of air–sea
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Figure 2. Spatial distribution of the bias between the target and different indirect carbon cycle reconstruction methods over 10-year running
windows of annual means (see Appendix A). Columns show the different carbon cycle reconstruction methods (see Table 1). Rows show the
different variables: the ocean carbon cycle is represented by (a–c) the partial pressure of surface CO2 in the ocean (pCO2) and (d–f) surface
air–sea CO2 flux (negative values indicate carbon uptake by the ocean); the land carbon cycle is represented by (g–i) the vegetation carbon
pools and (j–l) air–land surface CO2 flux (negative values indicate carbon uptake by land); and the atmospheric carbon is represented by (m–
o) the atmospheric CO2 mixing ratio (XCO2). Gray stippling shows where the bias exceeds the 5th-percentile mean absolute error threshold
from random target block resampling, i.e., the reconstruction is not significantly better than internal variability.

CO2 flux, but more importantly reduces the Southern Hemi-
sphere overturning circulation and upwelling of carbon-rich
waters, which leads to increased Southern Ocean carbon
uptake (Fig. 2b and e). The intensification of easterly trade
winds (Fig. 1b) strengthens upwelling and therefore higher
pCO2 in the tropical Atlantic (Fig. 2b) (Lefèvre et al., 2013).
The bias pattern of air–sea CO2 flux is dominated by the bias
of pCO2 (Lovenduski et al., 2019b) (Fig. 2b and e).

The variations in the oceanic carbon cycle, described
by the correlation coefficient, are better reconstructed than
the resampling threshold. Indirect reconstruction of oceanic
and atmospheric dynamics greatly improves tracking perfor-
mance over atmosphere-only indirectATMonly reconstruction.
The additional reconstruction of the physical ocean (Fig. 1e

and f) largely enables a correlation above 0.7 (Fig. 3b and e).
Only the carbon cycle in the tropical oceans remains difficult
to reconstruct due to the strong biases in atmospheric circu-
lation (Fig. 1a–c). Note that the land and atmospheric carbon
bias due to indirect reconstruction are discussed in Fig. 2g–o
in Sects. 3.3 and 3.4).

Next, we compare the previously shown indirect carbon
cycle reconstruction with direct carbon cycle reconstruction
by nudging dissolved inorganic carbon (DIC) and alkalinity
(ALK) towards the target.

While direct oceanic carbon cycle reconstruction reduces
the magnitudes of the bias across the ocean, biases are still
evident (Fig. 2c and f). These biases are caused by the physi-
cal biases, which the dynamical oceanic carbon cycle model
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Figure 3. The same as Fig. 2 but for the anomaly correlation coefficient (ACC). Gray stippling shows where the ACC is lower than the
95th-percentile ACC threshold from random target block resampling, i.e., the reconstruction is not significantly better than a resampling
internal variability threshold.

is sensitive to. Hence, the biased ocean physics inhibits ad-
ditional improvements in tracking performance from direct
ocean carbon reconstruction.

Direct oceanic carbon cycle reconstruction improves the
already high correlations across the oceans (Fig. 3c and f).
The resampling threshold is surpassed nearly everywhere.
Only coastal areas, especially those in the eastern tropical
Atlantic with strong wind and precipitation biases, have a
correlation below 0.7.

Section 3.2 shows how well indirect and direct reconstruc-
tion of the ocean carbon cycle work overall. While the direct
reconstruction has slightly larger biases in air–sea CO2 flux,
direct reconstruction also brings higher correlation. Note that
the land and atmospheric carbon biases due to direct recon-
struction are discussed in Fig. 2g–o in Sect. 3.3 and 3.4).

3.3 Reconstruction of the land carbon cycle

How do these regional physical biases affect the reconstruc-
tion of the land carbon cycle? In order to assess the tracking
performance in the best indirect reconstruction of the land
carbon cycle, we focus on the state variable cVeg, which rep-
resents carbon storage in vegetation (leaves, stems, roots) and
drives air–land CO2 flux and hence the land carbon sink.

For the land carbon cycle, the reconstruction of the ocean
temperature and salinity did not matter, when atmospheric
temperature was also reconstructed (Figs. 2 and 3). Indirect
reconstruction leads to biases compared to the target in car-
bon storage, and in particular cVeg (Fig. 2g and h), as the
land carbon cycle is very sensitive to changes in atmospheric
circulation, which are strongest in the tropics due to the ITCZ
shift. In the Amazon and southern Africa, the air–land CO2
bias increases, most likely caused by the strong positive pre-
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Figure 4. Evolution in global annual mean of (a) surface ocean pCO2 (b), air–sea surface CO2 flux (negative values indicate carbon uptake by
the ocean) (c), vegetation carbon pools (g–i), air–land surface CO2 flux (negative values indicate carbon uptake by land) (d) and atmospheric
CO2 mixing ratio (e). The target (gray) is quite well tracked by the indirect (green) and direct (orange) carbon cycle reconstruction. The solid
line shows the different reconstruction simulations, the dashed lines show the initialized ensembles started from the different reconstructions.

cipitation bias in these regions (Figs. 1c and 2j and k). Con-
versely, the carbon sink in Southeast Asia and central Africa
has a carbon release bias due to less precipitation and a warm
bias (Fig. 2j and k).

The reconstruction correlations in the land carbon cycle
are much lower than for the oceanic carbon cycle. cVeg is
well reconstructed in the extratropics, but the biases in the
tropics result in correlations with the target lower than the
resampling threshold (Fig. 3g and h). Air–land CO2 shows
the same patterns with lower correlations, which are below
the resampling threshold in the tropics (Fig. 3j and k).

Direct reconstruction of the land carbon cycle, which is
here performed by resetting all restart files of the land car-
bon sub-model to the target every 1 January, greatly enhances
tracking performance of cVeg by simulation design. A sensi-
tivity analysis for less frequent resetting can be found in the
supplementary information (Sect. D).

This direct resetting reconstructs cVeg much better than
the resampling threshold in the extratropics. However, the
physical climate biases during the course of a year even in-

troduce cVeg biases stronger than the resampling threshold
in the tropics (Fig. 2i). In addition, the biases in the air–land
CO2 flux are not improved (Fig. 2l), which indicates that this
hard reset of restart files introduces a shock to the dynamical
land model.

On the other hand, correlations in cVeg and air–land CO2
flux increased to above 0.5 everywhere except in the trop-
ics, where the ITCZ shift changes the climate regime (Fig. 3i
and l).

Section 3.3 shows the direct land carbon cycle reconstruc-
tion yields stronger correlation improvements than ocean di-
rect carbon cycle reconstruction because the indirect recon-
struction of the ocean was already quite good. Direct recon-
struction reduces biases in land carbon cycle state variables,
but the resulting air–land CO2 flux biases becomes worse.
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Figure 5. The 10-year running mean annual reconstruction skill in bias (a, d, g, j, and m), anomaly correlation coefficient (ACC, b, e,
h, k and n) and root-mean-square error (RMSE, c, f, i, l, and o) for global aggregation of carbon cycle variables: (a–c) surface oceanic
partial pressure of CO2, (d–f) air–sea CO2 flux (negative values indicate carbon uptake by the ocean), (g–i) vegetation carbon pools, (j–
l) air–land CO2 flux (negative values indicate carbon uptake by land) and (m–o) mixing ratio of atmospheric CO2. Error bars show ± σ
standard deviation of the running skill over time. Columns show different reconstruction methods: indirect (green) and direct (orange). The
gray bar marks the magnitude of the 95th percentile for ACC and 5th percentile for bias and RMSE of a random reconstruction skill block-
bootstrapped from the target control simulation as an unskillful reference. Gray stars indicate perfect skill. Thin black error bars with crosses
show RMSE skill after a mean bias reduction.

3.4 Reconstruction of the global carbon cycle and
atmospheric CO2

Tracking performance for prognostic atmospheric CO2 inte-
grates the air–sea and air–land CO2 fluxes over time (Spring
and Ilyina, 2020; Spring et al., 2020). As atmospheric CO2
mixes quickly across the globe, we first examine globally
aggregated quantities driving globally averaged atmospheric
CO2 (Fig. 4).

We first examine the indirect reconstruction represented
by the green error bars in Figs. 5 and C1. The indirect re-

construction has a negative bias in global pCO2 in the annual
mean (Figs. 4a and 5a). This bias is slightly higher than the
magnitude of the resampling mean absolute error threshold,
which resembles the temporal standard deviation (Fig. 5a).
The global oceanic CO2 flux is biased low but within the re-
sampling threshold magnitude range (Figs. 4b and 5d).

On the other hand, the variations of the global oceanic car-
bon cycle measured by ACC are well reconstructed, surpass-
ing the resampling threshold (Fig. 5b and e).

When biases are persistent, they can be reduced by a bias
reduction procedure, which is often done when applying cli-
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mate model output to a real-world application. After apply-
ing a simple mean bias reduction, RMSE is well below the
resampling threshold (Fig. 5c and f).

The indirect reconstruction also leads to biases in the land
carbon cycle (Fig. 4c and d). Vegetation carbon pools (cVeg)
have a strong positive bias that is much larger than the resam-
pling threshold (Fig. 4c). The bias of global air–land CO2
flux is very small in the annual mean.

Global annual cVeg has a 0.5 correlation with the target,
which is lower than the resampling threshold. Global air–
land CO2 variations are well reconstructed, surpassing the
resampling threshold (Fig. 5h and k).

Without bias reduction, accuracy measured by RMSE is
worse than the resampling cVeg threshold. After bias reduc-
tion, cVeg accuracy is still slightly worse than the threshold,
but accuracy improves from 5 PgC to below 1 PgC, which is
the magnitude of the resampling threshold (Fig. 5i). Global
air–land CO2 flux accuracy is below the resampling thresh-
old (Fig. C1l).

Global atmospheric CO2 has larger variations in recon-
struction skill depending on which 10-year chunk is used
to calculate the metric. And the skill has a nearly constant
level throughout the year (Fig. C1m–o). The mean bias is
close to zero (Figs. 4e and 5m). Correlation with the target
is above 0.7 and in the range of the resampling threshold
(Fig. C1n). accuracy is at 0.7 ppm in the range of the resam-
pling threshold. Mean bias reduction improves accuracy to
below 0.5 ppm (Fig. 5o).

Understanding the tracking performance of the ocean and
land carbon cycle, we can now evaluate the spatial distribu-
tion of globally averaged atmospheric CO2. Reconstructing
only the atmosphere warmed the globe and also increased at-
mospheric CO2 globally (Figs. 1k and 2m). Additionally re-
constructing the ocean keeps the temperature stable but intro-
duces a less than 1 ppm low bias across the Southern Hemi-
sphere, reflecting the higher uptake of the Southern Ocean
carbon sink and the Southern Hemisphere land carbon sink
(Fig. 2e, k, and n). The variations in atmospheric CO2 are
well reconstructed with correlation coefficients above 0.6 in
the Southern Hemisphere, but across the Northern Hemi-
sphere extratropics and land regions with strong physics bi-
ases correlation is at 0.5 below the resampling threshold
(Fig. 2m and n).

Now, we assess the potential improvements in the global
carbon cycle due to direct reconstruction of the global carbon
cycle variables shown in orange in Figs. 5 and C1.

The global ocean carbon cycle improves after direct DIC
and alkalinity reconstruction (Fig. 5a). Monthly biases re-
main but are now within the resampling threshold (Fig. C1a).
Correlation improves from 0.8 to above 0.9 in surface pCO2.
Air–sea CO2 correlation does not improve but only because
correlations above 0.9 for the indirect reconstruction were
already very high (Fig. 5b). Correlation for boreal winter is
above 0.95, indicating that initial conditions in winter are
well reconstructible for initializing forecasts of oceanic car-

bon sink (Fig. C1b). Direct reconstruction improves pCO2
accuracy to 0.2 ppm. Mean bias reduction can hardly im-
prove accuracy after direct reconstruction (Fig. 5c). Air–sea
CO2 flux accuracy degrades in comparison to indirect recon-
struction. This degradation is removed by the mean bias re-
duction (Fig. 5f).

All results for the direct reconstruction of the land carbon
cycle must be understood in the context of the method cho-
sen for the direct reconstruction. Because we reset the restart
files in 1 January to the target, the metrics are near perfect in
January by design. However, then the biogeochemistry is not
modified directly for 12 months and only follows the physical
climate reconstruction indirectly, and thus biases triggered by
physical biases unaligned with the reset land biogeochem-
istry pools quickly build up and may approach the metric
of the indirect reconstruction. Likewise, there is no bias in
global cVeg in January by design. The bias increases with
the physical biases until it surpasses the resampling thresh-
old in August and continues increasing until the end of the
year (Fig. C1g). Annual cVeg bias is strongly improved by
direct reconstruction (Fig. 5g). Global air–land CO2 flux has
a stronger bias than the indirect reconstruction (Fig. 5j). Cor-
relation in the global cVeg is near perfect in January by de-
sign and slowly decreases to 0.8 in December while still be-
ing better than the resampling threshold (Fig. C1h). Annual
cVeg variations are reconstructed much better by the direct
method compared to the indirect method (Fig. 5h). Global
air–land CO2 flux variations increase by 0.2 (Fig. 5k). Direct
reconstruction improves global cVeg accuracy. Accuracy is
better than the resampling threshold after mean bias reduc-
tion. Direct reconstruction slightly improves CO2 flux accu-
racy. Furthermore, a mean bias reduction slightly improves
accuracy (Fig. 5i and l).

The global CO2 bias in the direct reconstruction increases
to +1.8 ppm (Fig. 5m), but correlation increases from 0.7 to
0.9 (Fig. C1n). The direct reconstruction has worse accuracy
than the indirect due to established bias, but after mean bias
reduction the accuracy is below 0.3 ppm (Fig. 5o).

How does direct carbon cycle reconstruction affect track-
ing performance in prognostic atmospheric CO2? The time
series already indicate that there is a 1–2 ppm atmospheric
CO2 positive bias in the direct reconstruction (Fig. 4e). This
bias is very homogeneous over the oceans (Fig. 2o). How-
ever, correlation strongly increased to 0.9 above the oceans
and above 0.7 on land, except for central Africa with its per-
sistent biases, where the reconstruction is not better than the
resampling threshold.

Section 3.4 shows that atmospheric CO2 follows the re-
constructed land and ocean carbon cycle, integrating their re-
spective fluxes over time. The direct carbon cycle reconstruc-
tion introduces a large bias in the atmospheric CO2 distribu-
tion that the indirect reconstruction did not suffer from even
after mean bias reduction (Fig. B3). Globally averaged atmo-
spheric CO2 after direct reconstruction had a better accuracy
tracking performance after the mean bias reduction, showing
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how global aggregation can balance regional biases. The di-
rect land and ocean carbon cycle reconstructions track targets
much better than the indirect reconstruction when measured
by correlation.

Generally speaking, this first part showed how direct car-
bon cycle reconstruction improves linear association be-
tween reconstruction and target (measured by ACC) but often
increases biases degrading accuracy (measured by RMSE).
Only after bias reduction does accuracy improve with respect
to the indirect carbon cycle reconstruction.

4 Impact of reconstruction on global carbon cycle
predictive skill

The second part of the paper assesses how predictive skill
improves due to direct initialization of global carbon cycle
variables. Specifically, we verify the RMSE between the five
ensemble members initialized from the indirect and direct re-
constructions across all initializations based on raw and lead-
time-dependent bias-corrected time series (Figs. 4 and 6).

4.1 Oceanic carbon cycle

The RMSE between the initialized ensembles and the target
simulations in annual globally averaged pCO2 continuously
increases from lead year 1 to lead year 3 as expected. While
perfectly and indirectly initialized ensembles stay below the
resampling uninitialized threshold for the first 2 lead years,
indicating that global pCO2 is predictable due to initializa-
tion (Fig. 6a), the direct initialization has a larger error due
to the offsets in global atmospheric CO2, which pCO2 tries to
equilibrate to (Fig. 4e). Therefore, this persistent bias causes
lead year 3 to be not predictable. A simple mean bias reduc-
tion resolves this issue, making all 3 lead years predictable.
Direct initialization only beats indirect initialization for lead
year 1 with RMSE of 0.35± 0.05 versus 0.45± 0.05 ppm
(Fig. 6f).

Global air–sea CO2 flux is predictable for 3 years in all
initialization methods, which is 1 year longer than in Spring
and Ilyina (2020), possibly because here we use more and
more equally distributed initialization dates. Direct initial-
ization is advantageous over the indirect initialization be-
cause the initial lead offset is smaller (0.14± 0.01 versus
0.18± 0.02 PgCyr−1) (Fig. 6b). The simple mean bias re-
duction improves the skill of the non-perfect initializations
to identical magnitudes (Fig. 6g).

4.2 Land carbon cycle

Indirect initialization makes cVeg not predictable. The phys-
ical reconstruction biases drive larger errors in lead year 1
than in later lead years and also to a lesser extent for the direct
reconstruction, where some biases are corrected. But both re-
constructed initialized ensembles show decreasing distances
towards the target, whereas increasing distances are expected

for vanishing predictive skill as in the perfectly initialized
ensembles (Fig. 6c). Mean bias reduction eliminates the dif-
ferences between direct and perfect reconstruction, making
both predictable unlike the indirect reconstruction (Fig. 6h).

Global air–land CO2 flux is predictable for 3 years, again
1 year longer than found in Spring and Ilyina (2020).
Both reconstructed initializations start with a higher error
of 1.1± 0.2 PgCyr−1 in lead year 1 compared to perfectly
initialized 0.7± 0.1 PgCyr−1 (Fig. 6d). Mean bias reduction
brings non-perfect initializations within the error bars of the
perfect initialization after lead year 1 (Fig. 6i). A recent anal-
ysis focused on process-based understanding of land carbon
predictability using JSBACH indicates that soil moisture and
soil carbon storage, both reconstructed by the direct method,
influence the air–land CO2 flux the most (Dunkl et al., 2021).

4.3 Atmospheric CO2

Perfect and indirect initialization atmospheric CO2 predict
the target for 3 years, as found in Spring and Ilyina (2020).
While the perfect initialization error grows continuously
from zero, the indirect initialization error stays nearly con-
stant at 0.7± 0.1 ppm, but the error stays below the direct
initialization error, which suffers from the bias in the di-
rect reconstruction simulation (Fig. 6e). Mean bias reduc-
tion improves RMSE, making direct initialization better but
still within the margins of the indirect initialization. After
lead year 1, indirect and direct initializations are similar to
perfect-initialization predictive skill at 0.7 ppm (Fig. 6j).

The anomaly correlation coefficient measures how pre-
dictable variations are and is independent of the mean bias
(Fig. 6k–o) (Jolliffe and Stephenson, 2011). Measuring pre-
dictive skill with ACC shows very similar behavior across all
variables. While perfect initialization is the most predictable,
indirect and direct carbon cycle initialization are fairly simi-
lar. Predictive ACC skill seems to saturate after lead year 2.

These initialized predictive skill results show that indi-
rectly initialized ensembles predict the target quite reason-
ably. Direct initialization suffers strong shocks in some vari-
ables, when reconstruction is started and stopped, but these
shocks can be partly reduced by a mean bias reduction. The
improvements of direct reconstruction over indirect recon-
struction in the global carbon cycle predictive skill after bias
reduction are not significant, except for vegetation carbon
pools (cVeg) (Fig. 6f–j).

5 Summary and conclusions

In this study, we assess how well the global carbon cycle is
reconstructed in an ESM and how well a ground truth target
simulation can be predicted by these initializations.

The main limitation of land carbon cycle reconstruction
potential is the hard reset of restart files which is fundamen-
tally different to the dynamical nudging applied for ocean
and atmospheric physics. Our study represents a first attempt
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Figure 6. Predictive skill measured by (a–e) root-mean-square error (RMSE), (f–j) RMSE after bias reduction, and (k–o) anomaly corre-
lation coefficient (ACC) between the initialized ensemble mean and the target as a function of lead year for different initialization setups:
perfect indicating no reconstruction and hence perfect initial conditions to predict the target (gray), indirect (green), and direct (orange)
reconstructions. Columns show global variables for the ocean carbon cycle, i.e., (a) oceanic surface pCO2 and (b) air–sea CO2 flux; for the
land carbon cycle, i.e., (c) total land carbon pools and (d) air–land CO2 flux; and in the atmosphere, i.e., (e) atmospheric CO2 mixing ratio.
Initialized ensembles are resampled with replacement (N = 500) along the initialization dimension to account for initialization sampling un-
certainty (see Spring and Ilyina, 2020), where error bars show the resampled initialization skill uncertainty (± 1σ ). Uninitialized ensembles,
shown at lead 0, are resampled from the target control simulation and show the reference skill without initialization.

to quantify whether reconstruction of initial conditions in the
land carbon cycle is indeed needed for addressing predictive
skill of the global carbon sinks and atmospheric CO2 con-
centration. For a real-world application, our direct land car-
bon reconstruction method should not be used. In practice,
satellite products of carbon cycle variables could be assimi-
lated into the model periodically or at each time step. How-
ever, strong interference with the model alone will likely re-
sult in strong drifts, especially in dependent variables. For
useful real-world applications of land carbon cycle assimi-
lation, sequential (Evensen, 1994; Balmaseda et al., 2007;
Zhang et al., 2007) or variational (Han et al., 2004) data as-
similation techniques could be used for initialization. How-
ever, the problem of data availability for the reforecast period
still remains. Haney (1974) reconstruction is the simplest ap-
proach to data assimilation, allowing little flexibility in the
model. Many centers are now transitioning towards ensemble
Kalman filter data assimilation, which allows more variabil-

ity (Park et al., 2019; Brune and Baehr, 2020). Applying such
techniques to the carbon cycle may lead to better reconstruc-
tions. A final limitation of the method is that we use a model
to reconstruct itself. Therefore, we do not have any struc-
tural uncertainty other than the reconstruction method itself
or processes missing in our framework. When reconstruct-
ing the real world, our model lacks processes and resolution
contributing to structural uncertainty.

We find that reconstruction, which is an interference with
the freely evolving model, leads to biases in physical climate.
Because of its sensitivity to physical climate, the global car-
bon cycle is itself heavily biased by these physical biases.
In ESMs, first the atmosphere then the ocean and only then
the carbon cycle is equilibrated and tuned for preindustrial
control conditions. Once reconstruction slightly modifies the
mean state in the physical climate, the sensitive carbon cycle
deviates from the near-equilibrium state. A previous study
reported biases after reconstruction (Zhu and Kumar, 2018).
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However, to our knowledge, we present the first attempt at
reconstructing it in a perfect-model framework, where no bi-
ases due to climatology differences are expectable. Zhu and
Kumar (2018) also mention that reconstruction ability likely
depends on the model and application area, and hence there
seems to be no out-of-the-box solution for all ESMs. How-
ever, additionally nudging sea surface height might improve
the ENSO thermocline feedback (Luo et al., 2017).

We furthermore find that the commonly used indirect re-
construction of carbon cycle, in which only climate physics
are reconstructed and the carbon cycle follows indirectly,
tracks the target reasonably well. A resampling threshold cor-
responding to internal variability is surpassed across large
parts of the globe. Only the areas with strong physical biases
and consequently carbon cycle biases miss that benchmark
occasionally. For the ocean carbon cycle, the reconstruction
of the physical ocean fields is critical to reconstruct carbon
cycle initial conditions, which explains why current state-of-
the-art carbon cycle prediction systems have skill despite not
initializing the ocean carbon cycle with ocean carbon cycle
observations (Séférian et al., 2014; Park et al., 2018; Li et al.,
2019; Lovenduski et al., 2019b).

Direct reconstruction of ocean and land carbon cycle im-
proves bias, association and accuracy on a grid cell level;
however, when aggregated on the global scale, direct recon-
struction does not significantly improve over the indirect re-
construction. In addition, after a mean bias reduction, which
is a common post-processing technique applied to model out-
put for real-word use, accuracy measured in RMSE after
direct reconstruction is only slightly better, often still over-
lapping with indirect reconstruction. Because the advantage
of direct reconstruction can similarly be achieved by a sim-
ple mean bias reduction, we label these direct reconstruction
improvements as trivial with respect to the indirect method
on the global scale. More advanced data assimilation meth-
ods may yield better reconstruction skill for the carbon cycle
(Han et al., 2004; Balmaseda et al., 2007; Zhang et al., 2007).

When the success of atmospheric CO2 reconstruction is
evaluated, caution is needed. Reconstruction of the ocean and
land carbon sink can easily introduce offsets from the target
because reconstruction violates conservation of mass by cre-
ating or erasing carbon. This can easily lead to offsets in the
sinks that quickly accumulate in atmospheric CO2. If CO2 re-
construction is the focus, i.e., in reconstructing the transient
climate from CO2 emission, and offsets appear, adjustments
of atmospheric CO2 might be needed to correct for these off-
sets. However, we find that these offset biases are only of
the order of 1–2 ppm in a perfect-model framework, which is
small compared to the range of carbon feedbacks seen in at-
mospheric CO2 in transient simulations. Hence, these offsets
due to the restart files are not in our focus. Instead, equili-
brated land and ocean carbon sinks with reconstructed cli-
mate determine realistic reconstructed atmospheric CO2.

In the second part, we find that predictive skill after indi-
rect initialization is similar in quality to after direct initializa-

tion. This means that oceanic carbon cycle initial conditions
are much less important than physical ocean initial condi-
tions for oceanic carbon cycle predictions, which confirms
the findings of (Fransner et al., 2020). Reconstructed initial-
ized predictive skill is close to perfectly initialized predictive
skill after mean bias reduction, especially after lead year one.

Because the improved global predictive skill after direct
reconstruction can similarly be achieved by a simple mean
bias reduction and predictive skill after both reconstructions
mostly overlaps, we label these direct reconstruction predic-
tive skill improvements trivial with respect to the indirect
method on the global scale. This result is similar to Fransner
et al. (2020), who find that ocean carbon cycle initial condi-
tions matter much less than physical ocean initial conditions
for annual carbon cycle predictions.

We conclude that the indirect carbon cycle reconstruction
serves its purpose of reconstructing variation in the global
carbon cycle. However, our study is designed and conducted
in an idealized framework. When transferring our results
into assimilation of real-world observations and its implica-
tions on predictability, structural uncertainties (model reso-
lution in space and time) and missing ecosystem processes
additionally need to be dealt with. Future studies, especially
those aiming to address regional marine ecosystems, could
consider a wider range of assimilation techniques and data
breadth. Furthermore, more advanced data assimilation tech-
niques (Evensen, 1994; Han et al., 2004; Balmaseda et al.,
2007; Zhang et al., 2007) should be explored. Reducing the
physical climate bias with its consequences for the carbon
cycle holds more potential for improvements in initial condi-
tions and predictive skill than direct carbon cycle initializa-
tion (Saito et al., 2011; Lee and Biasutti, 2014; Hua et al.,
2019).

Nevertheless, our results add confidence to the current
practice of indirect reconstruction in carbon cycle prediction
systems (Ilyina et al., 2021).

Appendix A: Metrics

A1 ACC

The anomaly correlation coefficient (ACC) assesses the syn-
chronous evolution over time of the forecast, here reconstruc-
tion x(t), and the reference, here target x̂(t), (Jolliffe and
Stephenson, 2011) and is defined as follows:

ACC(x(t), x̂(t))=
cov(x(t), x̂(t))√

var(x(t)) · var(x̂(t))

=

1
T

∑T
t=1(x(t)− x(t))(x̂(t)− x̂(t))√∑T

t=1(x(t)−x(t))2

T
·

√∑T
t=1(x̂(t)−x̂(t))2

T

.

(A1)
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A2 RMSE

In the initial conditions reconstruction component, the root-
mean-square error (RMSE) measures the second-order dis-
tance between forecast x(t), here reconstruction x(t), and the
reference, here target x̂(t), (Jolliffe and Stephenson, 2011)
and is defined as follows:

RMSE(x(t), x̂(t))=

√∑T
T=1(x(t)− x̂(t))2

T
. (A2)

As a predictability metric, the RMSE measures the
second-order distance between forecast x(t) and the target
x̂(t) over lead time t (Jolliffe and Stephenson, 2011). RMSE
is calculated over all initializations N , and every member M
is used as a forecast and verified against the target. RMSE is
defined as follows:

RMSE(x(t), x̂(t))=

√∑N,M
i,j=1(xi,j (t)− x̂j (t))2

NM
. (A3)

A3 Bias

We set the target as the ground truth. Therefore, any devia-
tion from the reconstructions x(t) to the target x̂(t) is seen
as a bias, analogous to the bias between a model simulation
(reconstruction) and observations (ground truth).

bias(t)= x(t)− x̂(t) (A4)

A4 Removing the bias

After removing the mean bias from reconstruction x(t) and
target x̂(t), the RMSE is also calculated as debiased RMSE.

RMSEdebiased(t)= RMSE
(

(x(t)− x(t), x̂(t)− x̂(t)
)

(A5)

A5 Running metric

We calculate the mean tracking performance (mtp) over time
for all metrics as a running mean over s= 10 years. This
reflects that reconstructions are supposed to reconstruct the
given climate states for periods from months to a couple of
years, and the metric should not be prone to long-term trends
that are not captured by the reconstruction. We ignore the
first c= 10 years (out of tmax= 48 years) of reconstruction,
where the model experiences an initial shock after adjusting
to the new reconstructed climate (Kröger et al., 2017).

tpm(metric)=
1

tmax− s− c

tmax−s∑
t=c

metric(x(t=t..t+s),

x̂(t=t..t+s)) (A6)

A6 Resampling threshold

To get an estimate of random tracking performance due to in-
ternal variability, i.e., how well one 10-year chunk tracks an-
other random 10-year chunk, we randomly resample 10-year
chunks from the target simulation and apply the same track-
ing metrics. As a baseline skill from this random resampling
in the figures, we take the 95 % threshold for ACC and the
95 % for the remaining distance-based metrics to ensure that
the tracking performance from a reconstruction simulation
is only worse compared to 1 out of 20 randomly resampled
10-year chunks.
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Appendix B: Reconstruction RMSE maps

Figure B1. The same as Fig. 1 but for RMSE (a–f) and for RMSE after bias reduction (g–l).
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Figure B2. The same as Fig. 2 but for the RMSE. Gray stippling shows where the RMSE is worse than the 5th-percentile RMSE threshold
from random target block resampling, i.e., the reconstruction is not significantly better than internal variability.
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Figure B3. The same as Fig. B2 but for RMSE after bias reduction.
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Appendix C: Monthly global tracking performance

In order to explain the effect of the direct reconstruction in
the land carbon cycle on global reconstruction performance,
Fig. C1 shows the tracking performance for monthly time se-
ries, whereas Fig. 5 show only results for annual time series.

Figure C1. The 10-year running mean reconstruction skill per month in bias (a, d, g, j and m), anomaly correlation coefficient (ACC, b,
e, h, k and n) and root-mean-square error (RMSE, c, f, i, l and o) for global aggregation of carbon cycle variables: (a–c) surface oceanic
partial pressure of CO2, (d–f) air–sea CO2 flux (negative values indicate carbon uptake by the ocean), (g–i) vegetation carbon pools, (j–
l) air–land CO2 flux (negative values indicate carbon uptake by land) and (m–o) mixing ratio of atmospheric CO2. Whiskers show the 5th
and 95th percentile of the running skill over time. Colors show different reconstruction methods: indirect (green) and direct (orange). Gray
stars indicate perfect skill. Gray dots mark the 95th percentile for ACC and 5th percentile for the remaining distance-based metrics of random
reconstruction skill block-bootstrapped from the target control simulation as an unskilled reference skill. Crosses show reconstruction skill
of annual mean time series. Thin lines show monthly RMSE skill after a mean bias reduction.
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Appendix D: Sensitivity analysis for different
reconstruction time steps

D1 Land Carbon Cycle

We perform sensitivity reconstructions of the land restart file
to understand how sensitive this reconstruction method is to
the frequency of resetting. We performed additional simula-
tions, resetting the land model on 1 January every second or
every fifth year (orange triangles in Fig. D1).

Global cVeg starts by definition with perfect skill in Jan-
uary after a reset. When resetting only every second year,
the mean January tracking performance is already decreased,
and decreases further. The negative correlations for 5-year
resetting shows the shock to the system if not immediately
balanced by further resetting in the every (second) year case.

The global air–land CO2 flux correlation degrades for less
frequent resetting towards the indirect performance, but bias
and accuracy improve.

Global atmospheric CO2 aggregates these results and is
also sensitive to biases developing in both sinks. Here, less
frequent resetting of the land carbon cycle reduces the bias
and therefore accuracy.

The tracking accuracy is of similar magnitude after mean
bias reduction.

D2 Ocean carbon cycle

We perform the same kind of restart file resetting reconstruc-
tion with the ocean model (blue line in Fig. D1). The moti-
vation here is to see whether a resetting of the ocean carbon
cycle also yields perfect accuracy (RMSE) skill for January.
However, the ocean carbon cycle is sensitive to the physical
climate, and hence the direct ocean carbon cycle resetting
accuracy degrades compared to the indirect tracking bias and
accuracy, and only correlation increases (Fig. D1a–f). Con-
trary to resetting restart files in the land model, initial condi-
tions accuracy measured by RMSE does not approach a per-
fect skill of 0 because the physical climate did not experience
this hard reset but is nudged dynamically.

In general, this hard reconstruction also seems to work for
the ocean carbon cycle because the tracking performances
are not very different from the indirect method (Fig. D1a-f).

The tracking accuracy is of similar magnitude after mean
bias reduction.
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Figure D1. The same as Fig. C1 but for sensitivity simulations of the restart file resetting reconstruction. In all simulations the physical
climate is nudged as in indirect simulations (Table 1). DirectLR1ON describes land resetting every year and ocean nudging and is the
indirect simulation. DirectLR2ON describes land resetting every second year and ocean nudging. DirectLR5ON describes land resetting
every fifth year and ocean nudging. DirectLxOR1 describes no land reconstruction and ocean setting every year.
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Appendix E: Seasonality

FigureE1 is provided below as a reference for Fig. C1 to al-
low the reader to better understand reconstruction skill in the
context of target seasonality.

Figure E1. Seasonality of the target simulation for global aggregated carbon cycle variables.
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Appendix F: Schematics

Figure F1. (a) Schematic of nudging with relaxation constant. (b) Schematic of reconstruction towards a target, where reconstructions are
started from temporally independent restart files from the same simulation but 155 years later in time, i.e., 2005.

Figure F2. Schematic overview of perfect-model target reconstruction simulations showing which variables are reconstructed in which
simulations.
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Appendix G: Climatology

Figure G1. Mean climatology of the control simulations for all variables.

Figure G2. Temporal internal variability expressed as temporal standard deviation from the control simulations for all variables.
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Appendix H: Predictive skill of leaf area index (LAI)

We used LAI in a previous internal iteration of the paper but
chose to replace LAI with cVeg. In our model JSBACH, LAI
depends on climate, it is not a carbon variable. Therefore, we
did not want to use this variable in this paper. However, there
is an indirect link from LAI to air–land CO2 flux because
LAI reflects droughts and the soil physics. A recent analy-
sis focused on process-based understanding of land carbon
predictability using JSBACH indicates that soil moisture and
soil carbon storage influence the air–land CO2 flux the most
(Dunkl et al., 2021).

Figure H1. The same as Fig. 6 but with leaf area index (LAI) instead of carbon vegetation pools (cVeg).
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