
1.  Introduction
Free-tropospheric water vapor strongly impacts the Earth's outgoing longwave radiation (OLR) and there-
fore plays a key role in controlling the clear-sky response of the climate system to an increase in greenhouse 
gases. It is now widely accepted that this response is described by a warming and moistening of the atmos-
phere that is implied if the relative humidity (RH) and lapse rate were to depend on temperature alone, 
which corresponds to a warming at approximately constant RH (e.g., Held & Soden,  2000; Po-Chedley 
et al., 2019; Romps, 2014). This reduces the radiative response compared to a warming at constant absolute 
humidity, and can be described as a positive water-vapor–lapse-rate feedback. While general circulation 
models (GCMs) agree on this basic response (e.g., Bony et al., 2006; Soden & Held, 2006), there is still an ap-
preciable inter-model spread in the magnitude of the water-vapor–lapse-rate feedback. This spread, which 
primarily originates from the tropics, contributes a non-negligible (about 30%) uncertainty to the climate 
sensitivity (Vial et al., 2013).

Abstract  Reducing the model spread in free-tropospheric relative humidity (RH) and its response 
to warming is a crucial step toward reducing the uncertainty in clear-sky climate sensitivity, a step that 
is hoped to be taken with recently developed global storm-resolving models (GSRMs). In this study we 
quantify the inter-model differences in tropical present-day RH across GSRMs, making use of DYAMOND, 
a first 40-day intercomparison. We find that the inter-model spread in tropical mean free-tropospheric 
RH is reduced compared to conventional atmospheric models, except from the tropopause region and 
the transition to the boundary layer. We estimate the reduction to ∼50%–70% in the upper troposphere 
and 25%–50% in the mid troposphere. However, the remaining RH differences still result in a spread of 
1.2  𝐴𝐴 Wm−2 in tropical mean clear-sky outgoing longwave radiation (OLR). This spread is mainly caused by 
RH differences in the lower and mid free troposphere, whereas RH differences in the upper troposphere 
have a minor impact. By examining model differences in moisture space we identify two regimes with a 
particularly large contribution to the spread in tropical mean clear-sky OLR: rather moist regimes at the 
transition from deep convective to subsidence regimes and very dry subsidence regimes. Particularly for 
these regimes a better understanding of the processes controlling the RH biases is needed.

Plain Language Summary  Errors in the humidity and its change with global warming 
simulated by climate models limit our ability to predict how the climate system responds to an increase 
in greenhouse gas concentrations. In this study we investigate how large these humidity errors are in 
recently developed high-resolution models. We focus on the relative humidity (RH), which measures the 
amount of moisture in the air compared to what air can hold at a given temperature. We find that the 
disagreement in the tropics is reduced compared to conventional climate models, but the RH errors still 
have a considerable effect on the radiation budget. We also investigate in which regions of the tropics a 
further reduction of errors would be most beneficial. In the vertical, it is the altitude region between about 
1 and 10 km. In the horizontal, we find two tropical regimes that are particularly important: Dry regimes 
with very strong subsidence and moister regimes at the edge of deep convective regimes. Particularly for 
those regimes a better understanding of the processes that cause the model errors is needed.
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The RH is an important detail. Even small deviations from its assumed constancy with warming have a 
strong impact on the radiative response. RH changes alter the radiative compensation between water-vapor 
and lapse-rate feedback in the saturated regions of the emission spectrum (Bony et al., 2006) and differences 
in the RH response control the spread in tropical water-vapor–lapse-rate feedback across GCMs (Po-Ched-
ley et al., 2018; Vial et al., 2013). Even if RH does not change with warming, the RH profile in the present 
climate may influence the feedback. While a correlation between global mean present-day humidity and 
water vapor feedback has not been found for GCMs (John & Soden, 2007), Bourdin et al. (2021) have argued 
that especially at warmer, tropical temperatures the rapid closing of the atmospheric window by water 
vapor continuum absorption makes the feedback dependent on the RH profile. There are other reasons 
to care about present-day free-tropospheric RH (e.g., Derbyshire et al., 2004; Luo & Rossow, 2004; Stevens 
et  al.,  2017), but independent of whether these (or the proposed direct effect of present-day RH on the 
feedback) end up being important, confidence in an ability of models to correctly represent the present-day 
RH is essential for building trust in model-based estimates of the subtle changes in RH under warming that 
influence the water vapor feedback.

Sherwood et al. (2010) found that certain aspects of the tropical RH distribution show signs of convergence 
in GCMs once horizontal resolutions fall below about 100 km. It is also known from previous studies that 
free-tropospheric RH is primarily controlled by the circulation on scales resolved by typical GCMs, and 
parameterized processes like convection only matter by influencing the circulation (e.g., Dessler & Sher-
wood, 2000; Pierrehumbert & Roca, 1998; Sherwood, 1996). On the one hand, the convergence of RH in 
GCMs with different convective parameterizations might indicate that convective processes play a minor 
role in affecting the circulation. On the other hand, for simulations on an aquaplanet Retsch et al. (2019) 
found that allowing convection to be resolved explicitly has a larger impact on free-tropospheric RH than 
increasing resolution in simulations with parameterized convection. This suggests that the circulation 
changes more significantly once convection is resolved explicitly and calls into question whether the RH in 
GCMs converges for physical reasons.

A milestone in climate modeling has been made with the emergence of global storm-resolving models 
(GSRMs; Satoh et al., 2019), also called global cloud-resolving or convection-permitting models. While the 
development of the first GSRM already goes back more than 15 years (Tomita et al., 2005), only recently 
the increase in computational capacities has allowed several modeling groups to follow, enabling first inter-
comparisons. GSRMs solve the non-hydrostatic equations on global grids with kilometer-scale resolution. 
At such resolutions the models begin to resolve precipitating convective systems and therefore forgo the 
need to parameterize deep convection, which is hoped to eradicate some long-standing biases (e.g., Miura 
et al., 2007; Stevens et al., 2020). Whether the spread in free-tropospheric RH is reduced in GSRMs is, how-
ever, not obvious. This depends on how strongly the behavior of convection depends on model formulation. 
If this dependence is weak, RH differences should be small among GSRMs. However, there are also reasons 
to expect the opposite. Bourdin et al.  (2021) found that RH differences across cloud-resolving models in 
radiative-convective equilibrium (RCE) are substantially larger than across GCMs. The large spread in RCE 
models is likely related to different degrees of convective organization (Becker & Wing, 2020). Although 
these differences are expected to be smaller in simulations with more realistic setups, in which large-scale 
circulations impose constraints on convective organization (Wing et al., 2020), they likely still play a role. 
Therefore, it cannot be ruled out that the RH spread across GSRMs is similar or even larger than across 
GCMs.

In this study we quantify differences in tropical free-tropospheric RH across GSRMs for the first time, mak-
ing use of the model intercomparison DYnamics of the Atmospheric general circulation Modeled On Non-
hydrostatic Domains (DYAMOND; Stevens et al., 2019). To assess how relevant the RH differences are from 
a radiative point of view, we translate them into differences in clear-sky OLR using a radiative transfer 
scheme. The latter is also used to compute radiative kernels, which allow us to identify those regions in 
the tropical atmosphere, in which a future reduction of RH differences would be most effective in reducing 
differences in clear-sky OLR.

We perform the comparison of the DYAMOND models in moisture space, that is we sort the atmospheric 
state from dry to moist. On the one hand, humidity fields in moisture space are highly aggregated, which 
ensures robust statistics. On the other hand, the moisture space representation allows us to distinguish 
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between different dynamic regimes of the tropics, which is useful for identifying regions of large inter-mod-
el spread as well as for the OLR calculations. The representation of the atmosphere in moisture space is 
inspired by Bretherton et al. (2005), who used it to study the energy balance of convective self-aggregation 
in radiative-convective equilibrium simulations. Later, the depiction in moisture space has also proven use-
ful for analyzing observational data (Schulz & Stevens, 2018) and to bypass the issue of co-location when 
comparing observations and model simulations (Naumann & Kiemle, 2020).

This paper is organized as follows: In Section 2 we introduce the DYAMOND simulations and describe our 
post-processing of the model output. In Section 3 we quantify inter-model RH differences in the tropical 
mean and in moisture space. The impact of the RH differences on the clear-sky radiation budget is exam-
ined in Section 4.

2.  DYAMOND Simulations
2.1.  Models and Experimental Protocol

DYAMOND is the first intercomparison project for GSRMs, comparing 40-day simulations of nine models 
(only acronyms are given here): ICON, NICAM, ARPEGE-NH, FV3, GEOS, MPAS, UM, SAM and IFS. In 
the following we provide a brief overview of the models and the experimental protocol of DYAMOND. A 
more detailed description is given by Stevens et al. (2019).

Most of the DYAMOND models solve the fully compressible non-hydrostatic Navier-Stokes equations. Two 
exceptions are SAM, which uses the anelastic form of the non-hydrostatic equations, and IFS, which solves 
the primitive equations and is hence a hydrostatic model. The models solve their governing equations on a 
variety of different numerical grids. The horizontal grid spacing is between 2.5 and 5 km in eight of the nine 
models. The only exception is UM, which uses a latitude-longitude grid with a somewhat coarser resolution 
at low latitudes (7.8 km at the equator). The number of vertical levels and the vertical extent of the model 
grid also vary among the models. The models were not specifically calibrated for the DYAMOND simula-
tions. Some models even ran for the first time in this configuration and at storm-resolving resolutions.

The models also differ in the parameterizations used to represent unresolved processes. In particular, there 
are different approaches to handle convection, reflecting some disagreement about which motions are ad-
equately resolved at kilometer-resolution. While in some models convection is not parameterized at all, in 
others shallow convection is parameterized. GEOS and MPAS even employ scale-aware parameterizations 
for deep convection. There is also diversity in the parameterizations for boundary layer turbulence and 
microphysics.

The DYAMOND simulations were run for 40 days from August 1 to September 10, 2016. They were initial-
ized with common atmospheric fields from the ECMWF global (9 km) meteorological analysis. Daily sea 
surface temperatures (SSTs) and sea ice concentrations from the ECMWF analysis were used as boundary 
conditions. The initialization of the land surface was left to the practices of the individual modeling groups. 
After the initialization each simulation was allowed to evolve freely without further forcing.

2.2.  Post-Processing and Profile Selection

We use the 3-hourly output of atmospheric pressure 𝐴𝐴 𝐴𝐴 , temperature 𝐴𝐴 𝐴𝐴  , specific humidity 𝐴𝐴 𝐴𝐴 as well as vertical 
velocity 𝐴𝐴 𝐴𝐴  . Following Stevens et al. (2019) we exclude the first 10 days of the simulations and only use the 
last 30 days to minimize the effects of biases from differences in the model spin-up as well as constraints 
from the common initialization.

The size of the model output represents a challenge for the analysis. Thirty days of one 3-hourly 3D field 
(corresponding to 240 timesteps) on the native model grid covering the tropics have a size on the order of 
2 TB. For nine models and four variables this adds up to more than 60 TB. Developing strategies for dealing 
effectively with the massive amounts of data produced by GSRMs is one of the purposes of DYAMOND. Our 
approach is the following: In a first step all fields are horizontally interpolated from each model's native grid 
to a common regular latitude-longitude grid covering the tropics ( 𝐴𝐴 30◦ S to 𝐴𝐴 30◦ N) with a resolution of 0. 𝐴𝐴 1◦ . 
This is done using a conservative remapping via the remap function of the Climate Data Operators (CDO) 
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version 1.9.5 (Schulzweida, 2019). The remapping reduces the data volume by about a factor of ten without 
noticeable loss of information in the region of interest. In a second step we perform a subsampling of grid 
points. From each of the 240 output timesteps about 42,000 oceanic profiles are selected randomly, resulting 
in a total of 10 million selected profiles for each model. This reduces the amount of data by another factor of 
100. We estimated the sampling uncertainty by repeating the random sampling several times for the same 
model. For tropical mean RH, the quantity we focus on, the sampling uncertainty is about 0.01% RH and 
hence two magnitudes smaller than inter-model differences, which are on the order of 1% RH (Section 3.1). 
In the same manner we estimated the sampling uncertainty for each block in moisture space (Section 3.2) 
to be at least one order of magnitude smaller than the inter-model spread in the respective block. Hence, 
the random subsampling of profiles introduces only a small error, but reduces the data volume to 0.1% of 
its original size. This result shows that although GSRMs work with tremendous data volumes, most of the 
information is necessary for predicting their dynamic evolution, and for many analyses there exists consid-
erable opportunities to compress their output with relatively little loss of information.

We exclude land areas to avoid complications from topography and more strongly varying boundary layer 
depths and hence to simplify the interpretation. The inhomogeneity of land regions would also color our 
analysis in moisture space. Vertically integrated water vapor (IWV), which is used to span moisture space 
(Section 3.2), is strongly influenced by local surface characteristics over land. It can be very low in regions 
with little soil moisture or in regions with high elevation. Consequently, if moisture space was spanned 
from both oceanic and continental grid points, profiles associated with very different regimes would be 
mixed in the same IWV blocks. Therefore, we focus on the more homogeneous ocean regions.

The fifth generation of the ECMWF atmospheric reanalysis (ERA5; Hersbach et al., 2020) serves as an ob-
servationally constrained reference data set in our comparison. It should be pointed out that potential biases 
with respect to observations exist in the ERA5 water vapor fields. Xue et al. (2020) found a wet bias with 
respect to satellite observations in the free troposphere, which is most pronounced in regions of large-scale 
subsidence. Nevertheless, the data set provides a valuable constraint of the humidity distribution and can be 
used to estimate its natural variability. Gridded atmospheric variables are provided at a spatial resolution of 
31 km. We use 3-hourly output corresponding to the output times of the DYAMOND models and post-pro-
cess it in the same way as the model output.

3.  RH Differences in DYAMOND Models
In this section we quantify the differences in free-tropospheric RH in the DYAMOND models, first in the 
tropical mean and subsequently in moisture space.

3.1.  Tropical Mean

Since the focus of this study is on the radiative impact of humidity differences we concentrate on RH rather 
than absolute humidity (measured by 𝐴𝐴 𝐴𝐴 ). The atmospheric temperature and water vapor concentration are 
decisive parameters for clear-sky radiative transfer. The RH is a valuable proxy that links their competing 
effects on longwave emission. This will be discussed in more detail in the second part of this paper. Anoth-
er reason to look at RH is that it is RH rather than 𝐴𝐴 𝐴𝐴 that is effectively constrained by model processes (in 
particular, condensation and evaporation). Therefore, any model errors in temperature are expected to alter 

𝐴𝐴 𝐴𝐴 but not necessarily RH.

RH is calculated for each of the randomly selected profiles and their associated values of 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  as 
𝐴𝐴 RH = 𝑒𝑒

𝑒𝑒𝑠𝑠(𝑇𝑇 )
 , where 𝐴𝐴 𝐴𝐴 is the water vapor pressure and 𝐴𝐴 𝐴𝐴𝑠𝑠(𝑇𝑇 ) is its saturation value at temperature 𝐴𝐴 𝐴𝐴  . For 𝐴𝐴 𝐴𝐴𝑠𝑠(𝑇𝑇 ) 

we take the value over water for 𝐴𝐴 𝐴𝐴  above the triple point 𝐴𝐴 𝐴𝐴𝑡𝑡 and the value over ice for 𝐴𝐴 𝐴𝐴  below 𝐴𝐴 𝐴𝐴𝑡𝑡 − 23  K. For 
intermediate 𝐴𝐴 𝐴𝐴  a combination of both is used following the IFS documentation (ECMWF, 2018). It should 
be noted here that the RH computed in this way can deviate from the RH calculated internally in the mi-
crophysics schemes of the models because they use different methods to compute RH above the freezing 
level. The deviations are relevant when the relation between RH and clouds or precipitation is investigated. 
However, as explained above our focus is on the radiative impact of the humidity differences. We regard 
RH primarily as a quantity that links temperature and absolute humidity, which are the quantities that 
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ultimately enter the models' radiation schemes. Therefore, it is reasonable to compare RH computed in a 
uniform way for all models.

Overall, the models all capture the typical C-shape of the tropical mean RH profile with two maxima, one 
atop the boundary layer and one at the tropopause, and a minimum in the mid troposphere (Figure 1). The 
models' RH distributions also agree remarkably well with the ERA5 distribution. In fact, the multi-model 
mean RH (not shown) differs from ERA5 by less than 2% RH throughout the troposphere, except from the 
altitude region above 15 km.

Nevertheless, there are considerable differences among the models. The inter-model standard deviation 
𝐴𝐴 𝐴𝐴(RH) (Figure 1c) has a distinct maximum around the top of the boundary layer (BL). The transition from 

the BL to the free troposphere is marked by a steep gradient in RH. Therefore, differences in the depth of the 
BL cause a large inter-model spread in RH. In IFS the RH gradient at the top of the BL is particularly steep 
and the lower free troposphere is significantly dryer than in other models. Generally, in most models the 
BL is deeper than in ERA5. The inter-model spread is smallest in the mid troposphere between 4 and 10 km 
altitude. In that region 𝐴𝐴 𝐴𝐴(RH) is 2%–3% RH and approximately constant with height. RH is lower than in 
ERA5 in the majority of models, except for ICON and NICAM. Above 10 km 𝐴𝐴 𝐴𝐴(RH) increases with altitude 
and exceeds 8% RH at 100 hPa.

To the extent one thinks of RH anomalies as linking 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  anomalies, it is informative to consider 𝐴𝐴 𝐴𝐴 and 
𝐴𝐴 𝐴𝐴  separately. In the DYAMOND models, 𝐴𝐴 𝐴𝐴  anomalies are smallest in the lower troposphere, where they are 

constrained by identical SSTs, and increase with height throughout the free troposphere, where the temper-
ature profile is set by convection and radiation (Figures 2a and 2b). At lower levels, where 𝐴𝐴 𝐴𝐴  anomalies are 
small, 𝐴𝐴 𝐴𝐴 and RH anomalies are correlated (Figures 1b and 2d). In the upper troposphere, where 𝐴𝐴 𝐴𝐴  anomalies 
are large, 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 anomalies are correlated (Figures 2b and 2d), consistent with the idea that model errors 
in 𝐴𝐴 𝐴𝐴  cause errors in 𝐴𝐴 𝐴𝐴 . Although RH anomalies are also large there (Figure 1), they play a minor role in de-
termining whether a model's 𝐴𝐴 𝐴𝐴 is small or large as compared to another model's 𝐴𝐴 𝐴𝐴 .

That the DYAMOND simulations were run just over one month (August/September 2016) represents a po-
tential limitation for the intercomparison, especially for variables that are subject to high internal variability 
on longer time scales. To estimate the internal variability of RH, we calculate the interannual variability 
in the mean August/September RH distribution based on five years (2014–2019) of the ERA5 reanalysis, 
shown as the dotted line in Figure 1c. Given that interannual variations in free-tropospheric water vapor 
are primarily driven by SST variations (Chuang et al., 2010) and the five years include a strong El Niño 

Figure 1.  Tropical mean relative humidity (RH) profiles and inter-model spread in the DYAMOND ensemble. (a) Tropical mean vertical profiles of RH 
over ocean regions from all DYAMOND models (colors), the ERA5 reanalysis (black solid) and the CMIP5 AMIP 30-year multi-model mean (black dashed). 
(b) Vertical RH profiles for the DYAMOND models shown as deviation from the ERA5 profile. (c) Inter-model standard deviation of tropical mean RH in 
DYAMOND (solid line). For comparison, the inter-annual RH spread in five years of ERA5 (2014–2019; dotted line) as well as the inter-model spread of the 
30-year mean RH in the CMIP5 AMIP ensemble (dashed line) are shown. Gray shading indicates the range of inter-model standard deviations in individual 
months of the AMIP experiment.
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event in 2015/2016, the interannual variability rather represents an upper bound for the internal variability 
one could expect in the DYAMOND runs with fixed SST. Despite this, the inter-model standard deviation is 
significantly larger than the ERA5 interannual variability throughout the troposphere, suggesting that the 
inter-model differences are mostly systematic model biases rather than a result of poorly sampled internal 
variability. The region where the inter-model differences are expected to be colored most strongly by inter-
nal variability is the upper troposphere, where the inter-model spread is only two to three times larger than 
the estimated internal variability.

Another potential limitation arises from the common initialization of the models, which might constrain 
the RH profiles even after the first 10 days of the simulation that were excluded (Section 2.2). To test this, we 
divided the analyzed 30-day period into three consecutive 10-day periods and repeated the spread analysis. 
We did not find a systematic increase of the inter-model spread over time, except for the altitude region 
above 14 km. For a second analysis we made use of a coupled atmosphere-ocean simulation performed 
with the ICON model at storm-resolving resolution (5 km grid spacing). The simulation was run for two 
years, starting on January 20th, 2020. The length of the simulation allows us to examine how the RH profile 
evolves after the first 40 days. In Figure 3 we compare tropical mean RH profiles for February 2020 and Feb-
ruary 2021. February 2020 corresponds to days 13–40 after the initialization and is hence comparable to the 
time period we analyze in the DYAMOND simulations. If the RH profile was still in the transition from the 

Figure 2.  Tropical mean vertical profiles of temperature 𝐴𝐴 𝐴𝐴  and specific humidity 𝐴𝐴 𝐴𝐴 over ocean regions from all 
DYAMOND models. Vertical profiles of (a and b) 𝐴𝐴 𝐴𝐴  and (c and d) 𝐴𝐴 𝐴𝐴 are shown as absolute values together with the 
ERA5 profiles (a and c) and as deviation from the ERA5 profiles (b and d). Deviations in 𝐴𝐴 𝐴𝐴 are in fractional units, that is 
normalized by the ERA5 value ( 𝐴𝐴 𝐴𝐴ERA5 ).
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initial conditions during that month, we would expect it to be very differ-
ent one year later. However, the RH differences between February 2020 
and February 2021 are small compared to the inter-model differences (cf. 
Figure 1). Throughout the lower and mid troposphere, the difference is 
smaller than 1% RH. The largest differences of up to 3% RH occur in the 
upper troposphere above 12 km. It has to be kept in mind that SST chang-
es from February 2020 to February 2021 in the coupled simulation, so 
the RH differences we find are most likely related to SST changes rather 
than to constraints from initialization in February 2020. The size of the 
differences and the increase in the upper troposphere are in accordance 
to what we found for the inter-annual variations in ERA5 (Figure 1c). It 
is very unlikely that the RH in February 2020 was still in its transition 
from initialization, but SST and/or model drift changed in a way to keep 
RH almost constant in February 2021. Hence, both analyses indicate that 
the transition from the initial conditions is already largely completed af-
ter the first 10 days. The upper troposphere (above 12 km) might be an 
exception, but as we will see in Section 4 the RH differences in this region 
do not significantly affect the clear-sky radiation budget.

To examine how the RH spread in DYAMOND compares to that in con-
ventional, coarser atmospheric GCMs, we compare the DYAMOND 
ensemble to 29 GCMs that participated in the Atmospheric Model In-
tercomparison Project (AMIP) experiments of the Coupled Model Inter-
comparison Project phase five (CMIP5; Taylor et  al.,  2012). The AMIP 

simulations have a total length of 30 years (1979–2008) and were run with prescribed (identical) SST. An 
exact quantitative comparison of the RH spread in GSRMs and GCMs will not be possible until longer, mul-
ti-year storm-resolving simulations are available. Nevertheless, a comparison to the AMIP GCMs is valuable 
to put the DYAMOND spread into perspective. The inter-model spread in AMIP is quantified both based on 
30-year averages and based on monthly averages of RH. This allows us to estimate how much the inter-mod-
el spread in a single month can differ from the spread on climatological timescales. The inter-model stand-
ard deviation of 30-year mean RH is denoted by the black dashed line in Figure 1c. It lies within the range 
of monthly standard deviations, which is shown as gray shading. In most parts of the free troposphere, the 
most extreme monthly standard deviations differ between 5% and 25% from the 30-year value. Only in the 
tropopause region the deviations are larger (up to 40%). Overall, the AMIP experiment confirms that the 
inter-model spread in a single month provides a good first estimate of the inter-model spread on climato-
logical timescales. However, the variability in the monthly standard-deviation should be kept in mind when 
the (monthly) DYAMOND spread is compared to the (climatological) AMIP spread in the following.

The inter-model spread in DYAMOND is smaller than the spread in AMIP throughout most of the free trop-
osphere. The largest reduction is found between 8 and 14 km altitude, where the RH spread in DYAMOND 
is reduced by approximately 50%–70% compared to AMIP. At lower altitudes, between 3 and 8 km altitude, 
the DYAMOND spread is smaller by ∼25%–50%. The lower free troposphere is an exception: the peak in 

𝐴𝐴 𝐴𝐴(RH) at the top of the BL is less pronounced in CMIP5 AMIP than in DYAMOND, indicating that variations 
in the depth of the BL are smaller in the AMIP models. However, part of the smaller spread in the AMIP 
models can be explained by the fact that the hydrolapse in these models is generally less steep, which is 
evident from the AMIP multi-model mean RH profile (Figure 1a). RH differences caused by a shift in the 
height of the hydrolapse are therefore smaller, but dispersed over a broader layer.

As mentioned in Section 1, Sherwood et al. (2010) found that certain aspects of the RH distribution converge 
in GCMs once horizontal grid spacings fall below a certain scale. A question arising from this is whether the 
agreement across GSRMs is better than across the CMIP5 AMIP models with rather high resolutions. To test 
this we repeated the spread analysis for only those nine AMIP models with grid resolutions exceeding T85 
(128x256 grid points), corresponding to the scale suggested by Sherwood et al. (2010). While the RH spread 
across these high-resolution GCMs is somewhat reduced in the upper and lower troposphere, the spread in 
the mid troposphere seems to be unaffected (not shown). As we will show in Section 4.4, it is particularly 

Figure 3.  Comparison of relative humidity (RH) in two subsequent 
Februaries of a coupled atmosphere-ocean simulation with the ICON 
model at storm-resolving resolution (5 km). (a) Tropical mean (ocean only) 
RH in February 2020 (blue) and February 2021 (orange). February 2020 
corresponds to days 13–40 after initialization, which is comparable to the 
analyzed DYAMOND period. (b) RH difference between February 2020 
and February 2021.
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the spread in the mid troposphere that matters for the outgoing longwave radiation. Hence, there is still a 
valuable improvement in GSRMs compared to the high-resolution GCMs.

An additional series of DYAMOND runs with the ICON model allowed us to investigate how RH changes 
with increasing horizontal resolution beyond the convergence scale suggested by Sherwood et al. (2010). We 
compared tropical mean (ocean only) RH from runs at 80, 40, and 20 km grid spacing with parameterized 
convection as well as runs at 20, 10, 5, and 2.5 km grid spacing with explicit convection (not shown). In the 
parameterized runs RH hardly changes with increasing horizontal resolution. RH strongly depends on res-
olution for the explicit runs at 20 and 10 km, for which using explicit convection might not be adequate. At 
5 km grid spacing RH has converged. In some altitude regions, particularly in the mid troposphere, the RH 
difference between the converged explicit runs and the parameterized runs is significantly larger than the 
differences between the parameterized runs at different resolutions. These findings suggest that resolving 
convection impacts RH although it seemed to have already converged at coarser resolutions when convec-
tion was parameterized.

In summary, despite the shortness of the DYAMOND simulations we can say with a high degree of certainty 
that the spread in free-tropospheric RH in the DYAMOND GSRMs is reduced compared to the AMIP GCMs 
throughout most of the free troposphere, except from the region at the transition to the BL and the tropo-
pause region. We estimate the reduction to ∼50%–70% in the upper troposphere (8–14 km) and 25%–50% in 
the mid troposphere (3–8 km). For an exact quantification longer storm-resolving simulations are required. 
The reduction in the spread is even more remarkable considering that the DYAMOND models were not spe-
cifically calibrated for this experiment. Many of them were even run in the storm-resolving configuration 
for the first time. However, as we will show in Section 4, the remaining RH differences still have a non-neg-
ligible impact on the clear-sky radiation budget.

3.2.  Moisture Space

To distinguish between different dynamic regimes of the tropics, namely subsidence and deep convective 
regimes, which are not necessarily co-located in different models, we compare RH statistics in moisture 
space (Bretherton et al., 2005; Naumann & Kiemle, 2020; Schulz & Stevens, 2018). To span the moisture 
space, the randomly selected atmospheric profiles (Section 2.2) are ranked by their vertically IWV. The in-
tegration is performed from the surface to an altitude of 20 km for all models.

Inter-model differences in the distribution of IWV are most pronounced at high IWV values (Figure 4). This 
is apparent when comparing different percentiles of IWV. While the 25th percentiles of all models lie within 

Figure 4.  Probability density function of integrated water vapor (IWV) over tropical ocean regions in the DYAMOND 
models and ERA5. Percentiles of each model's IWV distribution are shown below the curves: Colored circles indicate 
the median, horizontal bars range from the 25th to the 75th percentile.
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a range of 2.2 kg  𝐴𝐴 m−2 , the 75th percentiles differ by more than 10 kg  𝐴𝐴 m−2 between the two most extreme mod-
els IFS and NICAM. The overall shape of the IWV distribution differs among models. For IFS and NICAM, 
distributions are approximately uniform over a large range of IWV values, whereas the distribution of AR-
PEGE-NH has a pronounced peak at IWV values of about 50 kg  𝐴𝐴 m−2 . For the remaining models (including 
ERA5), distributions are more bimodal with a first peak at 25–30 kg  𝐴𝐴 m−2 and a second peak at 50–55 kg  

𝐴𝐴 m−2 . The exact position and the relative strengths of the two peaks differ among the models. In SAM the 
first peak is particularly pronounced, whereas in ICON the second peak is comparably strong. Bimodality 
is a known feature of the IWV distribution over tropical oceans, which is not reliably reproduced by GCMs 
(Mapes et al., 2018). Our results indicate that this problem is similarly pronounced in GSRMs.

To display quantities in moisture space, IWV-ranked profiles from each model are split into 50 blocks, each 
containing an equal amount of profiles corresponding to two percentiles of IWV. Quantities are then aver-
aged over each block. This block-averaging results in an 𝐴𝐴 𝐴𝐴 -axis that is linear in the percentile of IWV. Note 
that this also means that the comparison of different models in moisture space is made at a certain IWV 
percentile rather than a certain IWV value. IWV itself increases rather linearly with the percentile (black 
line in Figure 5d), but deviations in the upper- and lowermost percentiles are indicative of long tails in the 
IWV distribution (Figure 4), and hence unusually potent moist and dry extremes.

SST increases from about 292 K in low IWV percentiles to about 302 K in high percentiles (Figure 5d). 
The SST gradient weakens from dry to moist regimes, similar to how the meridional SST gradient weakens 
from the subtropics toward the inner tropics. The inter-model standard deviation in block-averaged SSTs is 
around 0.15 K, implying that the distribution of SST in moisture space is very similar among models. The 
underlying PDF of SSTs is identical in all models, which, compared to other quantities like IWV, puts an 
additional constraint on the SST distribution in moisture space.

Block-averaged vertical velocities (Figure 5c) indicate that the large-scale circulation is directed upward in 
the highest 5–10 IWV percentiles and downward in drier regions. The blocks with positive vertical velocities 
correspond to the regions of intense rainfall in the Indo-Pacific Warm Pool and the Intertropical Conver-
gence Zone (ITCZ), where deep convection is concentrated. Note that block-averaged vertical velocities 
take on values up to 13 cm  𝐴𝐴 s−1 in the deep convective regimes, but the color map in Figure 5c is truncated 
at 1.2 cm  𝐴𝐴 s−1 . The drier blocks correspond to trade wind regimes. There, the free troposphere is character-
ized by large-scale subsidence, which increases in strength with decreasing IWV. At the transition from 
deep convective to subsidence regimes near the 90th IWV percentile vertical velocities are negative in the 

Figure 5.  Distributions of different block-averaged quantities in moisture space: (a) multi-model mean relative humidity (RH), (b) multi-model standard 
deviation of RH, (c) multi-model mean vertical velocity and (d) multi-model mean IWV (black), SST (blue) and all-sky OLR (red). Note that the color map for 
vertical velocity in (c) is truncated at 1.2 cm  𝐴𝐴 s−1 and any larger values (up to 13 cm  𝐴𝐴 s−1 in the highest IWV block) are displayed in black. For the quantities in (d) 
the inter-model standard deviation is denoted by shaded areas around the multi-model mean values.
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lower free troposphere and positive aloft. These blocks represent an advanced state in the life cycle of deep 
convection associated with upper-level anvil clouds. This state is characterized by ascent above the freezing 
level (which is located around 5 km) and descent below, driven by condensation and freezing above the 
freezing level, and melting and evaporation of precipitation below (Betts, 1990). The increasing amount of 
high-level clouds from dry to moist regimes is also reflected by a sharp decrease in all-sky OLR in the moist 
blocks (Figure 5d).

The largest RH values are found in the BL (Figure 5a), where moisture is provided by evaporation from the 
surface. The RH in the BL is relatively constant throughout moisture space. Where air rises from the BL 
to the free troposphere in deep convective plumes it cools and its RH increases until saturation is reached. 
Therefore, the highest RH values in the free troposphere are found in deep convective regions. Through-
out the tropics, particularly in the subsidence regions, the free-tropospheric RH profile takes on a typical 
C-shape, which is known from observations (e.g., Jensen et al., 1999; Vömel et al., 2002) and GCMs (Sher-
wood et al., 2010). With a simple analytical model Romps (2014) showed that this shape of the RH profile 
can be understood from the balance between moistening by detrainment of saturated air from convective 
regions and drying by subsidence. As the temperature lapse rate increases with height, the reduction in RH 
for a given amount of subsidence also increases with height. This increase in subsidence drying, together 
with a decrease in convective moistening, explains why RH decreases with height in the lower free tropo-
sphere. In the upper troposphere, however, convective moistening dominates and causes RH to maximize at 
the tropopause. A plateau in RH is apparent near the freezing level at around 5 km particularly in the high 
IWV percentiles. Latent heat release from ice formation enhances the stability at this level, which causes 
deep convection to preferably detrain there (Stevens et al., 2017).

Displaying inter-model differences in moisture space reveals how they are distributed over the different 
regimes of the tropics. RH anomalies for individual models are shown in Figure A1 in Appendix A. Here we 
focus on the inter-model standard deviation 𝐴𝐴 𝐴𝐴(RH) , shown in Figure 5b. First, it is apparent that the large 
inter-model spread in the upper troposphere (Figure 1) prevails throughout the entire tropics. In the tropo-
pause region 𝐴𝐴 𝐴𝐴(RH) exceeds 10% RH everywhere except from the driest part of the subsidence regions. Sec-
ond, the local maximum in 𝐴𝐴 𝐴𝐴(RH) at the top of the BL is most pronounced in the driest regimes, where the 
RH gradient between the BL and the free troposphere is steepest (Figure 5a). In moister regions, where the 
RH gradient is less steep, the maximum in 𝐴𝐴 𝐴𝐴(RH) is weaker but broader. Third, in the mid troposphere 𝐴𝐴 𝐴𝐴(RH) 
increases from less than 1% RH in the lowest IWV percentiles to more than 5% RH near the 90th percentile. 
The largest part of the spread in tropical mean mid-tropospheric RH stems from the region representing the 
transition from subsidence to deep convective regimes (cf. Figure 5c). The large spread in this regime might 
be related to model differences in convective behavior. In the moistest 5 percentiles of IWV the inter-model 
spread decreases again. In these regimes deep convection keeps the RH close to 100% in all models.

4.  Impact of RH Anomalies on Clear-Sky OLR
To quantify the effect of the inter-model differences on the radiation balance, we translate them into differ-
ences in clear-sky OLR ( 𝐴𝐴 OLRc ) using a radiative transfer model. The differences are analyzed in moisture 
space to determine how much different tropical moisture regimes contribute to the inter-model spread in 
tropical mean 𝐴𝐴 OLRc . Furthermore, we use radiative kernels to examine in which altitude regions RH differ-
ences have the strongest impact on 𝐴𝐴 OLRc . This allows us to identify the regions of the tropical troposphere 
in which a further reduction of RH differences would be most beneficial.

Fundamentally, clear-sky OLR is determined by surface temperature as well as atmospheric temperature 
and greenhouse gas concentrations. For the 𝐴𝐴 OLRc anomalies in the DYAMOND models we expect that 
anomalies in the surface temperature play a minor role, since SST is prescribed and its distribution in mois-
ture space is very similar among models (Figure 5d). Furthermore, compared to model differences in water 
vapor we expect differences in other greenhouse gasses to have a small effect on 𝐴𝐴 OLRc . Therefore, we fix 
the concentrations of other greenhouse gasses in our radiative transfer simulations. Thus, we assume that 

𝐴𝐴 OLRc anomalies in the DYAMOND models are primarily caused by anomalies in atmospheric temperature 
and absolute humidity.
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4.1.  Radiative Transfer Simulations

The radiative transfer simulations to obtain clear-sky OLR are performed with the Rapid Radiative Transfer 
Model for GCMs (RRTMG; Mlawer et al., 1997). RRTMG is a well validated fast radiative transfer code used 
in various weather and climate models. For this study we use RRTMG through the Python package kon-
rad (https://doi.org/10.5281/zenodo.3899702), which in turn uses the CliMT Python interface for RRTMG 
(Monteiro et al., 2018). Note that not all of the DYAMOND models employ RRTMG as their native radiation 
scheme. Differences in the radiation codes can cause errors on the order of 2  𝐴𝐴 Wm−2 in the models' internally 
calculated clear-sky OLR (Pincus et al., 2015). By using the same radiation scheme for each model for our 
offline calculations we neglect this error source, but instead focus solely on the effect of RH differences on 
clear-sky OLR.

𝐴𝐴 OLRc is calculated based on the block-averaged profiles of pressure, temperature, and specific humidity in 
moisture space (Section 3.2). We found that calculating 𝐴𝐴 OLRc from block-averaged profiles generally intro-
duces a small negative error compared to 𝐴𝐴 OLRc calculated based on individual profiles. OLR is often thought 
to increase linearly with temperature, and does, increasingly so, as temperatures are reduced below their 
tropical mean (e.g., Koll & Cronin, 2018). Within the tropics, where temperature fluctuations are small, 
variability in clear-sky OLR is dominated by RH changes (e.g., John et al., 2006). Due to the approximately 
logarithmic dependence of 𝐴𝐴 OLRc on RH, averaging decreases 𝐴𝐴 OLRc (Pierrehumbert et al., 2007). However, 
the resulting bias is very similar for all models, so that the effect on inter-model differences in 𝐴𝐴 OLRc is 
negligible.

To characterize the surface we use model output of surface pressure and the prescribed SST fields and select 
the same points as for the 3D data (Section 2.2). The surface emissivity is assumed to be 1. For other gasses 
than water vapor we use fixed vertical profiles in accordance with those in Wing et al. (2017): The ozone 
volume mixing ratio follows a gamma distribution in pressure and vertically constant volume mixing ratios 
are assumed for 𝐴𝐴 O2 , 𝐴𝐴 CO2 , 𝐴𝐴 CH4 and 𝐴𝐴 N2O .

For the radiative transfer simulations we interpolate profiles from all models on a uniform vertical grid 
ranging from the surface to an altitude of 20 km with a resolution of 100 m. The top at 20 km corresponds 
to the maximum altitude for which output is available from all models. For our purpose 𝐴𝐴 OLRc is defined as 
the longwave upward clear-sky radiative flux at this level. Due to this definition the inter-model differences 
in 𝐴𝐴 OLRc only reflect 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 differences in the troposphere, potential differences in the stratosphere are 
ignored. Note that due to the missing stratosphere the absolute value of the 𝐴𝐴 OLRc defined at 20 km has a 
positive offset compared to the ”true” 𝐴𝐴 OLRc defined at a higher TOA. However, this is not relevant for our 
results since we are only interested in the effect of differences in the troposphere.

We focus only on the clear-sky case here, so any cloud condensate contained in the profiles is ignored. 
Clouds, particularly those at high altitudes, have a strong impact on OLR. Hence, model differences in cloud 
properties can cause significant differences in all-sky OLR, which are not considered here.

4.2.  Model Differences in Clear-Sky OLR

Tropical mean 𝐴𝐴 OLRc differs by more than 4  𝐴𝐴 Wm−2 between the two most extreme models IFS and ICON 
(Figure 6a). The multi-model standard deviation 𝐴𝐴 𝐴𝐴(OLRc) in tropical mean clear-sky OLR is 1.2  𝐴𝐴 Wm−2 . This 
is small compared to cloud radiative effects, but still a third of the estimated radiative forcing due to a dou-
bling of 𝐴𝐴 CO2 (Collins et al., 2013). In some models, for example UM and ARPEGE-NH, both positive and 
negative anomalies occur across moisture space, which partly cancel in the tropical mean.

Two moisture regimes stand out due to a particularly large spread in clear-sky OLR (Figure 6b): One local 
maximum in 𝐴𝐴 𝐴𝐴(OLRc) occurs in rather moist regimes around the 80th percentile of IWV. This corresponds 
to the region at the transition from deep convective to subsidence regimes, where the inter-model RH spread 
in the mid troposphere maximizes (Figure 5b). A second, slightly weaker maximum in 𝐴𝐴 𝐴𝐴(OLRc) is located 
at the dry end of moisture space. In the next section we aim to better understand why the spread in 𝐴𝐴 OLRc 
maximizes in these two regimes and which altitude regions in the troposphere contribute most.

https://doi.org/10.5281/zenodo.3899702
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4.3.  Radiative Kernels

To examine how different altitude regions in moisture space contribute to the spread in tropical mean 𝐴𝐴 OLRc , 
for each of the 50 blocks in moisture space we decompose each model's 𝐴𝐴 OLRc anomaly into contributions 
from individual atmospheric layers using the radiative kernel method (Soden et al., 2008).

The atmosphere is divided into 𝐴𝐴 𝐴𝐴 vertical layers and it is assumed that a model's clear-sky OLR anomaly 
𝐴𝐴 ΔOLRc can be expanded in a linear form as:

ΔOLRc ≈
𝑁𝑁
∑

𝑖𝑖=1

(

𝐾𝐾𝑒𝑒
𝑖𝑖 Δe𝑖𝑖 +𝐾𝐾𝑇𝑇

𝑖𝑖 ΔT𝑖𝑖
)

≈
𝑁𝑁
∑

𝑖𝑖=1

𝐾𝐾RH
𝑖𝑖 ΔRH𝑖𝑖,� (1)

where the index 𝐴𝐴 𝐴𝐴 denotes the vertical layer. 𝐴𝐴 𝐴𝐴𝑥𝑥
𝑖𝑖  is the ith component of the vector 𝐴𝐴 𝐊𝐊𝐱𝐱 , called radiative kernel. 

It describes the sensitivity of 𝐴𝐴 OLRc to changes in a variable 𝐴𝐴 𝐴𝐴 in each layer 𝐴𝐴 𝐴𝐴 :

𝐾𝐾𝑥𝑥
𝑖𝑖 = 𝜕𝜕OLRc

𝜕𝜕x𝑖𝑖
.� (2)

The first approximation in Equation 1 assumes that anomalies in 𝐴𝐴 OLRc are primarily caused by anomalies 
in atmospheric 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  , the effect of anomalies in surface temperature is assumed to be negligible. More-
over, it is assumed that contributions from each layer to the OLR response are independent, neglecting 
potential masking effects from perturbations above. Despite these assumptions the kernels 𝐴𝐴 𝐊𝐊𝐞𝐞 and 𝐴𝐴 𝐊𝐊𝐓𝐓 can 
be used to approximate the 𝐴𝐴 OLRc anomalies of the DYAMOND models with good accuracy, which is shown 
in Figure B1 in Appendix B. The computation of the kernels is also described in Appendix B.

Perturbations in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  have opposite effects on 𝐴𝐴 OLRc , which is evident from the different signs of the 
respective kernels (Figure B1). At constant RH perturbations in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  are positively correlated, so their 
effects on 𝐴𝐴 OLRc compensate to some degree. It is well known that in the water vapor bands, the spectral 

Figure 6.  Inter-model differences in clear-sky OLR in moisture space. (a) Anomalies in clear-sky OLR for each model, 
defined as the deviation from the ERA5 value and (b) inter-model standard deviation of clear-sky OLR.
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regions at which the water vapor optical depth is larger than 1, modulo foreign broadening, the emission 
from a layer to space depends only on RH (Ingram, 2010; Nakajima et al., 1992). This behavior is often re-
ferred to as ”Simpsonian,” as it has been recognized since the early work of Simpson (1928). Therefore, it 
can be assumed that anomalies in 𝐴𝐴 OLRc in the DYAMOND models are primarily determined by RH anom-
alies. This corresponds to the second approximation in Equation 1.

A perturbation in RH can be produced isothermally, that is, by varying 𝐴𝐴 𝐴𝐴 and keeping 𝐴𝐴 𝐴𝐴  constant, or iso-
barically, that is, by varying 𝐴𝐴 𝐴𝐴  and keeping 𝐴𝐴 𝐴𝐴 constant. Therefore, there are two ways to define a RH kernel, 
which we refer to as 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 and 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  , respectively:
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To translate 𝐴𝐴 𝐊𝐊𝐞𝐞 and 𝐴𝐴 𝐊𝐊𝐓𝐓 into RH kernels they have to be weighted by a factor describing the change of RH 
for a change in 𝐴𝐴 𝐴𝐴 or 𝐴𝐴 𝐴𝐴  , respectively. For 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 this factor is equal to the saturation water vapor pressure 𝐴𝐴 𝐴𝐴𝑠𝑠 . 
For 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  the dependence of 𝐴𝐴 𝐴𝐴𝑠𝑠 on 𝐴𝐴 𝐴𝐴  given by the Clausius Clapeyron relation has to be taken into account. 

𝐴𝐴 𝐊𝐊RH,𝑒𝑒 and 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  are identical to the extent that the 𝐴𝐴 OLRc response to a given change in RH is independent of 
whether this change is produced by a change in 𝐴𝐴 𝐴𝐴 or in 𝐴𝐴 𝐴𝐴  .

𝐴𝐴 OLRc anomalies approximated using 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 (Figure 7c) are more accurate than those approximated using 
𝐴𝐴 𝐊𝐊RH,𝑇𝑇  (Figure B2c). Therefore, for the further analysis we concentrate on 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 . Overall, 𝐴𝐴 OLRc anomalies 

approximated from RH anomalies agree well with true (directly calculated) 𝐴𝐴 OLRc anomalies (Figure 7c) 
and the inter-model standard deviation 𝐴𝐴 𝐴𝐴(OLRc) is well reproduced (Figure 7d). In Appendix B we elaborate 
more on the accuracy of the approximation for individual models as well as on the differences between 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 
and 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  .

Figure 7.  Impact of relative humidity (RH) differences on clear-sky OLR in moisture space. (a) RH response kernel 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 showing the sensitivity of clear-sky 
OLR to a 1% RH change in a 1 km layer under constant temperature for 50 blocks in moisture space, (b) inter-model standard deviation 𝐴𝐴 𝐴𝐴 (RH) weighted with 

𝐴𝐴 𝐊𝐊RH,𝑒𝑒 , (c) Clear-sky OLR anomalies approximated from 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 and the RH anomalies of each model and (d) inter-model standard deviation in the approximated 
clear-sky OLR. Thin dashed lines in (c and d) correspond to ”true” clear-sky OLR calculated directly from temperature and specific humidity profiles (same as 
in Figure 6). The vertical integral of (b) is shown as the gray line in (c).
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4.4.  Relative Importance of Different Altitude Regions

The impact of RH anomalies on the radiation budget is determined by the magnitude of the RH anomalies 
and the sensitivity of 𝐴𝐴 OLRc to a given perturbation in RH. The latter is described by the radiative kernel 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 
(Equation 1). 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 is negative throughout the tropical troposphere (Figure 7a), indicating that an increase 
in RH leads to a decrease in 𝐴𝐴 OLRc . Its absolute value is largest in the mid troposphere in the dry subsidence 
regimes.

The overall distribution of the kernel can be understood based on the concept of an effective emission 
height for each wavenumber 𝐴𝐴 𝐴𝐴 , corresponding to the level at which the optical depth 𝐴𝐴 𝐴𝐴𝜈𝜈 reaches unity (e.g., 
Petty, 2006). A water vapor perturbation will generally have a strong impact on OLR if it is applied near or 
above a level for which 𝐴𝐴 𝐴𝐴𝜈𝜈 ≈ 1 in a large portion of the water vapor bands. Ultimately, the vertical distribu-
tion of 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 is determined by the distribution of effective emission heights. The distribution of effective 
emission heights depends on the distribution of spectral absorption coefficients and is generally broad (e.g., 
Clough et al., 1992; Jeevanjee & Fueglistaler, 2020), which is why 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 is significant throughout the trop-
osphere. However, above a certain level (around 200 hPa) the emission from water vapor rapidly declines, 
which is well known from studies of radiative cooling (e.g., Hartmann & Larson, 2002). Due to the strong 
dependence of water vapor concentrations on temperature through Clausius-Clapeyron, the amount of 
water vapor at these upper levels is so small that even at the line centers 𝐴𝐴 𝐴𝐴𝜈𝜈 barely reaches unity. The emis-
sion to space also declines at the lowest levels, although water vapor is abundant, because there is only a 
limited part of the spectrum (on the wings of lines and very weak lines), where radiation can escape to 
space without being re-absorbed at upper levels. This ”masking” by the optically thick atmosphere above 
increases with increasing IWV, which is why for a given altitude level the absolute value of 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 decreases 
toward moist regimes.

Note that in general the distribution of a water vapor kernel is very sensitive to how water vapor is perturbed 
(Held & Soden, 2000). We perturb RH by a constant value, similar to Allan et al.  (1999) or Spencer and 
Braswell (1997). In this case the perturbation in 𝐴𝐴 𝐴𝐴 is proportional to 𝐴𝐴 𝐴𝐴𝑠𝑠 (Equation 3). Hence, it decreases with 
altitude, but is approximately constant throughout moisture space. Other studies apply equal fractional per-
turbations in 𝐴𝐴 𝐴𝐴 (Shine & Sinha, 1991) or keep RH constant under a uniform temperature perturbation (Held 
& Soden, 2000; Soden et al., 2008). In both cases the perturbation in 𝐴𝐴 𝐴𝐴 is proportional to 𝐴𝐴 𝐴𝐴 itself, resulting in 
a stronger weighting of moist compared to dry regimes.

In low IWV percentiles 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 peaks at an altitude of around 6 km. The peak weakens from dry to moist re-
gimes for the reasons named above. A very similar behavior was found by Spencer and Braswell (1997) for 
base states with RH values roughly corresponding to those in the dry half of moisture space. For the moist 
half of moisture space, however, we find that lower atmospheric layers (below 5 km) become relatively 
more important. A possible explanation for this could be the continuum absorption in the major atmos-
pheric window region (∼800–1,200 𝐴𝐴 cm−1 ), which acts to decrease the surface component of 𝐴𝐴 OLRc as RH 
increases in the lower troposphere. In contrast to absorption in the water vapor bands, continuum absorp-
tion scales with the square of the water vapor pressure and therefore becomes relatively more important for 
high humidity base states.

The product of the RH response kernel 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 and the RH inter-model standard deviation 𝐴𝐴 𝐴𝐴(RH) (Figure 7b) 
indicates where the actual inter-model differences have the strongest effect on clear-sky OLR. First, the top 
of the BL stands out as a narrow region of strong impact. 𝐴𝐴 OLRc is not particularly sensitive to RH pertur-
bations there (Figure 7a), but the inter-model differences in RH are large (Figure 5b) because the models 
differ in the depth of the BL. RH differences in a broad layer in the mid troposphere also significantly affect 

𝐴𝐴 OLRc . Integrated over its full width, the contribution from this layer is larger than that from the BL top. The 
mid troposphere is characterized by an increasing RH spread from dry to moist regimes with a pronounced 
maximum near the 80th IWV percentile (Figure 5b) and a decreasing sensitivity of 𝐴𝐴 OLRc from dry to moist 
regimes (Figure 7a). The combination of both results in a relatively uniform importance of RH differences 
across moisture space, with two local maxima occurring near the 30th and near the 80th IWV percentile. 
The layer over which RH differences have a considerable impact on 𝐴𝐴 OLRc generally extends to higher alti-
tudes in the dry regimes than in the moist regimes, which is again a consequence of the stronger masking 
effect in moist regimes. Due to the low sensitivity of 𝐴𝐴 OLRc to RH perturbations in the upper troposphere 
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(above about 10–12 km) the large inter-model RH differences there (Figure 5b) have virtually no effect on 
𝐴𝐴 OLRc .

Not considering clouds has an effect on the response kernels. Particularly high clouds are important, be-
cause they mask some of the effect of 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 in lower atmospheric levels (Soden et al., 2008). They are 
mainly present in moist regimes, starting around the 60th IWV percentile in most models (not shown). In 
these regimes we would expect the sensitivity of 𝐴𝐴 OLRc to RH perturbations to decrease, particularly in levels 
below the clouds, which are most abundant at around 8–12 km height. This would dampen some of the 
effect of the large RH differences in the lower and mid free troposphere in the moist regimes.

An important point to note is that the vertical integration of the product of 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 and 𝐴𝐴 𝐴𝐴(RH) , shown as the 
gray line in Figure 7d, does not yield the inter-model standard deviation in 𝐴𝐴 OLRc , but a higher value, which 
is more uniform throughout moisture space. In many models RH anomalies have different signs in different 
altitude regions (Figures 1 and A1). This information is not contained in 𝐴𝐴 𝐴𝐴(RH) . The effects of such opposite 
RH anomalies on 𝐴𝐴 OLRc compensate to some degree. Interestingly, such compensating errors play a bigger 
role in the dry regimes, as indicated by the larger difference between the gray and the black line in Figure 7d 
and evident from Figure A1. In fact, it is only due to these compensating effects that dry regimes contribute 
less to tropical mean differences in clear-sky OLR than moist regimes.

5.  Summary and Conclusions
In this study we quantified inter-model differences in tropical free-tropospheric humidity in an ensemble of 
nine different GSRMs, which took part in DYAMOND, a first 40-day intercomparison for models of this type. 
We focused on the effect of the humidity differences on the radiation budget and therefore concentrated on 
differences in RH rather than absolute humidity. The RH is most informative because in a large part of the 
spectrum the emission from a layer to space depends primarily on RH (Ingram, 2010; Nakajima et al., 1992).

A justified question that arises is how much one can learn about climatological RH biases from an in-
tercomparison as short as 40 days. To address some major concerns associated with the shortness of the 
DYAMOND simulations, we performed additional analysis based on longer-term data sets. One potential 
limitation is that the models' RH might still be constrained by the common initial conditions. However, 
both a first two-year storm-resolving simulation with the ICON model as well as the evolution of the in-
ter-model RH spread within the analyzed 30-day period suggest that the transition from the initial condi-
tions is largely completed after the excluded ten-day spinup period. Another concern is that the RH biases 
identified in the analyzed 30-day period might result mainly from a poor sampling of internal variability. 
However, the DYAMOND inter-model spread in RH is significantly larger than what would be expected 
from internal variability, which was estimated from five years of ERA5 reanalysis data. This suggests that 
the inter-model differences we find in DYAMOND mostly represent systematic model biases. This applies 
least to the upper troposphere (above 12 km), where natural variability is comparably large. In accordance 
with that, the inter-model RH spread in each individual month of the CMIP5 AMIP intercomparison is 
within a 25% range of the spread in 30-year mean RH, only in the upper troposphere deviations are larger. 
We conclude from these results that in a large part of the free-troposphere one month of intercomparison 
already provides a good first estimate for climatological RH biases.

The comparison to the CMIP5 AMIP ensemble also shows that the inter-model spread in tropical mean RH 
in DYAMOND is reduced throughout the free troposphere, except for the transition to the boundary layer 
and the tropopause region. This indicates that free-tropospheric RH and hence clear-sky OLR are better 
constrained in GSRMs than in GCMs. Based on this first month of intercomparison we estimate the reduc-
tion to approximately 50%–70% in the upper troposphere (8–14 km) and 25%–50% in the mid troposphere 
(3–8 km). For an exact quantification longer storm-resolving simulations will be needed.

A question that cannot be answered from the relatively short DYAMOND simulations is whether the spread in 
the water-vapor–lapse-rate feedback is also reduced in GSRMs. However, there are some reasons to be optimis-
tic about this. On the one hand, to the extent that the feedback depends on the base-state RH as suggested by 
Bourdin et al. (2021), reducing the inter-model spread in present-day RH should also reduce the spread in the 
feedback. On the other hand, the water-vapor–lapse-rate feedback depends on how much RH changes under 
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warming. Given that the present-day RH is better constrained in GSRMs, it seems unlikely that the spread in 
the RH response is increased. This is to be verified once model simulations at higher SSTs are available.

Although RH differences are reduced in the DYAMOND ensemble, they still cause a spread of 1.2  𝐴𝐴 Wm−2 in 
tropical mean clear-sky OLR. To better understand how different tropical moisture regimes contribute to this 
spread, it has proven useful to compare model fields in moisture space, that is sorted from low to high IWV. 
Combining the inter-model standard deviation 𝐴𝐴 𝐴𝐴(RH) with radiative kernels (the sensitivity of clear-sky OLR 
to RH perturbations) in moisture space allowed us to examine the radiative impact of the RH differences in 
a given dynamic regime and altitude region and hence to assess in which regions a further reduction would 
be most beneficial. Based on the results we can split the tropical free troposphere into four main regions:

1.	 �The transition between the BL and the free troposphere. Throughout the tropics this altitude region 
(around 2–3 km) is characterized by a local maximum in the inter-model RH spread, with 𝐴𝐴 𝐴𝐴(RH) exceed-
ing 6% RH. These differences are associated with differences in the depth of the BL. Due to their large 
magnitude they contribute considerably to the spread in clear-sky OLR, although the sensitivity of clear-
sky OLR to a given RH perturbation is rather small in this altitude region.

2.	 �The mid troposphere of moist regimes. This region ranges from about 3 to 10 km in altitude and roughly 
covers the highest 50 percentiles of IWV in moisture space. With 𝐴𝐴 𝐴𝐴(RH) up to 6% RH the inter-model 
spread in these moist regimes is substantially larger than in the same altitude region of dry regimes. The 
spread maximizes at the transition from deep convective to subsidence regimes near the 90th percentile 
of IWV, which might be indicative of model differences in convective behavior. The large RH differences 
cause the inter-model spread in clear-sky OLR to maximize in this region, although the sensitivity of 
clear-sky OLR to RH perturbations is moderate.

3.	 �The mid troposphere of dry regimes. In this region the model agreement in RH is remarkably good. The 
inter-model standard deviation 𝐴𝐴 𝐴𝐴(RH) is 1%–3% RH and hence less than half of the standard deviation 
in moist regimes. However, the sensitivity of clear-sky OLR to RH perturbations is considerably larger. 
Therefore, the small RH differences in the dry regimes have a comparable effect on clear-sky OLR as the 
larger differences in the moist regimes. This is why the inter-model spread in clear-sky OLR has a second 
local maximum in the dry regimes. This maximum is weaker than the one in the moist regimes because 
compensating effects due to opposite RH anomalies at different altitude regions occur more frequently 
in the dry regimes. The reason for this is not obvious and needs further investigation.

4.	 �The upper troposphere. In the altitude region above 10 km the inter-model spread is generally large, with 
𝐴𝐴 𝐴𝐴(RH) exceeding 8% near the tropopause. However, the sensitivity of clear-sky OLR to RH perturbations 

is so small that the impact of these differences on the clear-sky OLR is negligible.

Our results are limited to the clear-sky case. High clouds, which are most abundant in the moist regimes, 
mask some of the clear-sky effect (e.g., Soden et al., 2008) and hence reduce the radiative impact of the RH 
differences in the mid troposphere. This highlights even more the importance of the dry regimes, where 
high clouds are rare.

We conclude that to further constrain the radiation budget in GSRMs it is most crucial to reduce the RH 
differences at the top of the BL and in the mid troposphere. Reducing the former by adjusting the depth 
of the BL seems possible with the current level of knowledge. Also, one would expect clear benefits from 
increased vertical resolution when it comes to representing the BL depth. On the other hand, observational 
reference data are sparse because satellite capacities to probe the BL region are still limited. Reducing the 
differences in the mid troposphere seems more challenging and requires a detailed understanding of the 
processes controlling RH in these regions remote from deeper convection. An advantage is that this altitude 
region of the tropical atmosphere is extensively observed by satellites.

Appendix A:  RH Anomalies in Individual Models
In Section 3.2 we focused on the inter-model spread in RH expressed by the inter-model standard deviation 

𝐴𝐴 𝐴𝐴(RH) . Here we show how the RH deviates from ERA5 in moisture space for individual models (Figure A1). 
It is evident that for many models, particularly for ICON, NICAM and IFS, the largest part of the RH 
anomalies in the mid troposphere that are apparent in the tropical mean (Figure 1) stems from rather moist 
regimes. Furthermore, in all models RH anomalies of opposite sign exist at different altitude regions and 



Journal of Advances in Modeling Earth Systems

LANG ET AL.

10.1029/2021MS002514

17 of 21

across moisture space. As mentioned in Sections 4.2 and 4.4 their effects on tropical mean clear-sky OLR 
partly compensate. For example, the GEOS5 model has both an anomalously moist lower free troposphere 
(due to an anomalously deep BL) and an anomalously dry mid free troposphere in regions of intermediate 

Figure A1.  Relative humidity (RH) anomalies of DYAMOND models in moisture space. The upper left panel shows 
the ERA5 RH distribution in moisture space, remaining panels show the deviation from the ERA5 RH for each model.
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IWV (Figure A1d). Due to the compensation of these opposite effects the 𝐴𝐴 OLRc anomaly in these regions 
is rather small (Figure 6). In the UM model the lower and mid free troposphere are anomalously moist in 
dry regimes and anomalously dry in moist regimes (Figure A1j). The resulting 𝐴𝐴 OLRc anomalies almost fully 
compensate in the tropical mean (Figure 6).

Appendix B:  Radiative Kernels for Water Vapor Pressure, Temperature and 
Relative Humidity
To obtain the radiative kernels 𝐴𝐴 𝐊𝐊𝐞𝐞 and 𝐴𝐴 𝐊𝐊𝐓𝐓 for a given block in moisture space, 𝐴𝐴 OLRc is calculated for the aver-
aged ERA5 profiles in this block using the setup described in Section 4.1. The calculation is repeated with a 
small perturbation applied to 𝐴𝐴 𝐴𝐴 or 𝐴𝐴 𝐴𝐴  in one atmospheric layer, yielding the element of 𝐴𝐴 𝐊𝐊𝐞𝐞 of 𝐴𝐴 𝐊𝐊𝐓𝐓 , respectively, 
for that layer. This is done successively for all layers. We perturb 𝐴𝐴 𝐴𝐴 by 5% of its absolute value and 𝐴𝐴 𝐴𝐴  by 1 K. 
The chosen perturbation sizes lie within the range for which the assumption of linearity around the base 
state is valid. Within this range the calculated kernels are independent of the exact perturbation size.

The kernels 𝐴𝐴 𝐊𝐊𝐞𝐞 and 𝐴𝐴 𝐊𝐊𝐓𝐓 can be used together with anomalies in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  to approximate anomalies in clear-
sky OLR (Equation 1) in the DYAMOND models with good accuracy (Figure B1e). The approximation is 
least accurate for the NICAM model. NICAM is the model with the largest anomalies in absolute humidity 
(Figure 2), so it is likely that the assumption of linearity around the reference state starts to lose validity. 
In other models some smaller inaccuracies occur particularly in the dry half of moisture space. Most of 
them can be explained by SST anomalies that are not considered in Equation 1. Such SST anomalies have a 
stronger impact in the dry regions because the surface component of 𝐴𝐴 OLRc is larger there than in moist re-
gions. The largest deviations between true and approximated 𝐴𝐴 OLRc anomalies in dry regimes arise for SAM 

Figure B1.  Clear-sky OLR anomalies in the DYAMOND models approximated with the kernel method. (a) Water vapor response kernel 𝐴𝐴 𝐊𝐊𝐞𝐞 showing the 
sensitivity of clear-sky OLR to a change of 1 Pa in water vapor pressure 𝐴𝐴 𝐴𝐴 in a 1 km layer. Note the logarithmic color scale. (b) Temperature response kernel 𝐴𝐴 𝐴𝐴𝑇𝑇  
showing the sensitivity of clear-sky OLR to a temperature change of 1 K in a 1 km layer. Also shown are clear-sky OLR anomalies calculated (c) solely from 
anomalies in 𝐴𝐴 𝐴𝐴 and the respective kernel 𝐴𝐴 𝐊𝐊𝐞𝐞 and (d) solely from anomalies in 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐊𝐊𝐓𝐓 . Panel (e) shows clear-sky OLR anomalies calculated from both kernels. 
True (directly calculated) clear-sky OLR anomalies are shown as thin dashed lines for comparison.
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and ARPEGE-NH. These are only partly explained by SST anomalies, so non-linearity or masking effects 
might play a role.

As explained in Section 4.3, anomalies in 𝐴𝐴 OLRc can also be approximated from RH anomalies and a RH 
kernel (Equation 1). There are two ways to define a RH kernel by varying either 𝐴𝐴 𝐴𝐴 or 𝐴𝐴 𝐴𝐴  (Equation 3), which 
we refer to as 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 and 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  , respectively. Our main analysis is based on 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 because it approximates the 
anomalies in 𝐴𝐴 OLRc more accurately. The largest deviations from true (directly calculated) 𝐴𝐴 OLRc anomalies 
occur for SAM in the lowest IWV percentiles, for ARPEGE-NH in high percentiles and for ICON in all 
percentiles (Figure 7c). The inter-model standard deviation 𝐴𝐴 𝐴𝐴(OLR) is well reproduced with the approxi-
mated 𝐴𝐴 OLRc (Figure 7d), except from the lowest IWV percentiles, where it is slightly underestimated. This is 
mainly caused by the deviations in SAM and ICON. For most models the approximation from RH anomalies 
is slightly less accurate than the one from 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  anomalies (cf. Figure B1). An exception is NICAM, for 
which 𝐴𝐴 OLRc approximated from RH anomalies matches the true 𝐴𝐴 OLRc much better than the one approxi-
mated from 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  anomalies.

For completeness Figure B2 shows 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  and the 𝐴𝐴 OLRc anomalies approximated using this version of the 
RH kernel. 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  takes on larger absolute values than 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 (cf. Figure 7a, note the different color scales in 
Figures 7 and B2), that is a 1% increase in RH causes a larger decrease in clear-sky OLR if it is produced by 
decreasing 𝐴𝐴 𝐴𝐴  rather than increasing 𝐴𝐴 𝐴𝐴 . Furthermore, the peak altitude in 𝐴𝐴 𝐊𝐊RH,𝑇𝑇  is lower than in 𝐴𝐴 𝐊𝐊RH,𝑒𝑒 . These 
differences indicate that for 𝐴𝐴 OLRc it does matter to a certain degree whether a RH perturbation is caused 
by a perturbation in 𝐴𝐴 𝐴𝐴 or in 𝐴𝐴 𝐴𝐴  . Nevertheless, considering that the physical mechanisms behind a change in 

𝐴𝐴 OLRc are very different for changes in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  , the two kernels agree remarkably well, again demonstrating 
that the atmosphere behaves partly ”Simpsonian” (see Section 4.3).
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casts (ECMWF) for providing the ERA5 data, which is available at the Copernicus Climate Change Service 
Climate Data Store (CDS; https://cds.climate.copernicus.eu/cdsapp#!/home). The CMIP5 AMIP data were 
accessed through DKRZ (https://cera-www.dkrz.de/WDCC/ui/cerasearch/). Version v0.8.0 of konrad is 
available at https://github.com/atmtools/konrad/tree/v0.8.0.
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