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Abstract. The response function identification method intro-
duced in the first part of this study is applied here to investi-
gate the land carbon cycle in the Max Planck Institute for Me-
teorology Earth System Model. We identify from standard
C*MIP 1% experiments the linear response functions that
generalize the land carbon sensitivities 8 and y. The identifi-
cation of these generalized sensitivities is shown to be robust
by demonstrating their predictive power when applied to ex-
periments not used for their identification. The linear regime
for which the generalized framework is valid is estimated,
and approaches to improve the quality of the results are pro-
posed. For the generalized y sensitivity, the response is found
to be linear for temperature perturbations until at least 6 K.
When this sensitivity is identified from a 2 xCO; experiment
instead of the 1 % experiment, its predictive power improves,
indicating an enhancement in the quality of the identification.
For the generalized § sensitivity, the linear regime is found
to extend up to CO, perturbations of 100 ppm. We find that
nonlinearities in the 8 response arise mainly from the non-
linear relationship between net primary production and CO».
By taking as forcing the resulting net primary production in-
stead of CO,, the response is approximately linear until CO;
perturbations of about 850 ppm. Taking net primary produc-
tion as forcing also substantially improves the spectral reso-
lution of the generalized B sensitivity. For the best recovery
of this sensitivity, we find a spectrum of internal timescales
with two peaks, at 4 and 100 years. Robustness of this result
is demonstrated by two independent tests. We find that the

two-peak spectrum can be explained by the different char-
acteristic timescales of functionally different elements of the
land carbon cycle. The peak at 4 years results from the col-
lective response of carbon pools whose dynamics is governed
by fast processes, namely pools representing living vegeta-
tion tissues (leaves, fine roots, sugars, and starches) and as-
sociated litter. The peak at 100 years results from the col-
lective response of pools whose dynamics is determined by
slow processes, namely the pools that represent the wood in
stem and coarse roots, the associated litter, and the soil car-
bon (humus). Analysis of the response functions that char-
acterize these two groups of pools shows that the pools with
fast dynamics dominate the land carbon response only for
times below 2 years. For times above 25 years the response
is completely determined by the pools with slow dynamics.
From 100 years onwards only the humus pool contributes to
the land carbon response.

1 Introduction

In Part 1 of this study (Torres Mendonca et al., 2021a) we de-
veloped a method to identify linear response functions from
arbitrary perturbation experiments. The RFI method (re-
sponse function identification method) was tested by means
of artificial toy model simulations. Here, we demonstrate the
applicability of our method to a practical problem: we in-
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vestigate the dynamics of the land carbon cycle in the Max
Planck Institute for Meteorology Earth System Model (MPI-
ESM; see Appendix A). In particular, we show how our RFI
method provides insight into two aspects of central relevance
to carbon cycle research: the sensitivity of the land carbon
cycle to changes in atmospheric CO; and its distribution of
internal timescales.

The global carbon cycle plays a critical role in mitigat-
ing climatic effects from CO; emissions. According to the
yearly published Global Carbon Budget (Friedlingstein et al.,
2020), the ocean and land components of this cycle have
taken up about half of the anthropogenic CO, emitted from
pre-industrial times to 2019. Despite its relevance to climate,
the dynamics of the carbon cycle is still poorly understood
(Ilyina and Friedlingstein, 2016). Improving our understand-
ing of this dynamics, in particular in response to CO pertur-
bations, is therefore one of the major challenges of climate
research (Marotzke et al., 2017).

A tool long employed to investigate the carbon cycle dy-
namics are linear response functions. Such functions have
been used to predict atmospheric CO; from emissions (Bolin
et al., 1981; Siegenthaler and Oeschger, 1978; Oeschger and
Heimann, 1983; Maier-Reimer and Hasselmann, 1987; Ent-
ing, 1990; Joos et al., 1996; Joos and Bruno, 1996), land car-
bon storage from NPP (net primary production) (Bolin et al.,
1981; Thompson and Randerson, 1999) and GPP (gross pri-
mary production) (Emanuel et al., 1981), and to disentan-
gle the historical development of the land and ocean carbon
sinks from ice core reconstructions of atmospheric '>CO,
and 3CO; (Joos and Bruno, 1998). Linear response func-
tions have also been employed to study the dependence of
global warming on possible future CO, emissions and the
associated GWP (global warming potential) (Caldeira and
Kasting, 1993; Joos et al., 2013; Caldeira and Myhrvold,
2013; Ricke and Caldeira, 2014; Gasser et al., 2017).

However, a generally underexplored field in carbon and
also climate research is that of internal timescales (see how-
ever Todd-Brown et al., 2013; Friend et al., 2014; Koven
et al., 2015; He et al., 2016). Also here, linear response
functions open an interesting perspective. To systematically
investigate the interaction between climate and the carbon
cycle, for more than a decade now internationally coordi-
nated simulation exercises have been performed with several
Earth system models within the Coupled Climate Carbon Cy-
cle Model Intercomparison Project (C*MIP; see Fung et al.,
2000; Friedlingstein et al., 2006) that today belongs to the in-
ternational Coupled Model Intercomparison Project (CMIP;
see Taylor et al., 2012). With every round of CMIP, quite
some effort is put into understanding how differences in sim-
ulation results from the participating Earth system models
arise (see, e.g., Anav et al., 2013; Tebaldi et al., 2021; Arora
et al., 2020). It is pretty clear that parts of the differences
arise from different spectra of internal timescales. These dif-
ferences show up, e.g., in the standard 4xCO, and 1 % ex-
periments of the CMIP protocol that are explicitly designed
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to estimate equilibrium and transient climate sensitivity (Tay-
lor et al., 2012; Eyring et al., 2016). However, such a charac-
terization of the response of temperature to radiative forcing
by only two numbers is rather incomplete: these numbers are
the aggregated result of system responses at all its internal
timescales together. Therefore, a more detailed insight into
system behavior could be obtained from the knowledge of
this spectrum of responses at different timescales. Such in-
sight may be provided by considering the linear response
function that generalizes climate sensitivity (e.g., Ragone
et al., 2016). Further, this perspective to obtain from lin-
ear response functions information on internal timescales is
not restricted to climate sensitivity, but also applies to other
types of system characteristics like the airborne fraction (e.g.,
Le Quéré et al., 2009; Raupach, 2013), the TCRE (Tran-
sient Climate Response to Cumulated Emissions; see e.g.,
Ciais et al., 2013) and the 8 and y sensitivities introduced
by Friedlingstein et al. (2003) to characterize how land and
ocean carbon react to rising CO; and rising temperatures.
In the present study we explore the application of linear re-
sponse functions to study 8 and y. In particular, we focus on
the B and y values that characterize the land carbon cycle,
whose response presents already for several C*MIP rounds a
large model spread (Friedlingstein et al., 2006; Arora et al.,
2013, 2020).

When studying the land carbon response, the y value
quantifies the sensitivity of the land carbon cycle to the ra-
diative effect of CO, acting via greenhouse warming, while
the B value quantifies its sensitivity to the biogeochemical
effect of CO;, concentrations on photosynthetic carbon as-
similation (Arora et al., 2013, 2020; Schwinger et al., 2014;
Adloff et al., 2018). Mathematically, y is defined as the ratio
between changes in the land carbon caused by the radiative
effect of CO, (AC™J) and changes in temperature (AT) at a
particular time:

Acrad (I)

y(t) = T(t)

ey
B is defined as the ratio between changes in the land car-
bon caused by the biogeochemical effect of CO, (ACPE)
and changes in atmospheric CO; concentration (ACymy) at a
particular time:

ACPE(p)

PO = R Cam(0)’

2)
However, although these two values give insight into the
magnitude of the sensitivities, they cannot be seen as proper-
ties of the land carbon cycle alone. The reason is that y and 8
quantify the sensitivity of land carbon to CO, perturbations
only for a particular perturbation scenario, so that for differ-
ent scenarios one may obtain different values (Gregory et al.,
2009; Arora et al., 2013).

To quantify this sensitivity in a more systematic way and
thereby gain deeper insight into the land carbon dynamics
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one needs a more general formalism. For small changes in
atmospheric CO; one can show that by accounting for the
memory of the carbon cycle these values generalize to lin-
ear response functions, which turn out to be properties of
the land carbon cycle itself (Rubino et al., 2016; Enting and
Clisby, 2019, see also Appendix B). As a result, these linear
response functions characterize the land carbon sensitivities
for any perturbation scenario. For this reason these functions
will here be called land carbon generalized sensitivities.

The essential step to investigate the carbon cycle dynamics
within this general formalism is the identification of the gen-
eralized sensitivities. Typically, the y and g values proposed
by Friedlingstein et al. (2003) are obtained taking data from
standardized C*MIP simulation experiments where, starting
from an equilibrium state, atmospheric CO; concentration is
increased by 1 % each year (e.g., Gregory et al., 2009; Arora
et al., 2013, 2020; Schwinger et al., 2014; Adloff et al., 2018;
Williams et al., 2019). Since data from such 1 % experiments
performed with C*MIP models are readily available in in-
ternational databases, one would be interested in identifying
the generalized y and f§ sensitivities as well from these ex-
periments. However, methods in the literature to identify re-
sponse functions from data require special perturbation ex-
periments, and C*MIP experiments were not tailored for this
purpose. It is here that our RFI method is useful. Our method
is designed to derive response functions from experiments
driven by any arbitrary perturbation. Thus, in the present
study we show that by this method one can robustly derive
the land carbon generalized sensitivities for the MPI-ESM
taking data from standard C*MIP 1 % experiments. To make
sure the identified generalized sensitivities are indeed char-
acteristics of the land carbon cycle in the MPI-ESM, we
demonstrate their predictive power by applying them to pre-
dict the response of the model in several experiments that
were not used for their identification. In preparation for fu-
ture studies applying these generalized sensitivities to study
the dynamics of the carbon climate system in C*MIP mod-
els, we also investigate various ideas to improve the qual-
ity of the recovery of the response functions by using addi-
tional types of data routinely available in C*MIP simulations
or using log-transformed data to account at least partially for
process-immanent nonlinearities that hinder the usage of ex-
periment data from larger levels of forcing.

Apart from giving a systematic quantification of the sen-
sitivities, as hinted above linear response functions can be a
powerful tool to gain insight into the internal dynamics of
the carbon cycle. Because response functions fully charac-
terize the linear response of a system, they contain informa-
tion on its distribution of internal timescales, i.e., the weights
with which characteristic timescales from internal processes
contribute to the macroscopic response of the system. These
weights may shed light into which are the most relevant pro-
cesses to the response at different timescales. For our appli-
cation to the land carbon, such information may give insight
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into the main processes influencing the model spread found
in the C*MIP results.

However, while several studies have tried to obtain the
weights of different timescales in the carbon cycle by fit-
ting response functions to a sum of a few exponents (Maier-
Reimer and Hasselmann, 1987; Enting and Mansbridge,
1987; Enting, 1990; Joos et al., 1996, 2013; Pongratz et al.,
2011; Colbourn et al., 2015; Lord et al., 2016), in principle
it is not clear to what extent such results can be trusted, let
alone interpreted. The reason is that finding these weights
from data is a severely ill-posed problem that requires spe-
cial methods to be dealt with (Istratov and Vyvenko, 1999).
In contrast to the classical fitting procedures, by employ-
ing a regularization technique (Groetsch, 1984; Engl et al.,
1996) combined with a novel estimation of the noise level
in the data (see Part 1) our RFI method accounts for this ill-
posedness. In addition, instead of assuming that the response
functions result from only few timescales, the RFI method
recovers a continuous spectrum of timescales, in agreement
with what one would expect when studying the carbon cycle
response (Forney and Rothman, 2012a). In the present work
we show that, in contrast to results obtained with classical fit-
ting procedures, spectra recovered by the RFI method may be
reliable and even interpretable. For this purpose, we inves-
tigate a relatively detailed spectrum of timescales that arises
from a high-quality recovery of the generalized B sensitivity.
We examine (i) the robustness of the obtained spectrum and
(i) the explanation for its timescale structure.

An additional novelty introduced here is a simple proce-
dure to estimate the linear regime of the response, i.e., the
range of perturbation strengths for which the response of
the system can be considered linear. As discussed in Part 1,
the presence of traces of nonlinear responses in the data can
severely deteriorate the recovery of the response function.
Hence, to make sure that the data from which the response
function is recovered contain no strong nonlinearities, one
must be able to estimate the linear regime of the response.
Because the response functions will be derived from 1 % ex-
periments, we introduce a technique to estimate with the aid
of additional simulations the linear regime from this type of
experiment. By this technique the linear regime of the re-
sponse of land carbon to changes in CO; and climate for the
MPI-ESM will be estimated.

The outline of the paper is as follows. In the next section
we introduce the methodology of the study including the RFI
method, the C*MIP experiments, and the technique to esti-
mate the linear regime of the response from “percent” ex-
periments. In Sects. 3 and 4 we identify and investigate the
generalization of the y and B sensitivities in the MPI-ESM.
In Sect. 5 we investigate the detailed spectrum of timescales
obtained for the generalized B sensitivity. In Sect. 6 the re-
sults are summarized and discussed.

Nonlin. Processes Geophys., 28, 533-564, 2021
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2 Methodology

In this section we introduce the methodology employed
throughout the study. We start by briefly introducing the RFI
method (for a detailed description please refer to Part 1),
the C*MIP-type experiments considered here, and technical
details for the identification of the generalized sensitivities.
Then, we present our procedure to estimate the linear regime
of the response from “percent” experiments.

2.1 RFI method and C*MIP experiments

The RFI method identifies the response function x (¢) taking
data from the response Y (¢) — in our example the global land
carbon — and the perturbation f(¢) — atmospheric CO; or
temperature (see below) — assuming the following relation
(see Part 1):

t

AY () = / Xt =) Af(s)ds + (1), 3)
0

where 7(¢) is a noise term. Here AY (¢) and A f(¢) mean that
we are taking only the change in the variables with respect to
their equilibrium values from a control simulation. Follow-
ing Forney and Rothman (2012a), the spectrum of internal
timescales is obtained by assuming that the response func-
tion x(¢) can be represented by an overlay of exponential
modes:

(1) = / g()e " dr. @)
0

To account for the large range of timescales in the carbon
cycle (Ciais et al., 2013) it is useful to rewrite Eq. (4) in terms
of log;( 7, so that

o0

x() = /Q(T)eft/rdloglof’
with ¢(7) :=71In(10)g (7). (®)]

The spectrum of timescales is then given by ¢ (t), which fol-
lowing the terminology from Part 1 we call simply spec-
trum. The problem is solved by discretizing Eqs. (3) and
(5), prescribing a distribution of timescales 7, taking the data
on AY(t) and Af(¢), and solving a minimization procedure
for the spectrum g (7). The parameters to prescribe the dis-
tribution of timescales are taken identically to those cho-
sen for the application to the toy model in Part 1. To treat
the ill-posedness we employ Tikhonov—Phillips regulariza-
tion (Phillips, 1962; Tikhonov, 1963) in a singular value de-
composition (SVD) framework that gives the solution by the
expansion (Hansen, 2010; Bertero, 1989)

M=l ;e AY
0= im0, ©)
i=0

Oi
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where e is the usual scalar product, M is the number of
timescales, u; and v; are the singular vectors, o; are the sin-
gular values, A is the regularization parameter, and f; (1) are
the filter functions

2
gi

. 7
o_i2+)\‘ ()

fiv) =

The regularization parameter A is determined by the dis-
crepancy method (Morozov, 1966) with noise level estimated
from a SVD analysis of the data combined with information
from the control simulation. Once the spectrum ¢, is found,
the response function yx (¢) follows from Eq. (5).

All linear response functions are identified by the RFI
method taking data from C*MIP-type experiments per-
formed with the MPI-ESM. We focus on identifying the
response functions from standard 1 % experiments that are
widely available in international databases. In addition, to
examine the quality of the results, we also identify some
response functions taking data from additional experiments.
To investigate the robustness of the identified response func-
tions, we employ them to predict the response of the MPI-
ESM in several experiments not used for the identification. A
summary of the experiments considered in the study is given
in Table 1, with forcing scenarios shown in Fig. 1.

The variables taken for the identification of the response
functions are the ones relevant for the quantification of the
land carbon sensitivities y and 8, respectively:

(a) the change in global land carbon in response to changes
in global land temperature;

(b) the change in global land carbon in response to changes
in atmospheric CO;.

Global land carbon is computed as the sum of the total land
carbon over all grid cells of the model. Global land tem-
perature is calculated as the mean near-surface air temper-
ature over land at 2 m height. The changes are computed as
AY () = Y (t)—Yp1, with Ypy being the mean value of observ-
able Y from a control simulation at pre-industrial conditions.
Since the main interest lies in long-term variations, annual
mean data are used.

As demonstrated in Appendix C, the generalization of the
B sensitivity can be shown to be monotonic. Therefore, in the
following we will derive it employing the additional noise-
level adjustment in the RFI algorithm (step 6 of Fig. 1 in
Part 1). Since the generalization of the y sensitivity is not
known to be monotonic, for this sensitivity the RFI algorithm
will be applied without the additional adjustment.

2.2 Estimating the linear regime from “percent”
experiments

As described in Part 1, the recovery of response functions
is complicated by the presence of noise and nonlinearities.
The RFI method is designed to cope with the former. In the

https://doi.org/10.5194/npg-28-533-2021
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Table 1. C*MIP-type experiments considered in this study. Forcings are shown in Fig. 1. Abbreviations “rad” and “bgc” refer to standard
CMIP model setups used to calculate the climate-carbon cycle sensitivities. In the “rad” (radiatively coupled) setup only the radiation code
of the model is affected by changes in atmospheric CO5. This setup is used to calculate y. In the “bgc” (biogeochemically coupled) setup
only the biogeochemistry of the model is affected by changes in atmospheric CO;. This setup is used to calculate 8. In brackets are names

of standard CMIP experiments.

Type Forcing Description

0.5 % rad

0.5 % bgc

0.75 % rad

0.75 % bgc

1 % rad (esmFdbkl)

1 % bgc (esmFixClim1)

Percent

CO; is exponentially increased from its pre-industrial value at the specified
percent rate per year.

1.5 % rad
1.5 % bgc
2 % rad
2% bgc
Step 1.1xCO; rad CO;, is abruptly increased from its pre-industrial value by the specified factor.
1.1xCO; bgc
2xCO; rad
2xCO, bgc
Control  Pre-industrial (piControl)  CO3 is held fixed at its pre-industrial value.
2000] — 0.5% the response AY (¢) of the system into the perturbation A f (¢)
0.75% (see Sect. 2 in Part 1). This expansion is given by
— 1%
30001 ___ 159 t
% e AY(I)=/X(l—S)Af(s)ds+n(t)+0((Af)2), ®)
= 2000{ — 1.1xCO,
) 2xCO; 0
9]
1000 where O((Af)?) represents terms of order 2 and higher in
/ the perturbation A f. For small enough perturbations the term
0 ouAaf )2) is small compared to the linear-order term and

0 20 40 60 80
Time [yr]

100 120 140

Figure 1. Forcings for the C4MIP—type experiments considered in
this study.

present section we present a technique to cope with the latter,
but at the expense of performing additional response experi-
ments. This technique will serve as a complement to the RFI
method in the application to the land carbon cycle in the fol-
lowing sections. By these additional experiments we will de-
termine the range of forcing strengths for which the response
can be considered linear — an analysis in general not possi-
ble using only the control and perturbation experiments on
which the RFI method is based.

Before we introduce this technique to cope with nonlin-
earities, it is useful to specify more clearly what we mean by
“nonlinearity”. Dynamical systems like the Earth system are
crowded with nonlinearities. Our notion of “nonlinearity” is
much more specific: the linear response formula (Eq. 3) can
be interpreted as the linear term in a Volterra expansion of
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can be ignored, so that Eq. (8) yields Eq. (3). Through-
out this study, nonlinearities are defined as the nonlinear
terms O((Af)?) in this expansion. Indeed, these nonlinear
terms arise from the intrinsic nonlinearities of the underlying
system. In the language of statistical mechanics one would
call those intrinsic nonlinearities as “microscopic”. This in
mind, our notions of linearity and nonlinearity should then be
termed “macroscopic”. Since the idea here is to study the lin-
ear response of the system, we will be interested only in the
case where perturbations are so small that the nonlinear terms
O((Af)?) can be ignored. However, the question is whether
they can be ignored. It is clear that nonlinearities may gain
importance with increasing forcing strength. Hence, to study
only the linear response, experiment data can be used for our
purpose only up to such perturbation strengths where non-
linearity start to contribute to the response; i.e., we have to
identify the regime where the response is still linear. This is
the purpose of the technique that we describe in the follow-
ing.

To introduce our technique we use the example of sim-
ulations with the linear toy model employed in Part 1. To

Nonlin. Processes Geophys., 28, 533-564, 2021
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demonstrate the effect of nonlinearities on the recovery of
x (1), following Part 1 we artificially add a nonlinear term
—aY?(¢) to the linear response Y (r) of the toy model:

Yoontin (7) 1= Y (1) —aY*(z). )

In this way we obtain a nonlinear response Ynonlin(#), With
nonlinearity strength controlled by the parameter a, from
which x (¢) is derived. In addition to including this nonlinear
term in the toy model response, to introduce the technique
we will need to quantify the quality of the recovery of the re-
sponse function. Since in our application to the land carbon
the “true” response function is not known a priori, follow-
ing Part 1 we quantify the quality of the recovery indirectly
by measuring the quality with which the recovered response
function can predict the response of the model in experiments
not used for the recovery itself. For this purpose we introduce
the relative prediction error

_IAYE — x+ A fH)
IAYH|

&k (10)
where * stands for the convolution operation, AY¥*and A f k
are the response and the perturbation in experiment “k”, and
X is the response function recovered from the 1 % experi-
ment.

We can now present our technique. Taking first a purely
linear situation (a = 0), we show in Fig. 2a the relative pre-
diction error (Eq. 10) when using the response function ob-
tained from a 1 % simulation to predict the response from
two other % simulations with smaller growth rate. More pre-
cisely, performing a sequence of 1 % experiments for increas-
ingly longer simulation periods, we calculated for each ex-
periment the response function and used it to predict the re-
sponse for a 0.5 % and 0.75 % experiment covering the same
simulation period. Then we plotted in Fig. 2a the relative
prediction error against the final forcing strength of the 1 %
experiment. As a result, it is seen that with increasing final
forcing strength the relative prediction error decreases. This
happens because in this linear case the SNR is increasing
with increasing simulation period, i.e., with increasing final
forcing strength, so that the recovery of the response function
continuously improves.

Calculating the relative prediction error only for exper-
iments with smaller growth rate becomes important in the
next case where nonlinearities are considered (Fig. 2b). This
plot was obtained by the same procedure except that we took
for the nonlinearity parameter a value a > 0. As seen, in this
nonlinear case the relative prediction error is first improving
but deteriorating afterwards. For small forcing, nonlineari-
ties are small and therefore the relative prediction error be-
haves as in the linear case; i.e., it decreases with final forcing
strength. However, when forcing strengths become larger,
nonlinearities start to contribute substantially to the response,
thereby causing a deterioration of the recovery of the re-
sponse function and consequently the relative prediction er-
ror once more increases. This increase of the prediction error
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can be unambiguously traced back to the presence of non-
linearities in the 1 % simulation because the prediction er-
ror was calculated only for experiments with smaller growth
rate, i.e., smaller forcing strength throughout the whole sim-
ulation. Therefore, nonlinearities contribute already substan-
tially to the response in the 1 % simulation before they be-
come relevant in the other experiments. Accordingly, with
this type of experiment setup we can be sure that the increase
in the prediction error comes solely from the deterioration of
the recovery of the response function and not from nonlin-
earities in the additional experiments used for calculating the
prediction error.

Obviously, for forcing strengths smaller than at the min-
imum, nonlinearities do not hinder the recovery of the re-
sponse function, so that one can consider this to be the regime
of linear system behavior. In view of the trade-off between
noise and nonlinearities, for the 1 % experiment the response
function is thus optimally recovered when taking as final
forcing strength the value at the minimum of the prediction
error curve. Similarly, if the error curve has no minimum
(as in the linear case shown in Fig. 2a), the optimal recov-
ery is obtained from the experiment with the largest forcing
strength.

With the presentation of this additional technique to iden-
tify the linear regime we are ready for the application to the
MPI-ESM in the next sections.

3 Generalized sensitivity x,,

In this section we identify from MPI-ESM simulations the
linear response function x, (generalized y sensitivity), de-
fined by

t

AC™(p) :/Xy(t—s)AT(s)ds—i-n(t), (11)
0

where now the response is AY (¢) := AC™(r) and the forc-
ing is Af(r) := AT(r), with AC™(r) being the change in
global land carbon obtained in the “rad” experiment (see Ta-
ble 1) and AT (¢) the change in global land temperature.

That x, indeed generalizes y can be understood by con-
sidering that y is defined by

t
_AC™MB a1
y() = ATG) AT(t)/xy(t—s)AT(s)ds, (12)
0

for a negligible noise n(¢). From Eq. (12) it is clear that by
knowing x, (¢) one can compute the response AC rad (1) and
thereby y (¢) for any time-dependent perturbation AT (¢), as
long as the perturbation strength is small. Hence, x, () can
be seen as a property of the land carbon system and a gener-
alization of y (¢).
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(a) Linear case (b) Nonlinear case
0.225
5 0.200 0% | 50200] —_ 0%
e~ 0.75% < 0.75%
5 0.1751 I 0 0.175
& 0.150 5
=0 5 0.150
= 0.1251 =
D ® 0.125
5 0.100 =
20,075/ £ 0.100
) =
© 0,050+ © 9075
& &
0.0251 r 0.050 "

100 200 300 400 500 600 700 800
Final forcing strength in the 1%

100 200 300 400 500 600 700 800
Final forcing strength in the 1%

Figure 2. Toy model example for the identification of the linear regime by using additional experiments. Shown is the relative prediction error
(Eq. 10) for the response of 0.5 % and 0.75 % experiments as obtained from the response function calculated by the RFI method from 1 %
experiments. The relative prediction errors are plotted against the final forcing strengths of a sequence of 1 % experiments with increasing
time series length. The crosses at the minima indicate the final forcing strength for which the response function is optimally recovered (see
text). (a) shows the behavior for the fully linear toy model (a = 0) and (b) the behavior in the presence of nonlinear contributions to the
response (a =5 x 10~3). For the purpose of demonstrating more clearly the increase in the relative prediction error for a decrease in the
forcing strength, we include in the plot cases where the forcing strength is extremely small, corresponding to very small time series lengths.
To deal with such cases, we set for a number of data points N < 30 the number of timescales M = N (see parameters for the RFI method
in Part 1). For such small number of timescales, usually no plateau in the singular values spectrum is found (step 2 of Fig. 1 in Part 1).
Therefore, for these special cases we also modify the algorithm to interpret the two smallest singular values as a plateau, since their small
magnitude makes them have a similar effect to those singular values belonging to the plateau itself. In addition, to illustrate the most general
case where x (¢) is not known to be monotonic, we exclude here the monotonicity check (step 6 of Fig. 1 in Part 1).

3.1 Estimating the linear regime 1.0 T . 50‘4,
S 0.75%
As a first step in obtaining a proper approximation of ., (¢), @08 »
we investigate what maximum forcing strength can be used S
to ensure that the recovered x,, (¢) is not spoiled by the pres- E 06
ence of nonlinearities. Using the technique introduced in “5’_04
Sect. 2.2, we show in Fig. 3 the relative prediction error e
(Eq. 10) for yx, (¢) recovered from the 1% rad experiment % 0.2
as a function of the final forcing strength in the 1 % rad ex- ©
periment. There is no clear minimum, so that for the data 0.0 7 3 3 7 p &

available the recovery of yx, (#) seems not to be limited by
nonlinearities. For optimal recovery we thus take the full time
series, i.e., the maximum final forcing strength.

Final forcing strength in the 1% [K]

Figure 3. Relative prediction error (Eq. 10) for the 0.5 % and 0.75 %
rad experiments using x (¢) recovered from the 1% rad experi-
ment. The error is shown as function of the final forcing strength
used for the recovery of xy (7). No clear minimum is found, so that
the recovery seems not to be limited by nonlinearities.

3.2 x, and the quality of its recovery

The quality of the recovery can in principle be improved
by taking an experiment with better SNR. To investigate
whether the recovery from the 1 % rad experiment can be fur-
ther improved, we also applied the RFI algorithm to recover
Xy from the 2xCO; rad experiment. We chose the 2xCO;
rad experiment because as shown in Fig. 4 it has smaller
forcing strengths than the maximum forcing strength for the
1 % rad experiment — therefore nonlinearities should also not
limit the recovery — but is expected to carry useful informa-
tion over a larger range of the response spectrum. This ex-

where the tilde denotes Laplace transformed functions. From
Fig. 4 it is seen that for the 1 % rad experiment the temper-
ature AT behaves approximately as a linear function, which
gives a Laplace transform AT (p) proportional to 1/p2. For
the 2x CO; rad experiment, the temperature behaves approx-
imately as a step function (ignoring the transient in the first
20 years), which gives a Laplace transform AT (p) propor-

pectation can be justified as follows (MacMartin and Kravitz,
2016). Taking the Laplace transform of Eq. (11) gives

AC™(p) = %, (P AT (p) +7(p), (13)
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tional to 1/p. This means that for the same ,,, the first term
on the right-hand side of Eq. (13) — the “clean” response —
decays to zero faster for the 1 % rad experiment than for the
2xCO; rad experiment. Hence, assuming the same noise 7
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Figure 4. Forcing temperature AT (¢) for 1 % and 2xCO; rad ex-
periments.

for both cases, the response from the 2 xCO» rad experiment
is buried in the noise only at larger p, meaning that this ex-
periment carries useful information until higher rate values p
than the response from the 1 % rad experiment.

The response function x,, (t) recovered from the two types
of experiments is shown in Fig. 5a. As expected, the different
experiments indeed result in different recoveries. Because we
know from the analysis of Fig. 3 that nonlinearities do not
limit the recovery, the difference between the two response
functions probably results from the difference in the quality
of the data from the two types of experiments. To compare
the robustness of each recovery, we analyze how well they
predict the response from other experiments (Fig. 5b and c).
If the response function is correctly recovered, it should be
able to predict not only experiments with smaller, but also
experiments with higher forcing rates. Therefore, we also in-
clude in the analysis 1.5 % and 2 % rad experiments. To ex-
clude errors that may be caused by nonlinearity, we take as
a conservative estimate of the linear regime forcing strengths
smaller than the final forcing strength at the end of the 1 %
rad experiment (which is approximately the maximum forc-
ing strength; see temperature value at + = 140 years for the
1 % rad experiment in Fig. 4). We take these values as an es-
timate of the linear regime because the 1 % rad experiment
has only 140 years, so that no estimate for higher forcing
strengths is available. Hence, for the 1.5 % and 2 % rad ex-
periments the responses are expected to be reasonably pre-
dictable at least until the values marked with circles, where
their respective forcing strengths reach this maximum forc-
ing strength. All other experiments have forcing strengths
smaller or equal to this maximum forcing strength, so that
they should be predictable for the whole time series.

Figure 5b shows the quality of the prediction using y,, (t)
recovered from the 1 % rad experiment. Visually, model re-
sponse and prediction seem to have a comparable quality of
agreement across the 1.1xCO», 0.5 %, 0.75 % and 1.5 % rad
experiments, while for the 2 % and 2xCO, rad experiments
there are larger discrepancies. For a quantitative analysis, we
compute for the estimated linear regime the relative predic-
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tion error (Eq. 10) for each experiment (right side of the plot).
It is seen that the error varies from less than 10 % for the
0.75 % and 1.5 % rad experiments to values between 10 %
and 20 % for the 0.5 %, 2% and 2xCO, rad experiments,
and a significantly larger value of 57 % for the 1.1xCO, rad
experiment. To better understand these differences, it is im-
portant to note that as long as nonlinearities are small, ex-
periments with higher forcing strength are expected to have
smaller prediction error because they have higher SNR. This
can be made plausible by considering that a perfectly recov-
ered response function predicts a “clean’ linear response (in-
finite SNR) with zero error, whereas the same response func-
tion can predict a noisy response only with some finite error.
Therefore, if x,, (¢) is well recovered, we expect large predic-
tion errors for experiments with small forcing strengths such
as the 1.1xCO, rad — which is indeed the case — but small
errors for experiments with large forcing strengths but still
well within the linear regime such as the 2xCO; rad (com-
pare the forcing strengths for the 2 x CO; rad experiment and
the maximum forcing strength for the 1 % rad experiment in
Fig. 4). Since contrarily to the expectation the prediction er-
ror is not particularly small for the 2xCO, rad experiment,
probably the recovery of x,, (t) derived from the 1 % rad ex-
periment is not completely accurate and may still be further
improved. As suggested above, such improvement may be
achieved by taking data with better quality from the 2xCO;
rad experiment.

Figure 5c shows the quality of the prediction using x, (¢)
recovered from the 2 xCO» rad experiment. As expected, re-
sults indicate an improvement in the recovery (compare to
Fig. 5b). The prediction error decreases for all experiments
present in both plots. In addition, it also decreases if we com-
pare the prediction of the 1 % rad response in Fig. Sc with
that of the 2x CO; rad response in Fig. 5b.

This section therefore suggests two main conclusions:
first, for x,, (¢) the response seems to be approximately linear
for temperature perturbations up to at least 6 K. Second, the
overall improvement of the prediction in Fig. 5S¢ compared to
Fig. 5b confirms the expectation from the Laplace transform
analysis that the step-like 2x CO; rad experiment indeed car-
ries more information on the response function than the 1 %
rad experiment. This suggests that step-like experiments may
be more appropriate than the standard 1 % experiment for the
identification of linear response functions.

4 Generalized sensitivity xg

In this section we identify the linear response function xg
(generalized B sensitivity), defined by

t

ACbgC(t)=/Xﬂ(t—S)ACatm(S)ds+77(t), (14)
0
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Figure 5. x, recovered from 1 % and 2xCO, rad experiments (a) and prediction of model responses using these recoveries of x, . Circles
indicate the maximum value for which 1.5 % and 2 % responses are predictable according to the estimate of the linear regime (see text). At
the right of (b, c) the relative prediction error (see Eq. 10) is indicated for the different experiments, calculated for the 1.5 % and 2 % rad

experiments by considering only values preceding the circles.

where now the response is AY (¢) := AC"%(¢) and the forc-
ing is Af(t) := ACam(?), with ACP°(r) being the change
in global land carbon found in the “bgc” experiment and
ACym(?) the change in atmospheric CO, (and not atmo-
spheric carbon content, as might be expected from the no-
tation).

That xg indeed generalizes B can be understood analo-

alternative formulas to derive xg(¢), each taking a differ-
ent forcing. The identification is performed in three different
ways:

1. Using CO, as forcing (see Eq. 14);
2. Using the logarithm of CO, as forcing:

gously to Sect. 3 by considering that 8 is defined by ACPE(1)
t
ACPE (1) Cam(s)
= ACFO [ 1
B ACan (1) Xxg (t — $)Coyy In 0 ds +n(1), (16)
0
e ;/ (t —s)ACym(s)ds (15) where now the forcing is
= ACam (1) XB atm ) g
. Cam (1)
for a negligible noise 7(r). Hence, xg(r) can be seen as a Af() = Ca‘ml ( 0 ’

generalization of §(¢) and a property of the land carbon cy-
cle that characterizes the response ACPE(¢) to any time-
dependent perturbation A Cym (f), as long as the perturbation
strength is small.

4.1 Approaches to identify xg

Similarly to the last section, we identify xg(¢) by several ap-
proaches to find the one that gives results with the best qual-
ity. For this purpose, we also consider in addition to Eq. (14)

https://doi.org/10.5194/npg-28-533-2021

with CO,
COy;

being the pre-industrial value for atmospheric

3. Using net primary production (NPP) as forcing:
ACPE (1)

t

=/XNPP(t — 8)ANPP(Cam (s))ds + (7).
0

a7
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The first approach is the same used throughout the paper:
xp(t) is identified using the ACyyy (1) forcing from Eq. (14).

The second and third approaches are motivated as follows.
In the “bgc” setup, changes of atmospheric CO, affect land
carbon exclusively via the resulting changes in primary pro-
ductivity!. Therefore, the reaction of land carbon to CO, per-
turbations may be understood as a two-step process: first,
CO affects primary productivity (carbon assimilation); sec-
ond, the assimilated carbon adds to land carbon storage. This
second step is in models typically described by an almost
linear system of storage compartment forced by NPP (see,
e.g., Xia et al., 2013; Huang et al., 2018). Thus, presumably
the response of land carbon to NPP is well described by a
linear response function. These considerations underlie the
second and third approaches but are more explicitly realized
in the latter: there we first derive the linear response function
xNpp(7) describing the response of land carbon to changes in
NPP, and then use the data of the simulated dependence of
NPP on CO; to derive the desired response function xg(t)
(see Eq. 21). In this way we try to keep the most critical
step in the identification of the response function, namely the
inversion of the response integral, largely free from nonlin-
earities, and indeed, for this reduced problem, without much
interference from nonlinearity we can recover the response
function from experiment data obtained for much higher per-
turbation strengths than in the first approach, and because of
the higher SNR the quality of recovery is thereby largely im-
proved (see below). Instead of NPP one could also try to split
off the nonlinear part by taking GPP (gross primary produc-
tion), which differs from NPP only by the autotrophic respi-
ration. However, autotrophic respiration is lost to the atmo-
sphere, so that it is NPP and not GPP that adds to land carbon
storage. Thus, by taking NPP instead of GPP the linear part is
arguably splitted off more completely. The second approach
is motivated in the same way, except that the nonlinear part
is guessed to be a logarithmic function of CO; as suggested
by the Keeling formula (see, e.g., Alexandrov et al., 2003),
so that here no additional NPP data are needed from simula-
tions.

Mathematically, our procedure in each approach is the fol-
lowing. In the second approach (see Eq. 16), we employ as
forcing a logarithmic expression because it is known that a
large part of the nonlinear relation between CO; and carbon
storage comes from the approximately logarithmic depen-
dence of NPP on CO; (e.g., Alexandrov et al., 2003). Such
formula has the advantage that the expansion of the forcing

IThese changes in primary productivity may arise both from the
increase in CO; concentrations at the leaf level that leads via re-
duced photorespiration to enhanced carbon assimilation and from
increased soil water savings caused by a reduction of stomatal con-
ductance (e.g., Walker et al., 2020). This reduction leads to de-
creased transpiration and thereby to climatic changes, but these
changes are expected to be small (e.g., Arora et al., 2013, 2020).
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in Cyyy, gives

t

AC™ (1) = f X' (t = ) ACum(s)ds
0
+ O((ACum)?) + 1(1). (18)

Taking ACy sufficiently small and comparing the result to
Eq. (14) thus yields

xp() = x§(0). (19)

Accordingly, the response function X}lgn (t) from Eq. (16) also
gives the desired xg(1).

In the third approach, we take directly the response to NPP
(see Eq. 17). Expanding the forcing ANPP(Cam) in Cam
gives

t
dNPP

ACP (1) = / aep(t =8$)=—| ., ACum(s)ds
atm atm=C3tm
0
+ O((ACym)?) +1(1). (20)

Taking ACyy sufficiently small and comparing the result to
Eq. (14) yields

dNPP
a Catm Catm :C:?lm .

xp(t) = xnpp(?) (21)
Accordingly, by this approach we compute xg(¢) in three
steps: first, we identify the response function yNpp(?) using
Eq. (17); second, we take the first derivative of NPP with
respect to COy at Cym = Cgtm; third, we apply Eq. (21) to
obtain xg(t) from xnpp(?).

4.2 Checking nonlinearities with the three approaches

Before analyzing the recovery of xg(t) employing the three
approaches, one must verify that these two additional ap-
proaches indeed account for some of the nonlinearities in the
response. If this is true, response formulas (Egs. 16 and 17)
should be able to predict the response to larger perturbation
strengths than Eq. (14). To verify this expectation, in the fol-
lowing we compare the relative prediction error (Eq. 10) by
applying Egs. (14), (16) and (17).

Figure 6a shows the relative prediction error for xg(¢) re-
covered from the 1 % bgc experiment with the first approach
(Eq. 14). The prediction is also computed via Eq. (14). The
clear minima indicate the presence of strong nonlinearities
for forcing strengths above around 100 ppm (94 ppm for the
0.5 % and 133 ppm for the 0.75 %). Therefore, in contrast to
the case of x, discussed in the last section, we see here that
one indeed has to cope with the additional difficulty of non-
linearities.

Figure 6b shows the prediction error when using X}j“ ®)
recovered from the 1 % bgc experiment with the second ap-
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Figure 6. Relative prediction error (Eq. 10) for the 0.5 % and 0.75 % bgc experiments obtained when using xg(t), X}jn(t) and xnpp(?)
obtained from the 1 % bgc experiment to predict the response. The error is shown as a function of the CO; final forcing strength.

proach (Eq. 16). To check how well nonlinearities are ac-
counted for by taking the logarithmic forcing, the predic-
tion is also computed via Eq. (16). Compared to Fig. 6a,
we see a slight improvement in the results: the minima have
smaller prediction errors and the prediction errors increase
at a slower rate for increasing final forcing strength. This in-
dicates that using the logarithm of CO; as forcing indeed
accounts for some of the nonlinearities in the response. Ac-
cordingly, one can make predictions with smaller error for
larger forcing strengths using Eq. (16) instead of Eq. (14).

Figure 6¢ shows the prediction error for xnpp(#) recov-
ered via Eq. (17) from the 1 % bgc experiment (first step
of the third approach). To check how well nonlinearities are
accounted for by taking the NPP forcing, we also employ
Eq. (17) for the prediction. Here, we see a substantial im-
provement in the results. The response is almost completely
linear, with very “flat” minima. This indicates that a large
part of the nonlinearity encountered in the response of the
land carbon to changes in CO; can indeed be explained by
the nonlinear relationship between NPP and CO,. Accord-
ingly, by employing Eq. (17) instead of Eq. (14) one can pre-
dict the response of the land carbon until forcing strengths as
high as 800 ppm with an error smaller than 10 %.

4.3 xp and the quality of its recovery

So far, we have only considered the ability of Egs. (14),
(16) and (17) to predict the land carbon response. Now,
we analyze how well the generalized sensitivity xg(t) can
be identified by the three approaches. For the identification
we took data from the 1 % bgc experiment until the CO;
forcing strength reaches the first minimum for each case in
Fig. 6: ACaym =94 ppm for the first approach (30 years);
ACyam = 133 ppm for the second approach (40 years); and
ACym = 279 ppm for the third approach (70 years). Since
ACam = 279 ppm is approximately the forcing strength for
the 2xCO; bgc experiment and results from last section sug-
gested that this type of experiment may carry more informa-
tion for the identification, we employ the third approach, also
taking the 2xCO; bgc experiment. For the present applica-
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tion where the recovery is limited by nonlinearities, taking
the 2xCO; bgc experiment has the additional advantage that
because its forcing strength has a constant value through-
out the whole experiment, we can use the full time series
(140 years). To compute the first derivative of NPP with re-
spect to CO, (second step of the third approach), we fitted
the function NPP = NPP(Cy,) to polynomials of order 4, 5,
and 6 and then took the first derivative from the fits.

The results from the three approaches are shown in Fig. 7a.
At short timescales there is an overall agreement among all
recoveries with only small discrepancies. To be able to com-
pare the results also for longer timescales, we extend the
response functions recovered from the 1 % bgc experiment
— obtained from time series with 30, 40, and 70 years, re-
spectively, for the first, second, and third approaches — un-
til 140 years (extensions are indicated by dotted lines). This
can be done because with the RFI method we derive the re-
sponse function from the ansatz (5), which formally gives
the values of the response function for all times. The result
is that all response functions recovered from the 1 % bgc ex-
periment present relatively small discrepancies even at long
timescales. Response functions derived from the 2xCO; bgc
experiment with the third approach show a similar behavior
among themselves but differ from the recoveries using the
1 % bgc experiment. The reason for this difference will be
investigated below.

To quantitatively compare the quality of the recoveries, we
plotted in Fig. 7b the relative prediction error (Eq. 10). Since
the response functions were derived using different time se-
ries lengths, for a fair comparison we compute the error only
at the minimal time series length of 30 years (the time series
length used for the first approach). Results show no large dis-
crepancies among the different approaches. For the third ap-
proach, there seems to be a small advantage in using a poly-
nomial of order 6 for the computation of the derivative.

However, results from Fig. 7b reflect only the quality of
the recoveries at short timescales, for which anyway no large
discrepancies were encountered in Fig. 7a. To evaluate the
quality of the recovery also at long timescales, one must take
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the extended version of the response functions that were de-
rived from shorter time series. Since the only substantial dif-
ference at long timescales in Fig. 7a is found between the
response functions recovered from the 1 % and 2xCO; bgc
experiments, we take for this analysis exemplarily only the
response functions recovered with the first approach (1 %
bgc experiment) and the third approach (2xCO, bgc exper-
iment). By choosing the response function recovered with
the first approach, we evaluate for the worst case scenario
(where only 30 years are used for the recovery) how reli-
able predictions are for timescales longer than the time series
used for recovery. In contrast, by choosing the response func-
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tion recovered with the third approach from the 2xCO; bgc
experiment, we check whether the different values at long
timescales are actually an improvement in the recovery. As
mentioned above, such improvement is expected because this
response function was recovered taking the full time series
(140 years).

Following the same procedure as in the last section, in
Fig. 8 we show the quality of the prediction for different
experiments using the aforementioned recoveries of xg(z).
Figure 8a shows the results for the predictions calculated via
Eq. (14) using xp(t) recovered with the first approach. We
take as an estimate of the linear regime forcing strengths
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smaller than the forcing strength at the first minimum in
Fig. 6a. The response values corresponding to this forcing
strength are marked in Fig. 8a with circles. It is seen that
although xg(¢) was recovered using a time series of only
30 years, it predicts the 1.1 xCO; bgc experiment with only
3 % error over 140 years. Other experiments are predicted
within the linear regime with error smaller than 10 % with
exception of the 2 % bgc experiment, for which the error
is around 14 %. Since the 2xCO, has a constant forcing
strength outside the linear regime already from the begin-
ning, its prediction fails as expected for the whole time se-
ries.

In Fig. 8a we could only evaluate the quality of the long
timescales of xg(t) by the prediction of the 1.1xCO; bgc
experiment, because this is the only experiment which has
forcing strengths within the linear regime over the whole
time series. To check the ability of xg(¢) to predict also other
experiments at long timescales, we account for some of the
nonlinearity in the response by taking NPP instead of CO; as
forcing (see discussion of Fig. 6). Therefore, we perform the
prediction by employing Eq. (17) instead of Eq. (14). Since
for employing Eq. (17) one needs xnpp(t) and not xg(t), we
take the xg(t) derived with the first approach and compute
xnpp(2) from it via Eq. (21). Because the conversion from
xp(t) to xnpp(?) is a simple scaling, the timescales structure
is maintained. Hence, we can evaluate the quality of the re-
covered xg(¢) from the results given by the obtained ynpp(?).
The prediction results computed via Eq. (17) with the ob-
tained xNpp(¢) are shown in Fig. 8b. Because errors at the
minima in Fig. 6¢ are not substantially smaller than those at
the maximum final forcing strength, we take as an estimate
of the linear regime all values smaller than the last value of
NPP for the 1 % bgc experiment (marked with circles in the
responses). Once again it is seen that although xg(¢) was re-
covered using a time series of 30 years, after conversion to
xnpp(#) almost all experiments can be predicted with less
than 10 % error for the whole time series. The 1.5 % and 2 %
bgc experiments are predicted with errors of 17 % and 4 %
within the linear regime. Results from Fig. 8a and b there-
fore suggest that although nonlinearities do restrict the recov-
ery from Eq. (14), taking experiments with forcing strengths
within the linear regime for the recovery leads to reliable
prediction results even for times reasonably longer than the
length of the time series from which the response function
was recovered.

Finally, we investigate whether the different values seen in
Fig. 7a for the xg(t) recovered from the 2xCO; bgc experi-
ment indeed reflect a better quality of recovery. Following the
same reasoning that led to Fig. 8b, since in the third approach
xp(t) is obtained from a scaling of xnpp(?), we evaluate the
quality of xg(¢) from the results given by xnpp(#). Accord-
ingly, in Fig. 8c we plot the prediction via Eq. (17) using the
xNpp (1) recovered from the 2xCO; bge experiment. As ex-
pected, the overall prediction indeed improves compared to
Fig. 8b. Individual relative prediction errors decrease for all
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experiments, with the exception of the 1.1xCO,. Since the
response functions used for Fig. 8b and c differ only at long
timescales, this improvement suggests that obtaining g ()
from the 2xCO; bgc experiment indeed gives a better recov-
ery over these timescales. Further, because all recoveries are
similar at short timescales (see Fig. 7a), overall this recovery
shows the best quality.

5 Spectrum of land carbon timescales

A response function obtained with high quality not only re-
sults in more accurate predictions, but may also provide valu-
able information about the internal dynamics of the system.
For the case of xg(t), we find that the recovery with best
quality gives a relatively detailed description of the spec-
trum of land carbon timescales (see Eq. 5). In this section,
we investigate (i) the robustness of this result and (ii) the ex-
planation for the structure of the obtained spectrum. The ro-
bustness of this detailed spectrum must be analyzed because,
as explained in Part 1, the problem of recovering the spec-
trum of timescales from data is ill-posed, so that in principle
it is not clear to what extent the recovered spectrum can be
trusted. To investigate this robustness, we check whether the
main characteristics of the spectrum recovered by our RFI
algorithm can also be obtained by two independent methods:
a Gregory-plot approach (Gregory et al., 2004) and an ap-
proach that combines regional responses for the tropics and
extra-tropics. Since the best recovery of xg(¢) was obtained
from the response to NPP for the 2xCO, bgc experiment, in
our investigations we will study only this case.

5.1 Obtaining the detailed spectrum

However, before we investigate the recovered spectrum, we
demonstrate how such a detailed structure may arise from
a better recovery of the response function. In Fig. 9a we
plot the spectrum ¢g(t) of the response function used for
Fig. 8b, i.e., x4(¢) recovered with the first approach (see be-
ginning of Sect. 4) and converted to xnpp(#) via Eq. (21).
Because the data used for the recovery have a relatively low
quality — the response function was recovered from the 1 %
bgc experiment taken for only 30 years — regularization fil-
ters out most of the SVD components of the spectrum in
Eq. (6). Since the low-index SVD components that are not
filtered out tend to be smooth (Hansen, 1989, 1990, see also
Part 1), the final result of this filtering is the smooth spec-
trum seen in Fig. 9a. Obviously, although this smooth spec-
trum is a sufficiently good approximation to make the pre-
dictions shown in Fig. 8b, it is not very informative about the
internal timescale structure. Instead, the spectrum of the re-
sponse function xNpp(?) used for Fig. 8c has a more detailed
structure (Fig. 9b). In this case, the higher quality of the data
used for the identification (2xCO, bgc experiment taken for
140 years) results in less filtering by regularization, thereby
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Figure 8. Prediction of model responses employing response functions derived with the first approach from the 1 % bgc experiment (derived
from data with 30 years length, but extended to 140 years) and with the third approach from the 2xCO; bgc experiment (derived from
data with 140 years length). (a) Prediction by Eq. (14) taking the response function xg(#) derived from the 1% bgc experiment with the
first approach. (b) Prediction by Eq. (17) taking the response function xg(¢) derived from the 1 % bgc experiment with the first approach
and converted to xnpp(?) by Eq. (21). (¢) Prediction by Eq. (17) taking the response function xnpp(#) derived in the first step of the third
approach (see explanation after Eq. 21) taking data from the 2xCO; bgc experiment. Continuous lines are predictions and dashed lines are
responses from the MPI-ESM. Circles indicate the maximum value for which responses are predictable according to our estimate of the linear
regime (see text). The values printed to the right of the plots are the relative prediction errors (see Eq. 10) calculated for each experiment,

considering when applicable only values preceding the circles.

revealing more details of the underlying spectrum. The re-
sult is a spectrum with two peak timescales, at around 4 and
100 years?.

5.2 Checking the robustness of the spectrum via a
Gregory-type approach

Some trust in this result may be gained via a linear-regression
procedure following the same logic underlying a “Gregory

2We ignore the negative values obtained for timescales smaller
than 1 year (data time step) and larger than 140 years (time series
length) because spectral contributions at timescales much longer or
much shorter than the timescales covered by data cannot be cor-
rectly recovered. Yet, as demonstrated in Appendix D, their wrong
recovery does not strongly affect the recovered response function,
so that they can be safely ignored. Other slightly negative values
between the two peaks are probably small recovery errors that in-
evitably appear as a consequence of ill-posedness and the filtering
by regularization (such slightly negative values have also been ob-
served in recovered spectra shown in Appendix E).
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plot” (Gregory et al., 2004) but applied here not to radiative
forcing but to land carbon. As for a Gregory plot, we look
here at how the nonequilibrium fluxes relax to equilibrium
after a step-type perturbation. In our case this is the 2xCO;
bgc experiment. The idea here is to try to identify from an
independent method important timescales in the response, so
that they can be compared against the spectrum in Fig. 9b.
For this analysis, we plot the global land carbon against its
first time derivative (this is the net land—atmosphere carbon
flux). Using the 2xCO; bgc experiment where the forcing
is constant, the first time derivative vanishes as the land car-
bon approaches a new equilibrium value. The rate at which
the derivative changes can be associated with a timescale
7;, which should show up with a large weight value ¢; in
the spectrum. Interestingly, the plot shows that the tran-
sient behavior towards equilibrium develops approximately
at two different rates: a higher rate from the starting point
until around 3520 PgC, and a lower rate from 3520 PgC on-
wards. To determine these rate values, we fitted a linear func-
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tion dC/dt = a 4+ bCPE® for each of these two ranges of the
land carbon. Then, from each rate value b we computed a
timescale by t = —1/b. The computed timescales taking 1
standard deviation into account are shown by the two ranges
highlighted in Fig. 9b. As seen, this linear-regression pro-
cedure also reveals a timescale structure dominated by two
timescales. While the shortest timescale peak of the spectrum
partially overlaps with the corresponding timescale range
from the linear-regression plot, the longest timescale peak
is almost perfectly matched?. This result suggests that the re-
covered spectrum indeed reflects internal characteristics of
the global response of the land carbon cycle.

5.3 Checking the robustness of the spectrum via
regional response functions

The robustness of this detailed spectrum can be further
checked by a different method. In the following, we test
this robustness by checking the consistency between the
timescales of global and regional carbon responses.

To study regional carbon responses, we considered two re-
gions: tropics and extra-tropics. Tropics were defined as the
region between latitudes 30° S and 30° N, and extra-tropics
as the remaining part of the globe. We then determined sepa-
rately the linear response functions that characterize the land
carbon response to NPP in the tropics and extra-tropics, de-
fined, respectively, by

t
ACPE U () = / xNpp(t — $)ANPP" (s)ds + 0" (¢), (22)

0
t

ACPE (1) = / xnpp(t — $)ANPP® (s)ds +n°'(r).  (23)
0

The data were taken once more from the 2xCO, bgc exper-
iment.

Before assessing the robustness of the spectrum, we check
the consistency between the regional and global response
functions. In this test, we show that the global response func-
tion ynpp can be reconstructed by combining Xl%PP and XI‘E,‘PP.
For this purpose, we write the global land carbon as the sum
of the land carbon in the tropics and extra-tropics:

ACPE (1) = ACPES (1) + ACPES S (p). (24)

3A possible reason for the better matching at long timescales
is that these timescales contribute to the response at short and
long times, while contributions at short timescales decay rapidly
and therefore contribute only at short times. This becomes clear
by considering for example a response function x () = aje™" /m4
are™/™2 vy >> ;. While aye™"/™ contributes to x (¢) at small and
long times, aje™’ /T contributes only at small times.
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Plugging Eqgs. (17), (22) and (23) in Eq. (24) and recognizing
that n(t) = n%(¢) + () gives

t

/XNPP(l‘ — 5)ANPP(s)ds

0
t
:/Xgpp(f—S)ANPP"(s)ds
0
r
+/X§}PP(t_S)ANPPet(S)dS. (25)
0

Applying a Laplace transform to both sides of Eq. (25) and
reorganizing the resulting equation gives

xnep(P)
_ x"nep(P)ANPPY(p) + X “'npp(p) ANPPE (p) 26)
ANPP(p) ‘

Therefore, the Laplace transformed Xnpp(p) can be obtained
from combining the NPP forcings and the response functions
for the tropics and extra-tropics. Hence, if the response func-
tions are correctly recovered by the RFI algorithm, Eq. (26)
should hold at least approximately. In order to check this,
we computed the Laplace transforms analytically by approx-
imating the NPP forcings by step functions (since we take
the 2xCO; bgc experiment), and using Eq. (5) for the re-
sponse functions. Figure 10a shows the quality of the result.
The small discrepancy between Xnpp(p) obtained from the
global carbon response and from combining the regional re-
sponses can be at least partially explained by the approxima-
tion error made to represent the forcings by a step function.

We now check the robustness of the land carbon spec-
trum by combining x\pp() and x{pp(f) to obtain xg(r) and
thereby ¢ (7). To this end, we first obtain the tropical X}; (1)
and extra-tropical xg'(¢) by applying Eq. (21):

INPPY
tr t) = tr 1), 27
XB () 9Catm Calm:CStm XNPP( ) 27)
§(1) = ONPPY Xpp (1) (28)
Xﬂ N 8Catm Calm:C:?tm XNPP ’

Note that because CO, is well mixed, ACY, ()~
Acgfm(t) ~ ACum(t), so that, by characterizing the tropi-
cal and the extra-tropical response to CO;, Xg(t) and th(t)
are describing the response to a regionally correct perturba-
tion. Using the response functions obtained from Egs. (27)

and (28), one can now write Eq. (14) for global, tropical and
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(a) First approach taking CO; as forcing
(1% bgc experiment)
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(c) Gregory-type plot for land carbon
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Figure 9. Spectra associated with xnpp derived with different resolutions and a Gregory-type plot to identify the timescale structure of land
carbon. (a) Spectrum derived with the first approach (taking CO; as forcing) from the 1 % bgc experiment; (b) spectrum derived with the third
approach (taking NPP as forcing) from the 2xCO; bgc experiment; (c) Gregory-type plot of global land carbon against land—atmosphere
carbon flux. Dots are the data, with the color scale from white to black indicating the evolution from 1 to 140 years. Values of b indicate the
rate at which the time derivative of land carbon changes with respect to the land carbon itself. Ranges of timescales corresponding to each

rate accounting for 1 standard deviation are shown in (b).

extra-tropical carbon. Plugging the result into Eq. (24) gives

t

/ xp(t =) ACqym(s)ds

0
t

:/[X};(t—s)+xgt(z—s)]Acam,(s)ds. (29)
0

Hence, one can infer that
Xp(0) = x5O + x5@). (30)

Therefore, the global response function xg(f) can be ob-
tained from Xg(t) and th(t). However, in addition, since
x (¢) is given by Eq. (5), Eq. (30) implies that one can also
obtain the global spectrum gg(7) by combining the regional
spectra:

qp (1) = q5 (r) + g5 (v). €20

Therefore, using the recovered response functions for trop-
ical and extra-tropical carbon one can obtain the global re-
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sponse function xg and its associated spectrum gg. Accord-
ingly, in this test we check Eqs. (30) and (31). For the cal-
culation of the derivatives in Egs. (27) and (28) we fitted
NPPY = NPP"(Cyyy) and NPP®t = NPP®'(Cyy,) once again
by a polynomial of order 6 (which obtained the best results
for global NPP in Fig. 7b) and took the derivatives from
the fits. For xg(¢) we used the recovery with best quality
from Fig. 7 (“NPP2X_*). The spectra qp (1), qg(r) and qzt(t)

pol6
are obtained by scaling the spectra from xnpp(?), Xgpp(t)
and XI%tPP(t) by the respective derivatives % o0
M Catm=Chm

tr et
aapépp 0 aal\épp . Results are shown for
am | Cyym= Catm am [ Coim= Calm

xp in Fig. 10b and for gg in Fig. 10c. As seen in Fig. 10b,
the reconstruction matches almost perfectly the values of xg
for times beyond about 20 years. Likewise, the spectrum
qp is almost perfectly reconstructed for timescales above
6 years, with a slight discrepancy between 15 and 25 years
(see Fig. 10c). A larger disagreement is seen below 20 years
for xg and below 6 years for gg. One of the reasons is
that only little information is available for timescales smaller
than 1 year because this is the time step taken for the data.

and
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(a) First test: global Xnpp
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Figure 10. Investigation of the land carbon response in the tropics and extra-tropics and how the regional response functions combine to
the global response functions. The analysis is based on the 2xCO; bgc experiment. (a) Laplace transform Xnpp(p) of global xNpp ()
obtained directly from the global carbon response and from combining the tropical and extra-tropical response functions; (b) xg(¢) obtained
directly from the global carbon response and from combining the tropical and extra-tropical response functions; (c) as (b) but for gg(t);
(d) decomposition of g (7) into tropical and extra-tropical spectra (Eq. 31). In (¢, d) the dots and crosses indicate the computed values, while
the connecting lines are only inserted to guide the eye. For more details, see text.

However, Appendix D shows that timescales much shorter
than the time step affect only x(0). The main reason for
the disagreement is that high frequencies (and thus small
timescales) are the most problematic to recover due to the
ill-posedness of the problem that obscures the signal particu-
larly at high frequencies.

Despite the disagreement at small timescales, Fig. 10b
and c add confidence that (1) the response functions for
global, tropical and extra-tropical carbon can be trusted over
mid to long timescales (Fig. 10b) and that (2) the two-peak
spectrum obtained for global land carbon indeed character-
izes the response, since its computation from two indepen-
dent approaches (combining regional spectra in Fig. 10c and
the Gregory-type plot in Fig. 9c) yield similar results with
characteristic timescales matching the peaks of the spectrum.

5.4 Investigating the two-peak structure of the
spectrum

The reasons for the two-peak structure of the land carbon
spectrum are conceivable. In principle, one possibility could
be that the short timescales reflect the carbon dynamics in
the tropics, a region with higher temperatures and thus larger
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heterotrophic respiration rates (see, e.g., Raich and Potter,
1995), while the long timescales may originate from the car-
bon dynamics in the extra-tropics, where respiration rates are
smaller due to lower temperatures. This hypothesis may be
checked by examining Fig. 10d, which shows the contribu-
tion from the tropics and the extra-tropics to the land carbon
spectrum (Eq. 31). However, as seen, the two peaks arise both
in the tropical and in the extra-tropical spectrum, so that one
cannot attribute each peak to a particular region. Therefore,
this cannot be the explanation.

An alternative hypothesis is that the different peak
timescales originate from the very different characteristic
timescales of functionally different elements in the land car-
bon cycle such as leaves, wood, litter and soil. In the follow-
ing we investigate whether this hypothesis can explain the
two-peak structure.

For this purpose, we split the land carbon pools of the
MPI-ESM into two groups (see Fig. 11). In the first group are
the pools whose dynamics is governed by fast processes such
as shedding and decomposition of leaves, thus the pools that
respond at short timescales. These are the pools represent-
ing non-woody tissues in living vegetation (leaves, fine roots,
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sugars, and starches) and the associated litter. In the second
group are the pools with dynamics determined by slow pro-
cesses such as the decomposition of woody plant parts, hence
the pools that respond at long timescales. These are the pools
representing the wood in stems and coarse roots, the associ-
ated litter pools, and the soil carbon (humus).

Now, we separate the land carbon spectrum into contribu-
tions arising from each of these two groups. The land car-
bon response can be described as the sum of the collective
responses from the pools with fast and those with slow dy-
namics:

ACPE (1) = ACPES (1) + ACPES (1), (32)

In the linear response framework, the response of each term
to NPP is given by

t

/ xNpp(t —s) ANPP(s)ds

0
t
Z/xﬁpp(t—s)ANPP(s)ds
0
t
+ / xnpp(t — ) ANPP(s)ds, (33)
0

which implies
XNPe() = xNpp (1) + XXpp (1) (34)

Finally, assuming that each response function in Eq. (34) is
described by Eq. (5), we obtain the separation of the land
carbon spectrum in terms of the contribution from each pool

group:
anep(T) = glpp(T) + qNpp (7). 35)

Hence, if our hypothesis is correct, then the peak at short
timescales should be explained by th;IPP and the peak at long
timescales should be explained by g¥pp.

To proceed with the analysis we now need to obtain the
spectra q&PP and gypp- When investigating the tropical and
extra-tropical land carbon, we obtained each regional spec-
trum individually by applying the RFI algorithm to the data
from the tropical and extra-tropical responses. In principle
one could proceed in the same way to separate contributions
from the two pool groups, but, as will become clear below,
this approach introduces slight inconsistencies between the
separate recoveries that makes a quantitative comparison of
the two contributions less reliable than the alternative method
that we use in the following to separate the fast and slow
components of gnpp.

The idea of this alternative approach is the following. Nu-
merically the land carbon spectrum is given by the regular-
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Figure 11. Simplified pool scheme of the land carbon cycle in the
MPI-ESM (see Appendix A) with pools split into two groups ac-
cording to the characteristic timescales underlying their dynamics.

ized solution (Eq. 6), i.e.,

M—1 2

o? u; e ACPEC
q = L v;, (36)
NPP, A ; O_iz Y o i

where the regularization parameter A is determined by the
RFI algorithm. The land carbon response ACP is given by
the sum (32) of the responses from the pools with fast and
those with slow dynamics. Entering Eq. (32) into Eq. (36)
yields

Mi ol uje(AC"ET+ ACPEY)
= v;
9dNPP, 1 ra oiz—i—)» o i
= qlf\IPP,A +qNpp.s.- 37

Therefore, by deriving the spectra qIf\IPP’ , and qf\IPP’ , using
the same regularization parameter A employed for the land
carbon spectrum gypp ;, W€ can in principle accurately re-
construct gypp ; from qf\IPP, 5, and gxpp ;-

By obtaining q{\IPP, , and qf\IPP’ , in this way and combin-
ing them via Eq. (35) we show that gnpp ; can indeed be very
accurately reconstructed (Fig. 12a). This approach also leads
to an almost perfect reconstruction of the response function
xnep via Eq. (34), as shown in Fig. 12b. Compared to our
previous approach employed to reconstruct the global spec-
trum from the regional spectra (Eq. 31), this alternative ap-
proach gives a more accurate reconstruction because it takes
the same regularization parameter A for all gnpp ;. qf\IPP’ Iy
and q;IPR ,.» in contrast to the previous approach where A was
separately calculated by the RFI algorithm for each spectrum
in Eq. (31).

Now, the question is whether the spectra glipp and gypp
can indeed explain each peak in the land carbon spectrum
gnpp- To check this, in Fig. 12¢ we plot the three spectra.
As seen, clearly the peak at short timescales of the land car-
bon spectrum arises mostly from the large peak in the fast-
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(b) Response function Xypp
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Figure 12. Investigation of the contribution from the pools with fast dynamics (non-woody pools) and those with slow dynamics (woody
and humus pools) to the land carbon spectrum. The analysis is based on the 2xCO; bgc experiment. (a) Land carbon spectrum gnpp and
its reconstruction via Eq. (35) from the fast and slow components; (b) response function xnpp and its reconstruction via Eq. (34) from
the response functions for the fast and slow components; (c) separation of spectrum gnpp into qIIiIPP and q;IPP; (d) separation of response

function ynpp into XI{]PP and xﬁlpp; (e) separation of xNpp into contributions from the individual pools. For more details, see the text.

dynamics spectrum, while the peak at long timescales fol-
lows closely the large peak in the slow-dynamics spectrum.
This result thus indicates that our hypothesis is correct, so
that the two-peak spectrum indeed originates from the dif-
ferent characteristic timescales of functionally different ele-
ments in the land carbon cycle.

More insight into the dynamics of the land carbon can
be gained by analyzing the different contributions to the re-
sponse function ynpp shown in Fig. 12d and e. Figure 12d
shows the contribution of the pools with fast dynamics x{pp
and that of the pools with slow dynamics yNpp. We see that
x&pp only dominates the response at times smaller than about
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2 years. Further, for times larger than 25 years only x{pp con-
tributes to the response. In Fig. 12e we further separate the
response functions into the contributions from the individual
pools, i.e.,

Xpp (1) = XNER (1) + XRER(D), (38)
X\pp (1) = xNpp (1) + XXpp (1) + Xipp (0). (39)
where x{pp is the response function for the non-woody tis-

sues in living vegetation, Xf\}vl;’ll, for non-woody litter, x\pp

for woody tissues in living vegetation, Xl\\INfl’P for woody litter,
and xfipp for the humus pool. This more detailed separation
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shows that for long times the humus pool starts to dominate
the response, so that at times larger than 100 years it gives
the only contribution.

6 Summary, discussion, and outlook

Although the y and g values introduced by Friedlingstein
et al. (2003) provide a useful framework for model intercom-
parison, they only characterize the sensitivity of a model for
a particular perturbation scenario. Instead, one would like to
characterize the sensitivity as an independent property of the
carbon cycle. The dependence of y and 8 on the considered
scenario arises because of the internal memory of the system,
i.e., because of the dependence of the response on past values
of the perturbation. When the memory is taken into account,
linear response functions arise as natural generalization of
the y and B sensitivities. However, a fundamental step for
applying this generalized framework is to identify the appro-
priate linear response functions. In Part 1, we developed a
method to identify linear response functions from data using
only information from an arbitrary perturbation experiment
and a control simulation. In that study, the robustness of the
method in the presence of noise and nonlinearity was demon-
strated in applications to data from perturbation experiments
performed with a toy model.

6.1 Generalized land carbon sensitivities in the
MPI-ESM

In the present study, we demonstrated that our RFI method
can also be employed to derive response functions from
C*MIP data. Here, we identified for the MPI-ESM, using
data from standard 1 % experiments, the land carbon gener-
alized sensitivities x, and xg, i.e., the linear response func-
tions that generalize the y and 8 sensitivities for land carbon.
The robustness of the identified generalized sensitivities was
demonstrated by their ability to predict the response from
experiments not used for the identification (Sects. 3 and 4).
With the aid of additional experiments, we estimated the lin-
ear regime that gives the range of forcing strengths for which
each generalized sensitivity can predict model responses. For
Xy, results indicate a linear response at least until the end
of the 1 % experiment, corresponding to temperature pertur-
bations of around 6 K. For xg, the estimate is for CO; per-
turbation strengths up to 100 ppm. In addition, we analyzed
different approaches that may be employed to improve the
quality of the recovery of the response functions. For x,,, tak-
ing the response from a 2xCO» experiment demonstrated to
give smaller prediction errors for every response evaluated,
suggesting that this type of experiment also gives a better re-
covery. For xg, the estimated linear regime of only 100 ppm
indicates that for larger forcing strengths nonlinearities are
present in the response that deteriorate the recovery of xg. To
circumvent such nonlinearities and thus improve the recov-
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ery, we identified xg by using NPP instead of CO; as forc-
ing. We found that by this approach an approximately linear
response is found over the whole 1 % experiment, i.e., un-
til COy perturbations of about 850 ppm. This result suggests
that nonlinearities in the biogeochemical response of land
carbon can to a large extent be explained by the nonlinear
relationship between NPP and CO,. This approach of using
NPP as forcing instead of CO; yielded the best recovery for
xp- Bvidences for this conclusion are the quality of its pre-
diction and the detailed spectrum it yields for the response.

6.2 Spectrum of land carbon timescales

Obtaining the spectrum of the response is an additional ad-
vantage of the RFI method. Most methods in the literature
either recover y (¢) pointwise — and therefore do not give the
spectrum — or try to fit it with few exponents without account-
ing for ill-posedness, which does not give reliable results for
the spectrum (see, e.g., the famous example from Lanczos,
1956, p. 272). In the application to the MPI-ESM, obtaining
the spectrum has proven advantageous for two reasons. First,
it allows one to formally extend the recovery of the response
function beyond the time range of the length of the underly-
ing time series. Results from such an extension (Fig. 8a and
b) demonstrated that the recovered response function con-
tains information on times reasonably longer than the time
series length used for the recovery.

Second, the spectrum gives valuable insight into the inter-
nal dynamics of the system. In particular, for our application
the spectrum gives the most relevant timescales for the land
carbon response on a global or regional level. The spectrum
associated with the best recovery of xg showed two peak
timescales for the global response: one around 4 and another
around 100 years (Sect. 5).

To obtain evidence for the robustness of this result, we
showed that it is possible to reconstruct the global spec-
trum from the recovered tropical and extra-tropical spectra
(see Fig. 10c), and that similar timescale ranges can be ob-
tained via a Gregory-type approach (see Fig. 9b and c). Fur-
ther, we demonstrated that the recovered tropical and extra-
tropical response functions combine to the identified global
response functions, indicating consistency between regional
and global recovery (see Fig. 10a and b).

We then proceeded to investigate the reason for the two-
peak structure of the spectrum. To this end, we separated the
land carbon response into the response from pools with fast
dynamics (non-woody vegetation tissues and associated lit-
ter) and the response from pools with slow dynamics (woody
vegetation tissues, woody litter, and humus). By analyzing
the spectrum for each of these responses we showed that the
peak at short timescales of the land carbon spectrum arises
mostly from the contribution of the pools with fast dynamics,
while the peak at long timescales follows closely the contri-
bution from the pools with slow dynamics. This investigation
therefore suggests that the two-peak spectrum results from
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the different contributions of functionally different elements
of the land carbon cycle. Analysis of the response functions
showed that the pools with fast dynamics dominate the land
carbon response only for times below 2 years. Further, for
times larger than 25 years only the pools with slow dynamics
contribute to the response, and from 100 years onwards the
contribution comes solely from the humus pool.

We remark that results for the spectrum should be al-
ways interpreted with care, since deriving the spectrum may
be a more complicated problem than deriving the response
function. This is partially explained by the degree of ill-
posedness of each problem. In deriving the response func-
tion from Eq. (3), one is solving a deconvolution problem,
which is known to be ill-posed because of the smoothing
property of the convolution operator (e.g., Landl et al., 1991;
Bertero et al., 1995; Hansen, 2002). On the other hand, by
deriving the spectrum from Eqgs. (3) and (5), one is solv-
ing not only a deconvolution (Eq. 3), but also a type of in-
verse Laplace transform (to obtain the spectrum from the
response function 5), which is known to be extremely ill-
posed because of the smoothing property of the Laplace oper-
ator (e.g., McWhirter and Pike, 1978; Istratov and Vyvenko,
1999). As a result, deriving g(tr) from the data AY(¢) in-
volves two smoothing operations, namely the Laplace trans-
form and convolution, whereas deriving x (¢) from AY (¢) in-
volves only convolution, so that the problem of finding ¢ (7)
may be more ill-posed than that of finding x (¢). This dif-
ficulty was exemplified by results from Appendices D and
E, which discuss cases where the response function can be
perfectly recovered but the recovered spectrum is relatively
poor.

Another worthwhile comment is that, in comparison to
the widely used assumption that the spectrum can be de-
scribed by only a few exponents (Maier-Reimer and Hassel-
mann, 1987; Enting and Mansbridge, 1987; Enting, 1990;
Joos et al., 1996, 2013; Pongratz et al., 2011; Colbourn
et al., 2015; Lord et al., 2016), our assumption of a con-
tinuous spectrum (ansatz 5) has some advantages. First, by
our approach one circumvents the complication of determin-
ing the number of exponents. This leads to a linear prob-
lem and thereby to a more transparent method (see Part 1,
Sect. 3.1). Second, our ansatz better describes the expec-
tation that variables integrated over many different climate
zones are composed by a large range of timescales. If, in con-
trast to these expectations, the underlying spectrum has only
few timescales, results in Appendix E show that our approach
may still yield a reasonable recovery.

6.3 Outlook

In this study we investigated the generalized y and S sen-
sitivities that solve the scenario dependence problem noted,
e.g., by Gregory et al. (2009) and Arora et al. (2013) to lin-
ear order in the perturbation — an approach that can in prin-
ciple be extended to higher orders (Ruelle, 1998; Lucarini,
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2009). By demonstrating how to successfully recover gen-
eralized sensitivities, this study paves the way for their fu-
ture application in studying the dynamics of the combined
carbon climate system in different Earth system models. Ap-
plying our RFI method, we showed for the MPI-ESM that
one can obtain these sensitivities from standard C*MIP 1 %
simulations. In addition, the estimates for the linear regime
obtained by employing the recovered sensitivities to predict
additional experiments give a hint at the range of perturba-
tion strengths for which this generalized framework might
be valid for other models as well for which data from addi-
tional experiments necessary to determine this linear regime
are not available. Since the process descriptions of the land
carbon cycle are quite similar in different models, it may be
assumed that the linear range estimates obtained for MPI-
ESM in the present study also apply to other models. Con-
sidering the radiative land carbon response, for other mod-
els their x, should thereby also fully characterize the re-
sponse to temperature up to at least 6 K. As a consequence,
in models with temperature responses similar to or weaker
than the MPI-ESM, x,, can as for the MPI-ESM be recov-
ered taking the full time series from the 1 % experiment.
Analogously, considering the generalized sensitivity xg, the
experience presented in the present study for the MPI-ESM
suggests that also for other models the response to CO, per-
turbations is linear up to 100 ppm. As a consequence, g can
be recovered taking data from the 1 % experiment for the first
30 years. Alternatively, as discussed in Sect. 4, the time range
for the recovery of g can be extended if one takes as forcing
NPP instead of CO; (third approach investigated in Sect. 4).
For models with NPP responses similar to or weaker than the
MPI-ESM, by this approach xg can be recovered taking the
full time series from the 1 % experiment. Still, as the rela-
tively successful predictions in Fig. 8b suggest, even if xg
is recovered by taking CO; as forcing for only 30 years of
the 1 % experiment (first approach investigated in Sect. 4), it
may still contain sufficient information to predict responses
of the model for a time range of 140 years.

In the present investigation we have studied rather ide-
alized simulations where only perturbations in atmospheric
CO» are acting on the climate system. A possible next step
towards the application of our sensitivity analysis to more re-
alistic scenarios could be to consider historical experiments
where other perturbations such as land-use change and non-
CO, greenhouse gases are also applied. To this end, a combi-
nation of different response functions should be considered
to take separately into account the response of the system to
each perturbation (as, e.g., in Bédai et al., 2020). Another
possible extension of our study could be to employ response
functions to study the spatial dynamics of the carbon cy-
cle. We have shown a simple example of this type of ap-
plication by looking at the responses for tropics and extra-
tropics, but in the literature one also finds applications to
study the response latitudinally resolved and even globally
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at grid-cell level (Thompson and Randerson, 1999; Lucarini
et al., 2017).

However, in addition to the carbon cycle sensitivities con-
sidered here, our RFI method may be applied to investigate
different aspects of climate and the carbon cycle. Ragone
et al. (2016) have shown how the linear response frame-
work generalizes the concept of equilibrium climate sensi-
tivity (ECS) and transient climate response (TCR). Origi-
nally, ECS is defined as the response of global temperature to
an instantaneous doubling of atmospheric CO, from its pre-
industrial value, while TCR is the temperature response to
a doubling of CO; after a 1 % per year increase. Within the
generalized framework, the ECS and TCR are shown to be
only particular values encoded in a linear response function.

Linear response functions can also be useful in studying
“committed changes” (Wigley, 2005; Plattner et al., 2008;
Jones et al., 2009; Mauritsen and Pincus, 2017). As shown by
Ragone et al. (2016), the concept of climate inertia (closely
related to committed changes) can be explicitly described
within the linear response framework. Since the linear re-
sponse function describes the delayed response of the sys-
tem to a perturbation, by deriving this function one also has
at hand the information of how the system reacts once the
perturbation — for instance CO; emissions — ceases.

Further, linear response functions can help understand-
ing the concept of “emergent constraints” (Nijsse and Dijk-
stra, 2018). Recent studies have shown how to obtain from
response functions derived from conceptual models emer-
gent constraints for the real Earth system (Cox et al., 2018;
Williamson et al., 2019). With the method developed here,
in principle such types of analyses may be carried out em-
ploying instead response functions derived from Earth sys-
tem models.

As a result of accounting for the memory of the sys-
tem, the linear response function gives information on the
strength of the response at all internal timescales covered
by the time series underlying its recovery and probably even
slightly longer (see Fig. 8b). Using our method, in principle
one can even compare the spectra of timescales from mod-
els to those from observations (e.g., Forney and Rothman,
2012b). The method presented here may also be applied to
analyze changes in age and transit time distributions of car-
bon in different models, since these distributions can be de-
rived directly from linear response functions (Thompson and
Randerson, 1999).

In all of the mentioned examples, the generality of the RFI
method allows for the derivation of the appropriate linear re-
sponse functions for any model by taking only data from an
arbitrary perturbation experiment and a control experiment.
Such generality opens the possibility of combining the lin-
ear response framework, which has been gaining increasing
attention due its wide applicability in climate science (e.g.,
Lucarini, 2009; Lucarini and Sarno, 2011; Lucarini et al.,
2014, 2017; Ragone et al., 2016; Aengenheyster et al., 2018;
Ghil and Lucarini, 2020; Lembo et al., 2020; Bodai et al.,
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2020), with model intercomparison studies, hopefully lead-
ing to a deeper understanding of critical differences encoun-
tered across models.

Appendix A: The Max Planck Institute for Meteorology
Earth System Model

In this Appendix we give a brief description of the model
employed in this study: the Max Planck Institute for Meteo-
rology Earth System Model (MPI-ESM; for more details see
Giorgetta et al., 2013). The MPI-ESM consists of the cou-
pled general circulation models ECHAMG (Stevens et al.,
2013) for atmosphere, at T63/1.9° horizontal resolution with
47 vertical levels, and MPIOM (Jungclaus et al., 2013) for
ocean, with a nominal resolution of 1.5° with 40 vertical lev-
els. In addition, the MPI-ESM includes the subsystems JS-
BACH (Reick et al., 2013; Schneck et al., 2013), a land and
vegetation model, and the marine biogeochemistry model
HAMOCC (Ilyina et al., 2013). JSBACH and HAMOCC de-
scribe, respectively, the land and ocean carbon cycle in the
MPI-ESM. Thus, of particular interest for our study is the
subsystem JSBACH. JSBACH simulates fluxes of energy,
water, momentum and CO, between the land surface and
atmosphere. To represent subgrid scale heterogeneity, each
grid cell of the land surface is divided into tiles, each tile
being associated with a vegetation type (or “plant functional
type”). The photosynthesis scheme follows Farquhar et al.
(1980) and Collatz et al. (1992). The land carbon structure is
divided into three vegetation pools (living tissues, carbohy-
drate and starch storage, and wood), four aboveground and
belowground pools for litter from woody and non-woody
parts and a pool for soil carbon (humus). In addition, JS-
BACH includes a dynamic vegetation scheme that allows for
simulating changes in vegetation cover driven by climate.

Appendix B: Generalization of climate-carbon cycle
sensitivities

In this Appendix we show that linear response functions in-
deed generalize Friedlingstein a—f—y sensitivities. We ex-
plain this by taking the 8 sensitivity of land carbon uptake as
an example. The calculation of 8 is based on an experiment
where the CO; rise acts only biogeochemically, i.e., concern-
ing the land carbon via the photosynthesis of plants. Call-
ing ACPE(¢) the difference in land carbon between the per-
turbed and the control simulation, § is defined as

ACPE (1) 0
— 2 ACum()=C% (1.01' — 1), Bl
AC (D) atm (1) = Cyp ( ) (B1)

B(1) =
where ¢ is the time in years elapsed since the perturbation
was switched on, and ACym(¢) is the change in CO, con-
centration when increasing atmospheric CO; each year by
1 % starting from its pre-industrial value CJ . of the control
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simulation. In the framework of linear response, one can un-
derstand A Cyyy () as perturbation and ACY2e(1) as response,
so that the response formula reads

t

ACPE (1) =/xﬁ(r—s)ACatm(s)ds.
0

(B2)

This equation defines xg () as the linear response function
describing the biogeochemical response of land carbon to
any type of CO; perturbation A Cqym(?), as long as the pertur-
bation is sufficiently weak. Employing in particular the per-
cent perturbation from Eq. (B1), B(¢) is thus obtained from
the linear response function xg(¢) as

t
1
PO =5 / x5 (t — $) ACqim(s)ds. (B3)
0

In this way, xg(¢) can be understood as a generalization of
B(t) that gives not only the response to percent-type pertur-
bations, but also to other perturbations. Accordingly, xg(t)
characterizes system properties independent of the type of
perturbation, in contrast to S(¢).

Appendix C: Monotonicity of xg(¢)

In this Appendix it is shown that the response function yg(t)
is monotonic, as claimed in Sect. 2.1. The argument here is
actually more general, namely that the response function to
changes in the input of the system (for land carbon, the net
primary production) is monotonic. Since xg(¢) is related to
xnpp(?) by Eq. (21), the monotonicity property transfers to
xp(@).

Let the linear response of land carbon be described by
Eq. (17):

t
ACPE (1) = / xnpp(f — ) ANPP(s)ds, (C1)
0

where for simplicity we assume that n(¢) is small, so that it
can be neglected. If NPP is a Dirac delta function ANPP(z) =
8(t), then the response is given by ACPE(r) = ynpp (7).
Therefore we can interpret the response function ynpp(?) as
follows: if a certain number of carbon atoms enter the bio-
sphere at time ¢ = 0, the response function xnpp(#) gives the
fraction of these atoms still left in the biosphere at time 7.

Let p(t)dr be the probability that an atom that entered the
system at time ¢ = 0 will leave it at time ¢. Then

t

P(@) ::fp(s)ds

0

(C2)
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is the probability that an atom that entered the system at time
t =0 will leave the system until time ¢. Hence from the in-
terpretation of ynpp(?) above,

P(t) =1— xnpp(?7). (C3)
From Egs. (C2) and (C3) it follows that

d
p(t) = ——xnep(?). (C4)

dt

However, since the probability density function p(t) > 0V,
then % xNpp(f) <0V t, ie., xnpp(f) decays monotonically
towards zero. Therefore, because xg(t) is simply a scaling of
xnpp(?) given by Eq. (21), xg(7) also decays monotonically
towards zero.

Appendix D: Derivation of spectrum and y (¢) when the
response contains timescales much longer or much
shorter than the timescales covered by data

Timescales much longer or much shorter than the timescales
covered by data cannot be correctly recovered in the spec-
trum. Nevertheless, in this Appendix we show that the wrong
recovery of these extreme timescales does not strongly af-
fect the recovery of x(#). These considerations add to the
footnote remark in Sect. 5 where we claim that such extreme
timescales can be safely ignored.

First, we consider the case where the response has
timescales much longer than those covered by data. Let x
at time T be given by

e ¢]

x(T) = f q()e /" dlog)ot.

—00

(D)

Let T be the time series length and assume that g(t) has
significant contributions at timescales t > t7 with 17 > T.
Then (D1) can be written as

logoTL
x(T)~ g(v)e""/"dlog,t
—00
oo
+ / q(v)dlogyot, (D2)
logjgtr
where ¢~ 7/T ~ 1 was used in the second integral because

7. > T. Thereby the second term in the right-hand side of
(D2) is just a constant offset

e e]

/ q(t)dlog|gt =k, k constant.

logygTL

(D3)

Hence, for internal timescales much longer than the time se-
ries length T, the correct recovery of the individual g (t) val-
ues is not relevant for the derivation of x (), as long as those
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values combine to the correct offset in Eq. (D3). Note that
because this argument is based on the condition 77 > T, it
applies not only to x (7)), but alsoto all x(¢),t < T.

Now, we consider the case where the response has
timescales much smaller than those covered by data. Let
t =:iAt, where At is the time step and i € IN. If g(7) has
significant contributions at timescales T < tg with 1y < At,
then for i > 0 Eq. (5) can be written as

oo

x(iAl) ~ / q(v)e 2T dlog, T, (D4)
logots

where e 7'A/T & ( was used for T < 75 because Ts < At. As

aresult, values of g () are irrelevant to y (¢) for almost every
i. The only exception is i = 0, where one has

e8]

x(0) = f q()dlog;o. (D5)

—00

Hence, for timescales much shorter than the time step A¢, the
correct recovery of the individual g (7) values is not relevant
for the derivation of x(¢) as long as those values combine
with the other recovered values of g(t) to the correct x (0)
in Eq. (D5). As shown by Eq. (D4), if they combine to the
wrong value, only the recovery of x (0) is affected.

Therefore, in principle x (#) can also be correctly recov-
ered when the response contains much longer and much
shorter timescales than those covered by data, as long as the
recovered ¢ () values at these extreme timescales combine
to the correct values of the offset in Eq. (D3) and x(0) in
Eq. (DS). In Fig. D1 we show an example of recovery of
the spectrum and response function in such a case. For the
recovery we took data with SNR = 6 x 10* from the 1 % ex-
periment with our toy model (see Part 1). As seen, the spec-
trum can only be partially recovered (Fig. D1a). The recovery
wrongly estimates spectral contributions at timescales longer
and shorter than those covered by data, i.e., timescales larger
than the time series length 7 = 140 and smaller than the time
step At = 1. In addition, the existence of such spectral con-
tributions at timescales not covered by data seems to also
deteriorate the recovery of the spectrum at the timescales ac-
tually covered by data: in the region 1 < 7 < 140, despite the
high SNR the recovered spectrum matches the true spectrum
only partially. This is probably a compensation effect where
wrong information shows up in the recovered spectrum to
compensate missing information on the response function.
For instance, to obtain the correct x(0), only Eq. (D5) is
needed but not the correct recovery of all timescales. The
same goes for obtaining the correct offset: only Eq. (D3) is
needed but not the correct recovery of all timescales from 77,
onwards.
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Figure D1b shows the quality of the recovery of the re-
sponse function y(¢). The recovered g(r) values at long
timescales, although individually wrong, combine to the cor-
rect offset in Eq. (D3): the “height” of the recovered response
function matches almost perfectly that of the true response
function (compare, e.g., the value at = 140 for the true and
recovered response function). On the other hand, x (0) is not
perfectly recovered (compare the difference at + = 0 between
the true and recovered response functions), meaning that the
sum in Eq. (DS) is incorrect. Nevertheless, the recovered
value is still reasonably close to the true value. Except for
this small error at x (0), the overall recovery of the response
function is almost perfect.

Therefore, as claimed in Sect. 5, this numerical example
shows that even though very long and very short timescales
cannot be correctly recovered in the spectrum, they do not
strongly influence the recovery of y (¢). This is because they
only influence the offset in Eq. (D3) and x (0) in Eq. (D5),
and those two values seem to be reasonably well recovered
numerically.

Appendix E: Recovering a discrete spectrum ¢ (t)

This Appendix gives numerical evidence for the claim in
Sect. 6 that although the RFI method assumes that the re-
sponse has a continuous spectrum of many timescales, for
sufficiently good signal-to-noise ratio the recovered contin-
uous spectrum may also give a reasonable approximation to
an underlying discrete spectrum of only few timescales.

Before we give numerical examples, one must first under-
stand the limitations of the recovery of the spectrum. As ex-
plained in Part 1, the spectrum g (t) can only be completely
recovered (for sufficiently high SNR) if it is dominated by the
first components of expansion (Eq. 6). By Hansen’s observa-
tion (Hansen, 1989, 1990, see Part 1), this means that the
spectrum must be dominated by low frequencies; i.e., it must
be to some extent smooth. However, an underlying discrete
spectrum implies a spectrum that is instead given by “spikes”
in the timescale domain. Such “spikes” can only be described
by high-frequency components of Eq. (6). Therefore, a dis-
crete spectrum can be only partially recovered. To obtain a
sufficiently good recovery, the solution (Eq. 6) must contain
many components. Hence, the data must have a sufficiently
high signal-to-noise ratio. The explanation for this conclu-
sion is the following: if many components in Eq. (6) must be
recovered, the regularization parameter must be small; but a
small regularization parameter requires a small noise level
(see Theorem 3.3.1 in Groetsch, 1984).

With this in mind, we show in Figs. E1-E9 that at least
smooth approximations to an underlying discrete spectrum
can be obtained. For the results we took data with SNR ~
O(10% —O(10%) from different experiments performed with
the toy model described in Part 1. Since the aim is to recover
discrete spectra, a larger number of timescales M gives a bet-
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Figure D1. Recovery of spectrum and x (¢) taking a true spectrum with contributions at timescales much longer and much shorter than the
timescales covered by data. For the recovery, data with SNR = 6 x 10% from the 1 % experiment with the toy model (see Part 1) was taken
(time series length 7' = 140 and time step At = 1). RFI parameters are taken as in Part 1 except for M = 140. The recovered spectrum
matches only partially the true spectrum. Nevertheless, the response function y () is almost perfectly recovered.
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Figure E1. Spectrum ¢, and response function x (¢) recovered from a 1 % experiment performed with the toy model described in Part 1
taking an underlying discrete spectrum with one timescale r = 37. The data were taken with SNR ~ O(10%) — O(10%).
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Figure E2. Spectrum ¢, and response function y (#) recovered from a 1 % experiment performed with the toy model described in Part I
taking an underlying discrete spectrum with two timescales T = 7 and = 100. The data were taken with SNR ~ O10%) —0(10°).

ter resolution. Therefore, we take M = 140. All other RFI
parameters are taken according to Part 1. Also, monotonic-
ity needed not to be taken into account (step 6 of Fig. 1 in
Part 1).

Figures E1-E6 show results for taking data from a 1%
experiment and Figs. E7-E9 from a 2x fp experiment. We

https://doi.org/10.5194/npg-28-533-2021

start with one timescale T = 37 (Fig. E1). As expected, the
spike cannot be perfectly recovered, but the recovery gives a
smooth approximation to it, with the peak coinciding approx-
imately with the “true” value. On the other hand, the response
function is almost perfectly recovered. This is a result of the
ill-posedness of Eq. (5): in the same way that high frequen-
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Figure E3. Spectrum ¢, and response function x (¢) recovered from a 1 % experiment performed with the toy model described in Part 1
taking an underlying discrete spectrum with two timescales T = 7 and T = 37. The data were taken with SNR ~ (’)(104) — (’)(105).
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Figure E4. Spectrum ¢, and response function x (¢) recovered from a 1 % experiment performed with the toy model described in Part 1
taking an underlying discrete spectrum with two timescales T = 37 and t = 100. The data were taken with SNR ~ O( 10%) — 0(10°).
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Figure ES. Spectrum ¢, and response function x (¢) recovered from a 1 % experiment performed with the toy model described in Part 1
taking an underlying discrete spectrum with three timescales T = 7, T = 37, and v = 100. The data were taken with SNR ~ 0(10H-010%).

cies of the spectrum are suppressed in the data by Eq. (3),
they are also suppressed in the response function by Eq. (5)
(see Groetsch, 1984, Sect. 1.1). Therefore, both the true spec-
trum and its smooth recovery result in practically the same
response function.

In Fig. E2, the true spectrum has two timescales, this time
at 7 =7 and T = 100. Similarly to Fig. E1, the timescales are
recovered by a smooth approximation with peaks approxi-

Nonlin. Processes Geophys., 28, 533-564, 2021

mately at the true values. Also similarly to Fig. E1, the re-
sponse function is almost perfectly recovered. A similar re-
sult is obtained if we take timescales that are a bit closer to-
gether, as seen in Fig. E3 (v =7 and v = 37). Nevertheless,
now the peak for the longer timescale is a worse approxima-
tion, and there is a slightly pronounced negative peak that
does not reflect the true spectrum.
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Figure E6. Spectrum ¢, and response function y () recovered from a 1 % experiment performed with the toy model described in Part 1 taking
an underlying discrete spectrum with four timescales t = 1, T =7, t = 37, and t = 100. The data were taken with SNR ~ (’)(104) —(’)(105).
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Figure E8. Spectrum ¢; and response function x (¢) recovered from a 2x f{y experiment performed with the toy model described in Part 1
taking an underlying discrete spectrum with four timescales t = 1, T =7, T = 37, and t = 228. The data were taken with SNR ~ o104 —

0(10°).

In Fig. E4, we take instead timescales t = 37 and t = 100.
Here, the resolution is not sufficiently high for a recovery of
each timescale separately. Instead, the recovered spectrum
shows only one mode that spans both spikes. Once more the
response function can be almost perfectly recovered. Taking
the three timescales t =7, t =37, and 7 = 100 (Fig. ES),

https://doi.org/10.5194/npg-28-533-2021

the smooth recovery shows only two modes: one at 7 =7
with peak almost coinciding with the true value, and another
with peak in between T = 37 and T = 100. If one in addition
considers a fourth timescale T = 1 (Fig. E6), once more the
recovery shows only two modes. However, now the mode at
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Figure E9. Spectrum ¢; and response function x (¢) recovered from a 2x f{y experiment performed with the toy model described in Part 1
taking an underlying discrete spectrum with five timescales t =1, t =7, v = 37, T = 228, and t = 518. The data were taken with SNR ~

010" — 0(10%).

shorter timescales displays a longer tail that spans both T =7
and T = 1.

The situation changes when we take for the recovery the
2xCO; experiment. According to the Laplace transform
analysis in Sect. 3, data from this experiment should give
more information on small timescales. Figure E7 shows that
this is indeed the case: in contrast to the recovery from
Fig. E6, now the timescale t = 1 is also recovered. On the
other hand, now there are two small negative peaks that do
not reflect information from the true spectrum. Also, the res-
olution is not sufficiently good to recover separately the two
peaks at long timescales. However, if the longest timescale
is increased from 7 = 100 to T = 228 (Fig. E8), a small peak
can be seen around this timescale. In addition, now the peak
at T = 37 matches slightly better the true value. In Fig. E9
we add another timescale, now at T = 518. We see that al-
though this timescale cannot be recovered separately from
T =228, the peak at long timescales is more pronounced.
This is in contrast with the fact that the time series used for
the recovery reaches only r = 140, indicating that the method
can recover information on timescales even longer than the
time series length. This is in agreement with the conclusions
from Sect. 4, where in one case xg(¢) was recovered from a
time series with only 30 years but could recover responses
for t = 140 years (see Fig. 8b).
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