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1. General information (Table S1 and Text S1)

Table S1 gives a glossary of all terms used in the paper. Text S1 explains how bootstrapped

uncertainties were calculated.

2. Equilibrium warming (Figure S1 to S2 and Table S2)

Fig. S1 shows plots of N vs. T for all simulations used in the paper. Table S1 shows the

number of years used in estimates of equilibrium warming that use more than 150 years.

Fig. S2 provides a similar plot to Fig. 1a with an alternative definition of ECS.

3. Radiative forcing (Figures S3 to S4)
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Fig. S3 illustrates that alternative methods for estimating the change in forcing per

doubling with CO2 concentration do not affect our conclusion that forcing is insufficient

to explain the sensitivity increase. Fig. S4 provides estimates of the nonlinearity of the

forcing for each model.

4. Radiative feedback (Figure S5, Tables S3 to S4, and Text S2)

Table S2 shows estimates of feedback CO2 dependence. Text S2 provides more details of

these estimates. Fig. S5 shows how minimal and maximal values based on these estimates

affect Fig. 2, as well using the first twenty years instead of the first ten years to estimate

radiative forcing, using direct estimates of forcing instead of a quadratic fit, and using

fewer years to estimate equilibrium warming. Table S3 shows models with abrupt4xCO2

estimates greater than 9K.

5. Comparing nonlinear terms (Text S3, Figure S6 to S7)

Text S3 gives details of estimating the flux components of the three nonlinear terms

discussed in this paper. Fig. S6 shows the flux components of the preindustrial feedback

and feedback temperature dependence, while Fig. S7 shows the flux components of the

nonlinear forcing and the feedback CO2 dependence.
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1. General information
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Text S1. Bootstrapped uncertainty

In order to propagate uncertainty and account for non-normal noise, our confidence intervals

are calculated using bootstrapping (Efron, 1979). For the regression-based estimates of F (C),

we use a Monte Carlo case resampling approach: instead of using years 1-10 of the T and N

time series of a given simulation, we draw from those years 10 times, allowing for duplicates, and

regress N against T for that list of years. We repeat this procedure 100,000 times, and use the

2.5% and 97.5% percentiles of the results to estimate the 95% uncertainty band of F (C). For

the 21-150 year estimates of ∆Teq(C), we draw with replacement 130 times before taking the

regression, again repeating 100,000 times. Analogous calculations are performed for estimates

with different time spans. For the nonlinear factors in Fig. 1c, we recalculate each factor 100,000

times drawing different lists of years for the abrupt2xCO2 and abrupt4xCO2/8xCO2 values.

For uncertainty ellipsoids of λpi and ∂Tλ, we reestimate the set of {∆Teq(Ci), F (Ci)} containing

all abrupt2CixCO2 simulations 100,000 times, estimating each ∆Teq(Ci) and F (Ci) as in the

preceding paragraph (for the first four models in Fig. 1a, years 101-1000 are used for ∆Teq(C),

21-150 for the rest), giving us 100,000 pairs of λpi and ∂Tλ. We compute the 75th percentile

ellipsoid of the multivariate normal distribution with the mean and covariance of these 100,000

pairs, giving the ellipsoids in Figs. 2 and S6.
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2. Equilibrium warming
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Figure S1. Annual and global-mean averages of net top-of-atmosphere flux (N) vs. surface

warming (∆T ) for the simulations shown in Fig. 1. The forcing for each simulation is estimated

by regressing years 1-10 of N against ∆T (dashed black lines) and taking the resulting y-intercept

(horizontal black ticks). Alternatively, years 1-20 could be used instead (gray dashed lines and

horizontal ticks). The equilibrium warming (vertical gray ticks) is estimated as the x-intercept

of the regression of N against ∆T over years 21-150 (solid gray lines). For longer simulations,

years 101 to n are used for the linear regression (black solid lines and vertical ticks), where n is

given in Table S2.
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Table S2. Length, in years, of the simulations used in Fig. 1a for each model. For

LongRunMIP, only the first 1000 years were used for each model to provide uniformity. For

CMIP6/NonLinMIP, only the first 150 years were used unless there were at least 750 years

available.

Model abrupt0.5x abrupt2x abrupt4x abrupt8x

LongRunMIP CESM104 - 1000 1000 1000

MPIESM12 - 1000 1000 1000

HadCM3L - 1000 1000 1000

FAMOUS - 1000 1000 -

LongRunMIP/NonLinMIP CNRM-CM6-1 150 750 1000 -

NonLinMIP CanESM5 - 150 150 -

CESM2 150 150 150 -

GISS-E2-1-G 150 150 150 -

GISS-E2-2-G - 150 150 -

GISS-E2-1-H - 150 150 -

HadGEM3-GC31-LL - 150 150 -

IPSL-CM6A-LR 150 150 900 -

MIROC6 150 150 150 -

MRI-ESM2-0 150 150 150 -
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Figure S2. This figure is the same as in Fig. 1a in the paper, except that instead of estimating

equilibrium climate sensitivity by dividing equilibrium warming by the number of CO2 doublings,

it is estimated by subtracting estimates of equilibrium warming from successive CO2 doublings

(e.g., the equilibrium climate sensitivity for 4xCO2 is the equilibrium warming for 4xCO2 less

the equilibrium warming for 2xCO2). Equilibrium warming is estimated using years 101-1000 for

the first four models, and 21-150 for the rest. There are two outliers: 4x for FAMOUS is 11K

and 4x for CESM2 is 9.3K. The results are largely the same as in Fig. 1a, except that CESM104

experiences a slight decrease in sensitivity between the 4x and 8x simulations.
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3. Radiative forcing
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Figure S3. Panel a. mirrors Fig. 1b in the main text, but with estimates of F using years

1-20 instead of 1-10. Panel b. compares these estimates directly, showing that estimates from

years 1-20 are biased low (due to the increase in ∂N/∂T with time, see Fig. S1), but are more

certain due to the larger number of years available. Panel c. mirrors Fig. 1c but with the 1-20

year estimates, showing once more that for most models, forcing alone cannot account for the

increase in sensitivity. Panel d. is also similar to Fig. 1c, but using the analytic formula of Byrne

and Goldblatt (2014), again showing that forcing is insufficient to explain the ECS increase.
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Figure S4. Panels a. and b. show the preindustrial forcing per CO2 doubling F̃pi vs. the

CO2 dependence of the forcing per doubling ∂CF̃ using forcing estimates from years 1-10 and

1-20 respectively (FAMOUS is an outlier, with high F̃pi and low ∂CF̃ ). There is a substantial

anticorrelation between the values (R2 = 0.77 for years 1-10, R2 = 0.79 for years 1-20). For

both panels, most models have forcing with sublinear dependence on C (i.e., fall to the left of

the vertical line at 0), and the multi-model mean is also sublinear, although close to 0. Panel c.

shows how this anticorrelation can emerge from the uncertainty associated with regression-based

forcing estimates, by plotting twenty draws of a simple model with F̃pi = 4 Wm−2, ∂CF̃ = 0,

and a constant λ = −1 Wm−2K−1, and abrupt2x and abrupt4x simulations with exponential

warming (with an e-folding time scale of 5 years) and iid normal noise on N with a σ of 0.4

Wm−2. Estimates of F̃pi and ∂CF̃ made using the first twenty years of each pair of simulations

are anti-correlated at 95%.
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Table S3. Estimates of feedback CO2 dependence (∂Cλ). For details of the forcing estimates,

see Text S2.

Model Forcing estimate
Model used elsewhere

in the paper
n×CO2

Fcold

(Wm−2)
Fwarm

(Wm−2)
∆T
(K)

∂Cλ
(Wm−2K−1)

Reference

CESM1.2.2 regression (1 - 30) no 2 3.2902 3.6533 7.4085 0.049 Stolpe et al., 2019

CESM2 fixed SST yes 4 8.8976 8.9759 6.8384 0.0057 original calculation

CNRM-CM6-1 fixed SST yes 4 7.9909 8.3787 6.0951 0.0318 original calculation

HadGEM2 fixed SST no 4 6.93 7.10 4.68 0.0182 Forster et al., 2016

HadGEM3-GC31-LL fixed SST yes 4 8.0623 8.4026 7.2818 0.0234 original calculation

4. Radiative feedback

Text S2. Estimating feedback CO2 dependence

Details of the forcing estimates in Table S3 are as follows:

• CESM1.2.2 : The solar constant is decreased and increased by 25 Wm−2, respectively, and

the model is run for several hundred years before branching off abrupt2xCO2 experiments. The

CO2 forcing is estimated by linearly regressing over the first 30 years of the 2xCO2 simulations.

• CESM2, CNRM-CM6-1, & HadGEM3-GC31-LL: 4xCO2 forcing is evaluated at pre-industrial

conditions (difference between “piSST-4xCO2” and “piSST” experiments; SST climatology con-

structed from each models’ own control simulation) and at a climate that corresponds to 4xCO2

conditions (SST and sea ice are taken from years 111-140 of the abrupt4xCO2 experiments).

The forcing in the warmer climate is estimated as the difference between the two experiments

“a4SSTice-4xCO2 and “a4SSTice”. The simulations are 30 years long and the first 9 years of the

experiments are disregarded, but the results are largely insensitive to this choice. Fcold for these

two models can also be estimated by the RFMIP (Pincus et al., 2016) “piClim” and “piClim-

4xCO2” experiments for which a common SST climatology is used. The forcing estimates are,

however, very similar. For CESM2 it is 8.91 Wm−2 and for CNRM-CM6-1 it is 8.00 Wm−2

(Smith et al., 2020).
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• HadGEM2 : 4xCO2 forcing was evaluated twice: with pre-industrial SST, and with SSTs

uniformly increased by 4K. This corresponds to a global mean air temperature change of about

4.68 K. This estimate is based on the difference between the “amip4K” and “amip” experiments

with the closely related model HadGEM2-A.
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Figure S5. Each panel shows how changing one of our assumptions would affect Fig. 2.

In panels a. and b., the default feedback CO2 dependence ∂Cλ is set to 0.0 or 0.05 Wm−2K−1

respectively, spanning the values seen in Table S3. While larger (smaller) values of ∂Cλ may

decrease (increase) our estimates of ∂Tλ, they also shift the thresholds of nonlinear behavior in

parameter space accordingly, so that there is little qualitative effect. Panel c. is like Fig. 2, but

with forcing estimates based on years 1-20 instead of 1-10 (note the reduction in uncertainty).

Once more, there is little qualitative effect. Panel d. shows the result of using direct estimates of

forcing instead of a quadratic fit on the right side of Eq. 8, and panel e. shows the result of using

additional years to estimate equilibrium warming. In both cases, results are pretty similar to Fig.

2. For years 101-1000, with the exception of FAMOUS (which the model suggests is in runaway

warming), the magnitude of ∂Tλ increases, suggesting that the magnitude of the NonLinMIP

models’ ∂Tλ may be biased low.
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Table S4. CMIP6 abrupt4xCO2 simulations with equilibrium warming above 9K (leading

to a linear estimate of ∆T2x > 4.5K). All estimates made using publicly available CMIP6 data,

except GFDL-CM4, which was made using Winton et al. (2020). Columns give estimates of ∆Teq

made using the given number of years.

Model 21 - 150 51 - X 101 - X

ACCESS-CM2 10.71

ACCESS-ESM1-5 9.63

CanESM5 11.51

CESM2 12.85

CESM2-FV2 13.36

CESM2-WACCM 11.21

CESM2-WACCM-FV2 12.09

CIESM 12.60

CNRM-CM6-1 9.39 11.02 (X = 1000) 11.19 (X = 1000)

CNRM-ESM2-1 9.25

E3SM-1-0 11.48

GFDL-CM4 8.80 10.0 (X = 300)

HadGEM-GC31-LL 11.49

HadGEM-GC31-MM 10.80

IPSL-CM6A-LR 9.56 10.32 (X = 900) 10.34 (X = 900)

KACE-1-0-G 9.88

NESM3 9.24

NorESM2-LM 6.01 15.60 (X = 500) 16.65 (X = 500)

TaiESM1 9.33

UKESM1-0-LL 10.99
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5. Comparing nonlinear terms

Text S3. Estimating the components of the three nonlinear terms

We first create globally and annually averaged time series of the radiative flux, Rf , of each

component, f (where f is LW clear-sky, LW cloud, SW, SW surface, SW noncloud atm., and SW

cloud), by taking the LW clear-sky, LW cloud radiative effect, and SW all-sky fluxes as output by

the models themselves for the first three f respectively, and by calculating the SW surface, SW

noncloud atm., and SW cloud using APRP as described in Taylor et al. (2007) for the CMIP6

models (for which we have the necessary variables) for the last three f respectively. We calculate

anomalies for each LongRunMIP model by subtracting the average preindustrial value, and for

the CMIP6 models by subtracting the linear trend after the branching point.

We define Ff (C) to be the radiative forcing with respect to preindustrial conditions for the

component flux f : Ff (0) ≡ 0; otherwise we regress years 1-10 of R′f (defined as above) against

∆T , and extrapolate to find the estimated value of R′f at ∆T = 0, which is then Ff (C).

We estimate the forcing per doubling CO2 dependence components by taking the second-order

regression of Ff (C) against C, assuming that the regression passes through the origin; that is,

we fit the equation

Ff (C) = F̃pi,fC +
1

2
∂CF̃fC

2 (1)

We estimate the feedback CO2 dependence components, ∂Cλf , for the five models in Table

S3 by finding the components of the “warm” and “cold” forcings estimated in that table (either

by regressing time series of the components, or by taking the relevant fluxes from the fixed-SST

experiments) and making the same calculation as in Eq. 12 in the text.
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In order to ensure that fluxes are calculated with the equilibrium temperature pattern ~Teq(T ),

we estimate the components of feedback temperature dependence in the following manner. We

define R′f,eq(C), the equilibrium anomalous top-of-atmosphere flux for component f at C as

follows: R′f,eq(0) ≡ 0; for C 6= 0, we regress the annually-averaged abrupt2CxCO2 time series of

the anomaly of the top-of-atmosphere radiative flux f , R′f (where anomalies are defined as in

Section 2) against the time series of ∆T for the same simulation during years 21-150 (for CMIP6

models) or 101-1000 (for LongRunMIP models), and then use this linear fit to extrapolate R′f to

its value at ∆Teq(C), which is then R′f,eq(C).

We then fit the equation

R′f,eq(C)− (F̃pi,fC +
1

2
∂CF̃fC

2) = λpi,f∆Teq(C) +
1

2
∂Tλf∆Teq(C)2 + ∂CλfC∆Teq(C) (2)

which is equivalent to Eq. 8 in the main body of the text, except with the R′f,eq(C) term, which

is 0 for Neq(C) =
∑
R′f,eq(C). For models for which we do not have direct estimates of the

feedback CO2 dependence components, we use the average values of the five models. This gives

our estimate of the feedback temperature dependence component ∂Tλf .
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Figure S6. Colored dots in all panels give flux components of preindustrial feedback vs.

feedback temperature dependence, and colored ellipsoids give the 75th percentile of uncertainty,

where the colors are as in Fig. 1, 2, and 3 in the main body of the paper. Gray dots/ellipsoids

give the multi-model mean. Panels a through d give the clear-sky vs. cloud radiative feedback

decomposition of the shortwave and longwave feedbacks. Panels e, f, and h give the approximate

partial radiative perturbation components for models with the necessary variables available, and

panel g is the sum of the values in panels e and f, for comparison with panel c. In panels c

and d, the gray triangles give mean values of only the models for which APRP calculations are

performed in panels g and h, allowing comparison with the multi-mean values in those panels

and an assessment of the bias created by cloud masking, which is present in the top row but not

the bottom.
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Figure S7. Flux components of the nonlinear terms CO2 dependence of the forcing per CO2

doubling (∂CF̃ , panel a) and feedback CO2 dependence (∂Cλ, panel b); see Text S3 for details.

The last three columns of each panel give shortwave approximate partial radiative perturbation

components for models with available data. Vertical lines give the 2.5th to 97.5th percentile range

of uncertainty. FAMOUS is an outlier for the net and SW cloud nonlinear forcing terms.
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