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Abstract

A framework is introduced to compare moist ‘potential’ temperatures. The equivalent potential tem-
perature, θe, the liquid water potential temperature, θ`, and the entropy potential temperature, θs, are all
shown to be potential temperatures, in the sense that they measure the temperatures of certain reference state
systems whose entropy is the same as that of the air-parcel. They only differ in the choice of reference state
composition: θ` describes the temperature a condensate-free state, θe a vapor-free state, and θs a water-free
state would require to have the same entropy as the given state. Although in this sense θe, θ`, and θs are
all different flavors of the same thing, only θ` satisfies the stricter definition of a ‘potential temperature’, as
corresponding to a reference temperature accessible by an isentropic and closed transformation of a system in
equilibrium; both θe and θ` measure the ‘relative’ enthalpy of an air parcel at their respective reference states;
but only θs measures air-parcel entropy. None mix linearly, but all do so approximately, and all reduce to the
dry potential temperature, θ in the limit as the water mass fraction goes to zero. As is well known, θ does mix
linearly and inherits all the favorable (entropic, enthalpic, and potential temperature) properties of its various
– but descriptively less rich – moist counterparts. All, involve quite complex expressions, but admit relatively
simple and useful approximations. Of the three moist ‘potential’ temperatures, θs is the least familiar, but the
most well mixed in the broader tropics, a property that merits further study as a possible basis for constraining
mixing processes.

1 Introduction

The strong pressure dependence of many state vari-
ables can complicate attempts to compare the proper-
ties of atmospheric air parcels. For dry air, approxi-
mated as an ideal gas, the potential temperature, θ,
elegantly describes an air parcel’s state. It does so by
accounting for the effect of pressure on the state of the
air parcel, which then facilitates comparisons of the
properties of air-parcels independent of their ambient
pressure.

Physically, θ describes the temperature dry air
would attain, were it brought adiabatically to a ref-
erence pressure, usually (but not necessarily) taken to
be the standard pressure, P0 = 1000 hPa. Mathemati-
cally

θ = T

(
P0

P

)κd
, (1)

where T is temperature (in Kelvin), P pressure, and

κd = Rd/cpd . Values of the dry-air gas constant, Rd,
and the isobaric specific heat, cpd , depend on how dry-
air is defined — usually as N2, O2, Ar, and sometimes
CO2, approximated as an ideal mixture of ideal gases
specified in some fixed proportion.1 As has been appre-
ciated for some time (von Bezold, 1888; Bauer, 1910), θ
is much more than a way to compensate for the effects
of pressure on temperature, it measures the buoyancy
of air parcels (on isobars), the enthalpy of the air at
a reference pressure, and it mixes linearly. It is also
linearly proportional to the exponential of the dry air-
parcel entropy, s divided by cpd .

For a variable composition fluid, even for the lim-
iting case of an ideal mixture of ideal gases, the sit-
uation is more complicated. Admitting condensible
phases for the minor constituent, what we call moist-

1For the treatment of the thermodynamics it is common to
neglect changing CO2 and O2 from burning fossil fuels.
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air, complicates matters further. Earth’s atmosphere
is, however, fundamentally comprised of moist-air –
it cannot be understood without considering the wa-
ter it contains. This makes it necessary to address
these complications, and explains the rich literature
that has developed, proposing one or the other gen-
eralization of the idea of the potential temperature
to moist-air. As it turns out, these moist potential
temperatures all measure slightly different quantities,
and while this point is generally well understood (see
Pauluis, 2018), physical understanding of exactly what
they measure remains rudimentary.

Figure 1: Mean profiles of the liquid water, θl, entropy, θs,
equivalent θe potential temperatures from 757 dropsondes
launched along the EUREC4A-Circle (Stevens et al., 2021;
George et al., 2021). Dashed lines are from slight approx-
imations to the same quantities, as discussed later in the
manuscript.

Given the prominence of a literature that has made
statements to the contrary (cf., Emanuel, 1994; Pauluis
et al., 2008; Raymond, 2013; Romps, 2015), it may
come as a surprise that the equivalent potential tem-
perature, θe, does not measure the entropy of an air-
parcel – not even approximately. Fig. 1, which presents
vertical profiles of the liquid-water potential temper-
ature, θ`, the entropy potential temperature, θs, and
θe as calculated from thermodynamic measurements
made during the recent EUREC4A field study, sub-

stantiates this point. All quantities are invariant for
isentropic transformations of closed air parcels (namely
with a constant total water content), but this adiabatic
invariance, as the figure demonstrates, does not mean
that their differences (e.g., with altitude) are indica-
tive of differences in entropy, nor does it guarantee
that their isopleths are isentropes. Were this the case,
then θe, or θ` could not take on different values for the
same value of θs.

As it turns out, only θs ∝ exp(s/cpd), and hence
only its differences measure differences in s. Why this
is so, how θs and the other moist potential tempera-
tures relate to one another, and hence what precisely
one compares when one compares their different val-
ues, are the subject of this paper. We begin by con-
structing a framework (§2) that allows us to define
precisely what we mean by the term potential temper-
ature. This framework is used in §3 to derive exact
(within the framework of the given assumptions) ex-
pressions for θ`, θs, and θe. These are physically inter-
preted, and compared to common simplified expres-
sions of the same variables. The ability of the different
moist potential temperatures to measure different air-
parcel properties is evaluated in §4. In §5 examples are
chosen to substantiate some of our main points, before
concluding in §6.

2 Terminology and Definitions

2.1 Moist-air

We idealize the atmosphere as moist-air, i.e., as a mix-
ture of dry air and water, allowing a portion of the
latter to condense as conditions dictate. In equilib-
rium, the thermodynamic state of the moist-air is com-
pletely specified by three thermodynamic coordinates.
For these we adopt the temperature, T, the pressure P
and the water mass fraction (total-water specific hu-
midity), qt. A guide to the subscript notation adopted
is given in Table 1.

To arrive at an analytically tractable description,
and to facilitate precise statements, we make four fur-
ther assumptions: (i) the specific heats are approxi-
mated as constant, i.e., not varying with temperature,
(ii) the non-condensate phase (gas/vapor) is approxi-
mated to behave as an ideal mixture of ideal gases; (iii)
the contribution of the condensate to the total volume
is negligible; and (iv) only a single condensate phase is
admitted, and this is treated as an ideal liquid, whose
mass fraction is denoted ql.

Assumptions (i) to (iii) are a common starting point
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Table 1: Subscript notation for the specification of particular states.

Subscript Description

0 standard values, or quantities evaluated at standard values
r a non-standard reference value
1, 2 to distinguish different values or states, indexed by j
v, l, t vapor, liquid and total water
∗ value at vapor-liquid (water) saturation
d dry component (qd = 1− qt for the two components system)
e equivalent (liquid) reference state (ql = qt)
` liquid-free reference state (qv = qt)
s absolute entropy value
x unspecified reference state defining the moist potential temperature, θx

for atmospheric thermodynamics (Emanuel, 1994;
Stevens and Siebesma, 2020; Romps, 2021), which
facilitates analytic work (Ooyama, 1990; Raymond,
2013; Romps, 2017). Approximation (iv) is adopted
because including the ice phase introduces formal com-
plexity that is not relevant to our arguments. Approx-
imations (i) and (ii) can be relaxed by using the vari-
able values of specific heat and non-ideal effects based
on IAPWS and TEOS10 tools (IAPWS, 2010; Feistel,
2018), but sacrifices analytic clarity for accuracy.

2.2 Reference states and notation

Many thermodynamic state functions, such as the en-
tropy or the enthalpy are defined with respect to some
reference state value. For ice-free moist-air in ther-
mal equilibrium, a reference state can be fully charac-
terized by specifying a reference temperature, Tr, and
the reference state composition {Pd,r, qv,r, ql,r}. Here
Pd denotes the partial pressure of the dry-air, and the
roman-subscript ’r’ denotes a reference value. A de-
scription in terms of three (rather than two) additional
state variables anticipates the possibility of mechanical
disequilibrium2. This possibility is required to accom-
modate the derivation of some of the moist potential
temperatures in the proposed framework.

The specification of the reference state already illus-
trates how notation can be a challenge. In the present
manuscript, subscripts are used to give specificity to
a class of variables. For instance, roman subscript d,
v, and l are used to distinguish properties of dry-air
versus water-vapor or liquid-water. Subscript t is used
to denote total water, whereby in an ice-free system
qt = qv + ql. In addition, we introduce the roman sub-

2What we call mechanical equilibrium, which is a force (pres-
sure) balance between phases, is sometimes referred to as phase
equilibrium.

script r to identify a reference state value, and x to
denote quantities associated with a particular choice
of reference-state composition. As a rule, and as sum-
marized in Table 1, numeric subscripts are used to
distinguish different air-parcel states (with 0 denot-
ing standard values), and letters are used to denote a
particular disposition of matter.

Three special compositions of the reference state are
defined as special cases of x. These correspond to end-
member (or limiting) situations whereby:

e state: denotes, the ‘equivalent’ composition of the
reference state, whereby x → {Pd,0, 0, qt}, and
hence is vapor free;

` state: denotes, the ‘liquid-less’ composition of the
reference state, whereby x → {Pd,0, qt, 0}, and
hence is condensate free;

s state: denotes, the ‘entropic’ composition of the ref-
erence state, whereby x → {Pd,0,0, 0}, and hence
is water-free (dry).

Dalton’s law and state equations specifiy the partial
pressures of the ideal gases in terms of the total pres-
sure and the specific humidities, such that

Pd,0 ≡ P0

(
1− qt,r

1 + ε qv,r − ql,r

)
, with ε =

Rv

Rd
− 1 , (2)

and correspondingly for Pv,0 = Pr − Pd,0. The names
(equivalent, liquid-less, entropic) are not especially in-
formative nor intuitive in this context, but chosen to
keep consistency with historical usage.

2.3 The entropy temperature, ϑ

For an ideal gas the specific entropy is given as

s(T, P ) = s(Tr, Pr) + cp ln

(
T

Tr

)
−R ln

(
P

Pr

)
, (3)

where s(Tr, Pr), alternatively written as sr, is the en-
tropy at the reference temperature, Tr, pressure, Pr,
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and gas constant R (Fermi, 1937). The entropy for
the condensed phase can be expressed similarly, except
that the dependence on pressure vanishes by virtue of
the assumed incompressibilty. The sum of the con-
stituent entropies, defines the system entropy,

s = qd sd + qv sv + ql sl . (4)

Combining Eqs. (3) with (4) results in a long expres-
sion for the entropy (see for instance Pauluis et al.,
2010; Marquet, 2011; Raymond, 2013; Stevens and
Siebesma, 2020, where however the dry-air and liquid-
water or water-vapour reference entropies are some-
times set to zero). By referring the component sys-
tems to a common reference temperature, the remain-
ing terms can be combined into a single function, ϑ,
such that without any further loss in generality:

s(T, P, qt)− sr = cp,r ln

(
ϑ

Tr

)
, (5)

where sr ≡ s(Tr, Pr, qv,r, ql,r), with Pr = Pd,r + Pv,r,
and cp,r is the isobaric specific heat of the system in
the reference state. Expanding Eq. (4) shows ϑ to be a
function of both the state (T, P, qt) and those aspects
of the reference state that determine its composition,
i.e., {Pr, qv,r, ql,r}.
Using the subscript x to remind us of how quantities
depend on the composition of the reference state, al-
lows us to write Eq. (5) as

s(T, P, qt)− sx(Tr) = cx ln

(
ϑx(T, P, qt)

Tr

)
. (6)

Readers familiar with the Hauf and Höller (1987) en-
tropy temperature will recognize it as the special case
of ϑx with x = e, i.e., the vapor-free reference state
{Pr = P0, qv,r = 0, ql,r = qt}. Leaving the composi-
tion of the reference state open (as indicated by x),
enables a more general treatment of the moist poten-
tial temperatures ϑx. Notwithstanding this generaliza-
tion, and the fact that ϑx measures entropy differences
(s − sx(Tr)) rather than the entropy, s, itself, we also
refer to ϑx as an ‘entropy temperature’. Calling it a
‘generalized entropy-difference temperature’ would be
more precise, but unwieldy and ahistorical.

2.4 Potential temperatures

Based on Eq. (6) we formalize the Stevens and
Siebesma (2020) definition of potential temperature as
follows

Given a reference state whose composition is
denoted by x, the potential temperature θx
is the temperature (Tr) this reference state
must adopt to have the same entropy as the
given state.

Mathematically this defines θx, implicitly to satisfy s−
sx(θx) = 0, for some given specification of x. It follows
that θx = ϑx. The adjective ‘potential’ describes how
θx is the temperature the system would adopt were
it brought to the reference state without changing its
entropy. The potential temperature as defined above
is thus a generalization of the Hauf and Höller (1987)
entropy temperature.

By definition, θx is invariant for any isentropic trans-
formation that does not imply a change in the reference
state composition. For dry air, the reference state is
completely specified by Pr the reference state pressure,
usually taken to be standard pressure, P0. A stricter
form of the above definition, and one satisfied by the
dry-air potential temperature, θ, would additionally
require the transformations to be closed and reversible,
but by this definition there can be at most one moist
potential temperature.

The three moist potential temperatures, θ`, θs, and
θe are shown below to correspond to the three lim-
iting reference states (e, `, s) described above. Each
is illustrated schematically in Fig. 2, whereby all of
the points connected by lines in the figure share the
same entropy, but the transformations that bring them
to their respective reference states differ. Reversible
transformations of the closed system are shown along
the solid line, and the dashed-dotted lines show either
non-equilibrium transformations (for instance associ-
ated with the condensate for x = e), or open trans-
formations as associated with removing the water sub-
stance at constant entropy, for x = s

3 Moist potential temperatures

3.1 The equivalent potential temperature,
θe

The oldest, and most familiar, moist potential tem-
perature, θe, was introduced by Rossby (1932) as the
value of θ for a parcel undergoing an infinite pseudo-
adiabatic ascent toward P = 0, with all the water re-
moved by precipitation (Fig. 2). Hence it measures
the potential temperature required of dry air, such
that following an adiabatic expansion its temperature
asymptotically approaches that of moist air expanded
pseudo-adibatically – herein lies the modern idea of
equivalence.3

3Marquet and Dauhut (2018) traces the idea of an ‘equiva-
lent’ potential temperature, to Normand (1921) who introduced
it as a generalization of Schubert (1904, p.18) and Knoche (1906,
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Figure 2: Schematic of the moist potential temperatures as projected in (θx, P ) coordinates. All connected points share
the same entropy, with their different reference temperatures reflecting differences in the reference state composition. The
types of isentropic transformations that connect the different moist potential temperatures are indicated in the legend.
That θs is in position 2/3 between θ` and θe is explained further in the text.

In the present paper, and following contemporary
usage, θe is defined as the temperature of a vapor-free
(equivalent) reference state, with the same entropy,
but for which all the water is in the condensate phase
at the standard pressure, P0. This differs from Rossby’s
definition by virtue of being isentropic (condensate is
not precipitated from the parcel), hence ‘equivalence’
is being drawn to a system in which the specific heat
of the water mass is retained. Retaining the conden-
sate maintains a closed system, but comes at the cost
of the reference state being in a state of mechanical
disequilibrium (Pv,r 6= P∗(Tr)).

In the equivalent (vaporless) reference state the spe-
cific heat and gas constants become

ce = cpd (1− qt) + cl qt and Re = Rd (1− qt). (7)

With ql = qt − qv, Eq. (4) becomes

s − se(Tr) = ce ln

(
T

Tr

)
− Re ln

(
Pd

P0

)
+ qv (sv−sl) (8)

where

se(Tr) = (1− qt) sd(Tr, P0) + qt sl(Tr), (9)

p.3), and ultimately von Bezold’s concept of (‘higher’ or ‘sup-
plemented’ or ‘complete’) ‘equivalent’ temperature (Te). Nor-
mand’s equivalent potential temperature (θe) was defined using
cpd Te = cpd T + `v qv and θe ≈ θ (Te/T ), where the Te was the
‘moist equivalent’ of T with the impact of qv taken into account
via the moist ‘total energy’.

is the reference entropy of the ‘equivalent’ state at tem-
perature Tr. The ‘equivalent’ reference state, defined
earlier as a dry-air and vapor-free fluid parcel with
all water content in the liquid state, results from this
Eq. (9) for se(Tr) which depends only on sd and sl, as
in Hauf and Höller (1987). A possible physical process
for realizing such a state would be to separate the con-
densate as it forms, maintaining it in condensate form
in thermal equilibrium with the gas – for instance by
separating it from the gas with the help of a perfectly
conducting membrane whose own heat capacity is van-
ishingly small.

At the temperature T, the entropy difference be-
tween two phases can be written relative to the sat-
uration entropy, s∗:

sv − sl = (sv−s∗) + (s∗−sl) = −Rv ln

(
Pv

P∗

)
+
`v
T
, (10)

where P∗ is the saturation vapor pressure and `v =
hv − hl is the vaporization enthalpy (or latent heat
of vaporization). Recasting the above in the form of
Eq. (6), and defining θe as the value of the reference
temperature that satisfies se(θe) = s, yields:

θe = ϑx=e = T

(
P0

P

)κe
exp

(
qv `v
ce T

)
Ωe , (11)

where

Ωe =

(
R

Re

)κe (Pv

P∗

)−qvRv/ce

(12)
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and R = Rd (1 − qt) + Rv qv is the moist-air gas
constant. Eq. (11) is identical to that found in
modern textbooks, (e.g., Emanuel, 1994; Stevens and
Siebesma, 2020). The factor, Ωe, which is close to 1,
is often neglected in practical applications. Its first
term, proportional to the ratio of gas constants, ab-
sorbs the effect of defining θe in terms of P rather than
Pd, and its exponent, κe = Re/ce, which also appears
in Eq. (11), generalizes the analogous quantity for dry
air to the equivalent reference system.

Physically, θe measures the temperature air would
have if all of its vaporization enthalpy were used to
warm the parcel (accounting for the specific heat of
the condensate) at standard pressure. It does not sat-
isfy our stricter definition of a potential temperature
as the reference state is not in mechanical equilibrium,
and complete condensation through expansional cool-
ing can only be realized asymptotically.

3.2 The liquid-water potential tempera-
ture, θ`

The liquid-water potential temperature, θ`, was intro-
duced by Betts (1973) to study reversible changes of
phase in non-precipitating shallow convection. Follow-
ing Stevens and Siebesma (2020) it can be derived from
Eq. (6) by adopting a liquid-free reference state, de-
noted `, in which all the condensate is assumed to be
in the vapor phase at standard pressure and at tem-
perature Tr,`. The corresponding specific heat and gas
constants are

c` = cpd(1−qt)+cpv qt, and R` = Rd(1−qt)+Rvqt, (13)

and the reference entropy becomes

s` = (1− qt) sd(Tr, Pd,0) + qt sv(Tr, Pv,0) (14)

where Pv,0 = P0 − Pd,0 with Pd,0 defined by Eq. (2).
As the `-state is comprised of a dry-air and water va-
por alone, a state of mechanical (phase) equilibrium is
ensured as long as

qt <
Rd P∗(Tr)

Rv P0 − εRd P∗(Tr)
.

By substituting qt = qv + ql, Eq. (4) can be written as

s− s`(Tr) = c` ln

(
T

Tr

)
−Rd (1− qt) ln

(
Pd

Pd,0

)
−Rv qt ln

(
Pv

Pv,0

)
− ql (sv − sl). (15)

In equilibrium ql (sv−sl) = ql `v/T , namely with either
ql = 0 or Pv = P∗. Recasting the above in the form of

Eq. (6), and defining θ` as the value of the reference
temperature that satisfies s`(θ`) = s, yields:

θ` = ϑx=` = T

(
P0

P

)κ`
exp

(
−ql `v
c` T

)
Ω` , (16)

where

Ω` =

(
R

R`

)κ` ( qt
qv

)qtRv/c`

(17)

and κ` = R`/c`. This equation differs slightly from the
one derived by Betts (1973) as his Eq. (8) makes the
tacit approximation that d lnPv = d lnP, which ne-
glects contributions from changes in qv for saturated
perturbations. Accounting for these effects gives rise
to the small correction represented by Ω`, which de-
parts from unity only when condensate is present in
equilibrium. Eq. (16) differs fundamentally from Hauf
and Höller (1987), who by limiting themselves the e-
state composition for the reference state, proposed a
θ`-like quantity as an approximation to θe.

Physically, θ` measures the temperature the air
would have were any (here liquid) condensate evapo-
rated through a process of isentropic warming by com-
pression. To the extent its reference state is in equi-
librium, it is thus a potential temperature in the same
(strict) sense as θ, provided that all condensed water
can be evaporated in this reference state.

3.3 The entropy potential temperature, θs

Despite frequent statements to the contrary, neither θ`
nor θe are indicative of the specific entropy, s, of moist-
air. To address this shortcoming, Marquet (2011) in-
troduced the entropy potential temperature θs. The
insight required to ensure that θs measures entropy,
is the necessity to completely standardize the refer-
ence state composition, denoted by x. For a multi-
component system, doing so introduces a dependency
on the absolute entropies, and a role for the third law
in atmospheric physics (Appendix B).

To adapt the various derivations of θs to our pur-
poses we begin with the same form of the entropy
equation as was used to derive θ`, namely Eq. (15),
which corresponds also to Eq. B.10 (with qi = 0) of
Marquet (2011). Adopting a reference state for a dry
atmosphere, at standard pressure, and defining θs as
the value of the reference temperature that satisfies
sd(θs, P0) = s implies that:

θs = ϑx=s = θ exp

(
− ql `v
cpd T

+ Λ qt

)
Ωs , (18)

where

Ωs =

(
R

Re

)κd( Pd

Pd,0

)qt κd(Pv,0

Pv

)qt γ( T
T0

)qt λ
, (19)
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Table 2: Thermodynamic constants calculated with dry
air composed with a CO2 concentration of 420 ppmv

Constant Value Units

T0 273.15 K
P0 100000 Pa
P∗,0 = P∗(T0) 611.21 Pa
cpd 1004.66 J kg−1 K−1

cpv 1865.01 J kg−1 K−1

cl 4179.57 J kg−1 K−1

Rd 287.04 J kg−1 K−1

Rv 461.52 J kg−1 K−1

sd,0 = sd(T0, P0) 6776.2 J kg−1 K−1

sv,0 = sv(T0, P0) 10319.7 J kg−1 K−1

sl,0 = sl(T0) 3516.7 J kg−1 K−1

`v,0 = `v(T0) 2500.93E3 J kg−1

γ = Rv/cpd , λ = cpv/cpd − 1 and

Λ =
sv(T0, P∗,0)− sd(T0, Pd,0)

cpd
≈ 5.867 . (20)

Reference entropies for water vapor, sv(T0, P∗,0) ≈
12 672 J kg−1 K−1, and dry air, sd(T0, Pd,0) ≈
6778 J kg−1 K−1, are known up to ±1.5 J kg−1 K−1.
These uncertainties arise from uncertainties in the
standard values (Table 2) from which they are com-
puted. The accuracy of Λ is thus of about ±0.003
unit.

Physically, θs is the temperature that dry air must
have to have the same entropy as the moist system
at standard pressure. Like θe and θ`, θs shares the
property of reducing to θ for qt = 0, however in the
form of Eq. (18) it does so more transparently. This
can also be understood due to the relationship

s = sd,0 + cpd ln

(
θs
T0

)
, (21)

which generalizes the dry-air formula derived by Bauer
(1908) to moist-air.

3.4 Reference states and pseudo-entropies.

A substantial and enduring body of literature (Pauluis
et al., 2008, 2010; Raymond, 2013; Romps, 2015),
which dates back to Emanuel (1994), introduces the
moist potential temperatures, θe and θ`, as a mea-
sure of the entropy that would arise if the reference
entropies in Eqs (8) and (15) – respectively depend-
ing on se(Tr) and s`(Tr) – were assumed to be zero.

By adopting this approach one can arrive at expres-
sions for θe and θ` that are equivalent to Eqs (11)
and (16), with the seemingly attractive property that
θe ∝ Tr exp(s/ce), and equivalently θ` ∝ Tr exp(s/c`).
This has led many authors to conclude that θe and
θ` measures the entropy, or at least a closely related
quantity which Pauluis (2018) calls the ‘relative’ en-
tropy.4

A difficulty with defining the moist air entropy as a
‘relative’ entropy, in the sense of Pauluis (2018), is that
it is then measured relative to a reference state that
varies with the composition of the system, so that com-
paring ‘relative’ entropies of fluid parcels invariably
conflates differences in their reference state entropies.
In a single component fluid, where the composition
is fixed, this problem vanishes. To finesse this diffi-
culty, some of the above cited studies have asserted
that sv,0 − sd,0, which defines Λ cpd in Eq. (20), or
analogously sl,0− sd,0 as determines se(Tr), can be set
arbitrarily without breaking the more general links be-
tween θ`, θe and the moist-air entropy. For moist-air,
the matter-change entropies differentiate how different
forms of matter contribute to the entropy, analagously
to the phase-change entropies for different phases of
matter. While this is important for specifying the en-
tropy, the absence of conversions (chemical reactions)
between the different forms of matter (water and dry
air) makes the dynamic role of these matter change
entropies less obvious than for the phase change en-
tropies. This doesn’t, however, ameliorate the diffi-
culty, which is that if θe and θ` purport to measure the
entropy relative to something, that something needs to
be meaningfully specified.

To circumvent these difficulties Marquet (2011) de-
rived θs. In terms of the present interpretative frame-
work, θs can be understood as the result of an open-
process that transforms the moist-air to a dry-air ref-
erence state by removing the water while heating to
maintain constant entropy – isentropic desiccation.
This then defines θs in terms of a reference state whose
composition can be fixed absolutely (qr,t = 0), thereby
fixing sr,x and cx independently of the state of the
parcel, and recovering the desired property whereby
θs ∝ Tr,s exp(s/cs), as described by Eq. (21).

4As pointed out by Marquet and Dauhut (2018) this termi-
nology risks confusion with the paper where the Shannon (1948)
entropy is defined, but with another different quantity with the
same name of ‘relative’ entropy.
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3.5 Simplified expressions

The moist potential temperatures are often approxi-
mated by neglecting the minor effects of water, i.e., on
the thermodynamic constants, or the contribution of
the partial vapor pressure to the total pressure. With
this approximation Ωx → 1 and:

θ̃e = θ exp

(
+qv `v
cpd T

)
, (22)

θ̃` = θ exp

(
−ql `v
cpd T

)
, (23)

θ̃s = θ̃` exp( Λ qt ) , (24)

with tilde denoting the approximation. Errors intro-
duced by the use of Eqs. (22)-(24) in lieu of Eqs. (11),
(16) and (18) are on the order of 1 %, and tend to
increase with differences in the pressure from the ref-
erence state (see Fig. A1 in the Appendix A).

A sense of the errors associated with these approx-
imations is given by Fig. 1, which also plots the ap-
proximations (dashed) alongside the actual values for
the EUREC4A soundings.

Eqs. (22)-(24) are informative as to the differences
in the magnitude of the different forms of θx. Taking
`v/(cpdT ) ≈ 9 and Λ ≈ 6, yields

ln

(
θ`
θ

)
≈ ln

(
θs
θ

)
− 6 qt ≈ ln

(
θe
θ

)
− 9 qt. (25)

Because qt is positive definitive, this positions θs at
roughly the two thirds position between θ` and θe, as
observed in Fig. 1.

The different magnitudes of the moist potential tem-
peratures reflect the different degree to which temper-
ature has to compensate differences in the composition
of the chosen reference state to maintain the same en-
tropy. Comparing θe to θ` for instance, shows that a
system with all its water in the liquid phase must be
much warmer, than the same system with all its water
in the vapor phase, if it is to have the same entropy.

Keeping in mind that each of the moist potential
temperatures describe the same system, with the same
entropy, Eq. (25) shows how, due to qt, none of the
moist potential temperatures are proportional to one
another. And although each describes (approximately)
a system with the same entropy, at most one can actu-
ally be proportional to entropy, which is a state func-
tion whose difference between two points (i.e., states)
takes a unique value.

4 Properties of the moist potential
temperatures

By virtue of their derivation, the moist potential tem-
peratures, θ`, θs, and θe are all potential temperatures
in the weak sense of the term, i.e., being the tempera-
ture of a reference system with the same entropy as the
actual system. Only θ` qualifies as a potential temper-
ature in the strict sense of the term, i.e., corresponding
to a reference temperature accessible by an isentropic
and closed transformation of a system in equilibrium.

For θs the reference state has a different composi-
tion and thus cannot be attained by a closed system.
For θe the reference state is in mechanical (phase) dise-
quilibrium. Even for θ`, mechanical equilibrium of the
reference state is only guaranteed for under- or just-
saturated water vapor pressure at Tr = θ`, which corre-
sponds to qt < q∗(P0, θ`), a restriction that is satisfied
for most atmospheric conditions. Whereas the com-
position of the reference state with respect to which
θs is defined is independent of the composition of the
system it measures, the reference state for both θ` and
θe is set equal to the composition of the system whose
state they measure.

When comparing how differences in properties are
measured by differences in the potential temperatures,
it simplifies notation to introduce the difference oper-
ator, ∆ defined such that

∆ [ f(χ) ] ≡ f(χ2)− f(χ1) (26)

for two states (enumerated by 1 and 2) of any variable
χ and for any function f. Hence ∆ [ f(χ) ] = 0 if χ2 =
χ1. What distinguishes θs from θ` and θe is that qr,s is
absolute, i.e., it is the same (zero in our case) for all
states. Hence ∆(qr,s) = 0 by definition.

4.1 Entropy

For moist-air and from Eq. (6), denoting by θx the
temperature for the reference state whose composition
is chosen by x such that s = sx(θx), it follows that

∆s = ∆[sx(θx)] . (27)

For the case of dry air, the reference entropy (as mea-
sured relative to standardized values) with the tem-
perature chosen in this way, satisfies

sd,r = sd(θ, Pr) = sd,0 + cpd ln

(
θ

T0

)
−Rd ln

(
Pr

P0

)
. (28)

Hence the difference between two reference states is
given by

∆sd,r = cpd ∆ [ ln(θ) ] − Rd ∆ [ ln(Pr) ] . (29)
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These equations show that by standardizing the ref-
erence pressures (so that Pr,1 = Pr,2), ∆s ∝ ∆(ln θ),
hence differences in the dry-air potential temperature
measure dry-air entropy differences.

Let us show that the same is not true for θ` and
θe. Consider first the entropy differences between two
liquid-less (qt = qv) reference states (per the definition
of the `-state, both are defined relative to standardized
pressures, but can differ in composition, i.e., qt,1 6=
qt,2). In this case, after a little bit of algebra, one can
show that

∆[s`(θ`)] = c`,2 ∆ [ ln(θ`) ] + Φ`(qt,2, qt,1) , (30)

where,

Φ`(qt,2, qt,1) =

[
cpd Λ + (cpv − cpd) ln

(
θ`,1
T0

)]
∆qt

+Rd ∆[ (1 + ε qt) ln(1 + ε qt)− (1− qt) ln(1− qt) ]

+Rv ∆[ qt ln qt − qt ln(ε+ 1) ] .

Eq. (30) shows that, even after standardizing the
reference-state pressures the relationship between ∆s
and ∆(ln θ`) is modified by Φ`, whose value depends
on differences in the composition of the two states. Be-
cause Φ`(qt,2, qt,1) = 0 only if qt,2 = qt,1, differences in
θ` can only measures the entropy differences of systems
with the same composition (qt,2 = qt,1). The same is
true for θe although the form of Φe differs from that of
Φ`.

In contrast, for θs, by virtue of adopting a dry ref-
erence state (and standardizing the pressures),

∆[ss(θs)] = cpd ∆ [ ln(θs) ] . (31)

To attain this property it is necessary to standardize
the reference state composition, i.e., to pick a reference
state composition x that is fixed independently of the
composition of the given state. This of course means
that isentropic transformations to this state cannot be
closed. So while it is possible to define a moist po-
tential temperature (in the weak sense) that measures
entropy (θs), no moist potential temperature defined
in the strict sense of the term can do so.

4.2 Enthalpy

Here we investigate to what extent the choice of a moist
potential temperature influences its ability to measure
enthalpy differences. For the dry potential tempera-
ture, T = θ at the reference state pressure, and so dif-
ferences in θ measure differences in the reference state
enthalpies, i.e.,

∆h = cpd ∆θ. (32)

It was in this sense that Helmholtz identified θ with
what he called the Wärmegehalt (heat content).

Similar to the case for entropy, for moist-air, com-
positional differences influence enthalpy differences in
ways that the moist potential temperatures do not
fully account for. For moist-air,

h = c` (T − T0)− `v ql + hd,0 + (hv,0 − hd,0) qt (33)

= ce (T − T0) + `v qv + hd,0 + (hl,0 − hd,0) qt, (34)

where a discussion of the reference enthalpies are given
in Marquet (2017). In atmospheric studies the ‘rela-
tive’ enthalpies

h` = c` T − `v ql and he = ce T + `v qv , (35)

which form parts of Eq. (33) and Eq. (34), are often
introduced, and serve as the enthalpic contributions to
the liquid water and moist static energies respectively.

Given that θ` and θe respectively measure the tem-
perature, T, at condensate-free and vapor-free refer-
ence states, it follows that changes in the reference
state enthalpy (not to be confused with the reference
quantities, which are denoted by subscript 0) can be
written as

∆(h) = ∆(c` θ`) + L`,0 ∆(qt) (36)

= ∆(ce θe) + Le,0 ∆(qt), (37)

with L`,0 and Le,0 constant reference quantities readily
deduced from Eqs. (33) and (34).

Eqs. (36) and (37) demonstrate how the dependence
of the reference state enthalpy on qt conflates the re-
lationship between ∆(h) in the reference state and
∆(ceθe). The situation for θ` is no different. How-
ever, for many purposes (e.g., measuring temperature
changes from mixing) differences in reference temper-
atures and enthalpies play no role – knowledge of dif-
ferences in ‘relative’ enthalpies and qt is sufficient.
From Eqs. (35) we note that in the reference state
∆(he) → ∆(ce θe) and ∆(he) → ∆(c` θ`). This gives
a weak form of correspondence between θe or θ` and
their dry air counterpart, θ.

Because θs defines the temperature dry air must
have to have the same entropy as the moist system,
differences in ∆θs measure differences in the enthalpy
of dry air with the same entropy as the moist systems
being compared, but the meaning of this enthalpy is
not especially informative. This is is not unexpected
given that ∆(θs) was designed to measure changes in
entropy, not enthalpy.
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4.3 Linear mixing

Entropy S and enthalpy H for a given mass (m) are
both extensive variables, whereas specific values for
both entropy (s = S/m) and enthalpy (h = H/m) are
intensive variables. The total entropy and enthalpy
embodied in two parcels of air of mass m1 ad m2 is
the sum of the entropy and enthalpy of each parcel,
respectively. When the parcels mix, the total entropy
increases because the process is irreversible, but the
total enthalpy doesn’t change. Therefore the specific
enthalpy is linearly mixing, but the specific entropy is
not.

Therefore, in addition to labelling entropy, being
conserved along isentropes and measuring enthalpy dif-
ferences at constant pressure, θ = (p0/p)

κT also mixes
linearly for dry air at constant pressure. By this it is
meant that if one lets m1 and m2 denote the specific
masses of two air-parcels, whose states are indicated by
the enumeration (1 or 2), then upon mixing masses of
dry-air the value of θ is just the mass-fraction weighted
sum of the constituents, i.e.,

θ = θ1 + η ∆(θ) where η =
m2

m1 +m2
. (38)

This property of linear mixing is desirable of quantities
used in numerical models. It is verified for the mixing
of both enthalpy, and ‘relative’ enthalpy, for dry and
moist air, and extends to θ for the case of dry air.
For this property to also be transferable to the θx thus
requires ∆hx = cx θx.

From the discussion of the previous section, this
would seem to be the case for x ∈ {e, `}. However,
as pointed out there, ∆(hx)→ cx θx only for the refer-
ence state. For mixing of air in a different state it is
additionally required that the work done to move the
mixed system from its reference state to the given state
is the same as the work done on the component sys-
tems to move them to their reference state, that this
is not generally satisifed is also why the moist static
energies do not mix linearly (Bretherton, 1987).

5 Examples

In this section we present several examples chosen to
further illustrate the properties of various choices of
θx. The first compares the structure of the tropical at-
mosphere as seen through profiles of θe, θ` and θs. The
second explores the ability of θx to measure changes in
the state of the atmosphere resulting from the isobaric
mixing of air-parcels, using a challenging but relevant
example of cloud top mixing. The third compares the

ASTEX observed vertical profiles of θe, θ` and θs to
study the transition from stratocumulus to cumulus.

5.1 Contrasting the wet and dry tropics

For the first example we compare the representa-
tion of the thermodynamic state in the troposphere
in terms of θe, θ` and θs. Composite temperature
and humidity profiles are derived from global storm-
resolving (2.5 km) simulations from the DYAMOND
project (Stevens et al., 2019) using the ICON model
(Hohenegger et al., 2020). The composite soundings
are taken points over the ocean within the deep (10°S-
10°N) tropics. Two soundings are constructed, the first
by compositing over regions drier than the 10th per-
centile of precipitable water, the second by composit-
ing over columns moister than the 99th percentile of
precipitable water (to capture the very moistest con-
vective regions). They thereby contrast the thermody-
namic structure of the dry and wet tropics, the latter
being indicative of regions of active convection.

Figure 3: Profiles of θe, θl and θs for a composite sounding
over the dry (dotted) and moist (solid) tropics.

Fig. 3 complements Fig. 1 to more generally show
how different expressions for θx have neither the same
values, nor even the same structure. If each expression
for θx were proportional to the entropy (or the entropy
as measured relative to some reference), as is some-
times maintained, then how in the case of the moist
atmosphere (solid lines) could θs increase in the lower
atmosphere (between 800 hPa to 600 hPa) while θe de-
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creases. Likewise, how can θs decrease below 800 hPa
in the dry sounding (left panel) where θ` increases.
This provides a vivid example of how differences in θe
and θ`, measure differences in the entropy of the ref-
erence states of each profile, rather than differences in
the entropy of the actual state. Put another way, if two
gas quanta have the same entropy, but differ in com-
position, their values of θe and θ` will vary to reflect
these differences in composition.

In contrast, by virtue of being defined relative
to an absolute reference state, θs is proportional to
exp(s/cpd). For both the dry and the moist soundings,
profiles of θs vary less with height than profiles of θ`
or θe. The inference being that the entropy, s, is bet-
ter mixed in the lower troposphere than one would
surmise by associating it with θe or θ`. And whereas
in the dry atmosphere a surface thermal source and
an above-PBL radiative sink of entropy are associated
with an entropy minimum near (800 hPa), the entropy
is everywhere increasing in the convective sounding.
The profile of θs in particular emphasizes that the en-
tropy of the lower troposphere is relatively constant,
but that the dry regions have an entropy deficit as
compared to the moist regions, presumably due to the
radiant energy sink as air slowly subsides away from
regions of active convection. These properties are only
possible to ascertain from the profile of θs.

As evident from Eq. (25) θe is consistent with con-
stant θs only for the case of constant qt. Homogenizing
θe while reducing qt, as the moist profiles in Fig. 3 show
to be the case in the convective state, increases θs.

5.2 Cloud-edge isobaric mixing

For the second example we compare isobaric mixing
between two air-masses at a cloud-top interface. The
mixing of saturated and unsaturated air is non-linear,
so this provides a challenging but relevant test of the
properties of the various forms of θx. The case we
explore is based on measurements of marine stratocu-
mulus made as part of the DYCOMS-II field study,
wherein a stratocumulus layer was topped by warmer
and much drier air (Stevens et al., 2003). The con-
ditions sampled during the first research flight satis-
fied the buoyancy reversal criteria, whereby the air
aloft, which we designated by subscript 1, had a higher
density temperature, Tρ than the air in the cloud,
designated by subscript 2. This situation, whereby
Tρ,1 > Tρ,2 corresponds to a stable stratification in
the absence of mixing. For the observed conditions,
mixtures of the warmer drier air aloft with the cooler

saturated air in the cloud layer, would (for a range
of mixing fractions) result in air-parcels denser than
the air in the cloud layer. This is a mixing instabil-
ity whose importance for the dynamics of marine stra-
tocumulus continues to be debated (Deardorff, 1980;
Randall, 1980; Mellado, 2017).

We calculate ∆Tρ = Tρ(η)−Tρ,2 as a function of the
mixing fraction η. As defined as in Eq. (38), η denotes
the specific mass of one component (which we denote
by subscript 2) of a binary mixture. For the reference
(black line) we calculate the properties of the mixed
air by virtue of both qt and he (as given by Eq. (34))
mixing linearly at constant pressure P , leading to

qt = qt,1 + η ∆(qt) , (39)

he = he,1 + η ∆(he) . (40)

Together with the fixed pressure P , this defines the
state of the system, from which T and Tρ can be cal-
culated.

Fig. 4 confirms our earlier arguments that none of
the formulations for θx linearly mix. Although our par-
ticular example involves phase changes, the structure
of the error in Fig 4 (right panel), which is on the or-
der of 5 % to 10 % and maximizes (near η = 0.6) for
unsaturated mixtures, is primarily due to the effect of
∆qt rather than from phase changes.

This analysis serves as a reminder that isentropic
invariance (conservation) of a thermodynamic quantity
does not guarantee that it mixes linearly. For the case
of θs this should be clear, as the mixing itself is a source
of entropy and s ∝ ln(θs). Adopting a log mixing rule,
i.e.

θs(η) = exp { ln(θs,1) + η ∆ [ ln(θs) ] } , (41)

is thus equivalent to (incorrectly) assuming linear mix-
ing of s. This, at least, gives the resultant temperature
errors a physical interpretation, i.e., that which arises
from neglecting the entropy production through mix-
ing (Richardson, 1919). Errors incurred by linearly
mixing θe or θ` are more challenging to interpret.

5.3 Stratocumulus-Cumulus transition

For the third example we study profiles of θx for
the forty-three observed sounding profiles of the first
ASTEX Lagrangian experiment described in Brether-
ton and Pincus (1995) and de Roode and Duynkerke
(1997). The profiles are shown for the respective val-
ues of θx in Fig. 5. The sets of profiles are subjectively
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Figure 4: Buoyancy perturbation between isobaric mixing of saturated (T = 283.02 K and qt = 9.0 g kg−1) and unsaturated
air (T = 292.94 K and qt = 1.5 g kg−1) at 920 hPa with a cloud-top water content of 0.7 g kg−1. The buoyancy temperature
derived by mixing parcels based on their moist ‘relative enthalpy’, he, is plotted versus mixing fraction, along with the
error. Errors (right panel) are compared for the mixing of the exact cxθx (solid) versus the simplified cpd

θ̃x (dotted)
versions. Color coding is indicated in the key in the left panel.

associated with different cloud regimes. Stratocumu-
lus profiles (colored blue) are associated with mixing
from cloud top to the surface and have extensive cloud
cover. Profiles associated cumuliform cloud regimes,
are colored black. The transition between the two,
often associated with stratocumulus whose thermody-
namic properties are differentiated (decoupled) from
the thermodynamic state of the sub-cloud layer, are
colored red.

As a consequence of the changing profile of qt, the
cloud transition admits very different interpretations
depending on which form of θx it is viewed from. Tran-
sition profiles are associated with a weakening of the
negative θ` gradients in the hydro-lapse5 regions that
demarcates the top of the marine (moist) layer, and a
reversal above a certain threshold value of the gradi-
ent as measured by θe. The latter is the basis for the
cloud-top entrainment instability hypothesis (Randall,
1980). The behavior of θs is somewhat different, as the
transition is better demarcated by a homogenization of
θs in the lower troposphere and almost a null top-PBL
jump. Whether this is the cause as once suggested by

5The term hydro-lapse is used to demarcate the trade-wind
inversion region as the fall off of moisture with height is often
more pronounced than the increase of temperature at the top of
the trade-wind cloud layer.

Richardson (1919), or an effect, of increased lower tro-
pospheric mixing is difficult to say, particularly given
the strong entropy sources and sinks in this region of
the atmosphere. Nonetheless the observation, whereby
θs gradients tend to vanish as stratocumulus gives way
to shallow cumulus, has recently been used by Marquet
and Bechtold (2020) to introduce an index for demar-
cating regions of stratocumulus from cumulus.

6 Conclusions

Our main conclusion is that it is hard to avoid ac-
counting for composition when comparing air-parcels
whose composition varies. While this might seem triv-
ial, a poor recognition of this fact can, and has, led
to considerable confusion – for instance the idea that
somehow θe measures entropy.

In retrospect it seems obvious that composition mat-
ters for varied air-parcel properties in ways that the in-
troduction of a single moist potential temperature can-
not account for – a point also emphasized by Pauluis
et al. (2008). Recognizing this fact raises the question
as to whether the different moist potential tempera-
tures measure the same thing, and if not what precisely
do they measure?
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Figure 5: Vertical profiles of θe, θl and θs plotted for half of the observed sounding of the first ASTEX Lagrangian
experiment (with a shift of 2 K or 2 g kg−1 between each profiles). Stratocumulus (Sc) profiles are colored blue, whereas
Cumulus (Cu) profiles are colored black. Transition profiles between the two regimes are colored red, with the purple arrow
indicating the deepening of the PBL associated with the transition. The green arrows show the sign of the top-PBL jump
for each variable and for each regime: positive if tilted to the right, null if vertical, negative otherwise. The blue and red
dashed boxes have been added to highlight the isentropic regions where θs (and not θe) is constant despite the opposite
vertical gradients in θl and qt which compensate with the special value of Λ given by the third law.
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We answer these questions first by showing that
the equivalent potential temperature (θe) of Rossby
(1932), the liquid-water potential temperature (θ`) of
Betts (1973) and the entropy potential temperature
(θs) of Marquet (2011) all share the property of de-
scribing the temperature air in some specified reference
state would need to have, to have the same entropy as
the air-parcel they characterize. Each of these adopt
standard pressure for the reference state, but differ in
the disposition of the variable component. The refer-
ence state for θs is water-free, the reference state for
θ` is condensate free, and the reference state for θe is
vapor-free.

Even if it is not crucial to the validity of its defini-
tion, only the θ` reference state is attainable through
an isentropic, reversible, and closed transformation, as
is the case for the dry potential temperature, θ, and
then only in the case when the mass fraction of the
water mass in the air-parcel is less than the saturated
mass fraction at the reference state temperature and
pressure. The reference state for θe is one of mechani-
cal (phase) disequilibrium of the water phase, and the
reference state for θs can only be accessed by an open
process (to remove the water mass entirely).

The reference states that define θ` and θe are vari-
able, which means they depend on the composition
of the parcel which they characterize. In contrast,
the reference state of θs is absolute; it is independent
of the composition of the air-parcel it characterizes.
The latter is a necessary condition for a moist poten-
tial temperature to measure entropy. Put differently,
θe (and θ`) only measures entropy differences of air-
parcels with the same composition, hence in a variable
composition atmosphere, only isopleths of θs coincide
with isentropes. Compositional contributions to the
entropy are substantial and can only be accounted for
by accounting explicitly for the entropy difference be-
tween dry air and water vapor (via Λ), similar to the
well appreciated fact that condensational effects can
only be accounted for by explicitly accounting for en-
tropy differences between water vapor and condensate,
which in equilibrium is proportional to `v, the vapor-
ization enthalpy. This is why ln(θe/θ`) ∝ qt `v and
why ln(θs/θ`) ∝ Λ qt, with Λ measuring the difference
between the entropy of water-vapor and dry-air.

It should come as no surprise that each of the moist
potential temperatures are useful for precisely measur-
ing something, and each usefully approximates several
air-parcel properties, but none usefully approximate
all important properties. θ` and θe are poor measures

of entropy, but accurately measure the reference state
‘relative’ enthalpy. In the case of θe whose reference
state has already valorized the vaporization enthalpy of
its water, the addition or removal of condensate, has a
relatively minor effect. Likewise θ` is relatively insensi-
tive to changes in vapor. This explains the popularity
of θe as a basis for tracking air parcels in the presence
of precipitation, or the use of θ` in studies more in-
terested in isolating an air-mass’ thermal properties –
for instance as a component of a mixing diagram. In
contrast, θs measures the entropy of moist air. None
of the moist potential temperatures mix linearly, and
the errors encountered by assuming they do so can be
substantial (ranging from a few to ten percent).

Several examples are explored as a basis for ex-
ploring trade-offs in the use of different forms of θx
to interpret the structure of the tropical atmosphere.
These examples show how θs is generally better mixed
through the tropical troposphere than is either θe or θ`,
and that the transition from stratocumulus to cumulus
is associated with a transition of the troposphere to a
state where θs becomes mixed through the lower tro-
posphere, despite considerable gradients in moisture –
whether or not this structure, which is also corrobo-
rated by many other observations (see Marquet, 2011),
is indicative of a process that acts to homogenize en-
tropy, or occurs by chance, is an open question.
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Figure A1: Approximation errors associated with expressions of θ̃x. Variations of θ̃x−θx(P = 1010 hPa) along a saturated
isentrope (left); θ̃x−θx as a function of qt for (T, P ) =(280 K, 800 hPa) (right). Lines in the left panel share the color-key
of the right panel.

DYAMOND project, it and a notebook containing
the calculations presented in the manuscript are made
available by the host authors corresponding institu-
tions by contacting publications@mpimet.mpg.de.

Appendix A. Numerical evaluation.

We tested the numerical implementation of expres-
sions for the different forms of θx. To do so we nu-
merically integrated the adiabatic form of the first law
for our composite system, along the (300 K, 1010 hPa,
17 g kg−1) isentrope, which also served as the initial
condition. The integration was terminated when P
reached 150 Pa, at which point T = 207.42 K. We then
calculated θe, θ` and θs for different tuples of (T, P ),
along this isentrope. If properly constructed, the dif-
ferent versions of θx should adopt different values, but
each should be invariant on this isentrope. Variations
were verified to be smaller than the tolerance of the
ODE solver (lsoda) used for the numerical integra-
tion of the adiabatic form of the first law. To achieve
this level of accuracy it was necessary to use a rela-
tionship for P∗(T ) consistent with the approximations
outlined in § 2, and to ensure the adequacy between
the definition of P∗(T ) and the variations, or not, of
`v(T ) = (cpv − cl)(T − T0) + `v(T0) with temperature,
due to

1

P∗(T )

dP∗(T )

dT
=

`v(T )

Rv T 2
.

Using more exact approximations to P∗, which account
for variations in the specific heats cpv and cl with
temperature, introduces inconsistencies in the form of
centi-kelvin discrepancies between the temperatures
derived by direct integration, and those implied by
constant θx.

The approximations given by Eqs. (22)-(24) intro-
duce errors on the order of 1 %, or about 4 K. The left
panel of Fig. A1 shows how θ̃x changes from its value at
1010 hPa as pressure is reduced and θx is held constant.
Through most of the lower troposphere (P > 600 hPa)
both θ̃` and θ̃s are approximately constant along the
isentrope. Errors in θ̃e are more severe and systematic
with pressure. All forms of θx show errors in the up-
per troposphere, but in this region of the atmosphere
strong departures from equilibrium associated with the
ice phase likely introduce even larger errors, or at least
substantial uncertainty.

The chosen forms for θ̃x neglect humidity effects in
all terms other than the ones carrying the dominant
sensitivity to humidity. For this reason, in the right
panel of Fig. A1 we present an evaluation of the er-
rors in the expressions for θ̃x as a function of qt. The
errors associated with each approximation are small
(1 %) and commensurate. Certainly we see no basis
for choosing one or the other form of θ̃x based on it
being a better approximation to the true value.
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Figure B1: Entropies for dry-air (N2, O2, Ar, CO2 and water H2O) species plotted against the absolute temperature and

computed at 1000 hPa. The calorimetric method (
∫ T

0
cp(T ′)d ln(T ′)+

∑
j `(Tj)/Tj) corresponds to the coloured solid lines.

The third-law hypothesis is applied at 0 K with zero entropies for all the solid phases, but with the residual entropy of
189 J kg−1 K−1 for ice-Ih. The vertical jumps correspond to phase changes at Tj with the phase-change enthalpies `(Tj)
between solids phases (for N2 and O2), then from solid to liquid phases, then from liquid to vapour phases. The statistical-
physics values (black dashed lines) are computed from S = k ln(W ) and F = − k T ln(Z) for the vapour phases according
to the method described in Chase (1998) for translational, rotational, vibrational and electronic partition functions (Z).
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The results shown in this appendix are in agreement
with errors on the order of 0.6 K or 0.2 % shown in
Fig. 1. The larger errors in Fig. A1 are due to cumu-
lative effects during the vertical ascents.

Appendix B. Historical notes on the application
of the third law.

The dependence of θs on the absolute entropy,
through the factor Λ in Eq. (18), arises because from
the need to characterize a multi-component system
whose relative composition (in our case between dry
air and water vapor) is allowed to vary.

The recognition that the absolute value of the en-
tropy are important for reacting, or multi-component
systems, dates to Le Chatelier (1888) who first de-
scribed the need to know the absolute values of en-
tropy of reactants and products in order to be able to
predict the stability of all chemical processes. Then,
Nernst (1906) derived his “theorem of heat” but it is
Planck (1914, 1917) who really derived what is nowa-
days known as the Boltzmann equation S = k ln(W )
with k the Boltzmann constant. The absence of an ad-
ditive constant corresponds to cancelling the entropy of
all perfect crystalline state at zero Kelvin temperature
(Third law of thermodynamics), due to the unique re-
maining number of configuration W = 1 at 0 K. Paul-
ing (1935) and Nagle (1966) computed the residual
entropy for ice at 0 K (∆S ≈ 189 J K−1 kg−1), which
must be taken into account for computing the entropy
of water at any finite positive absolute temperature.
The link between the third law of Planck and the prin-
ciple of unattainability of absolute zero temperature
derived by Nernst (1912) and studied by Simon (1927)
has been recently clarified by Masanes and Oppenheim
(2017).

Values of absolute reference entropy of atmospheric
gases (N2, O2, Ar, H2O, CO2) used in Hauf and Höller
(1987), Marquet (2011) and Stevens and Siebesma
(2020) were already available in Kelley (1932), Lewis
and Randall (1961) and Gokcen and Reddy (1996).
They are now accurately determined and available in
NIST-JANAF Tables (Chase, 1998). The agreement
between the various way to compute the absolute en-
tropies can be fairly appreciated in Figs. B1, where
the “calorimetric” and “statistical-physics” methods
lead to the same results in the range of atmospheric
temperatures up to better than ±0.6 % for H2O and
N2 and better than ±0.1 % for O2, Ar and CO2. The
accuracy of the NIST-JANAF tables are indicated as

being better than one tenth of the differences between
calorimetric and the statistical methods.

It can be recalled that, if the third law is applied
to 0 K, the consequences of this hypothesis impact the
atmospheric temperatures domain via the calorimetric
method and the integrations made between 0 K and
any temperature T . The same is true for the statisti-
cal physics method, where the partition function Z is
computed with the hypothesis S = k ln(W ) with no
additive constant and with S = 0 because W = 1 at
0 K.

The impacts of the hypotheses i) and ii) made at
the end of section 2.2.1 concerning the constancy of
the specific heats and the deviations from the ideal
gas aspects remain small when compared to the data
computed by the IAPWS and TEOS10 software (not
shown). Moreover, the absolute values of the entropies
can easily be computed with TEOS10 if one takes
into account the data from the thermodynamic tables
(Lewis and Randall, 1961; Chase, 1998), or at least
the liquid-water and dry-air absolute entropies given
by Millero (1983) and Lemmon et al. (2000), respec-
tively.
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