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Abstract

The development and implementation of advantageous time-stepping schemes in
existing ocean models bears the potential to improve the model performance in terms
of higher numerical accuracy as well lower numerical costs in terms of increased
stability (larger possible time-steps). Stability and accuracy of time-stepping schemes
should be considered in coupled space-time discretization. In that respect, the
derivation and analysis of a new space-time discretization especially within the novel
spatial framework of ICON-O (ocean component of the ICON earth system model)
is of significant interest.

In this thesis, adapting and implementing a split-explicit time-stepping scheme into
ICON-O, we address both accuracy and stability: (a) We reduce the propagation
error of barotropic signals by up to two orders of magnitude within mainly barotropic
experiments. Furthermore, choosing a more advanced baroclinic time-stepping
scheme results in increased accuracy of the baroclinic signal for relevant large Courant
numbers. (b) The new space-time discretization shows increased numerical stability
by a factor of up to 1.3 for the analysed experiments.

In addition to the new split-explicit space-time discretization based on a Leap-Frog
Adams-Moulthon-3 (LF-AM3) baroclinic step, we also adapt split-explicit time-
stepping for the Adams-Bashfort-2 (AB2) scheme which is originally used in ICON-O
together with a semi-implicit scheme. A major effort was to bring together these time-
stepping schemes with the unique spatial framework of ICON-O, which is based on a
C-type staggering of variables on a triangular grid. Following this spatial framework,
we preserve a mass-matrix that filters out a spurious mode and furthermore fullfill
discrete conservation of volume and tracers.

In experiments with increasing complexity, we compare the two new split-explicit
space-time discretizations with the original AB2 semi-implicit scheme. We show higher
accuracy of the barotropic mode of the split-explicit schemes within various gravity
wave experiments. In a lock-exchange experiment, we find for small Courant numbers
that a coupling-error of both split-explicit time-stepping schemes results in smaller
accuracy in velocity compared to the AB2 semi-implicit scheme. This coupling-error
can be avoided with further improvements to the split-explicit algorithm. For desired
large Courant numbers, the new LF-AM3 split-explicit space-time discretization is
more accurate in the velocity, even for a time step that exceeds the stability limit
of both AB2 schemes. Furthermore, the new LF-AM3 space-time discretization
is more accurate for tracers independent of the Courant number. LF-AM3 shows
slightly larger spurious mixing which we also find for smaller time steps with both
AB2 schemes. We argue that this is caused by larger noise of the velocity on grid
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scale due to smaller numerical velocity diffusion. This results in gain of control
over the total velocity diffusion when using ICON-O. Within the coupled space-time
discretizations of ICON-O, the new LF-AM3 split-explicit discretization shows a
stability limit that is 1.3 times larger compared to the AB2 semi-implicit and up to
1.5 times larger stability limit compared to the new AB2 split-explicit discretization
for our experiments.
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Zusammenfassung

Die Entwicklung und Implementierung von vorteilhaften Zeitschrittverfahren für
vorhandene Ozeanmodelle birgt das Potenzial, deren Ergebnis hinsichtlich höherer
numerischer Genauigkeit und geringerer numerischer Kosten bezogen auf erhöhte Sta-
bilität (größere mögliche Zeitschritte) zu verbessern. Stabilität und Genauigkeit von
Zeitschrittverfahren sollten im Kontext einer gekoppelten Raum-Zeit-Diskretisierung
betrachtet werden. Diesbezüglich ist die Herleitung und Analyse eines neuen
Zeitschrittverfahrens innerhalb der innovativen räumlichen Diskretisierung von
ICON-O (Ozeankomponente des Erdsystemmodells ICON) von bedeutendem In-
teresse.

In dieser Dissertation passen wir ein split-explizites Zeitschrittverfahren auf ICON-O
an und implementieren dieses. Damit gehen wir die beiden Punkte Genauigkeit und
Stabilität an: (a) Innerhalb überwiegend barotroper Experimente verringern wir den
Fehler, der durch die Ausbreitung eines barotropen Signals entsteht, um bis zu zwei
Größenordnungen. Zusätzlich wählen wir ein fortschrittliches Zeitschrittverfahren
für den baroklinen Zeitschritt und verbessern damit das barokline Signal für die für
uns relevanten, hohen Courant-Zahlen. (b) Die neue Raum-Zeit-Diskretisierung zeigt
eine 1.3-fach erhöhte numerische Stabilität für die ausgewerteten Experimente.

Zusätzlich zu dem neuem split-expliziten Zeitschrittverfahren, welches auf einem
Leap-Frog Adams-Moulthon-3 (LF-AM3) baroklinem Zeitschritt basiert, entwickeln
wir das split-explizite Zeitschrittverfahren für das in ICON-O ursprünglich mit einem
semi-impliziten Zeitschritt verwendete Adams-Bashfort-2 (AB2) Verfahren. Eine
der großen Leistungen dieser Arbeit war das Entwickeln dieser Zeitschrittverfahren
innerhalb der besonderen räumlichen Diskretisierung von ICON-O. Dieser folgend,
erhalten wir die Massen-Matrix, welche eine numerische Mode aufhebt, und erfüllen
diskrete Volumen- und Tracererhaltung.

In Experimenten mit ansteigender Komplexität vergleichen wir die zwei neuen split-
expliziten Raum-Zeit Diskretisierungen mit dem ursprünglichen semi-impliziten AB2
Verfahren. Wir zeigen die höhere Genauigkeit der barotropen Mode beider neuer
split-expliziten Verfahren anhand mehrerer Experimente von Schwerewellen. In einem
Lock-exchange Experiment zeigt sich, dass für kleine Courant-Zahlen beide split-
expliziten Verfahren aufgrund eines Kopplungsfehlers geringere Genauigkeit in der
Geschwindigkeit haben als das semi-implizite AB2 Verfahren. Dieser Kopplungsfehler
kann durch weiterführende Verbesserungen des split-expliziten Verfahrens vermieden
werden. Für die üblichen großen Courant-Zahlen ist die split-explizite LF-AM3
Raum-Zeit-Diskretisierung in der Geschwindigkeit genauer, sogar außerhalb des
Stabilitätslimits beider AB2 Verfahren. Zusätzlich ist LF-AM3 für Tracer, unabhängig
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der Courant-Zahl, genauer. LF-AM3 zeigt ein etwas höheres numerisches Vermischen
von Tracern, auch beobachtbar bei der Verwendung kleinerer Zeitschritte in den
AB2 Verfahren. Wir begründen dies mit erhöhtem Rauschen in der Geschwindigkeit
auf Gitterskala, bedingt durch eine geringere numerische Geschwindigkeitsdiffusion.
Daraus ergibt sich für den Nutzer von ICON-O wiederum eine erhöhte Kontrolle über
die gesamte Diffusion der Geschwindigkeit. Innerhalb der Raum-Zeit-Diskretisierung
von ICON-O zeigt die neue split-explizite LF-AM3 Diskretisierung ein 1.3-fach höheres
Stabilitätslimit als das semi-implizite AB2 Verfahren und bis zu 1.5-fache erhöhte
Stabilität als die neue split-explizite AB2 Diskretisierung in den durchgeführten
Experimenten.
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Chapter 1

Introduction

1.1 Ocean circulation modelling

Ocean circulation models are of significant importance for oceanic and climate
research. They help us understanding processes like the energy transport within
the ocean or are needed for climate projection simulations (see e.g. Pörtner et al.
(2019)). In current research, ocean circulation models are well established, using a
large variety of numerical approaches. As such, there is ongoing research to improve
these models in many aspects, including for example the choice of a horizontal mesh
including grid staggering (Korn and Danilov, 2017), the advection scheme (Bernard
et al., 2006), the choice of the vertical coordinate (Chassignet et al., 2006; Adcroft
and Campin, 2004) and the parameterization of subgridscale processes (Griffies et al.,
2010a). In particular, accuracy of the model and numerical costs are two main
connected aspects in the development of the numerical schemes.

In ocean climate modelling mesocale eddies are of order 10km-100km and are often
not well resolved by the numerical grid. However, since they are the most energetic
eddies it is of particular interest to improve their representation in numerical models
(Griffies et al., 2010a). Higher accuracy can reduce the numerical diffusion and
therefore the damping of these mesoscale eddies. This higher accuracy can be
achieved for example by using a higher resolution of the ocean grid or using a
higher-order advection scheme. This however results generally in higher numerical
costs. These costs become even more crucial in simulations with high resolution like
mesoscale simulations which are performed on parallel high-performance computing
systems (Koldunov et al., 2019).

The ocean circulation model used in this study is ICON-Ocean (ICON-O) Korn
(2017), the ocean part of the new earth system model ICON-ESM (see e.g. Giorgetta
et al. (2018), Crueger et al. (2018)) of the Max Planck Institute for Meteorology.
There, the time-stepping is a semi-implicit Adams-Bashfort 2 (AB2) scheme. In
this thesis, we adapt the split-explicit time-stepping scheme from Shchepetkin and
McWilliams (2005) for the mathematical framework of ICON-O (Korn, 2017), which
is also applied to the ocean parameterizations in Korn (2018). Based on both the
time-stepping scheme from Shchepetkin and McWilliams (2005) and the spatial
discretization from (Korn, 2017), we develop a new space-time discretization with
the aim to increase desired larger numerical accuracy and higher stability.
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1.2 Time discretization in ocean models

In general, time-dependent differential equations can be solved explicitly or implicitly
(Durran, 2013). To illustrate this difference, we consider the time derivative of an
arbitrary function ∂tf(t) = G(t) in simple discrete forms.

Explicit time-stepping For an explicit time-step, the right hand side G(t) of a
time-step tn is only dependent of the previous time-step tn−1 or older time-steps.
For such explicit time-step, the discrete time-derivative of a time-step size ∆t can be
written as

ft+∆t − ft
∆t

= G(f(t), f(t−∆t), ..., t, t−∆t, ...). (1.2.1)

The function at the new time step ft+∆t can be calculated as

ft+∆t = ft + ∆t G(f(t), f(t−∆t), ..., t, t−∆t, ...). (1.2.2)

The scheme in equation (1.2.2) describes the Euler scheme if the right hand side is
only dependent on the previous time step G = G(f(t), t).

For an explicit scheme, the Courant-Friedrichs-Lewy (CFL) stability criterion de-
scribes a stability limit αmax. The CFL criterion gives an upper time-step limit
∆tmax which the time-step ∆t may not exceed for a fixed grid space ∆x and a velocity
c. Hence in 1D, the CFL criterion can be written as

c∆t

∆x
≤ αmax. (1.2.3)

For a larger time step than ∆tmax, the model becomes unstable.

Implicit time-stepping In contrast to an explicit time-stepping scheme, for the
implicit time-stepping the right hand side is dependent on the new time step

ft+∆t − ft
∆t

= G(f(t+ ∆t), t+ ∆t). (1.2.4)

An implicit scheme is unconditionally stable, which means that it does not have
a stability limit like the CFL criterion. However, solving equation (1.2.4) is more
challenging and computationally more expensive than solving the explicit time-step
of equation (1.2.3) with the same time step size (Durran, 2013).

Time scales in the ocean Ocean dynamics are governed by modes on many
different time scales. The fastest acoustic modes are filtered out in hydrostatic
models such as considered for this thesis. One can broadly distinguish between
two main modes that remain in hydrostatic ocean models: On the one hand are
barotropic gravity waves (≈ 200 m/s). They are about two orders of magnitude
faster than, on the other hand, the fastest baroclinic modes, i.e. internal gravity
waves (≈ 1m/s) (Higdon and de Szoeke, 1997; Griffies et al., 2000).
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1.2. TIME DISCRETIZATION IN OCEAN MODELS

In a flat-bottom ocean, a decomposition of the flow field into vertical eigenmodes,
including the barotropic mode as well as baroclinic modes, is straightforward (Gill,
1982). This decomposition is less trivial in a realistic ocean with full topography.
Nevertheless, also here, one can define the barotropic mode as the depth-averaged
flow and the baroclinic mode as the deviation hereof (Griffies et al., 2000).

One goal of time discretizations in global ocean models is to have an explicit time step
constrained by the baroclinic modes and not by the fast barotropic waves. Hence, the
baroclinic modes determine the maximum time step which we name in the following
baroclinic time step. Implicit time-stepping schemes are not used for the baroclinic
time-step due to high numerical costs. Constraining the time step to the barotropic
mode would lead to very small time steps and too high computational costs. The
depth-averaged barotropic flow is of lower dimension (2D) compared to the baroclinic
flow (3D) which can be exploited by solving the barotropic mode separately from
the baroclinic dynamics (Higdon and de Szoeke, 1997).

Early models used a rigid lid streamfunction method (Bryan, 1969), in which the
ocean surface is fixed and the barotropic dynamics are prevented. With further
development of ocean models, the free-surface is considered (see e.g. Maier-Reimer
et al. (1982)) and two different methods to primitive ocean equations have been
established (Griffies et al., 2000).

Semi-implicit time-stepping One way is to calculate the barotropic dynamics
implicitly while calculating the baroclinic dynamics explicitly. Such a semi-implicit
approach is used in ICON-O Korn (2017) or in Marshall et al. (1997). This approach
has several drawbacks, such as large numerical dissipation for the barotropic dynamics
due to the large implicit barotropic time step.

While the representation of barotropic dynamics for the general circulation (and
hence the large-scale climate) was considered not overly important for example by
McWilliams (1996), this view has changed nowadays. In particular, since we know
that mixing induced by barotropic tides is crucial for the global ocean circulation
(Wunsch and Ferrari, 2004) and that also the geographical distribution of this mixing
matters (e.g. Vic et al. (2018), MacKinnon et al. (2017)), an accurate representation
of the barotropic mode receives more and more attention.

Furthermore, such an semi-implicit approach requires a linear elliptic equation to
be solved which needs global communication for solving on multiple cores. This
differs from the explicit scheme, where only the information of the next neighbor is
needed. This global communication is supposed to be a bottleneck if simulations are
performed on large numbers of cores which are needed for high resolution simulations.

Split-explicit time-stepping A different approach is a split-explicit time-stepping
as in early work of Killworth et al. (1991), Bleck and Smith (1990) or Higdon and
de Szoeke (1997). There, the baroclinic dynamics are stepped forward with one large
baroclinic time-steps ∆t. The barotropic dynamics are also solved explicitly, but
with M small time-steps ∆t∗ = ∆t/M . The barotropic velocity is first obtained
by vertically averaging over the 3D momentum equation. Similarly, a barotropic-
baroclinic coupling terms is obtained by vertically averaging over the slow-changing
terms of the momentum equation. This term acts as a forcing term within barotropic
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dynamics. After the 2D subcycling of the barotropic dynamics, the barotropic
velocity is coupled back to the 3D velocity.

One advanced split-explicit time-stepping scheme has been developed for the Regional
Ocean Modeling System (ROMS) in a profound analysis of various time stepping
schemes with focus on accuracy and stability (Shchepetkin and McWilliams, 2005,
2009). This time-stepping scheme uses a Leap-Frog Adams-Moulthon-3 (LF-AM3)
scheme for the baroclinic step and the Adams-Bashfort-3 Adams-Moulthon-4 (AB3-
AM4) scheme for the barotropic system. Within ROMS, the LF-AM3 scheme is also
used with a non-hydrostatic version of ROMS (Kanarska et al., 2007). Lemarié (n.d.)
(note at CROCO website) gives a detailed description of the time-stepping algorithm
for CROCO, which is based on ROMS. The LF-AM3 scheme is nowadays also used
in NEMO Madec (2016) and for coastal flows in Kärnä Tuomas et al. (2013). Besides
Kärnä Tuomas et al. (2013), where discontinuous Galerkin finite elements are used
for an unstructured mesh, all previously mentioned models use structured grids.

Computational efficiency, stability and accuracy A larger possible Courant
number/time-step size usually decreases the computational costs since fewer time
steps have to be calculated for the same simulation time. The CFL criterion for
the explicit time-steps varies with the dynamics and depend on the space-time
discretization (Lemarié et al., 2015).

In Shchepetkin and McWilliams (2005) and Shchepetkin and McWilliams (2009),
where the time-stepping scheme for ROMS is developed, the stability and accuracy are
calculated based on a von Neumann linear stability analysis (Durran, 2013). While
LF-AM3 shows high stability, the AB2 scheme is asymptotically unstable. However,
only the time-discretization itself was analysed. An analysis of time-stepping schemes
which considers a coupled space-time discretization is given in Lemarié et al. (2015).
The analytical CFL number varies, depending on the advection scheme. For the
second-order centered advection scheme, the stability of the LF-AM3 scheme is
roughly 3 times larger than for the AB2 scheme. However, for a third-order upwind
scheme, the stability of LF-AM3 is only 1.5 times larger than for AB2.

Soufflet et al. (2016) compare ROMS with NEMO Madec (2016) in a suit of baroclinic
jet test cases. In this study, NEMO uses a Leapfrog temporal scheme with a modified
Robert-Asselin filter (Leclair and Madec, 2009). There, ROMS, using the split-
explicit time-stepping scheme as in Shchepetkin and McWilliams (2005), shows
higher computational efficiency, including larger stability. Furthermore, it shows
better results, presumably due to higher-order temporal and spatial discretization,
for the effective resolution which defines the range upon which numerical dissipation
becomes dominant.

For future high-resolution simulations which are run largely parallelized with thou-
sands of cores, computational efficiency becomes even more important than it is
today. This includes the scalability of the models as is investigated for example in
Koldunov et al. (2019) for FESOM2 (Danilov et al., 2017), or Ward and Zhang (2015)
for MOM from Spence et al. (2014). Solving the free-surface implicitly as done in
Korn (2017) with the GMRES solver causes global communication. The CG solver
shows increased scalability and is therefore more suitable Adamidis et al. (2011),
but still causes this global communication. This is a bottleneck of the numerical
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1.3. SPATIAL DISCRETIZATION

efficiency of high-resolutions simulations where many cores are used. Split-explicit
schemes do not have global communication which is one reason why they are widely
used.

1.3 Spatial discretization

Lemarié et al. (2015) perform a space-time stability analysis of the LF-AM3 and
AB2 schemes within ROMS, which uses a structured grid. Instead, ICON-O uses
an unstructured icosahedral grid with C-type staggering for the variables, where
scalars are defined on cells centers and velocities are defined on edge midpoints.
ICON-O uses a unique mathematical framework described in Korn (2017) which is
also used for a shallow-water model in Korn and Linardakis (2018). In ICON-O,
discrete methods from Finite Elements, Finite Volume and Mimetic Finite Differences
are used. However, using C-type staggering on an unstructured grid leads to an
undesired computational grid mode (Danilov, 2010; Gassmann, 2011). This grid
mode appears since the degrees of freedom of scalar variables on cells is different
from vector variables such as velocities which are defined on edges Danilov (2013).
The grid mode has to be treated globally for an ocean model. For the icosahedral
grid with C-type staggering, possibilities to control the grid mode are damping (Wan
et al., 2013; Zängl et al., 2015), or filtering, (Wolfram and Fringer, 2013). However,
these approaches result in an inconsistent continuity formulation. Instead ICON-O
uses a mass-matrix which especially appears in the continuity equation where the
grid mode is filtered out (Korn, 2017).

1.4 Software development

The development of the split-explicit time-stepping schemes within ICON-O required
changes of the code throughout the dynamical core. The barotropic subcycling as
well as the 2-step LF-AM3 scheme required many new routines, operators and overall
changes. Even more, in ICON-O, the time-stepping scheme is embedded deeply
within the code and spread over many routines. Therefore, a proper implementation
within the code was one major effort of the development of the new split-explicit
time-stepping schemes which included changes in the order of 10000 codes lines.

Due to the depth of code changes within ICON-O, we have not fully parallelized the
new split-explicit time-stepping schemes. Therefore, we did not simulate numerically
expensive experiments such as eddy resolving experiments as shown in for example
Soufflet et al. (2016) and Petersen et al. (2015). Instead, we focus mainly on idealized
2D experiments in chapter 4, which are numerically less expensive.

1.5 Thesis overview

The new time-stepping scheme that we develop in this thesis is consistent within the
novel space discretization of the C-type staggered icosahedral grid of ICON-O Korn
(2017). The split-explicit time-stepping scheme of Shchepetkin and McWilliams (2005)
is the main time-stepping scheme of our choice since it has superior stability and
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accuracy towards other schemes (Lemarié et al., 2015; Soufflet et al., 2016). Therefore,
we use LF-AM3 for the baroclinic step and AB3-AM4 for the barotropic step similar
to Shchepetkin and McWilliams (2005). Formulating this time-stepping scheme
within the spatial framework of ICON-O, we derive a new space-time discretization
which is the first split-explicit scheme of a C-type staggered icosahedral grid. We
ensure conservation properties while retaining the mass-matrix which filters out the
grid-mode as motivated in the previous section 1.3.

Additionally to using the LF-AM3 predictor-corrector scheme for the baroclinic
step, we adapt the original AB2 scheme of Korn (2017) to be used together with
the AB3-AM4 barotropic subcycling. This gives us the opportunity to compare a
split-explicit and semi-implicit scheme with the same AB2 baroclinic step as well as
different split-explicit schemes of the baroclinic step with the same subcycling.

The baroclinic solution is updated with a fast-time averaged barotropic solution
to avoid aliasing, to achieve second-order accuracy and for consistency within the
discrete framework (Shchepetkin and McWilliams, 2005). We show that the solution
of the fast-time averaging which is used to update intermediate velocity values
introduces a coupling error that can be avoided, if the centroid of this averaging is
equal to the predicted (LF-AM3) or weighted (AB2) velocity.

After diagnostic tests, we analyse accuracy and stability in idealized tests with
increasing complexity. We show higher accuracy of the split-explicit schemes for
various gravity wave tests. While the lock-exchange test and the overflow test are
used to compare mixing between different models in Ilicak et al. (2012) and Petersen
et al. (2015), we use these tests to compare different space-time discretizations of the
same model. We use the lock-exchange test to analyse mixing and accuracy of the
different time-stepping schemes. Further, we introduce a reduced vertical resolution
which we use to analyse the stability. Lastly, we compare the results that we get to
other space-time discretizations which are discussed in Lemarié et al. (2015).

This thesis is structured as follows. First, we give an overview of the ocean model
equations and the spatial framework as introduced by Korn (2017), which is the
basis of our new space-time discretization (chapter 2). There, we also give the
discrete continuity equation of Korn (2017), which is kept for the new split-explicit
time-stepping scheme.

We derive the new split-explicit space-time discretization in chapter 3. We show the
continuous split-explicit form of the momentum equation and discuss the main parts
of the time-stepping algorithm. We summarize all time-stepping schemes that we
use.

We retain the original continuity equation and tracer equation consistently within
our framework and we therefore guarantee volume and tracer conservation. Based
on implications of the discrete continuity equation, we derive the new space-time
discretization of the barotropic system and show a temporal averaging over the
barotropic solution consistent within our spatial framework. We finalize the new
space-time discretization of the discrete baroclinic step based on the LF-AM3 scheme
and the discrete baroclinic step based on the AB2 scheme including a discussion of a
coupling error.

In chapter 4, we analyse and discuss the new LF-AM3 and AB2 split-explicit time-
stepping schemes and compare them to the old-time-stepping scheme qualitatively
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1.5. THESIS OVERVIEW

and quantitatively with experiments of increasing complexity. For the analysis, we use
error norms and the reference potential energy (RPE) as diagnostic tools. Simulations
where we isolate the terms of the right-hand side of the momentum equation give us
confidence in the new split-explicit algorithms which includes mode-splitting and the
update of the baroclinic step.

We analyse the improvements of the split-explicit schemes compared to the semi-
implicit scheme for highly barotropic dynamics for different gravity wave experiments.
As expected, the split-explicit time-stepping schemes are more accurate since the
barotropic dynamics are well resolved compared to the AB2 semi-implicit scheme.

We analyse diapycncal tracer diffusion, accuracy and stability in the lock-exchange
experiment in which baroclinic dynamics are dominant compared to the barotropic
dynamics. For low Courant numbers (small time step sizes), a mode-splitting
error causes a decrease in accuracy for the split-explicit schemes. We introduce a
configuration of the lock-exchange experiment with reduced vertical resolution so
that we can analyse the stability and accuracy for relevant large Courant numbers
near the stability limit. There, the LF-AM3 scheme is more accurate and shows
larger stability than both AB2 schemes. Also, we see a slight increase of diapycnal
diffusion for the LF-AM3 scheme. We relate this to higher accuracy and therefore a
decrease of total diffusion which otherwise damps small scale noise which causes the
diapycnal diffusion (Ilicak et al., 2012).

We discuss implications of the coupling error and relate the gain of stability of the
LF-AM3 scheme to other space-time discretizations in Lemarié et al. (2015). We
argue that due to the unstructured icosahedral grid, the gain of stability of the
LF-AM3 scheme compared to the AB2 schemes differs from the gain achieved in
other space-time discretizations shown in Lemarié et al. (2015).

Finally in chapter 5 we summarize the results and give a potential outlook of the split-
explicit time-stepping included in ICON-O as well as potential future experiments to
compare the different schemes.
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Chapter 2

Ocean model equations and
spatial discretization

The governing primitive ocean equations that we summarize in section 2.1 are the
underlying equations that we solve. As motivated in section 1.3, a novel spatial
discretization of the primitive ocean equations on a C-type staggered icosahedral
grid is derived in Korn (2017). We will formulate the split-explicit time-stepping
schemes based on this spatial discretization. We summarize the discrete spatial
framework of ICON-O (Korn, 2017) in section 2.2. We discuss all variables and
operators that we need for the discrete split-explicit discretization. Furthermore, we
show the discrete continuity equation and the discrete tracer equation of ICON-O
which we keep unchanged for the new split-explicit time-stepping scheme.

2.1 Governing equations

Independent of the new time-stepping scheme, we solve the primitive ocean equations
in the same vector invariant form as in ICON-O (Korn, 2017) which are given in e.g.
Müller (2006)

∂v

∂t
+ (f + ω)z× v +

∇h|v|2

2
+ w

∂v

∂z
+

1

ρ0
∇hp−Dhv −

∂

∂z
Av ∂

∂z
v = 0,

(2.1.1a)

∂p

∂z
= −ρg, (2.1.1b)

∂η

∂t
+ divh

∫ η

−H
vdz = 0, (2.1.1c)

divhv +
∂w

∂z
= 0, (2.1.1d)

∂c

∂t
+ div(Cv)− divh(KC∇hC)− ∂

∂z
AC

∂

∂z
C = 0, (2.1.1e)

ρ = Feos(p, T, S). (2.1.1f)
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Here, v is the horizontal velocity, w the vertical velocity, η the free surface height,
ω the vorticity, f the Coriolis parameter, C are the tracer quantities temperature
T and salinity S, ρ is the water density, ρ0 the reference density, p the hydrostatic
pressure and g the gravitational constant. Dh is the horizontal velocity diffusion,
Av the vertical velocity diffusion coefficient, KC the horizontal and AC the vertical
diffusion for a tracer C. Feos is the equation of state. ~z is the vertical direction
vector, ∇h the horizontal differential operator and divh the horizontal divergence.

With the decomposition of the pressure p = phyd + ps into the sum of the internal
hydrostatic pressure phyd and the surface pressure ps = gρ0η(x, y, t), equation (2.1.1a)
becomes

∂v

∂t
+ (f + ω)z× v +

∇h|v|2

2
+ w

∂v

∂z
+

1

ρ0
∇hphyd + g∇hη(x, y, t)

−Dhv −
∂

∂z
Av ∂

∂z
v = 0.

(2.1.2)

The boundary of the ocean ∂Ω can be divided into the boundary at the surface ∂ωs,
at the bottom ∂ωb and at the lateral boundaries ∂ωl. The boundary conditions for
the velocity are

Av ∂v

∂z
= τ at ∂Ωs, Av ∂v

∂z
= Cb|v|v at ∂Ωb,

v = 0 at ∂Ωt, w = 0 at ∂Ωb, w =
∂η

∂t
at Ωs.

(2.1.3)

Here, τ is the wind stress, tangential to the ocean. Cb is the bottom drag coefficients.
The boundary conditions for the tracers are

KC ∂C

∂z
= −QC at∂Ωs,

∂C

∂z
= 0 at∂Ωb, ∇hC = 0, at∂Ωt. (2.1.4)

Here, QC is the surface flux for each individual tracer C. In the idealized experiments
in chapter 4 no bottom friction and surface forcing are used for the velocity and
tracers. Hence, the only boundary condition that is used in the experiments is
the lateral boundary condition of the velocity and tracers for the gravity wave test
over an ocean mound in section 4.2.3, the lock-exchange test in section 4.3 and the
overflow test in section 4.4.

2.2 Spatial framework of ICON-O

In this section, we summarize necessary parts of the discrete spatial framework of
ICON-O that we use for the new discretization in chapter 3. More comprehensive
details, especially regarding the mathematical framework, can be found in Korn
(2017). We define all variables in section 2.2.1 and all operators in section 2.2.2 that
we need for the new split-explicit time-discretization. Besides the needed operators
given in Korn (2017), we define one new reconstruction operator that is needed
during the barotropic subcycling.
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2.2. SPATIAL FRAMEWORK OF ICON-O

Furthermore, we show the same discrete continuity equation in section 2.2.3 and the
discrete tracer equation in section 2.2.4 as given in Korn (2017). Later, in section
3.3, we derive the new split-explicit time-stepping scheme consistent to this discrete
continuity equation. Then, by keeping the discrete continuity equation and the
discrete tracer equation in the same form as given in Korn (2017), we immediately
guarantee volume and tracer conservation as well as constancy preservation as we
discuss in sections 3.3 and 3.4.

2.2.1 Grid and variables

In ICON-O, an icosahedral grid is used with a C-type staggering of the variables.
Different vertical levels are denoted with, k ∈ {1, 2, ..., kbot}, whereas k = 1 denotes
the surface layer and k = kbot the layer at the bottom of the ocean.

Each edge e of the triangle has a normal vector ~ne,k and a tangential vector ~te,k.
For an edge between two neighbouring cells Kk and Lk, the edge midpoint is at
~xek = ~xK|L,k with cell midpoints ~xK,k and ~xL,k. The cell volume of a cell K is
denoted as |K|. The length of an edge e between two cell midpoints K and L is
|e| = |K|L| and the length between the cell midpoints is |e⊥| = |K|L⊥|.
For the vertical grid, a z-level coordinate system is used. As such, apart from the
surface layer which changes with the free-surface, all cells K at layer k have a constant
thickness of ∆zK,k. The same holds for the thickness ∆ze.k at edge e.

With the C-type staggering, the velocities are defined as their normal component
on a cell edge ve,k = ~ve,k · ~ne,k. Scalars such as tracer values are defined on cell
midpoints.

The cells and edges of the icosahedral grid define a so-called primal grid. Connecting
the cell midpoints of the icosahedral grid results in a dual grid consisting of hexagons
and pentagons (which only appear in a spherical grid and not in a regular grid such
as a channel). The edges of the dual grid are called dual edges and cell centers of the
dual grid are defined on the vertices of the icosahedral grid. The primal grid and the
dual grid become relevant in the description of the spatial operators in the following
section 2.2.2.

2.2.2 Discrete reconstruction differential operators

The discrete framework of ICON-O is based on a discrete space for normal velocities
on edges and scalars on cells on the primal grid and a discrete space for scalars on
cells on the dual grid. These spaces are endowed by volume weighted scalar products
for scalar and vector quantities. Reconstruction operators as well as differential
operators map quantities from one space to the other. For example, the result of the
discrete divergence of the velocities is defined on cell centers whereas the velocities
are defined on edges. Hence, the divergence maps vectors, defined at edges, to cell
centers. Additionally, the discrete scalar products are used to derive transposed
operators as for example the discrete gradient which is derived from the discrete
divergence.

We want to emphasise, that this framework is defined in Korn (2017), where more
mathematical details and explanation of this mathematical framework can be found.
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In the following, we only show the operators which are used in this thesis and omit
details such as the notation of the scalar product.

Discrete reconstruction operators A reconstruction operator P maps normal
velocities on edges to velocity vectors on cells

v → PvK,k :=
1

|K|∂zK,k

∑
e∈∆K

ve,k|e|(~xe − ~xK)∆ze,k, (2.2.1)

while a transposed reconstruction operator maps cell velocities to edges

~v → P T~vK|L,k :=


1

|K|L⊥|
[
~vK,k · (~xK|L,k − ~xK)− ~vL,k · (~xK|L,k − ~xL)

]
, ifK|L /∈ ∂Gk.

0 else

(2.2.2)

Here, ∂Gk describes the discrete lateral boundary of the domain Ω and describes a
partial set of all edges E which belong to water cells

∂G := {ek = Kk|Lk ∈ E : exactly one of the cellsKk orLk

which is adjacent to the edge ek

is a land cell and the other one is a water cell}.

In addition to Korn (2017), we define a new reconstruction operator P ∗ which is
similar to the reconstruction operator P , but independent of the thickness on cells
and edges

v → P ∗vK :=
1

|K|
∑
e∈∂K

ve|e|(~xe − ~xK). (2.2.3)

We use this new operator for a re-formulation of the discrete continuity equation and
within the discrete barotropic momentum equation.

The reconstruction operator P reconstructs a vector in a cell center out of vectors
defined on the icosahedral grid. By contrast, a dual reconstruction operators P̂
reconstructs a vector at the cell center of the dual grid K̂, at ~xK̂

v → P̂ vK̂,k :=
1

|K̂|∆zK̂,k

∑
e∂K̂k

ve,k|e⊥|∆ze,k~ze,k × (~x∗e,k − ~xK̂,k). (2.2.4)

Here, ~x∗e,k is the midpoint of the dual edge.

The transposed operator of the dual reconstruction operator reconstructs vectors at
vertices to edge values

v → P̂ †vK̂k|L̂k
:=

 1
|K̂k|L̂⊥k |

[
~vK̂,k · (~x

∗
K̂k|L̂k

− ~xK̂k
)− ~vL̂k

· (~x∗
K̂k|L̂k

− ~xL̂k
)
]
, if K̂|L̂ /∈ ∂Gk

0 else.

(2.2.5)
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2.2. SPATIAL FRAMEWORK OF ICON-O

By applying the transposed reconstruction operator P T of equation (2.2.2) after the
reconstruction operator of P of equation (2.2.1), the mass matrix, a positive definite
operator MGve,k := P TPve,k is defined. MG maps edge quantities to the cells and
back to the edges e. We also define the operators MG [f,v]e,k := P t(fPv)e,k as a
product of a scalar quantity f at cell centers with normal velocities at the edges.
Similarily, we define M̂G [f̂,v]e,k := P̂ †(f̂ P̂ v)e,k where f̂ is a scalar quantity on the
dual grid.

Additionally, we define the layer-thickness-independent mass matrix M∗G := P TP ∗.
M∗ is new compared to the original framework and needed for the vertically integrated
flux and during the barotropic subcycling. Note, that by using P ∗ for this mass
matrix, M∗G is similar to the discrete formulation of Korn and Linardakis (2018),
where the shallow-water equations are solved with the same discrete approach as in
Korn (2017).

Discrete differential operators The discrete divergence of the velocity divvK,k
in a cell K of the vertical level k uses edge velocities ve,k and is a mapping from
edges to cells

div vK,k :=
1

|K|∆zK,k

∑
e∈∂K

ve,k|e|ne,K∆ze,k. (2.2.6)

Similar to the transposed reconstruction operators, the discrete gradient grad of
a scalar quantity fK|L,k between the cells K and L at the vertical level k can be
derived from the divergence and is a mapping from cells to edges

gradfK|L,k :=
fK,k − fL,k
|K|L⊥|

. (2.2.7)

The curl is a mapping from the primal grid to the dual grid

curl vK̂,k :=
1

|K̂|∆zK̂,k

∑
e∈∂K̂

ve,k|ê|te,k∆ze,k. (2.2.8)

The vertical differential operator between two vertical levels k and k+1 to a half-level
k + 1/2 is

DzfK,k+1/2 :=
fK,k − fK,k+1

∆zk
. (2.2.9)

2.2.3 Continuity equation

With the discrete differential operators from the previous section 2.2.2, the divergence
free continuity equation from equation (2.1.1d) is discretized to

DzwK,k =
wK,k − wK,k+1

∆zK,k
= −div (MGv)K,k . (2.2.10)

Reformulating (2.2.10) and using the bottom boundary condition wkbot = 0, the
vertical velocity can be obtained

wK,k = wK,k+1 − div (MG [∆z, v])K,k , for k = kbot − 1, ..., 1. (2.2.11)
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By applying a vertical integral from the bottom layer kbot to layer k we can calculate
the vertical velocity as an integral over the horizontal mass fluxes

wK,k = −
k−1∑
k=kbot

div (MG [∆z, v])K,k . (2.2.12)

This discretization that includes the mapping of the mass matrix MG filters out
the grid mode which results from the C-type staggering on the triangular grid
Korn (2017). This is a key feature which we have to consider for the split-explicit
time-stepping.

2.2.4 Tracer equation

Similar to the discrete continuity equation, we use the same discrete tracer equation
as derived in Korn (2017). The result of the discrete tracer equation is on cells. For
the ease of better readability, we omit the spatial indices in the following equation:

∂ (∆zC)

∂t
+divF(MG [∆zC, v])+DzF

[
∆zC̃w

]
+divKCgradC+DZACDZC = FC .

(2.2.13)

Here, F is the Zalesak limiter, a horizontal flux limiter (Zalesak, 1979) used for
flux-corrected transport to achieve high accuracy, but to avoid over and undershoots
from the tracer flux.

This discrete tracer equation is a 1-step tracer scheme. In Shchepetkin and McWilliams
(2005), which our split-explicit time-stepping scheme is based on, a 2-step tracer
scheme is presented. There, Shchepetkin and McWilliams (2005) calculate intermedi-
ate tracer values at time step n+1/2 with a focus on constancy preservation with the
loss of the conservation property. Still, their tracer corrector step is both constancy
preserving and conservative. Using a 2-step tracer scheme has the advantage, that
the corrector step not only uses predicted velocities at n+ 1/2, but also intermediate
tracer values.

For simplicity and to be able to separately analyse changes in accuracy and stability
which result from a change of the momentum equation alone, we use the same discrete
tracer equation as derived for ICON-O (Korn, 2017). Therefore, we keep the tracer
values constant after the baroclinic LF-AM3 predictor step. Thus, we will use the
tracer values of n at n + 1/2 for the corrector step. Following Shchepetkin and
McWilliams (2005), a 2-step tracer scheme is a potential future option for the new
split-explicit time-stepping schemes. Then, a predictor step not only has to be added
within the calculation of the tracer values, but also within the routines of the Zalesak
limiter.
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Chapter 3

Discrete split-explicit
space-time discretization

Based on the discrete spatial framework, we derive a new discrete split-explicit
space-time discretization for the primitive ocean equations in this chapter. First,
we show the barotropic-baroclinic mode splitting in section 3.1, which is similarly
used for all split-explicit time-stepping schemes (see e.g. Killworth et al. (1991),
Bleck and Smith (1990) or Higdon and de Szoeke (1997)). Then, in section 3.2, we
describe all time-stepping schemes in generalized formulations, which we will use for
the baroclinic step and for the barotropic step of our new split-explicit space-time
discretization.

From section 3.3 on, we develop the new space-time discretization. We discuss in
section 3.3 that the continuity equation, which we keep from Korn (2017) (see section
2.2.3), defines the integrated velocity. Furthermore, we obtain a condition for a
slow-changing free-surface equation. Fulfilling this condition, we argue in section 3.4
that we fulfill volume and tracer conservation. We derive the new discrete space-time
discretization of the barotropic subsystem in section 3.5. We describe the fast-time
averaging over the barotropic solution from Shchepetkin and McWilliams (2005)
within our discretization in section 3.6. We show that we can fulfill the condition
from the continuity equation for the slow-changing free-surface with this fast-time
averaging within our new discretization. We finalize the new space-time discretization
with the discrete baroclinic step. We derive the new discrete LF-AM3 predictor-
corrector scheme (Shchepetkin and McWilliams, 2005) in section 3.7.1 and we briefly
describe in section 3.7.2 the discrete baroclinic step based on the AB2 step which is
used for the semi-implicit time-stepping scheme originally in ICON-O (Korn, 2017).

3.1 Barotropic-baroclinic mode splitting

As described in section 1.2, the differences in the time scales of the barotropic and
the baroclinic modes can be exploited by splitting the momentum equation into a
slow changing 3D baroclinic part and a fast changing 2D barotropic part as derived
in previous work e.g. (Killworth et al., 1991), Bleck and Smith (1990) or Higdon and
de Szoeke (1997). This mode-splitting is the basis for split-explicit time-stepping
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schemes. In this section, we show the barotropic-baroclinic splitting for a vertical
grid with z-coordinates. Vertical z-coordinates are used in ICON-O, where except
for the top layer with changing free-surface height, all cells of a layer have constant
thickness (Korn, 2017).

The total velocity v is separated into a baroclinic v′ and a barotropic part v̄

v = v′ + v̄. (3.1.1)

The barotropic velocity is obtained by vertical integration over the velocity and
division over the total depth D =

∫ η
−H dz

v′ =
1

D

∫ η

−H
vdz =

1

D
V̄ . (3.1.2)

Here, −H denotes the depth of the ocean and V̄ the vertically integrated/barotropic
flux.

As such, the baroclinic velocity v′ possesses no depth average∫ η

−H
v′dz = 0. (3.1.3)

Applying the vertical integral on the momentum equation (2.1.1a) results in the
equation of the barotropic flux

∂tV̄ + fz× V̄ = −gD∇hη +R, (3.1.4)

with

R =

∫ η

−H
dz(− 1

ρ0
∇hphyd−v · ∇hv−ωz× v−w∂v

∂z
+Dhv+

∂

∂z
Av ∂

∂z
v). (3.1.5)

Here, R is called the barotropic-baroclinic coupling term. It includes all nonlinear
terms and all terms which are slowly changing compared to the barotropic dynamics.
During the barotropic stepping, the barotropic-baroclinic coupling term R is kept
constant. The pressure-gradient term and the Coriolis term are the fast changing
terms and are used to calculate the barotropic dynamics besides the barotropic-
baroclinic coupling term. In newer models such as e.g. described in Ringler et al.
(2013), the Coriolis term is included for the barotropic system whereas only the
pressure gradient term is changed over the subcycling in e.g. Higdon and de Szoeke
(1997).

The equation for the barotropic velocity v̄ can be obtained by dividing the equation
for the barotropic flux (3.1.4) over the total depth

∂tv̄ + fz× v̄ = −g∇hη +
1

D
R. (3.1.6)

Substituting the barotropic mass flux V̄ into the free surface equation (2.1.1c) gives

∂η

∂t
+ divhV̄ = 0. (3.1.7)
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3.2. TIME-STEPPING SCHEMES

Combined, the equation for the barotropic flux (3.1.4) and the free-surface equation
(3.1.7) result in the fast 2D barotropic system.

Subtracting the barotropic momentum equation (3.1.6) from the momentum equation
(2.1.1a) gives the momentum equation for the baroclinic velocity

∂v′

∂t
=
∂v

∂t
− ∂v̄

∂t

=− ωz× v − fz× v′ − ∇h|v|
2

2
− w∂v

∂z
− 1

ρ0
∇hphyd

− g∇hη(x, y, t) +Dhv +
∂

∂z
Av ∂

∂z
v +

1

D
R (3.1.8)

= T − fz× v̄ +
1

D
R (3.1.9)

Here, T is the complete right-hand side of the momentum equation (2.1.1a).

The vertical z-coordinate system allows us to split the pressure gradient term between
the internal dynamics and the external gravity wave highly accurately (Higdon and
de Szoeke, 1997). This allows us to easily differentiate between the fast changing
gradient of the free-surface and the slow changing hydrostatic pressure gradient. In
models with isopycnal or terrain-following coordinates this splitting has to be treated
carefully as to not lead to a large error which is called mode-splitting error (see e.g.
Shchepetkin and McWilliams (2005) or Higdon and de Szoeke (1997)).

3.2 Time-stepping schemes

In this work, we will use three different time-stepping schemes. For the baro-
clinic time step we compare the Adams-Bashfort-2 (AB2) scheme to the Leap-Frog
Adams-Moulthon-3 (LF-AM3) scheme. For the barotropic stepping we will use
the Adams-Bashfort-3 Adams-Moulthon-4 (AB3-AM4) scheme. We will use these
schemes similarly for the velocity and the free-surface height for the new space-time
discretization of the barotropic system later in section 3.5 and for the discretization
of the baroclinic momentum equation in section 3.7. Therefore, we denote the time
dependent functions which can be solved by the generalized formulations of the
time-stepping schemes with v and η.

Adams-Bashfort-2 The AB2 scheme which is originally used for the semi-implicit
time-stepping in Korn (2017) is based on Marshall et al. (1997). AB2 is an example
for a multistep method where the right-hand-side at time-step n is dependent on the
older time-step (here, time step n− 1). Similar to section 1.2, we consider the time

derivative of function ∂v(t)
∂t = G(v, t). The AB2 step is

vn+1 = vn + ∆t

[(
3

2
+ ε

)
Gn −

(
1

2
+ ε

)
Gn−1

]
. (3.2.1)

The right hand side is extrapolated in between time step n and time step n + 1,
where a nonzero ε leads to an offset away from the midpoint n+ 1/2. In ICON-O
(Korn, 2017), as well as in this thesis we choose ε = 0.1, since AB2 becomes unstable
for ε = 0 under inviscid conditions (Marshall et al., 1997).
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Leap-Frog Adams-Moulthon-3 (LF-AM3) Shchepetkin and McWilliams (2005)
investigate a variety of time-stepping schemes regarding accuracy and stability for a
linear hyperbolic system

∂v

∂t
= G(v, η, t),

∂η

∂t
= F(v, η, t) (3.2.2)

where G = −c∂η∂x , F = −c ∂v∂x and c is the phase speed. This system can be considered
as a simplified form of the coupled system of the momentum equation and the
free-surface equation of the primitive ocean equations which are shown in section 2.1.
For this system, Shchepetkin and McWilliams (2005) derive a generalized predictor-
corrector time-stepping scheme which can be simplified to a Leap-Frog Adams-
Moulthon-3 (LF-AM3) scheme. LF-AM3 originally has a Leap-Frog predictor step
and an Adams-Moulthon-3 corrector step. LF-AM3 can be reformulated (Shchepetkin
and McWilliams, 2005) to the predictor step

ηn+ 1
2 =

(
1

2
− 2γ

)
ηn−1 +

(
1

2
+ 2γ

)
ηn + ∆t (1− 2γ)Fn, (3.2.3)

vn+ 1
2 =

(
1

2
− 2γ

)
vn−1 +

(
1

2
+ 2γ

)
vn + ∆t (1− 2γ)Gn, (3.2.4)

followed by the corrector step

ηn+1 = ηn + ∆tFn+ 1
2 , (3.2.5)

vn+1 = un + ∆tGn+ 1
2 . (3.2.6)

Choosing γ = 1/12 results in third order accuracy and a large stability limit (c.f.
section 1.2) of αmax = 1.587 (Shchepetkin and McWilliams, 2005) and is also used in
e.g. Kärnä Tuomas et al. (2013). As a comparison, the AB2 scheme is asymptotically
unstable if it is analysed by following the linear stability analysis of Shchepetkin
and McWilliams (2005) similar to the analysis of LF-AM3. However, this analysis
does not consider the coupled space-time discretization where AB2 shows also finite
stability (Lemarié et al., 2015). This is expected since the AB2 scheme is successfully
used in ocean circulation models (Korn and Danilov, 2017; Marshall et al., 1997).
Still, also in the coupled space-time discretization, LF-AM3 shows larger stability
compared to AB2 (Lemarié et al., 2015).

Due to high stability and accuracy of the LF-AM3 scheme in Soufflet et al. (2016)
and Lemarié et al. (2015), we choose the LF-AM3 as the new alternative to the AB2
scheme for the baroclinic step by following the algorithmic approach of Shchepetkin
and McWilliams (2005).

We note that in this formulation the Leap-Frog step as well as the Adams-Moulthon-3
step are mixed together. The symmetry of the predictor step in equation (3.2.3)
and the corrector step in equation (3.2.5) of the LF-AM3 scheme is due to the
reformulation of the original LF-AM3 scheme. With this reformulation, especially
intermediate velocity values at time step n+ 1/2 are obtained and are used for the
discrete LF-AM3 step later in section 3.7.1.
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3.3. IMPLICATIONS FROM CONTINUITY EQUATION AND TRACER
EQUATION

Adams-Bashfort-3 Adams-Moulthon-4 (AB3-AM4) Similar to the gener-
alized predictor-corrector step which can be simplified to the LF-AM3 scheme,
Shchepetkin and McWilliams (2005) develop a generalized forward-backward scheme
with an Adams-Bashfort-3 like forward step and an Adams-Moulthon-4 like backwards
step. This AB3-AM4 scheme can be reformulated to (Shchepetkin and McWilliams,
2009)

ηn+1 = ηn + ∆t

[(
3

2
+ β

)
Fn −

(
1

2
+ 2β

)
Fn−1 + βFn−2

]
, (3.2.7)

un+1 = un −∆t

[(
1

2
+ γ + 2ε

)
Gn+1 +

(
1

2
− 2γ − 3ε

)
Gn + γGn−1 + εGn−2

]
.

(3.2.8)

Choosing the parameters β = 0.281105, γ = 0.088, ε = 0.013 is a compromise choice
within the linear stability analysis of Shchepetkin and McWilliams (2009) between
large stability and second-order accuracy. The stability limit is αmax = 1.7802
(Shchepetkin and McWilliams, 2009). AB3-AM4 is a suitable choice to solve the
barotropic system. Besides the stability and the second-order accuracy, it has large
dissipation for high velocities which filters out fast barotropic dynamics within the
nonlinear system that might lead to instabilities (Shchepetkin and McWilliams, 2009).
Additionally, compared to for example the LF-AM3 predictor-corrector scheme, AB3-
AM4 uses only one calculation step of the right-hand side which reduces numerical
costs.

3.3 Implications from continuity equation and tracer
equation

From this section on, we derive the new split-explicit space-time discretization. For
this new discretization, we have to ensure that the tracer fluxes are consistent with
the continuity equation which connects volume fluxes and tracer fluxes. This means
that using a uniform tracer field in the tracer transport equation (3.3.1) results in
the discrete continuity equation (2.2.10) (Korn, 2017). To show this consistency, we
closely follow the argumentation of Korn (2017). There, in the last step, the discrete
free-surface equation, which is solved by the implicit solver, ensures this consistency.

Similarly, for this split-explicit discretization, we derive a slow-changing free-surface
equation. However, we do not solve this equation since we solve the free-surface
during the barotropic subcycling. Instead, this slow-changing free-surface equations
gives us a constraint that the result of the barotropic subcycling has to fulfill to
ensure the consistency between the continuity equation and the tracer equation.
Additionally, this slow-changing free-surface equation defines the vertical integral
that we use to calculate the barotropic flux.

For the ease of better readability, we omit some indices of the right-hand side of
the following equations. Following Korn (2017), we consider a uniform tracer field
Cnk = C at time step n for all cells K. With this, the discrete tracer equation (2.2.13)
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without dissipative terms and without the horizontal flux limiter is

∆zn+1
K,k C

n+1
K,k −∆znK,kCK,k

∆t
= −

{
div

(
MG

[
∆znC, vn+1/2

])
K,k

+ Dz

[
∆znCwn+1/2

]
K,k

}
.

(3.3.1)

Except for the surface layer with k = 1, the right-hand side becomes zero due to the
continuity equation (2.2.10) since for the z-level coordinate system, the interior cell
thickness is constant over time. For the top layer, we apply the kinematic boundary
condition wK,1 = ∂η

∂t which leads to

∆zn+1
K,1 C

n+1
K,1 −∆znK,1C

∆t
= −

{
div

(
MG

[
∆zn1C, v

n+1/2
1

]
K,1

)
+ Dz

[
∆zn1Cw

n+1/2
2

]
K,1

}
.

(3.3.2)

A constant tracer field should be preserved over time in all layers. To ensure this,
we consider in the following a unitary tracer field C = Cn+1

K,1 = 1. Together with
applying the continuity equation to the right-hand side, this gives us an equation for
the change of the surface layer thickness

∆zn+1
K,1 −∆znK,1

∆t
= w

n+1/2
K,1 . (3.3.3)

Replacing the vertical velocity with the vertical integration of the mass flux as in
equation (2.2.12) results in an equation of the change of the free-surface height

∆ηn+1
K −∆ηnK

∆t
= −

1∑
k=kbot

div (MG [∆zk, vk])
n+1/2
K,k . (3.3.4)

We use the definition of the mass matrix MG [f,v]e,k = P tfPve,k from section 2.2.2

∆ηn+1
K −∆ηnK

∆t
= −

1∑
k=kbot

div
(
P T∆zkPvk

)n+1/2

K,k
. (3.3.5)

We can apply the thickness independent reconstruction operator P ∗ from equation
(2.2.3) by noting that ∆zK,kPvK,k = P ∗ (∆ze,kve,k)K,k and equation (3.3.5) becomes

∆ηn+1
K −∆ηnK

∆t
= −

1∑
k=kbot

div
(
P TP ∗ (∆ze,kve,k)

)
K,k

. (3.3.6)

Since div
(
P TP ∗

)
is independent of the layer thickness, we can apply the vertical

summation before this expression

∆ηn+1
K −∆ηnK

∆t
= −div

P TP ∗ 1∑
k=kbot

∆ze,kvk

n+1/2

K

. (3.3.7)
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3.4. VOLUME AND TRACER CONSERVATION

This allows us to define the discrete barotropic flux for any time step ñ

V̄ ñ
e =

1∑
k=kbot

∆zñe,kv
ñ
e,k, (3.3.8)

and we can rewrite equation (3.3.7) to

∆ηn+1
K −∆ηnK

∆t
= −div

(
P TP ∗V̄ n+1/2

)
K
. (3.3.9)

We denote equation (3.3.4) as the equation for the slow-changing free-surface. This
equation for the slow changing free surface is solved implicitly in Korn (2017).
However, for the new split-explicit time-stepping scheme, we solve the free-surface
during the barotropic subcycling. Hence, the equation for the slow-changing free-
surface (3.3.4) leads to a constraint for the solution of the new free-surface ηn+1

K

and the vertical integrated velocity at the intermediate V̄
n+1/2
K with the rewritten

slow-changing free-surface equation (3.3.9). We fulfill this constraint by applying
proper fast-time averaging over the barotropic solution which we discuss later in
section 3.6.

Furthermore, equation (3.3.9) leads to the form of the free-surface equation for the
barotropic system. This includes the depth-independent mass matrix M∗G := P TP ∗

that we define newly for the split-explicit time-stepping schemes in section 2.2.2.
If we fulfill the slow-changing free-surface equation (3.3.4) with the solution of
the barotropic subcycling, then by following Korn (2017) we fulfill the consistency
between the tracer equation and the continuity equation.

3.4 Volume and tracer conservation

The semi-implicit discretization by Korn (2017) is volume and tracer conservative.
For the split-explicit space-time discretization developed in this thesis, we use the
same 1-step tracer equation (2.2.13) and continuity equation (2.2.10). We will show
in section 3.6 that the solution of the barotropic stepping also fulfills the same slow
free-surface equation (3.3.4) as used in Korn (2017). Thereby, we treat the equations
which are relevant for tracer and volume conservation in the same way as in Korn
(2017). As such, we achieve volume and tracer conservation.

3.5 Time stepping the barotropic system

In this section we describe the new space-time discretization of the barotropic system.
The algorithm is based on the time-stepping of the barotropic system which has
been developed in Shchepetkin and McWilliams (2005). It is based on the AB3-AM4
scheme of equations (3.2.7) and (3.2.8).

During one baroclinic time step we subcycle M∗ times over the barotropic system.
The barotropic time step is ∆t∗ = ∆t

M . Due to the time averaging over the barotropic
system which will be discussed in section 3.6, the time of which we subcyle can be
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up to 2∆t and the number of barotropic time steps M∗ can exceed the number of
barotropic time steps M between n and n+ 1, M∗ > M .

First, we extrapolate the free-surface height and the barotropic flux to the intermedi-
ate time step m+ 1/2. This follows the right-hand side of the AB3 step of equation
(3.2.7) which is an extrapolation to the intermediate step

η
m+ 1

2
K =

(
3

2
+ β

)
ηmK −

(
1

2
+ 2β

)
ηm−1
K + βηm−2,

V̄
m+ 1

2
e =

(
3

2
+ β

)
V̄ m
e −

(
1

2
+ 2β

)
V̄ m−1
e + βV̄ m−2

e .

(3.5.1)

With the solution from the extrapolated barotropic velocity, we finalize the AB3
step of equation (3.2.7) by calculating the new free surface height as described in
the continuous formulation in equation (3.1.7)

ηm+1
K = ηmK −∆t∗ divK P

TP ∗ V̄ m+1/2. (3.5.2)

The equation for the new free-surface height is similar to the constraint of the slow-
changing free-surface equation (3.3.4) that we derived out of the continuity equation
in the previous section 3.3. In comparison to Shchepetkin and McWilliams (2005),
equation (3.5.2) includes the new thickness independent mass-matrix M∗G := P TP ∗

which is defined in section 2.2.2. In the following section 3.6, we will show that
equation (3.5.2) allows us fulfilling the constraint of the slow-changing free-surface.

The free-surface height is interpolated with the right-hand side of the AM4 step of
equation (3.2.8) to an intermediate value η′K with

η′K =

(
1

2
+ γ + 2ε

)
ηm+1
K +

(
1

2
− 2γ − 3ε

)
ηmK + γηm−1

K + εηm−2
K . (3.5.3)

The discrete calculation of the new barotropic flux V̄ m+1
e as shown in equation (3.1.4)

finalizes the AM4 step

V̄ m+1
e = V̄ m

e + ∆t∗
[
−gDm+1/2

e ∇hη′ − fk× V̄ m+ 1
2

e +Rm+ 1
2

e

]
. (3.5.4)

Here, D
m+1/2
e =

∑kbot
k=1 ∆z

m+1/2
e,k = He + η′e is the interpolated total column thickness.

Also, D
m+1/2
e is defined on edge midpoints, as such η′e are interpolated from cell

values η′K , which is calculated in equation (3.5.3) and is defined originally as a scalar
value on cell midpoints.

The barotropic-baroclinic coupling term R of equation (3.1.5) is obtained by inte-
grating the right-hand side of the 3D momentum equation during the baroclinic time
step which we will describe in section 3.7.

As described in section 3.2, we use β = 0.281105, γ = 0.088, and ε = 0.013 (Shchep-
etkin and McWilliams, 2009) except for the initial two time steps where the free-
surface height and the barotropic flux of time steps m−1 and m−2 are not available.
For the first barotropic step of each subcycle, we use an Euler step as described in

equation (1.2.2) to calculate η
m+1/2
K and V̄

m+1/2
e . For the second barotropic step we

set β = 0 in equation (3.5.1).
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3.6. AVERAGING OVER THE BAROTROPIC SOLUTION

3.6 Averaging over the barotropic solution

For a baroclinic time-step ∆t which advances the baroclinic momentum equation
from n to n + 1, we subcycle the barotropic system with a barotropic time-step
∆t∗ = ∆t

M . However, the total velocity v is not updated with results of the specific
barotropic time step like the barotropic flux V̄M or the fast-changing free-surface ηM

at the barotropic time step M .

Instead, the baroclinic system is updated with the solution of a fast-time averaging
over each barotropic step m. With that, we avoid aliasing caused by such an
immediate update of the baroclinic velocity, we gain consistency with the slow
changing free-surface which is shown in section 3.3 and achieve second-order accuracy
(Shchepetkin and McWilliams, 2005).

The fast-time averaging is a weighted integration over time with two different (primary
and secondary) filters to obtain a barotropic solution for final values at n+ 1 and
for intermediate values at n+ 1/2. This means, that the solutions are obtained by
multiplying primary and secondary filter weights with the results of the barotropic
flux and the free-surface height at each barotropic time step.

The discrete formulation of the barotropic system that we derived in section 3.5
differs from the discrete barotropic system used in Shchepetkin and McWilliams
(2005) mainly because of the additional new height-free mass-matrix M∗G = P TP ∗.
After the definition of the filter weights, we will show that together with the new
discretization of the barotropic system, we fulfill the constraint of the slow-changing
free-surface equation which we need for volume and tracer conservation as well as
constancy preservation.

We emphasise that for the following definitions of these filter weights, we closely
follow Shchepetkin and McWilliams (2005). The primary weights have to fulfill
normalization and centroid conditions

M∗∑
m=1

am ≡ 1,
M∗∑
m=1

am
m

M
≡ 1, ∀m = 1, ...,M∗. (3.6.1)

Primary filter weights am are defined to calculate the barotropic solution which is
used to update the baroclinic solution at tn+1

< η >n+1
K =

M∗∑
m=1

amη
m
K , < V̄ >n+1

e =
M∗∑
m=1

V̄ m
e =

M∗∑
m=1

Dm
e v̄

m
e . (3.6.2)

Here, am is a primary filter weight for the barotropic time-step m. < . > denotes the
solution of the primary filter weights at time-step n+ 1. M∗ is the number of the
last barotropic time-step where the primary filter weights are not zero. To achieve
the centroid condition in equation (3.6.1), the number of barotropic time steps M∗

which are calculated can be larger than the number of barotropic time-steps between
n and n+ 1 so that M∗ ≥M .

Secondary filter weights bm′ of a barotropic time step m′ are calculated from the
primary weights

bm′ =
1

M

M∗∑
m=m′

am, ∀m′ = 1, ...,M∗, (3.6.3)
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and are used for calculating the barotropic solution at the intermediate time step
tn+1/2

� V̄ �n+ 1
2

e =
M∗∑
m′=1

bmV̄
m− 1

2
e =

M∗∑
m=1

bmD
m− 1

2
e v̄

m− 1
2

e . (3.6.4)

The resulting solutions of the secondary filter weights are denoted with � . �,
and are time-centered at the intermediate time step tn+1/2 to achieve second-order
accuracy for the mass fluxes. However, we find that the secondary filter-weights
are not exactly time-centered at tn+1/2. We will discuss an error resulting from the
update of theses secondary filter-weights in section 3.7.3.

In this thesis we use two different filters. The most simple filter is a rectangular
filter where all primary weights are weighted equally such that ai = 1/M∗. Most
commonly, this filter is used with a size of twice the number of barotropic time-steps
M∗ = 2M which is highly dissipative, whereas decreasing the filter size decreases
the dissipation (Shchepetkin and McWilliams, 2005). For the experiments in chapter
4 we denote the size of the rectangular filter fr by half the number of steps left and
right from n+ 1.

In addition to the rectangular filter, we will use the power-law shape filter based on
Shchepetkin and McWilliams (2009) with p=2, q=4 and r=0.2846158 as parameters.
The power-law shaped filter has negative weights for the first barotropic time-steps.
This increases computational efficiency since the maximum barotropic time step
M∗ is only approximately 1/3 of the amount of possible time-steps between n+ 1
and n + 2 compared to the rectangular filter with the full number of barotropic
time steps between n and n+ 2. Whereas second-order accuracy is lost by using a
rectangular filter with smaller filter width, the power-law filter achieves second-order
accuracy with above mentioned coefficients. Additionally, the power-law filter with
these coefficients has little dissipation, still it provides enough damping to efficiently
avoid aliasing (Shchepetkin and McWilliams, 2009).

As discussed in section 3.4, to fulfill volume and tracer conservation as well as
constancy preservation, the result of the barotropic subcycling has to fulfill the
constraint of the slow-changing free surface equation (3.5.2).

The results of the fast-time averaging are used as the solution of the new free-surface
ηn+1
K =< η >n+1

K and the vertically integrated velocity of the intermediate time-step

V̄
n+1/2
e =� V̄ �n+1/2

e . Thus, the reformulated slow-changing free-surface equation
(3.3.9) can be reformulated with the results of the barotropic subcycling

< η >n+1
K =< η >nK −∆tdiv

(
P TP ∗ � V̄ �n+1/2

e

)
K
. (3.6.5)

In Shchepetkin and McWilliams (2005), bm are derived without the layer thickness
independent mass matrix M∗G = P TP ∗ which appears here in the constraint for
the slow free-surface and in the fast-changing free-surface equation of the discrete
barotropic system (3.5.2). Following the derivation of bm′ by Shchepetkin and
McWilliams (2005), we show that the expression of bm′ in equation (3.6.3) still fulfills
the constraint (3.6.5) if we include the mass matrix M∗G in the equations for the free
surface.
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3.6. AVERAGING OVER THE BAROTROPIC SOLUTION

During the barotropic subcycling, the free-surface at time step m is obtained by
summing over all previous time-steps m′ of equation (3.5.2).

ηmK = η0
K −

∆t

M

m−1∑
m′=1

div
(
P TP ∗ V̄ m′+1/2

e

)
K

(3.6.6)

We integrate the barotropic free-surface height over the full barotropic subcycling
with the primary filter weights am (see equation (3.6.2)) for all barotropic steps M∗ ,
starting at the baroclinic time step n (where m = 0). We use equation (3.6.6) for the
result of the barotropic free-surface height ηm at each barotropic step m. This results
in the fast-time averaged solution of the free-surface height at the new baroclinic
time-step n+ 1

< η >n+1
K = ηnK −

M∗∑
m=1

amη
m
K (3.6.7)

= ηnK −
M∗∑
m=1

am
∆t

M

m∑
m′=1

div
(
P TP ∗ V̄ m−1/2

)
K

(3.6.8)

= ηnK −
∆t

M

M∗∑
m=1

am

m∑
m′=1

div
(
P TP ∗ V̄ m−1/2

)
K

(3.6.9)

= ηnK −
∆t

M
div

[
P TP ∗

(
M∗∑
m=1

am

m∑
m′=1

V̄ m−1/2

)]
K

. (3.6.10)

Shchepetkin and McWilliams (2005) show that

M∗∑
m=1

am

m∑
m′=1

V̄ m′−1/2 =
M∗∑
m′′=1

V̄ m′′−1/2
M∗∑

m=m′′

am, (3.6.11)

where m′′ is introduced as an additional summation index of a barotropic step.

Using this and noting that the initial free surface height ηnK is set equal to the
barotropic solution of the free-surface height of the old time step ηnK =< η >nK ,
equation (3.6.7) becomes

< η >n+1
K =< ηn >K −

∆t

M
div

[
P TP ∗

(
M∗∑
m′′=1

V̄ m′′−1/2
M∗∑

m=m′′

am

)]
K

(3.6.12)

=< ηn > −∆tdiv

[
P TP ∗

(
M∗∑
m′′=1

V̄ m′′−1/2 1

M

M∗∑
m=m′′

am.

)]
K

.

(3.6.13)

With bm from equation (3.6.3), rewriting m′′ as m′ and using equation (3.6.4), where
the secondary filter weights are used for calculating the intermediate velocity, we get

< η >n+1
K =< η >nK −∆tdivP TP ∗

M∗∑
m′′=1

V̄ m′′−1/2
e bm′′ (3.6.14)

=< η >nK −∆tdivP TP ∗ � V̄ �n+1/2
e . (3.6.15)
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Hence, with am and bm as defined above we fulfill the constraint of the slow changing
free surface equation (3.6.5) and (3.5.2). As such, we achieve constancy preservation
as well as volume and tracer conservation as discussed in sections 3.3 and 3.4.

3.7 Time stepping the baroclinic system

3.7.1 LF-AM3

As discussed in section 3.2, we use the Leap-Frog Adams-Moulthon-3 (LF-AM3)
scheme as the main new split-explicit space-time discretization since LF-AM3 shows
larger accuracy and larger stability compared to a baroclinic step based on an
Adams-Bashfort-2 (AB2) scheme (Shchepetkin and McWilliams, 2005; Lemarié et al.,
2015; Soufflet et al., 2016) which is originally used for the semi-implicit scheme
of ICON-O (Korn, 2017). We have shown LF-AM3 in equations (3.2.3) to (3.2.6)
which is originally derived for the linear hyperbolic system (3.2.2) (Shchepetkin and
McWilliams, 2005).

In the following, we show the new space-time discretization of the LF-AM3 baroclinic
step based on the time-stepping algorithm of Shchepetkin and McWilliams (2005)
while following closely the spatial discretization of ICON-O (Korn, 2017). The
discrete operators that we use are summarized in section 2.2.2.

First, the velocity at n + 1/2 is calculated with the Leap-Frog predictor step of
equation (3.2.4)

v
n+ 1

2
e,k =

(
1

2
− 2γ

)
vn−1
e,k +

(
1

2
+ 2γ

)
vne,k + ∆t (1− 2γ)Gne,k (3.7.1)

where the continuous right-hand side is

G(v) = −(f +ω)z× v− ∇h|v|
2

2
−w∂v

∂z
− 1

ρ0
∇hphyd−Dhv+

∂

∂z
Av ∂

∂z
v, (3.7.2)

and the discretized right-hand side is

Ge,k(v) = −M̂G [(f + ω)z, v]e,k −MG grad

[ |PGv|2R3

2

]
e,k

− PTGQG (wDzPGv)e,k

−MG (grad phyd)e,k +Kv
(
grad div v − curlT curl v

)
e,k
.

(3.7.3)

For the ease of better readability, we omit some indices in this and following equa-
tions. Considering the kinematic boundary condition similar to equation (3.3.3), the
predicted free-surface height is

η
n+1/2
K =

(
1

2
− 2γ

)
ηn−1
K +

(
1

2
+ 2γ

)
ηnK + ∆t (1− 2γ)wK,1. (3.7.4)

As described in section 3.2, we use γ = 1/12 to achieve third order accuracy and
large stability (Shchepetkin and McWilliams, 2005).
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3.7. TIME STEPPING THE BAROCLINIC SYSTEM

Compared to the momentum equation (2.1.1a) of the primitive ocean equations, the
right-hand side of the equation of the predicted velocity (3.7.1) does not contain the
gradient of the free-surface height and also not the vertical velocity diffusion. The
gradient of the free-surface height is a purely barotropic term and is only calculated
during the barotropic subcycling. The vertical diffusion is calculated implicitly and
only calculated for the final velocity vn+1

e,k after the baroclinic stepping.

Additionally, compared to the continuous form of the baroclinic momentum equation
(3.1.8), we do not subtract the barotropic-baroclinic coupling term R (the vertical
integrated right-hand side). The barotropic-baroclinic coupling term is only needed
for the barotropic subcycling at the intermediate time-step n+ 1 to achieve second-
order accuracy.

Therefore, for a sufficiently large time step, the predicted velocity vn+1/2 violates the
CFL criterion. To obtain the barotropic-baroclinic coupling term at the intermediate
step, we have two possibilities. One option is to extrapolate the coupling term itself
to time n + 1/2 from the right-hand side of time steps n and older. Then, the
predicted velocity is corrected after the barotropic subcycling with the solution of
the secondary filter weights (Lemarié, n.d.; Demange et al., 2019; Shchepetkin and
McWilliams, 2005).

The other option is to extrapolate the barotropic flux (or the barotropic velocity). If
a 2-step tracer scheme is used, tracer conservation and constancy preservation are
easier to fulfill for this option (Shchepetkin and McWilliams, 2005). We follow this
approach, as such a 2-step tracer scheme is a possible future development of the new
split-explicit space-time discretization.

We extrapolate the barotropic velocity with

V n+1/2
e = 2V n

e − V n−1/2
e = 2� V �n

e − � V �n−1/2
e . (3.7.5)

This result is used to correct the predicted velocity of equation (3.7.1)

v
n+1/2
e,k = ṽ

n+1/2
e,k +

(
V n+1/2
e −

∫
ṽ
n+1/2
e,k dz

)
/Dn+1/2

e , (3.7.6)

where D
m+1/2
e =

∑kbot
k=1 ∆ze,kk

m+1/2 = He + η
n+1/2
e is the interpolated total column

thickness on edges similar to section 3.5. We note that ṽ
n+1/2
e,k of the right-hand side

of equation (3.7.6) is the predicted velocity of equation (3.7.1), whereas v
n+1/2
e,k on

the left-hand side is the corrected velocity at the intermediate time step. The vertical
integral of the velocity is calculated as shown in equation (3.3.8).

The barotropic-baroclinic coupling term is obtained by vertically integrating the sum
of all terms after calculating the right-hand side of equation (3.7.3) at n+ 1/2. The
barotropic-baroclinic coupling term becomes

Rn+1/2
e,k =

kbot∑
k=1

∆z
n+1/2
e,k

(
−M̂G [(f + ω)z, v]e,k − grad

[ |PGv|2R3

2

]
e,k

− PTGQG (wDzPGv)e,k

− grad (phyd)e,k +Kv
(
grad div v − curlT curl v

)
e,k

)n+1/2

.
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(3.7.7)

As discussed in section 2.2.4, Shchepetkin and McWilliams (2005) use a two-step
tracer scheme where tracer values are calculated at the tn+1/2, whereas we use the
original 1-step tracer scheme of Korn (2017). As such, we keep the tracer values C
for the barotropic-baroclinic coupling term and the corrector step constant at tn+1/2

so that Cn+1/2 = Cn.

Now, Rn+1/2
e,k is used as the constant barotropic-baroclinic coupling term to solve the

barotropic system as described in section 3.5. Afterwards, the corrector step of the
baroclinic system can be computed. However, the right-hand side at t = n + 1/2,
as used for the barotropic-baroclinic coupling term in equation (3.7.7), will not be
computed a second time for the corrector step. Therefore, the barotropic system can
also be calculated after the corrector step, which is

vn+1
e,k = vne,k + Gn+1/2

e,k ∆t. (3.7.8)

The continuous right-hand side of the corrector step is

Gn+1/2
e,k (v) =

{
− (f + ω)z× v − ∇h|v|

2

2
− w∂v

∂z

− 1

ρ0
∇hphyd +Dhv +

∂

∂z
Av ∂

∂z
v

}n+1/2
(3.7.9)

and the discrete right-hand side becomes

Gn+1/2
e,k (v) =

{
− M̂G [(f + ω)z, v]e,k − grad

[ |PGv|2R3

2

]
e,k

− PTGQG (wDzPGv)e,k

− grad (phyd)e,k +Kv
(
grad divv − curlT curlv

)
e,k

+ Dz̄AvDzve,k

}n+1/2

.

(3.7.10)

Compared to the predictor step in equation (3.7.1), the vertical velocity diffusion
is included within the corrector step and solved implicitly for vn+1. The final new
horizontal velocity is corrected with the results from the primary filter weights of
the barotropic subcycling

vn+1
e,k = ṽn+1

e,k +

(
< V >n+1

e −
∫
ṽn+1
e,k dz

)
/Dn+1

e . (3.7.11)

Similar to the correction of the intermediate velocity in equation (3.7.6), ṽn+1
e of

the right-hand side is the uncorrected velocity and vn+1
e on the left-hand side is the

corrected velocity.

To achieve higher accuracy, the intermediate velocity which transports the tracers is
obtained by an additional interpolation

v
n+1/2
e,k =

3

4
v
n+1/2
e,k +

vne,k + vn+1
e,k

8
, (3.7.12)

28



3.7. TIME STEPPING THE BAROCLINIC SYSTEM

and corrected once more, now with the result from the secondary filter-weights

v
n+1/2
e,k = v

n+1/2
e,k +

(
� V �n+1/2

e −
∫
v
n+1/2
e,k dz

)
/Dn+1/2

e . (3.7.13)

As Shchepetkin and McWilliams (2005) do not describe this interpolation in detail, we
follow the interpolation of ROMS UCLA (Florian Lemarié, personal communication,
May 04, 2020). We calculate the vertical velocity from the continuity equation
(2.2.12) and lastly we transport the tracers with equation (2.2.13).

For the initial time step of a simulation, since no values at n− 1 are available, we use
an Euler step as described in equation (1.2.2) to advance to the intermediate values.

3.7.2 Adams-Bashfort-2 (AB2)

In the above section, we described the new split-explicit time-stepping algorithm
with a LF-AM3 baroclinic step. However, the original semi-implicit scheme uses an
AB2 step as shown in equation (3.2.1) for the momentum equation (Korn, 2017).
For a comparison between a semi-implicit scheme and a split-explicit scheme which
use the same baroclinic time step, we also derive the split-explicit algorithm for the
AB2 scheme.

This means that the baroclinic step from n to n + 1 is based on the AB2 scheme.
For the barotropic subcycling, we use the same AB3-AM4 scheme as described in
section 3.5. In the following, we briefly summarize the algorithm of the new AB2
split-explicit space-time discretization.

The right-hand side is calculated as in equation (3.7.3) and extrapolated to n+1/2+ε.

Gn+1/2
e,k :=

(
3

2
+ ε

)
Gne,k −

(
1

2
− ε
)
Gn−1
e,k , (3.7.14)

where ε = 0.1 as discussed in section 3.2 to avoid instabilities (Marshall et al., 1997).

Gn+1/2 is used to calculate the uncorrected velocity at time step n+ 1

vn+1
e,k = vne,k + Gn+1/2

e,k ∆t. (3.7.15)

For the barotropic subcycling, the barotropic-baroclinic coupling term is calculated
by vertically integrating Gn+1/2 similar to equation (3.7.7). The barotropic system
is subcycled from n to n + 1 as described in section 3.5 in the same way as for
the LF-AM3 baroclinic step. With the results from the barotropic subcycling, the
velocity at n+ 1 is corrected as in equation (3.7.11). For the LF-AM3 scheme, the
intermediate velocity which is used for the tracer advection is interpolated as in
equation (3.7.12) by using the predicted velocity at time step n+ 1/2. This predicted
velocity does not exist for the AB2 scheme. Thus, we interpolate the intermediate
velocity which is needed for the tracer advection as follows

vγe,k = γvn+1
e,k + (1− γ)vne,k, (3.7.16)

where γ = 0.6 which is similar to ε = 0.1 for the extrapolation of the right-hand
side. The intermediate velocity is corrected with the solution of the secondary filter
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weights from the subcycling with equation (3.7.13). The result is used to calculate
the vertical velocity from the continuity equation (2.2.12) and the new tracers can
be calculated with equation (2.2.13).

With the AB2 split-explicit scheme, on the one hand, we have a comparison between
a semi-implicit scheme and a split-explicit scheme where only the method to solve
the barotropic modes is different. On the other hand, we can compare two different
split-explicit time-stepping schemes which use the same barotropic scheme.

3.7.3 Coupling error of the barotropic update

The time-averaging filters, described in section 3.6, are needed to avoid aliasing and
to achieve second-order accuracy of the mass fluxes (Shchepetkin and McWilliams,
2005). Together, the results of the primary and secondary filter weights have to fulfill
the constraint for the slow-changing free-surface equation (3.6.5).

We find out, that the secondary filter weights are actually not centered at n+ 1/2.
Instead, the center of the weights is positioned beyond n+ 1/2, depending on the
applied filter. We show this in a small example, where we consider a rectangular
filter with M = 2 barotropic steps from n to n + 1 and a rectangular filter width
fr = 1.

For this rectangular filter, the total number of the nonzero filter weights is 2 fr + 1.
The resulting filter weights are used for barotropic time steps at n, n + 0.5, n + 1,
where for example the barotropic time step at n + 1 goes from n + 1 to n + 1.5.
The total number of barotropic steps is M∗ = 3 and the final, non time-averaged
barotropic solution V̄ of the subcycling, is beyond n+ 1. With the rectangular filter,
all weights of the primary filter are constant which are ai = 1/3, ∀i ∈ {1, 2, 3}. These
primary weights fulfill the centroid and normalization conditions of equation (3.6.1).
The resulting secondary filter weights are b1 = 1/2, b2 = 1/6, b3 = 1/6 and also fulfill
the normalization condition.

However, the centroid of these secondary weights, calculated by equation (3.6.3), is
positioned at n+ 10/12. This off-centering from n+ 1/2 of the secondary weights
differs depending on the filter shape and number of barotropic steps. It decreases for
larger numbers of barotropic time steps M as well as for smaller rectangular filter
width. The power-law filter of Shchepetkin and McWilliams (2005) that we also use
(see section 3.6) is more accurate by fulfilling the centroid condition of the secondary
filter weights than the rectangular filter with a large filter width.

For the LF-AM3 scheme, the baroclinic solution of the predictor step is at n+ 1/2.
So, the barotropic solution of the secondary filter weights is shifted in time compared
to this baroclinic solution. This introduces an error if we sum the barotropic and
the baroclinic velocity to calculate the total velocity at the intermediate time step.
This total velocity at n + 1/2 is used to calculate the tracer flux from n to n + 1
with equation (2.2.13). We note that for the AB2 scheme this is different, since
the intermediate velocity is not predicted at n + 1/2, but interpolated at n + 0.6
as discussed in section 3.7.2. Still, a shift between this interpolated error and the
barotropic solution causes a similar error.

In our algorithm, we do not step forward the baroclinic velocity with a right-hand-
side which has no barotropic component . Instead, we use the full right-hand side
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(baroclinic and barotropic) and correct the solution of the full velocity with the
barotropic solution from the subcycling. We describe the coupling error by considering
a case where the fast changing barotropic terms are zero and the barotropic-baroclinic
coupling term is the dominant barotropic dynamic. In this case, we predict the
intermediate velocity correctly at n+ 1/2, since we include the barotropic-baroclinic
coupling term in the predictor step. However, afterwards we correct this result with
a barotropic solution that is shifted in time which introduces a small error.

Regarding the time-stepping schemes, we see that this error for both split-explicit
schemes (AB2, LF-AM3) is negligible compared to the AB2 semi-implicit scheme
if the semi-implicit scheme itself shows a larger error of the barotropic dynamics
because of the implicit damping as we will show in an experiment in section 4.2.3.
For this experiment, the error of the velocity and the free-surface height of both
split-explicit schemes is smaller compared to the error of the AB2 semi-implicit
scheme since the split-explicit schemes calculate the overall fast barotropic dynamics
even with this coupling error more accurate than the semi-implicit scheme.

Compared to that, we see a larger error of the split-explicit schemes compared to the
AB2 semi-implicit scheme for the lock-exchange experiment in section 4.3 for small
Courant numbers/time step sizes. In this experiment, the fast changing barotropic
dynamics are small compared to the barotropic-baroclinic coupling term. For small
Courant numbers, the semi-implicit scheme resolves the dynamics well since no
relevant barotropic dynamics could be damped by the implicit scheme. For this case,
the split-explicit schemes show larger errors in the velocity due to the coupling error
compared to the semi-implicit scheme.

However, we will argue that this error is only noticeable for small Courant num-
bers/time steps. Accordingly, we find that especially the LF-AM3 scheme is more
accurate than both AB2 schemes for large Courant numbers. Additionally, small
Courant numbers are not intended in ocean general circulation models because of
high numerical costs.

Still, this error can be avoided by developing filters for the LF-AM3 scheme which
centers the barotropic solution of the secondary filter weights at n+ 1/2. Similarly,
for the AB2 scheme, filters should be used which center the barotropic solution of
the secondary filter weights at n+ 0.6.
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Chapter 4

Experiments and analysis

In this chapter, we analyse and discuss the new AB2 and LF-AM3 split-explicit
space-time discretizations and compare them to the old AB2 semi-implicit scheme.

We start with introducing metrics in section 4.1 that we use to asses the accuracy of
the new discretizations. These are the maximum norm and the root mean square
norm. Additionally, we calculate the reference potential energy (RPE) to analyse
spurious tracer mixing. Afterwards, we present performance tests, where we isolate
slow-changing terms of the right-hand side. These tests give us confidence in the new
split-explicit algorithms including the mode-splitting and the update of the baroclinic
step.

After these diagnostic tests, we analyse accuracy and stability in idealized tests with
increasing complexity. As discussed in section 1.4, the split-explicit time-stepping
schemes have not been fully parallelized yet. Therefore, we choose mainly 2D (and
one 3D) experiments which can be solved on a single core within reasonable time.

We analyse the improvements of the split-explicit schemes compared to the semi-
implicit scheme for highly barotropic dynamics for different gravity wave experiments
in section 4.2. We start with a simple gravity wave which can be considered as a 1D
experiment. Next, we simulate a gravity wave on an aqua planet, which allows us to
compare the discretizations in a 3D geometry, where the Coriolis force is included.
This is excluded in all other experiments which are considered as 2D experiments.
Afterwards, we calculate a gravity wave in 2D where we add a steep ocean mound
as bathymetry. Whereas the gravity wave experiments are highly driven by the
barotropic mode, including the ocean mound adds an additional barotropic-baroclinic
coupling. In this experiment, due to the additional baroclinic dynamics, the time-step
is restricted and we analyse the stability of the different discretizations besides the
accuracy as in the previous experiments.

In section 4.3 we analyse differences in the results of the tracers and velocity for the
lock-exchange experiment. There, the barotropic dynamics are small compared to
the baroclinic dynamics. We compare diapycnal tracer mixing of the different space-
time discretizations with the reference potential energy. We discuss the accuracy in
velocity and temperature as well as the bias caused by the coupling error. We discuss
qualitatively the overflow experiment in section 4.4 where an additional topography
is included.
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We follow with a discussion of the experiments in section 4.5. We discuss the
implication of the coupling error and relate the gain of stability of the LF-AM3
scheme to other space-time discretizations in Lemarié et al. (2015).

4.1 Diagnostics

4.1.1 Error norms

We use the maximum norm and the root mean square norm (see e.g. Peixoto and
Barros (2014)) to calculate global errors. With nK being the number of triangular
cells, the maximum norm of a cell variable fK is

Emax(fK,hr, fK) = max
K=1,...,nK

||fK,hr − fK ||, (4.1.1)

and the root mean square norm is

E2(fK,hr, fK) =

√(∑nK
K=1 ||fK,hr − fK ||2

nK

)
. (4.1.2)

Here, fK,hr is the solution of a simulation with a very small time-step (high resolution
in time) functioning as a reference value as the simulations converge to this solution
with decreasing time step.

4.1.2 Reference potential energy (RPE)

To analyse spurious mixing, we use the reference potential energy (RPE) which is
originally discussed in Winters et al. (1995) and calculate it for the lock-exchange
experiment later in section 4.3. This experiment is part of a suit of test cases, defined
and analysed in Ilicak et al. (2012), to examine spurious dianeutral transport. Also,
they are used for the analysis of an arbitrary Lagrangian-Eulerian vertical coordinate
in Petersen et al. (2015). Note that in Petersen et al. (2015) RPE is also called
resting potential energy.

First, the density ρ(x, y, z) is sorted in a 1D array such that the sorted density
ρ∗(z) decreases from bottom to top. The resulting RPE is calculated by a volume
integration over that column:

RPE = g

∫
zρ∗(z)dV (4.1.3)

The RPE can be interpreted as a measure of mixing due to spurious numerical
or physical processes. Over time, with increased mixing of the density, the RPE
increases. To measure mixing, the RPE method can only be applied for nonzero
buoyancy fluxes (Griffies et al., 2000) and without surface forcing (Ilicak et al., 2012).
The lock-exchange experiment is within these limits.

The normalized change of the RPE from its initial value is analysed and plotted

RPE(t)− RPE(t = 0)

RPE(t = 0)
(4.1.4)

For the implementation of the RPE, we follow the scripts of Petersen (2019), which
are used for Petersen et al. (2015).
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Figure 4.1: Initial state of the lateral velocity for the tests with isolated terms of
the right-hand side.

4.1.3 Isolated terms

To get confidence in the new algorithm, we calculate the evolution of several slow-
changing terms of the right-hand side of the momentum equation for the baroclinic
step. These terms are the rotational part of the horizontal velocity advection ω z v,

the gradient of the kinetic energy ∇h|v|2
2 and the horizontal velocity diffusion Dhv.

The horizontal viscosity coefficient is 1010ms/s. All of these terms contribute to the
constant barotropic-baroclinic coupling term.

We use a toroidal grid with a length of 3.16 ·107 km in the longitudinal direction. This
test is a 2D (x/z coordinates) experiment. We use periodic boundaries in the third
y-dimension in which the variables (vectors and scalars, such as velocity, free-surface
height and tracers) are constant as we use zero Coriolis force. This configuration
allows us to analyse the different schemes in idealized 2D experiments with the full
3D code.

The experiments use 10 layers, each with a layer thickness of 1m. Within the upper
fiver layers, between +/−30◦ longitude, a constant velocity of 1 ·103 m/s is initialized.
The initial velocity can be seen in figure 4.1. The velocity is remapped backwards
from the edges to the cell centers. Therefore, a small smoothed boundary can be
seen where the velocity is initialized. By initializing the velocity only within half
of the vertical levels, we can test the barotropic-baroclinic coupling. An incorrect
coupling would result in a nonzero velocity immediately in all lower layers. Except
for the vertical advection term, we see only changes within the upper five layers
since all these dynamics act only in the lateral direction. If not otherwise stated, we
use M = 10 barotropic steps and a rectangular filter width of fr = 0 for the new
split-explicit time-stepping schemes.

In figure 4.2 we compare the E2 root mean square norm of the velocity between the
LF-AM3 split-explicit time-stepping scheme and the AB2 semi-implicit scheme. We
run all schemes for the time steps ∆t = {1 h, 10 min, 1 min}. The high resolution
simulation which we use to calculate the E2 norm is an AB2 semi-implicit simulation
with the time step ∆t = 1 s.

For all dynamics which are exclusively within the lateral direction, the AB2 split-
explicit scheme is equal to the AB2 semi-implicit scheme. For these terms, the error
of the LF-AM3 scheme is similar to the error of the AB2 schemes. For the test of
the vertical advection term, the AB2 split-explicit scheme is different from the AB2
semi-implicit scheme. Here, the update of the baroclinic velocity at t = n+ 1/2 is
crucial since the vertical velocity is calculated at this intermediate time step. For
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Figure 4.2: E2 norm for diagnostic experiments which use only the isolated slow
changing terms of the right-hand side as the driving dynamic for different time
step sizes.
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the AB2 split-explicit scheme we see a smaller error with a large filter width fr = 9
compared to a smaller filter-width fr = 0. In comparison, for the LF-AM3 scheme,
we see a larger error for the same larger filter.

We assume that this is due to the coupling error that we discussed previously 3.7.3.
The centroid position of the secondary filter for fr = 0 is at t = n+ 0.5125 and for
fr = 9 at t = n + 0.7. Hence, for the LF-AM3 scheme, for which we predict the
baroclinic velocity to be at n+ 1/2, this error of the update becomes smaller since
the centroid position of the secondary filter is closer to t = n+ 1/2. For the AB2
schemes however, the velocity is interpolated to t = n+ 0.6. There, the secondary
centroid position is similarly far away from the interpolated velocity. The vertical
velocity is calculated at n+ 1/2 and needed for the vertical advection which is the
only dynamic in this test. We guess that the error becomes larger for a smaller filter
width since the AB2 scheme is more unstable if the intermediate velocity is centered
at t = n + 1/2 as we discussed in section 3.2. Hence, the filter which centers the
barotropic dynamics closer to n + 1/2 shows a slightly larger error than the filter
which centers the barotropic dynamics right of t = n+ 0.6 with roughly the same
distance from the intermediate velocity.

4.2 Gravity wave

4.2.1 Gravity wave in 1D

Similar to the tests of the slow changing terms in section 4.1.3, we test and analyse
the barotropic dynamics with a 1D gravity wave test. Here, we use a toroidal grid
similar to the tests in section 4.1.3 with a total longitudinal length of 640m with
a triangular edge length of 4m. We use 10 vertical levels with ∆zk = 10 m. We
initialize the free-surface height with a gaussian perturbation

η(x) = exp

(
−x

2

σ2

)
, (4.2.1)

where σ = 40 m. This gravity wave can be considered as a 1D experiment. The
dynamics are only driven by the free-surface height and by the vertical integrated
barotropic velocity. Within the toroidal geometry, the 2D vertical integrated velocity
changes only in the latitude dimension. Hence, we consider the dynamics to be a 1D
gravity wave.

Following Shchepetkin and McWilliams (2005), by neglecting the Coriolis term
and with the linearization of the total depth D = H + η ≈ H, one can derive the
linearized barotropic equations. Over time, the gaussian perturbation splits into a
right and left moving gravity wave, with both being half of the initial height after
they are fully separated from each other. The nonlinearity appears in the free-surface
equation (3.1.7) and the barotropic momentum equation (3.1.4). With the initial
total thickness of D = H + η = 100 m + 1 m, the nonlinearity of the barotropic
equation is very weak. Hence, the solution of a simulation with a small time step is
similar to the analytical solution of the linearized barotropic equations. In figure 4.3
we see the evolution of the 1D gravity wave of the initial state after 2 s and 4 s for
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Figure 4.3: Evolution of the 1D gravity wave of the initial state (top left), after
2 s (top right) and after 4 s (bottom) for split-explicit simulation with ∆t = 1 s,
M = 0 barotropic steps and the smallest rectangular filter fg = 0.
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Figure 4.4: 1D gravity wave after 4s. Left of the AB2 semi-implicit time-stepping
scheme with varying time-step sizes and right of the LF-AM3 split-explicit scheme
for with varying rectangular filter width fr and with the power-law filter for the
time-step size ∆t = 1 s and M = 10 barotropic steps from n to n+1.

a split-explicit simulation with ∆t = 1 s, M = 0 barotropic steps and the smallest
rectangular filter fg = 0 for minimal diffusion of the fast-time averaging.

On the left in figure 4.4, we see the solutions of the AB2 semi-implicit scheme
with different time-steps sizes. Clearly, for large time-steps we find large diffusion.
Additionally, we see a small dispersion error at large time-step sizes. On the right in
figure 4.4 we show the solutions of the LF-AM3 split-explicit scheme for a simulations
with the time-steps of ∆t = 1 s and M = 10 barotropic substeps between n and
n+ 1. In different simulations, we use either the rectangular filter, or the power-law
filter. For the rectangular filters we find stronger diffusion for larger filter width up
to where we subcyle up to 2M − 1 for M = 9. The power-law filter results in a small
phase-error. However, its diffusion is roughly as small as for the rectangular filter
with fg = 1. These results are comparable to Shchepetkin and McWilliams (2005),
where the properties of different filter shapes are calculated analytically.

In figure 4.5 we show the maximum norm Emax of the AB2 semi-implicit scheme
and the LF-AM3 split-explicit scheme after 4s. We compare the Emax norm for a
baroclinic time-step of the semi-implicit scheme with the relative barotropic time-step
of the split-explicit scheme. The high resolution simulation is calculated with the
semi-implicit scheme with ∆t = 0.001 s. For the split-explicit simulations we choose
baroclinic time-steps of 1 s and 4 s with varying numbers of barotropic time-steps
M . For the LF-AM3 split-explicit scheme, we use the most precise rectangular filter
with the filter width fr = 0. Here, by using a baroclinic time step of 4s for LF-AM3,
only one barotropic subcycle is calculated. For fr = 0, the only nonzero coefficient
of the primary filter is the coefficient of the last barotropic time-step M . Hence, the
final result of the free-surface height is equals to the solution of the final barotropic
time-step without fast-time averaging.

Overall, we see that the AB3-AM4 algorithm that we chose for the barotropic stepping
is more than one order of magnitude more precise for this gravity wave than the
AB2 semi-implicit scheme, even under consideration that we compare the size of
the barotropic time-step of the LF-AM3 split-explicit scheme with the size of the
baroclinic time-step of the semi-implicit scheme. However, this is expected, since
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Figure 4.5: Emax norm of the AB2-semi-implicit scheme and the LF-AM3 split-
explicit scheme for the 1D gravity wave experiment. The x-axis is the baroclinic
time step of the AB2 semi-implicit scheme and the relativ barotropic time-step
of the LF-AM3 split-explicit scheme.

the two-step AB3-AM4 scheme which is used to solve the barotropic system for
the split-explicit schemes is expected to be more accurate compared to the implicit
solution of the free-surface height of the AB2 semi-implicit scheme for such a strong
gravity wave. Additionally, we see a slightly larger error for the split-explicit scheme
with ∆t = 4 s where only one barotropic subcycle is calculated compared to the
solution of the split-explicit scheme with ∆t = 1 s where 4 barotropic subcylces
are calculated. We emphasis, that for fg = 0, the solution of the primary filter is
equals to the solution of the last barotropic time-step and the result of the primary
filter is not time-averaged. Hence, the barotropic solution is not damped due to this
primary filter. The split-explicit time-stepping scheme can become unstable due to
too large gradients of the free-surface height at the beginning of the experiment. As
described in section 3.5, we use an Euler step for the first time-step of the barotropic
subcycling and a reduced form of the AB3-AM4 scheme for the second barotropic
time-step. Both are more dissipative than AB3-AM4. We guess that this additional
dissipation due to a more often occurring initialization phase for the split-explicit
simulation with ∆t = 1 s stabilizes these large gradients (for large ∆t) in this gravity
wave experiment and results in slightly smaller error.

4.2.2 Gravity wave on an aqua planet

In this section, we analyse a gravity wave similar to the one discussed in the previous
section 4.2.1, However, we simulate this time on a 3D mirrored aqua planet with a
grid size of 316 km. Also, we not only solve the barotropic subsystem but the full
right-hand side of the momentum equation. This is also a test for a non-uniform
horizontal grid. Besides this experiment, all other experiments are of reduced spatial
dimension and without the Coriolis force. In this 3D experiment, we can test the new
split-explicit scheme, for dynamics for which the Coriolis force plays a role. This is
of particular interest since the Coriolis force is a part of the fast changing barotropic
terms (see also equation (3.1.4)) which we solve during the barotropic subcycling.
Again, we initialize the free-surface with the gaussian function (4.2.1). Here, x is to
be considered as the distance from the center in degrees in 2D and σ = 20◦ which
results in a 2D gaussian blob.
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4.2. GRAVITY WAVE

The evolution of the gravity wave for a high-resolution run of the LF-AM3 split-
explicit scheme with time step of ∆t = 2 m is shown in figure 4.6 for the initial state,
after 5 days and after 10 days.

In the previous section, where we excluded the Coriolis force, the initial gaussian
free-surface splits in a left and in a right moving wave. Here, as shown in figure 4.6,
the Coriolis force leads to structures which are symmetric in the equator. In figure
4.7 we compare the E2 norm of the semi-implicit scheme with the new LF-AM3
split-explicit scheme after 10 days for decreasing time-step size. For the split-explicit
scheme, we use M=30 barotropic step and the least dissipative rectangular filter
size fr = 0. The experiment is mainly driven by barotropic dynamics. We find that
the split-explicit scheme is more than two orders of magnitude more accurate than
the semi-implicit scheme in this experiment. We argue that this is due to the much
smaller barotropic time-step for the split-explicit scheme in addition to the higher
precision of the AB3-AM4 barotropic time step as shown in section 4.2.1.

The new split-explicit space-time discretization is as expected more accurate than the
old semi-implicit discretization for the mainly barotropic gravity-wave experiments
in the previous section and in this section. Hence, the new discretization of the
barotropic system in section 3.5 works also in a 3D geometry which includes the
Coriolis force and can be more accurate for these dynamics than the old semi-implicit
discretization.

4.2.3 Gravity wave in 2D over an ocean mound

We have tested and analysed the barotropic dynamics in the previous two section.
In this experiment, we add an ocean mound with a steep boundary to a 2D gravity
wave, to cause a significant barotropic-baroclinic coupling.

For this experiment, we initialize a gravity wave on a toroidal grid, similar to section
4.2.1. The grid has a total width of 158km and an edge length of 3.16km. We use 10
vertical layers, each ∆zk = 10 m. Additionally, we add a steep ocean mound as can
be seen in grey in figure 4.8. There, we show the evolution of the free-surface height
in the left column and of the lateral velocity in the right column for the initial time
step, after 30 min and after 60 min by using the new LF-AM3 split-explicit scheme
with a time step of ∆t = 0.01 s, M = 30 barotropic steps and a filter width of fr = 0.
This is the high resolution simulation for the analysis of the error norms. The largest
stable time step for the AB2 semi-implicit scheme is 14 s, for the AB2 split-explicit
scheme with M = 30 and fr = 0 it is 12 s and for the LF-AM3 split-explicit scheme
with M=30 and fr = 0 it is 17 s.

For both split-explicit schemes, we can increase the stability by increasing the
rectangular filter size to fr = 29. Then, for the new LF-AM3 split-explicit scheme,
the maximum time-step is 19s and for the AB2 split-explicit scheme it is 14 s, equal
to the AB2 semi-implicit scheme. With this the maximum possible time-step is
roughly 1.3 times larger for the LF-AM3 scheme compared to both AB2 schemes.

In figure 4.10 we show the E2 norm of the free-surface height on the left and of
the lateral horizontal velocity on the right. The E2 error of both new split-explicit
time-stepping schemes is of an order of magnitude smaller compared to the AB2 semi-
implicit scheme. The steep initial gravity wave causes strong barotropic dynamics at
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Figure 4.6: Evolution of the 3D gravity wave for the initial time-step (top row),
after 5 days (middle row) and after 10 days (bottom row).
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4.3. LOCK-EXCHANGE

Figure 4.7: E2 error norm of the free-surface height of the 3D gravity wave test
after 10 days.

the beginning of the simulation, which the split-explicit time-stepping schemes solve
more accurate due to the subcycling. We show in an example of the AB2 split-explicit
scheme with the more dissipative large rectangular filter fr = 29, that the dissipation
of such filter can be even larger than the dissipation of the semi-implicit scheme, as
the error is slightly larger. Still, the stability and therefore the maximum possible
time step does not increase compared to the semi-implicit scheme.

We find, that although the simulations become unstable for large time steps, the
Courant numbers are below 10−2 and the CFL criterion is not violated. We associate
the arising instabilities to non-barotropic noise on the grid scale as can be seen for
the largest time-step of the AB2 semi-implicit scheme in the upper panel of figure
4.9. Since the noise is non-barotropic, it cannot be damped with larger diffusion
during the barotropic subcycling of the new split-explicit schemes. We guess, that
the instabilities appear due to large gradients within the baroclinic velocity.

With this experiment, we have shown that, besides the barotropic dynamics, the
new split-explicit space-time discretizations do calculate the barotropic-baroclinic
coupling accurately. The stability of space-time discretizations is not only dependent
on the CFL criterion, but also on the dynamics within the coupled system (Lemarié
et al., 2015). In this experiment where the stability of the discretizations is not
limited by the CFL criterion, the new LF-AM3 split-explicit scheme shows a larger
stability in terms of an 1.3 times increased maximum time-step compared to both
AB2 schemes.

4.3 Lock-exchange

After testing barotropic and baroclinic dynamics in the previous sections, in this
section, we include and analyse tracers with the lock-exchange test (Ilicak et al.,
2012). We follow the experiment setup of Ilicak et al. (2012) and Petersen et al.
(2015). Again, the experiment is in 2D (x,z), this time in a channel geometry. The
solid walls are on the left and right of the x-coordinate, and we use again periodic
boundaries in the y direction, in which the values are considered to be constant. The
domain size of the grid is 64 km, and the edge length of the triangles 500 m. The
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Figure 4.8: Evolution of the 2D gravity wave for the initial time-step and after 20
minutes and 40 minutes with the LF-AM3 split-explicit scheme and ∆t = 0.01 s
defining the high resolution run.
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4.3. LOCK-EXCHANGE

Figure 4.9: Comparison between the highest stable time step size of the semi-
implicit scheme, the split-explicit scheme and the high-resolution (small time-
step ∆t = 0.01 s) run. Compared to figure 4.8, the axis are rescaled to see the
differences between the simulations better

Figure 4.10: E2 error norm of the free surface height (left) and the longitudinal
velocity.
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only non-uniform initial variable is the temperature with 5◦C in the left half of the
domain and 30◦C in the right half of the domain. The initial temperature can be
seen in the top panel of figure 4.6. The initial velocity and free-surface height are
zero. To calculate density, we use a linearized equation of state which is

ρ(T, S) = ρ0 − α(ρ− ρ0) + β(S − S0) (4.3.1)

Here, ρ0 = 1000 kg m−3, α = 0.2 kg m−3 and T0 = 5◦C. With an initial uniform
salinity field S = S0, the salinity does not change throughout the experiment. The
vertical velocity coefficient is Av = 0.0001m2/s. As in the previous experiments, no
forcing is applied on the boundaries or fluxes. Additionally, since the experiment is
in 2D, no Coriolis force is used.

For this experiment, we use two different vertical resolutions, a high resolution with
20 vertical levels, with ∆zk = 1 m and a new low resolution with 6 vertical levels, with
∆zk = 3.3 m. The high-resolution setup is used in Ilicak et al. (2012) and Petersen
et al. (2015). For the high-resolution setup, the stability of the simulations is limited
by the vertical CFL criterion. However, the LF-AM3 scheme is developed especially
for high stability and accuracy for large horizontal Courant numbers, which only
reflects the stability in the horizontal direction. For the low resolution configuration,
the vertical Courant number becomes smaller, larger time step sizes are possible,
and the stability is limited to the horizontal CFL criterion. Hence, we can use the
high resolution configuration to compare the different time-stepping schemes for
low horizontal Courant numbers and the low resolution configuration for large and
limiting horizontal Courant numbers. Further, the low resolution configuration with
high horizontal Courant numbers describes the horizontal Courant numbers in which
ocean models typically run.

The initial condition of the temperature of the lock-exchange experiment can be seen
in the top row of figure 4.11. Over time, the boundary of the temperature tilts so
that the warmer and less dense water flows to the left over the cold, denser water
which flows to the right. With zero tracer diffusion, the ideal result would be no
mixing of the temperature as can be seen in isopycnal models (Ilicak et al., 2012;
Petersen et al., 2015).

For our z-coordinate model, we show the state of the temperature after 16 hours for
the AB2 semi-implicit scheme and the LF-AM3 split-explicit scheme for two different
lateral velocity diffusion parameters Dh = 100 m2/s and Dh = 1 m2/s in figure 4.6,
which are also used in Ilicak et al. (2012) and Petersen et al. (2015).

For this model setup, we find that for high-viscosity simulations, hardly any mixing
occurs, whereas strong mixing occurs for the low viscous configuration which is the
expected outcome of such setup (Ilicak et al., 2012; Petersen et al., 2015). This is
due to grid scale noise in the velocity field which results in larger diapycnal mixing
of tracers (Griffies and Hallberg, 2000; Ilicak et al., 2012). In this lock-exchange
experiment, this grid-scale noise is mainly caused by noise in the divergence of
the horizontal velocity field due to large energy of the horizontal velocity on small
scales (Ilicak et al., 2012). This causes noise in the vertical velocity and increased
mixing (Ilicak et al., 2012). Increasing the horizontal velocity diffusion flattens
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4.3. LOCK-EXCHANGE

Figure 4.11: Temperature of the lock-exchange test after 16h for the semi-
implicit scheme (middle row) and the LF-AM3 split-explicit scheme (bottom
row) with a baroclinic time step of ∆t = 30 s and the horizontal velocity diffusion
Dh = 100m2/s (left column) and Dh = 100m2/s (right column). The top row
shows the initial state of the temperature.
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Figure 4.12: Lock-exchange test with only 4 vertical layers with high velocity
viscosity vh = 100m2/s at 16h for the AB2 semi-implicit scheme with ∆t = 170 s
and the LF-AM3 split-explicit scheme with ∆t = 225 s. Both schemes use the
maximal stable time-step.

the noise in the horizontal velocity and as such decreases spurious mixing. ROMS
for example uses a third-order, upstream-biased dissipative advection scheme for
momentum transport (Shchepetkin and McWilliams, 2005). For the lock-exchange
experiment, ROMS shows less diapycnal mixing than comparable non-isopycnal
models which is associated with the build-in dissipation within the momentum
advection of ROMS (Ilicak et al., 2012; Petersen et al., 2015). Hence, for the later
discussion of the comparison of the time-stepping schemes, we want to emphasise
that in this experiment, smaller diffusion of the velocity causes larger diapycnal
mixing.

As described earlier, for the simulations with low vertical resolution, we can analyse
the maximum possible horizontal Courant numbers. For this coarse vertical resolution,
we show the temperature after 16 hours in figure 4.12 for the largest stable time
step of the AB2 semi-implicit discretization which is ∆tmax = 170 s and for the
largest stable time step of the new LF-AM3 split-explicit discretization which is
∆tmax = 225 s. The largest stable time step for the AB2 split-explicit scheme is
∆tmax = 150 s.

With that, the largest time step for the LF-AM3 scheme is roughly 1.3 times larger
than for the AB2 semi-implicit scheme and roughly 1.5 times larger than for the
AB2 split-explicit scheme. The Courant numbers are 0.43 for the new LF-AM3
split-explicit scheme, 0.33 for the old AB2 semi-implicit scheme and 0.27 for the new
AB2 split-explicit scheme.

For the following analysis, we analyse the lock-exchange experiment for both vertical
resolutions for high velocity diffusion vh = 100 m2/s. This high velocity diffusion is
recommended for this experiment to avoid most of the spurious mixing (Ilicak et al.,
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4.3. LOCK-EXCHANGE

Figure 4.13: E2 error norm of the horizontal velocity (left) and the temperature
(right) for the high resolution simulation with 20 vertical layers with at time-step
size of ∆t = 30 s for the AB2 semi-implicit scheme, the AB2 split-explicit scheme
and the LF-AM3 split-explicit scheme.

2012). For the analysis of both new split-explicit schemes, we use M = 20 barotropic
time steps and the largest rectangular filter width fr = 19.

We show the E2 error norm of the horizontal velocity and the temperature of the
high resolution configuration in figure 4.13 and of the low resolution configuration
in figure 4.14 for the new LF-AM3 split-explicit scheme, the new AB2 split-explicit
scheme and the old AB2 semi-implicit scheme. To calculate the E2 error norm, we
use a high resolution simulation of the AB2 semi-implicit scheme with a time step of
∆t = 1 s.

For all simulations, the error converges to a simulation of the AB2 semi-implicit
scheme with a time step of ∆t = 1 s in both, velocity and temperature. However, for
the high vertical resolution configuration, we find that the AB2 semi-implicit scheme
shows a smaller error in the velocity compared to both split-explicit schemes. There,
both split-explicit schemes have nearly the same larger error despite the maximum
time step of ∆t = 60 s. The E2 error of the temperature is smaller for the new
LF-AM3 scheme compared to both AB2 schemes.

For the coarse vertical resolution, the new LF-AM3 scheme has a similar smaller
error in the temperature compared to both AB2 schemes. In the velocity, the error
of the LF-AM3 scheme is smaller for the largest stable time step of ∆tmax = 225 s
than the error in the velocity for both AB2 schemes for their respectively largest
stable time steps. For smaller time steps, the error of the velocity of the LF-AM3
scheme approaches the error of the AB2 split explicit scheme. The AB2 split-explicit
scheme has a larger error in the velocity and a smaller error convergence compared
to the AB2 semi-implicit scheme.

We argue, that for small time steps used in the coarse resolution configuration, the
convergence of the error in the velocity of both split-explicit schemes is comparable to
the high resolution configuration. In the high resolution configuration low horizontal
Courant numbers are used. In this experiment, the representation of the barotropic
mode is not crucial. That is why Ilicak et al. (2012) use a barotropic time step equal
to the baroclinic time step. Hence, especially for small Courant numbers, the AB2
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Figure 4.14: E2 norm of the lock-exchange for the velocity (left) and the temper-
ature (right) for the low resolution configuration with only 6 vertical layers for
the AB2 semi-implicit scheme, the AB2 split-explicit scheme and the LF-AM3
split-explicit scheme for different time step sizes.

semi-implicit scheme is also highly accurate regarding the barotropic representation.
There, the coupling error which is discussed in section 3.7.3 causes the large error
within the velocity of both split-explicit schemes.

For large Courant numbers, the accuracy of the dominant baroclinic dynamics is
the major error source. Accordingly, the error of the velocity of both AB2 schemes,
which use the same baroclinic step, is similar. For large Courant numbers, the new
LF-AM3 scheme shows higher stability and higher accuracy in the velocity then both
AB2 schemes.

In comparison to the error of the velocity, the E2 error in the temperature is smaller
for the LF-AM3 scheme compared to both AB2 schemes for all time steps and
for both vertical resolutions. Temperature is transported with the velocity at the
intermediate time step n+ 1/2. For the LF-AM3 scheme the velocity at n+ 1/2 that
transports the tracers is interpolated with a large stencil including the predicted
velocity at n+ 1/2. For the AB2 schemes the weighted velocity is interpolated from
the values at n and n+ 1 which is less accurate.

The higher accuracy in the temperature of the LF-AM3 scheme compared to both
AB2 schemes can also be seen in the analysis of the RPE. In figure 4.15, we compare
the RPE from the AB2 semi-implicit scheme with the LF-AM3 split-explicit scheme
for different time step sizes. The normalized RPE of both schemes increases over
time comparable to the analysis in Ilicak et al. (2012) and Petersen et al. (2015). For
both schemes, the normalized RPE increases with decreasing time step and converges
to the RPE of the AB2 semi-implicit scheme with the smallest time step of ∆t = 1 s
(solid orange line). Additionally, for the same time step size, the normalized RPE of
LF-AM3 scheme is larger than the AB2 semi-implicit scheme. Hence, the spurious
mixing is larger for smaller time steps and of the new LF-AM3 scheme compared to
the AB2 semi-implicit scheme.

As we discussed earlier, a decrease of velocity diffusion results in an increase of
spurious mixing in this experiment. The total velocity diffusion can be considered as
a sum of the physical velocity diffusion and the numerical diffusion. The numerical
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4.3. LOCK-EXCHANGE

Figure 4.15: Evolution of the reference potential energy (RPE) over time of the
lock-exchange experiment in the high resolution configuration with 20 vertical
layers for the AB2 semi-implicit scheme and the LF-AM3 split-explicit scheme for
different time-step sizes and with the horizontal velocity diffusion Dh = 100 m2/s.

diffusion of momentum decreases with decreasing time step size. Hence, the total
diffusion decreases with decreasing time step size and the spurious mixing and
therefore the normalized RPE increases.

We show this in more detail in figure 4.16 around the last time step at t = 16 h.
There we show additionally the normalized RPE of the AB2 split-explicit scheme and
the normalized RPE of LF-AM3 scheme where we use the higher-accurate power-law
filter. The AB2 split-explicit scheme (red) has a slightly smaller RPE than the AB2
semi-implicit scheme (orange) for each respective time step. The interpolation of
the intermediate velocity is similar for both schemes, but the coupling error of the
barotropic mode causes a diffusion which decreases the normalized RPE. LF-AM3
show a larger RPE with the power-law filter (purple) compared to the rectangular
filter (green). The power-law filter is less diffusive than the large rectangular filter.
Additionally, the centroid position is closer to the intermediate velocity which reduces
the coupling error. Therefore, the result of the power-law filter is less diffusive and
the spurious mixing is increased.

As a complementary analysis, we show the normalized RPE for the coarse vertical
resolution in figure 4.17. Here, the RPE of both schemes also converges to a larger
RPE with decreasing time step size. In particular, the RPE of the split-explicit
scheme with a large time step of ∆t = 120 s is even comparable to the semi-implicit
scheme with a time step of ∆t = 10 s.

In this section, we analysed accuracy, diapycnal mixing and stability for the lock-
exchange experiment where temperature as a tracer variable is included. We found
that for low horizontal Courant numbers, a coupling error of the split-explicit
schemes results in a larger error in the velocity compared to the AB2 semi-implicit
schemes. This coupling error becomes becomes smaller for relevant large Courant
numbers. There, the new LF-AM3 split-explicit scheme is more accurate in the
velocity compared to both AB2 schemes. Additionally, the LF-AM3 scheme is more
accurate regarding the temperature for all time steps sizes.
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Figure 4.16: Change of RPE at t=16h of the lock-exchange experiment in the
high-resolution configuration with 20 vertical layers for different time steps of
the AB2 semi-implicit scheme, the AB2 split-explicit scheme and the LF-AM3
split-explicit scheme with the horizontal velocity diffusion Dh = 100 m2/s. For
the split-explicit schemes, simulations are shown using M = 20 barotropic
steps between n and n+ 1 using the rectangular time-averaging filter with the
filter width fr = 19. Additionally, the power-law filter is used for the LF-AM3
split-explicit scheme.

Figure 4.17: Change of RPE of the lock-exchange experiment with 6 vertical
layers for the AB3 semi-implicit scheme and the LF-AM3 split-explicit scheme
for ∆t = 10 s and ∆t = 120 s. Except for the AB2 semi-implicit scheme with
∆t = 120 s, the RPE is nearly the same for the other configurations and the lines
overlap.
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4.4. OVERFLOW

We find larger normalized RPE for decreasing time step sizes and for the new LF-AM3
space-time discretization compared to both the new split-explicit AB2 scheme and
the old semi-implicit AB2 scheme. We argue that this is due to smaller numerical
diffusion of the time-stepping in particular within the intermediate time step. Smaller
numerical diffusion results in noise of the velocity on small grid-scales and thus in
larger spurious mixing.

For the lock-exchange experiment, we find that the CFL limit of the new LF-AM3
space-time discretization is of a factor 1.3 larger than the CFL limit of both AB2
discretizations.

4.4 Overflow

In a final experiment, we qualitatively compare the solution of the overflow test
case (Ilicak et al., 2012; Petersen et al., 2015). This experiment is similar to the
lock-exchange experiment but additionaly includes bathymetry. In figure 4.18 we
show the initial temperature (top row) as well as the temperature after 6 hours
for the AB2 semi-implicit scheme (middle row) and the new LF-AM3 split-explicit
scheme (bottom row). In the left column, we show the results of both schemes
with high velocity diffusion of Dh = 1.0 · 104 m2/s and in the right column for small
velocity diffusion Dh = 1 m2/s. In this experiment, the dense cold water ideally flows
downwards along the slope without mixing. This overflow experiment is ideal to test
diapycnal mixing for terrain-following or similar vertical coordinates. Compared to
these vertical coordinate systems, z-coordinates in particular show large mixing. For
z-coordinates, the resolution along the ideal flow is low compared to isopycnal and
terrain-following coordinates and increased mixing can be seen (Ilicak et al., 2012;
Petersen et al., 2015).

Still, we can treat the overflow experiment as a test for the different space-time
discretizations within the z-coordinate system. For high velocity diffusion, the new
LF-AM3 split-explicit scheme and the old AB2 semi-implicit scheme show a similar
temperature profile after 6h simulation time, as shown in the left column of figure
4.18. However, for the low velocity diffusion simulations in the right column, we see
more mixing of the LF-AM3 scheme, in particular in the right front of the cold water.
This is similar to the lock-exchange experiment in the previous section 4.3. There, a
decrease of numerical diffusion results in larger noise in the velocity on grid scale
which causes spurious mixing.

4.5 Discussion

In the last chapter we compared and analysed the accuracy and stability of the old
semi-implicit AB2 space-time discretization, the new AB2 split-explicit space-time
discretization and the new LF-AM3 space-time discretization in experiments with
increasing complexity.

If we separate the slow-changing terms of the right-hand side of the momentum
equation (2.1.1a), the new LF-AM3 split-explicit scheme shows a similar convergence
and error as both AB2 schemes. For all gravity wave tests that are highly barotropic
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Figure 4.18: Initial temperature (top row) and temperature after 6 hours of the
overflow experiment for the AB2 semi-implicit scheme (middle row) and the
LF-AM3 split-explicit scheme (bottom row) for high horizontal velocity diffusion
Dh = 1 ·103 m2/s (left column) and low horizontal velocity diffusion Dh = 1 m2/s
(right column).
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4.5. DISCUSSION

and which may also include a 3D geometry or a bathymetry, we find that the
split-explicit time-stepping schemes are much more accurate since we resolve the
barotropic system with many explicit steps compared to one diffusive implicit step.

For the highly baroclinic lock-exchange experiment, we see mixed results regarding
accuracy. For low lateral Courant numbers, the coupling error from the slow changing
terms causes a larger error in the velocity for both split-explicit schemes. This coupling
error originates from a displacement of the secondary filter weights regarding the
position of the intermediate velocity as we discussed in section 3.7.3. We speculate
that improved fast-time averaging filter weights, which consider the position of the
intermediate velocity in addition to accuracy and convergence order, will improve
these results. Even with this coupling error, for large Courant numbers, we find
higher accuracy for the LF-AM3 scheme, including time step sizes that exceed the
stability of the AB2 schemes. This is a desired result since ocean models usually run
with the highest possible Courant numbers to reduce numerical costs.

In the lock-exchange experiment, we also analyse the reference potential energy
(RPE) to measure diapycnal mixing. We find that the LF-AM3 scheme has larger
normalized RPE and therefore larger mixing compared to AB2. We also find an
increase in RPE and mixing for any time-stepping scheme with decreasing time step
size. We argue that this is due to a less diffusive time-stepping. This results in
more noise in the horizontal velocity on grid scale which causes spurious mixing and
therefore an increase of normalized RPE (Griffies and Hallberg, 2000; Ilicak et al.,
2012). In general, smaller diapycnal mixing is desired. However, having a smaller
total diffusion caused by a reduction of the numerical diffusion in velocity can be
considered as an increase of control of the total lateral velocity diffusion.

ROMS (Shchepetkin and McWilliams, 2005) achieves a lower RPE compared to
models like MPAS-Ocean (Ringler et al., 2013), MITgcm Marshall et al. (1997) and
MOM Griffies et al. (2010b) due to a dissipative momentum advection scheme (Ilicak
et al., 2012; Petersen et al., 2015). Hence, adding diffusion in some parts of the
model purposely can achieve better results regarding the diapycnal mixing due to
the increase in total velocity diffusion which consists of applied velocity diffusion and
numerical diffusion. The lower numerical diffusion of the new LF-AM3 space-time
discretization results in the mentioned larger control of the total velocity diffusion
compared to the AB2 discretization.

In addition, for the LF-AM3 split-explicit time-stepping scheme, we still use the one-
step tracer scheme Korn (2017) instead of a two-step scheme that has been originally
developed for the LF-AM3 scheme of Shchepetkin and McWilliams (2005). As we
discussed in section 2.2.4, we chose the original 1-step tracer scheme for simplicity
reasons and to be able to separately analyse changes in accuracy and stability from a
change of the time discretization of the discrete momentum equation alone. With a
more profound tracer scheme as well as with other more accurate high-order schemes,
we expect a similarly slight increase of RPE as a sign of a decrease of total diffusion.

We could analyse the stability regarding a horizontal Courant number in the gravity
wave test over an ocean mound and in the lock-exchange experiment in a new
setup with coarse vertical resolution. For both experiments, the maximum possible
time-step of the LF-AM3 split-explicit scheme is 1.3 times larger than for the AB2
semi-implicit schemes. Our experiments show, that the AB2 semi-implicit scheme is
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generally slightly more stable than the AB2 split-explicit scheme. Accordingly for
the lock-exchange test, the maximum possible time-step of the LF-AM3 scheme is
1.5 times larger than for the AB2 split-explicit scheme.

As we discussed in section 1.2, the space-time discretization has be considered for
the stability of time-stepping schemes (Lemarié et al., 2015). Differences in the
stability between the LF-AM3 scheme and the AB2 scheme for various space-time
discretizations are analysed in Lemarié et al. (2015). For example, the CFL stability
criteria of LF-AM3 for a second-order centered scheme (C2) is 1.587 and for a
third-order upwind scheme (UP3) 0.871. For an AB2 scheme, the CFL limit is for
C2 0.503 and for UP3 0.554 (Lemarié et al., 2015). As such LF-AM3 shows roughly
a 3.2 times larger stability for C2 and 1.5 times for UP3 compared to AB2.

For the lock-exchange experiment, we find a maximum Courant number of the
new LF-AM3 split-explicit discretization of 0.554, for the new AB2 split-explicit
discretization 0.33 and for the AB2 semi-implicit scheme 0.43. Here, LF-AM3 shows
a 1.3 times larger stability than AB2 semi-implicit and 1.5 time larger than AB2
split-explicit.

We do not want to overemphasize the absolute Courant numbers. The stability of a
simulation is not only dependent on a CFL limit, but also dependent on the dynamics
of the system (Lemarié et al., 2015). This is comparable with the experiment of
the gravity wave over an ocean mound of section 4.2.3. There, the schemes become
unstable although the Courant number is below 10−2. However there, LF-AM3 has
an approximately 1.3 time larger possible Courant number than both AB2 schemes
which is similar to the lock-exchange experiment.

This increase in stability is closer to the increase in stability of the third-order
advection scheme compared to the second-order advection scheme in the analysis
of Lemarié et al. (2015). In Korn (2017) it is shown that the transport scheme
is similar to a second-order scheme. Also, the divergence is of second order on
the torus grid that we use and which can be regarded as as a uniform planar grid.
We speculate that we do achieve a smaller increase of stability with the LF-AM3
scheme compared to Lemarié et al. (2015) because of the complete spatial framework
shown in Korn (2017) and that we apply for the new discretization in this thesis.
Compared to the spatial framework of Lemarié et al. (2015), the framework that we
use includes the unstructured icosahedral grid, first-order reconstruction operators
and the mass-matrix. Still, we find an increase in stability and also accuracy of
the new LF-AM3 split-explicit space-time discretization compared to the new AB2
split-explicit space-time discretization and the old AB2 semi-implicit space-time
discretization.
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Chapter 5

Summary and outlook

Time-stepping schemes are a crucial part of ocean circulation models. The stability
and accuracy of time-stepping schemes depend highly on the underling spatial
discretization (Lemarié et al., 2015). As such, the coupled space-time discretizations
should be considered for the analysis of time-stepping schemes (Lemarié et al., 2015).
ICON-O has a unique spatial framework as it uses a C-type staggering of variables
on an icosahedral grid in combination with a mass matrix that filters out a grid mode
which otherwise appears for this C-type staggering of variables on an triangular grid
(Korn, 2017). Originally, an AB2 semi-implicit time-stepping is used for ICON-O
(Korn, 2017).

With the aim to increase accuracy, stability and numerical efficiency we adapt a
split-explicit time-stepping scheme based on a LF-AM3 baroclinic step which was
developed for ROMS in Shchepetkin and McWilliams (2005) and Shchepetkin and
McWilliams (2009) for the mathematical framework of ICON-O. This results in a new
split-explicit space-time discretization which uses C-type staggering on a triangular
grid. While ROMS has a two-step tracer scheme, we apply the time-stepping
scheme for the original one-step tracer scheme of ICON-O. The new split-explicit
time-stepping discretization fulfills volume and tracer conservation. Within the new
split-explicit discretization, we preserve the mass-matrix which filters out the spurious
mode within the continuity equation (Korn, 2017). Additionally, we adapted the
split-explicit time-stepping for the original AB2 baroclinic step.

In subsequent steps, we tested and analysed the new split-explicit time-stepping
schemes and compare them to the original AB2 semi-implicit scheme. In several
highly barotropic gravity wave experiments in different geometries, we find that the
new split-explicit schemes are much more accurate than the semi-implicit scheme
for the same baroclinic time step. Further, the split-explicit schemes are still more
accurate, if the same barotropic time step is used as in the AB2 semi-implicit scheme.
We find that, depending on the number of barotropic steps and on the fast-time
averaging filter which is applied over the barotropic solution, we can reduce the
error of the barotropic system by orders of magnitude. Such more accurate and less
diffusive representation of the propagation of barotropic signals is highly desirable
for global ocean models, e.g. when investigating the interaction of barotropic tides
with the general circulation (e.g. Li and Storch (2020)).

We conducted a lock-exchange experiment for a quantitative analysis of accuracy and
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stability for baroclinic dynamics and tracer properties. For low Courant numbers, a
coupling error, which is based on a shift between the position of the intermediate
baroclinic velocity and the result of the secondary filter-weights, results in lower
accuracy compared to the AB2 semi-implicit scheme. We argue that this error can
be resolved with new filters which respect the centroid condition of the secondary
filter-weights at n+ 1/2 for the LF-AM3 scheme or with filters which respect the
interpolated position at n+ 0.6 for the AB2 scheme. We define a new low vertical
resolution of the lock-exchange experiment to analyse accuracy and stability for high
Courant numbers. Results for such high Courant numbers near the CFL limit are
of particular interest since ocean models are usually run with large time steps near
the CFL limit to decrease numerical costs. For these high Courant numbers, the
coupling error becomes relatively small as we see from a comparison between the new
AB2 split-explicit time-stepping scheme and its semi-implicit version in figure 4.14.

Moreover in the lock-exchange experiment, for large Courant numbers, the new LF-
AM3 scheme has an increased accuracy compared to both AB2 schemes even beyond
the stability of the AB2 schemes. Additionally, due to a more accurate representation
of the intermediate velocity, we find that tracers are calculated more accurately
for all time step sizes with the new LF-AM3 scheme. This slightly increases the
tracer mixing. We suggest that this is due to a decrease of the numerical diffusion of
the velocity as a result of the more accurate LF-AM3 scheme, in particular at the
intermediate time step. This decrease of numerical diffusion results in larger noise
of the velocity on grid scale which causes an increase of spurious mixing (Griffies
and Hallberg, 2000; Ilicak et al., 2012). A decrease of numerical diffusion gives an
increase of control over the total velocity diffusion. This can be especially beneficial
for example for high resolution experiments where small velocity diffusion is used.

We find in our experiments that the maximum possible Courant numbers of LF-AM3
split-explicit scheme is 1.3 times larger compared to the AB2 semi-implicit scheme
and up to 1.5 times larger than the AB2 split-explicit scheme for the lock-exchange
experiment. Putting this in context of the space-time stability analysis of Lemarié
et al. (2015), the increase of stability of the LF-AM3 scheme compared to the AB2
schemes is approximately as large as for their third-order upwind scheme, but smaller
than for their second-order advection scheme. Although in ICON-O the transport
scheme and the divergence are of second order on a torus grid (Korn, 2017), we do
not achieve an increase of stability of the LF-AM3 scheme compared to the AB2
schemes as shown in Lemarié et al. (2015). We argue that this is due to differences
of the overall spatial framework of ICON-O, which we use in this thesis and the
spatial framework which is discussed in Lemarié et al. (2015). Such properties of
the spatial framework of ICON-O are for example the icosahedral grid, first order
reconstructions and the mass-matrix which filters out the grid mode (Korn, 2017).
An analytical stability analysis of space-time discretizations on an icosahedral grid
including the spatial framework of ICON-O similar to Lemarié et al. (2015) could be
an interesting and important future contribution to the ocean model community.

Being able to use a 1.3 to 1.5 times larger time step with the new LF-AM3 split-
explicit scheme compared to both AB2 schemes could result in a speedup of ICON-O
and decrease the numerical costs. However, the change of numerical costs and
numerical efficiency depends on many aspects of the implementation that lay outside
the scope of this thesis, such as the efficiency of the parallelization. Furthermore, the
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LF-AM3 split-explicit space-time discretization uses a 2-step momentum advection
scheme where the right-hand side of the momentum equation is solved twice. Still,
the barotropic system is only solved once as well as the implicit vertical diffusion
which could lead to a decrease of numerical costs due to a larger possible time step.

For the future development of the new LF-AM3 split-explicit space-time discretiza-
tion, which we derived in this thesis, the more profound two-step tracer scheme of
Shchepetkin and McWilliams (2005) could be adapted. This includes changes in the
Zalesak limiter (Zalesak, 1979) which is used for flux-corrected transport in ICON-O
(Korn, 2017).

Further, the full parallelization of the split-explicit schemes is needed for more
complex simulations such as eddy resolving or global ocean experiments. For these,
also bottom and surface boundary conditions have to be considered which are not
used in our idealized experiments.

Potential new experiments to test and compare the different time-stepping schemes
could be following the additional experiments of Ilicak et al. (2012) and Petersen et al.
(2015) where internal waves and baroclinic eddies are analysed. A further comparison
of the different time-stepping schemes could be the analysis of the effective resolution
which defines the range of numerical dissipation becomes dominant as discussed in
Soufflet et al. (2016) for a baroclinic jet test case.
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wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche
kenntlich gemacht. Ich versichere weiterhin, dass ich die Dissertation oder Teile
davon vorher weder im In- noch im Ausland in einem anderen Prüfungsverfahren
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