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CHAPTER 8

Bispectra of Ocean Waves

Klaus Hasselmann, Walter Munk, Gordon MacDonald,
Institute of Geophysics and Planetary Physics, University of Californiia*

1. INTRODUCTION

To a first approximation, a random sea surface may be regarded as a linear
superposition of statistically independent free waves and is consequently
completely described by its two-dimensional power spectrum. For many
purposes this approximation is adequate. A number of interesting phenomena,
such as surf beats (W. H. Munk, 1949, M. J. Tucker, 1950, and M. S. Longuet-
Higgins and R. W. Stewart, 1962), wave breaking (O. M. Phillips, 1958), and
the energy transfer between wave components (O. M. Phillips, 1960, K. Hassel-
mann, 1962) can be explained only by the nonlinearity of the wave motion.
To investigate these processes, third- and higher order moments must be
analyzed. As a first step, we have evaluated the bispectrum of the wave
record of a single station. The wave measurements were taken in shallow
water (11 meters) in order to obtain relatively strong nonlinearities. The
experimental values agree well with the theoretical bispectrum obtained by
perturbation analysis.

2. THE BISPECTRUM

If () is a stationary random function of time, the spectrum F(w) and
bispectrum B(w;, wz) of {(f) are defined respectively as the Fourier transforms
of the mean second- and third-order products:

4o
F(w) = %r /_ R(r)e ™" dr, 1)
where
R(r) = () ¢t + ), 2)
+o
B(wl, wz) = ﬁi // S(Tl, T2)6_-7:“’171_1""21'2 dry dTg, (3)

* This work has been supported by Grant 13575 from the National Science Foundation.
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126 METEOROLOGICAL PROBLEMS

where

S(ry, 72) = () (¢ + 71) £(¢ + 72)). 4

The brackets ( ) denote ensemble means. The inverse relations to (1), (3)
are

R(r) = f_t“’ F(w)e™ do (5)
+w
S(ri,79) = /f B(ws, wg)ei"’l"ﬂLi"’z’2 dwi dws. (6)
For real (1)
Fw) = F(—w)* ()
B(wi, wg) = B(—w1, —wa)®. (8)

From the stationarity of {(¢) the known symmetry relations

B(r) = B(-7) (9)

S(r1,79) = S(re, 71) = S(—79, 71 — 72) = S(r1 — 72, —7T2)
= 8(—r1,7a — 71) = S8(rzg — 71, —71) (10)

follow immediately. Only two of the relations (10) are independent. In
terms of the spectra and bispectra, (9) and (10) become

Flw) = F(—w) (11)

B(w1, wg) = B(ws, w1) = B(w1, —w1 — wg) = B(—w1 — wy, 1) &
= B(w2, —w; — wy) = B(—w1 — wy, wg).

From (7), (8), (11), and (12) it follows that the spectrum is real and is deter-
mined by its value on a half line, whereas the bispectrum is determined by its
values in an octant; for example, 0 < w1 < ©,0 < wy < wr.

The physical significance of the spectra and bispectra becomes clearer when
expressed in terms of the components dZ(w) of the Fourier-Stieltjes represen-
tation of ¢(1):

t) = f_*: A7 (w)e™".
Then
(dZ(wl) dZ(wg)) = F(wl) der if w1+ wy = 0, (13)
and zero if
L w1+ wg #0;
(AZ(w1) dZ(wg) dZ(w3)) = B(wi, we) dwr dws if w1+ ws + w3 =0 (14)
and zero if
w1+ @z 4+ wg # 0.

The spectrum represents the contribution to the mean square g‘—z from the
product of two Fourier components whose frequencies add to zero, whereas
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the bispectrum represents the contribution to the mean cube ¢ from the
product of three Fourier components whose resultant frequency is zero. The
symmetry relations are seen to be a direct consequence of the symmetrical
form of (13) and (14). The derivations of (13) and (14) proceed along anal-
ogous lines: by taking the limits of the approximating Fourier sums and making
use of the equality of ensemble and time averages for stationary processes
The dimensionless ratio
(W,

(Wi
is called the skewness and is generally finite. It may be interesting to note
that the related ratio

(fafels) B(w1, ws) (3w)*
[EDEDED [P wr) Fws) Fwn) (30) )
for three records “played’” through three filters centered on wi, wg, ws = —w1

—ws and of bandwidth 8w is proportional to (8w)”. This result can be looked
at another way. Narrowing the filter width dw is equivalent to time averaging
over increasing intervals 1/6w, and in the limit this leads to a Gaussian joint
distribution of the three variables.

3. QUASI-LINEAR, QUASI-GAUSSIAN PROCESS

For a Gaussian process the bispectrum vanishes. ¢(¢) is then a linear
superposition of an infinite number of statistically independent Fourier com-
ponents. We shall be concerned in the following with a process that is almost
linear and Gaussian. In particular, we shall consider a process that can be
expanded with respect to some perturbation parameter e in a series

() =P+ P20 PO+ - -,

where ™ (f) = 0(¢”). Without loss of generality, we may take ({), hence
(t™), as zero. We assume that the first-order term ¢! (¢) is Gaussian and that
the higher order terms can be expressed in terms of the first-order term in the
form

F™(@) = f_’u° L O /_:G(”)(t — ity b=ty v, b= VD) -
¢ dtydty - - - diy.

Using the Fourier-Stieltjes representations ¢™(¢) = f _4:0 dZ™ (w)e™t, (13)
transforms to
AZ™ (4) = f s / K™ (o1, 03, * * * , wn) A2 (1) dZD (wg) - + -
widwzt 0 fwn=w
dZ® (wy)

where K™ is the Fourier transform of G (G™ being defined as zero for
negative arguments).
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Generally, the value of an mth-order mean product (¢ (¢1)¢(62)5(s) -+ Etm))
correct to the nth perturbation order depends on all interaction coeflicients
up to the (n — m + 1)th order. We shall consider only the quadratic mean
product to the second perturbation order and the cubic mean product to the
fourth perturbation order. This limits us to the second-order interaction
coefficient. We have then

F(w) dw = F(2)(w) do—+ + - = <dZ(1)(w) dZ(l)(—w)) 4+ - -

B(wy, we) dwi dwy = B® (w1, wy) dwy dwg + BW(wy, ws) dwy dwg 4 * + *
= (dZD(wy) dZP (wg) A2V (—w1 — w2))
+ <dZ(1) (w1) dZ(l) (wg) dZ(2)(—w1 - w2))
+ (42D (w1) dZP (wg) dZD (— w1 — we))
+ (dZm(wl) dZ(l)(wg) dZ(l)(—wl - w2)> + . (15)

Since ¢ is Gaussian, the term B® in (15) vanishes. Substituting (14)
in the remaining expression and making use again of the Gaussian property
of ¢V in determining the fourth-order mean products, we obtain

B(w1, wg) = 2[F (w1) F(ws) K(—w1, —ws)
+ F(wy) Fw1 + w2) K(—w1, +w1 + w2)
+ F(w2) F(w1 + wg) K(—wz, —I—wl + wz)] + . (16)

Thus, for a weakly nonlinear, non-Gaussian process, the bispectrum is a direct
measure of the second-order interaction coefficients. Apparently the coefli-
cients are not completely determined by the bispectrum, since they enter in
(16) only in the linear combination corresponding to the symmetry relations
(12). However, this has its counterpart in the nonuniqueness of the perturba-
tion expansion. In place of ¥ we could equally well begin the perturbation
expansion with a first-order term

O = @ g 1 HO@ b, = PP @) didia +

where H™ are arbitrary kernels satisfying only the condition that {¥ is
again Gaussian. This leads to a different set of interaction coefficients,
the only invariants of the transformation being the set of all mean products
determining the stochastic process {(¢). In particular, the only invariant of the
second-order interactions is the combination (16) representing the bispectrum.

4, THE THEORETICAL BISPECTRUM FOR
FINITE-DEPTH OCEAN WAVES

Time records of ocean waves at a fixed position are to a first approximation
stationary and Gaussian. Small deviations from normality exist, however,
because of small nonlinearities in the equations of wave propagation. We
have seen that these can be determined to the first order by measuring the
bispectrum. It is also possible to evaluate the nonlinearities theoretically,
thus obtaining a mutual check on theory and experiment. A slight extension
of our results in Section 3 is needed, however, since the perturbation expansion
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of the wave height at a fixed point cannot be carried through in terms of the
values at that point alone but only for the complete wave field.

The perturbation expansion for a random sea of constant finite depth A has
been described in varying degrees of completeness by several authors [O. M.
Phillips (1960), L. J. Tick (1961), M. 8. Longuet-Higgins and R. W. Stewart
(1962), and K. Hasselmann (1962)]. We shall employ Hasselmann’s results
and notation (with minor changes) to evaluate the bispectrum of the bottom
pressure (rather than the wave height, since the instrument used in the experi-
ment was a bottom-pressure recorder). To the first approximation the veloc-
ity potential ¢ can be represented as a superposition of statistically independent
free waves:

o(x, ) = ¢V, &) + - -
+

cosh k(z - h)

ikex .
cosh kh T

= | @eP@e 4 26D (ke
-+

where
“)(k) (do(—k))*
= gk tanh kb,

and x, 2z are horizontal and vertical coordinates, respectively, the vertical
measured upward from the mean surface.
The second-order term of ¢ is then

6 (x,1) = / / f / E 260 (1) dgDks) A (s, 5161, K, 3202)

cosh [|k1 - k2‘(z + h)] ¢t T—i(a o)t
cosh ([k; -+ ko|h)

(17)

where s; and s; denote signs and

7
w? — (w1 + wg)? I("’l + wo)[kik, tan koh tanh koh
— (w1 )

1 wik? . wok? )l
k- kol 2((:osh2 koh T cosh? kqh » (18)

A(kl, wi, kz, wg) =

with

w? = g|k; + ky| tanh ([ky + ko).

The corresponding expansion for the bottom pressure is then obtained from
(17) and Bernoulli’s law

i 1
Pt Pu= |24l +ah,

2=—h

where P,, is the mean bottom pressure and P, its variation, so that (P) = 0.
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The first-order Fourier component of the pressure is then

+ tw

dP(l) k (1) k
(k) = =726 P (k)
and the second-order term is given by
P®(x t) =
4w
JI[[ Y aP®) aPD ) Clky, s1n, Ty, syon)ei ST =ilesteedt, - (19)
where

cosh kih cosh ksh(w) 4+ ws)
p w1 w2 cosh ([k; + ko|h)

C(kl, w1, k2, w2) = — 7/A(k1; Wi, k2: w2)

(kl 2)

20
2pwiwe (20)

Tor the third-order mean product of the bottom pressure at a fixed position &
we thus obtain correct to the fourth perturbation order

<P(X, t) P(X, ¢ + Tl) P(X, l + T2)> = <P(2)(X, t) P(l)(xy l + Tl) P(l) (X, t + TQ))
+ (P(l) (X, t) P(2) (X, { + Tl) P(l)(x, ¢ —|— Tz))
+ (PO, ) POt + )PP (x, 1+ 1)), (21)
where

(P(Q)(x ) PO(x, t + 1) PV (x, t + 72))
/// E(ky) E(ks) [ 2 C(s1ky, s101, soky, Szwz)eﬂ(“””‘ﬂ?w“)] d%hky d*ey
(22)
and

E(k) d*k = (24P, (k) dP_(—K)).

E(k) is the two-dimensional spectrum of P with respect to waves traveling in
the positive k-direction.

In order to write (22) in the form of a Fourier integral with respect to wi
and w, as in expression (3), we transform the spectral density from the k-plane
to » and the propagation direction a:

E(k) d%k = 2F (v) S(w, @) dw da,

where S(w, «) is the spreading factor, normalized so that

f__i:r S(w, o) da = 1,
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and E(w) is the (two-sided) one-dimensional frequency spectrum. Equation
(22) then becomes

(P(2)(xy t) P(l)(x; l + Tl) P(l)(xy l + TZ))
+
= f [ 2K (—w1, —ws) Flw1) Flwg)et@mtor doy duy,  (23)
where

+r
K(wl, CU2) & f/ S(oq) S(a2)C(—81k1, w1, —Szkg, —wg) da1 da2 (24)

and here s; = sign (w;).

Thus the first term on the right-hand side of (21) yields the first term in the
bispectrum of P as given by (16). It is easily verified that the remaining terms
in (21) correspond to the remaining terms in (16). Hence the expression (16)
derived for the case of a weakly nonlinear process depending on one parameter
only holds also for the more general case considered here, provided we define
K(w1, w2) by (24). We note that K(wy, ws) is real, so that the bispectrum has
only a real part.

The net interaction coefficient is seen to depend on the spreading factor,
which cannot be determined from the one-dimensional frequency spectrum
recorded at a single fixed position. By going to the next order, however, and
determining the spreading factor that gives the best agreement between the
theoretical and experimental bispectrum, it is now possible to gain some
information on the directional spread of the waves from the record of a single
station. The method gives only an indication of the relative angular spread
and no information on the mean direction of the waves, since our theoretical
model agsumes constant depth and is independent of the choice of horizontal
directions. For a truly adequate theoretical model (ours is not) the bispectral
method of determining the angular spread is in principle more powerful than
the usual one of correlating a number of records at different positions, since
the two-dimensional bispectrum contains more information than a finite
number of one-dimensional functions.

The dependence of the interaction coefficient K on the spreading factor
and the water depth is shown in Figure 1 for the interactions (w, w, —2w)
and (w, —1. 2w, 0.20). These are characteristic of the principal contributions
to the positive and negative peaks in Figures 2 and 3 (to be described in more
detail later). The water depth is nondimensionalized by the wavelength
Ao = 2rg/w® in deep water and the coefficients by the factor \o/2r = g/w?.
The angular spread refers to the beam in deep water. The effect of collima-
tion as the waves enter shallow water has been allowed for. A spreading factor
S(a) = 1/[/ (2r)*#]e "% was assumed, where o is the (rms) angular spread.
The values for the angular spread in Figures 2 and 3 refer to the local wave
field at depth k. The principle interactions in these figures correspond to
values of h/\g near 0.015.
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400 =

-200 q
= Kl-w,l.2w)
[}

~400 |-

-§00

1

Figure 1. Dependence of the interaction coefficients on spreading angle and water depth.
The positive (sum-frequency) coefficient is charaeteristic for the positive peaks in Figures 2
and 3. The negative (difference-frequency) coefficient is characteristic for the negative
peaks.
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28 FEB. 1962

Figure 2. Bispectra of ocean wave record. The numbers give the contributions towards
the mean-cubed record (in em?) per unit frequency band squared (in cps?®) and are thus in
units cm%ec2. The number —7% denotes —7 X 10% Contours are drawn for —103,
—10%, —10% —10% In the case of perfect agreement between theory and experiment the
pattern would be symmetrical about the 45°line. The two axes give frequencies in Nyquist
units; 1 Nyquist is 0.25 cps. The (identical) plots along the two axes are the power spectra
in ¢m?2/cps.
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26 MAY 1962

Figure 3. Bispectra of ocean wave record. The numbers give the contributions towards
the mean-cubed record (in em?) per unit frequency band squared (in eps®) and are thus in
units emiee?, The number —7¢ denotes —7 X 10%. Contours are drawn for —108,
—10%, —10% —10% In the case of perfect agreement bebween theory and experiment the
pattern would be symmetrical about the 45° line. The two axes give frequencies in Nyquist
units; 1 Nyquist is 0.25 eps. The (identical) plots along the two axes are the power spectra
in cm?/cps.
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5. MEASUREMENT OF THE BISPECTRUM

Notation

There is a problem of normalization. The most convenient definitions of
power spectrum and bispectrum for theoretical work are those we have alrcady
used. Setting all r's equal to zero in (5) and (6) yields

[o P do = RO) = (%), [[ By, @) dor des = 80, 0) = (7).

Either of the following definitions is more convenient for numerical analysis:
[Srpar= [P ar =,
where w = 2xf. In view of (5), the connections are
F' = 2qF, F'’ = 47F,
We shall use F’; in engineering practice F’’ is better established, but it leads

to awkward conventions when the generalization is made to the bispectrum.
The best choice appears to be

4o
J[ B 2) dfa s = (69,

which yields
B’ = 4r'B.

We shall plot ¥’ for f > 0 and B’ for 0 < f; < », 0 < f2 € f1i. The entire
field is then determined by the relations (7), (8), (11), and (12), and it can be
shown that

=2 ["Fmda, =12 [ d [, df Re B (1, 1]
Aliasing

For digital sampling at intervals At, any energy associated with frequencies
above the Nyquist frequency fy = (2Af)~! appears in the power spectrum in
the “‘alias” of a lower frequency. It is convenient to refer all frequencies to
the dimensionless Nyquist units f/fy. To avoid aliasing of the energy spec-
trum, we must sample at a rate sufficient to make certain that the energy
density above unit Nyquist frequency is low compared to the energy below
unit frequency. Similarily, to avoid aliasing the bispectrum, the bispectrum
must be small for all frequencies fi, f2 outside the region |fi| < 1, [fo] < 1,
|f1 +f2| < 1. The product of this region with the octant 0 < f; < o,
0 < f2 < f1 yields a triangular region with the interval 0 < f1 < 1 as base line
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and the point (%, ) as apex. An inspection of Figures 2 and 3 indicates that
aliasing has been successfully avoided for both spectra and bispectra.

Recording

A “vibratron” pressure transducer on the sea bottom off Oceanside, Cali-
fornia, at a depth of 11 meters converted water pressure into a fm electric
signal, which was brought ashore through a submarine cable and digitally
recorded on punched paper tape [Snodgrass (1958)]. The data were auto-
matically scanned for errors, and the power spectra was computed according
to the Tukey method. Details of the analysis have been reported elsewhere
[Munk, Miller, Snodgrass, and Barber (1963)].

Bispectral analysis

The bispectra were computed directly and not by a Fourier transform of the
two-dimensional correlation. The procedure is somewhat wasteful of com-
puter time, but it had the advantage that it could be coded and performed in
one day. Extensive use could be made of the BOMM method of time series
analysis (Bullard et al, 1963).

TFirst the tides were removed by a numerical high-pass filter. Then records
were “played’”’ through 20 successive numerical low-pass filters, with cutoff
frequencies (half-amplitude points) at 0.05, 0.10, - + - 0.95 Nyquists. Sub-
traction of successive records led to 20 bandpassed time series, each covering a
frequency band of 0.05 Nyquists. The set of amplitude factors for the band
0.50 to 0.55 Nyquists is shown below:

Nyquists: 0.48 0.49 0.50 0.51 052 0.53 0.54 0.55 0.56 0.57
—000 004 049 095 1.01 1.00 0.96 0.51 0.05 —0.00

g0 that there is only slight overlap between neighboring bands.

We denoted the series whose center frequency is f; by {:(t). Subsequently,
we computed 20 high-passed series, {>:(?), with cutoff frequencies at 0.025,
0.075, + + -, 0.975 Nyquists. We then formed the triple products, term-
per-term,

bii(t) = L)) (25)
and computed the mean value, (b;;). This contained two equal interactions

between the frequencies f, f;, foi—j and —f; —fiy fiyj and the sum yielded
twice the real part of each interaction. Thus, dividing by 2 and by

1 2
(Af)2 = (0.05 Nyquists)® = (0.05 X 0.25)% cps? = <—8_0> cps?

to obtain bispectral density, we had

Re [B'(fi, )] = % X (80)%(bsj)-
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6. COMPARISON BETWEEN THEORY AND EXPERIMENT

Figures 2 and 3 show the comparisons for two such cases. The experimental
and theoretical results are contoured in neighboring octants; perfect agreement
would call for symmetry about the 45° axis. The figures have the appearance
of Rorschach ink blots,* thus indicating some degree of symmetry and some
agreement between theory and experiment.

For the case of February 28 the power spectrum shows a predominant peak
at 0.22 Nyquists (0.055 cps). The bispectra reveal a positive ridge for this
frequency, highest at the 45° line and then tapering off. Theory and experi-
ment are in satisfactory accord. The result implies a strong interaction of
the peak with itself, which leads to the double frequency peak that is
observed in the power spectrum, and appreciable interaction with all other
frequencies. Interactions with frequencies equal to or greater than that of
the peak leads to positive bispectra. This may be interpreted physically as
the peaking of the wave crests with resultant harmonics that are in phase
with the fundamental.{

Interaction of the principal peak with low frequencies leads to negative
bispectra. We can interpret the theoretical value B’(0.075, 0.225) = —3 X
10* em®sec? as due to the interaction between the main peak at 0.225 Nyquists
and the side peak at 0.30 Nyquists in producing the difference frequency
0.075. The theoretical value B’(0.025, 0.225) = —2 X 10° cm?® sec?, and the
corresponding observed value B’(0.225, 0.025) = —4 X 10* em? sec? is proba-
bly the result of difference frequencies produced by interactions wethin the main
peak, but the resolution is not adequate to separate this effect from the inter-
action between the two peaks. The negative sign implies that a group of high
waves leads to a lowering of the sea level; this is in accord with the findings of
Longuet-Higgins and Stewart (1962). Bernoulli’s equation p -+ pu? =
constant would lead to this effect of lowering the pressure with the increased
mean-square velocity of the interacting waves. However, this is only part of
the story, because comparable nonlinear interactions arise from the surface
boundary conditions.

The theoretical calculation was carried out for several spreading factors,
and it is found that the selected factor of 20° leads to better accord than either
a much narrower or much broader beam. As we have already pointed out,
we have a means of obtaining information on directional spreading (but not
on the mean direction) from a record at a single point. Offhand, we might
have thought it impossible to obtain two-dimensional information from a one-
dimensional array!

The case of May 26 was purposely selected to portray a more complicated
case. There are two peaks of comparable energy at 0.19 and 0.27 Nyquists,
and the bispectrum reveals two ridges, as expected, separated by a bispectral

* This observation is due to Freeman Gilbert.

t Peaking of the wave crests leads to a skewness in the distribution of {(¢) and a nonzero
value of ({?). Assymetry of the wave crests prior to breaking (analogous to shock-wave

formation) contributes nothing to (¢® but something to (¢*) and is therefore a problem that
involves the trispectral interaction between four frequencies.
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trough down by a factor of 10. The interaction of the peaks with themselves
and with one another lead to the following values:

Interacting frequencies, fi, f2:  0.19,0.19 0.27,0.27 0.19, 0.27 Nyquists
B'(f1, f2) theory 8 X 10*  7x10* 4X10* cm®sec’
B'(f1, f») experiment 9x 104 53X 10* 5X10* cm®sec?

The resulting sum frequencies
0.38 0.54 0.46 Nyquists

can barely be made out in the power spectrum. The difference frequency
yields roughly —10* em?® sec® for both theory and experiment.

So far we have considered only the co-bispectrum. There is also a quadra-
ture component, which can be derived by shifting {5:() in (25) by 90°. A
calculation equivalent to this operation indicated no important interaction in
accordance with theory.

For the skewness we find

2.2 X 10° em®

3y /(2 _

/65 33 X 107 cm®)® 0.352
25 X 10* em®

"~ (1.6 X 10% em?)*

= 0.124

for February 28 and May 26, respectively. Kinsman (1960, Table 5.11) has
measured skewness for a large number of observations of surface elevation
in water of 20-ft depth. He finds average values of 0.336 and 0.090 for July
and November observations* of the same order as our results, and he points out
that such values can lead to sizable corrections to the Gaussian distribution.

7. CONCLUSIONS

We find pleasing agreement between observed and derived bispectra, which
demonstrates the validity of a perturbation scheme based on the Navier-
Stokes equation—but who ever doubted it in the first place? So, in a sense,
the result is disappointing, for we have learned little new (except for the
information on directional distribution). However, we have gained some
experience with higher order spectra that will prove rewarding when applied
to processes for which the interaction theory is not known or is thought to be
known but is found to be inapplicable.

TFor many problems a step further to the trispectrum will probably be neces-
sary. For example, the simple question, is immediately suggested by our
analysis, “What fraction of the spectral density at the low frequencies (surf
beat) is the result of nonlinear interaction between higher frequencies?” can
be answered only by a third-order analysis.

* Kinsman’s definition of the skewness differs from ours by a factor of 2.
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