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ON THE NONLINEAR ENERGY TRANSFER IN A WAVE SPECTRUM

INTRODUCTION

The final stage of development of a wind-generated
sea is probably determined largely by two non-
linear processes: (1) the dissipation of wave energy
due to wave breaking, and (2) the energy flux in
the wave spectrum resulting from the nonlinear
interactions among different wave components.
The present paper is restricted to an analysis of
the second process. The nonlinear interactions
are in general small and can thus be evaluated by
conventional perturbation techniques. The per-
turbation analysis of a random sea surface to the
second order has already been carried out in
detail by Mr. L. J. Tick. The perturbation solu-
tions were found to be steady, sinusoidal waves
yielding a constant correction term for the wave
spectrum. However, the analysis did not disclose
any dynamical interactions involving energy trans-
fer among different wave components, as these
are described by perturbation equations of a
higher order than the second.

By extending the perturbation equations to the
third order, Dr. O. M. Phillips explained the
mechanism of these interactions and examined
the conditions under which energy transfer is
possible between two discrete wave frains. In
order to determine the energy transfer in the case
of a continuous spectrum, however, the perturba-
tion analysis has to be extended still further to
the fifth order. Moreover, supplementary statis-
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tical analysis of the response of an undamped
oscillator to certain random forcing functions is
also necessary. The final result can be interpreted
in terms of quadruple interactions in which, under
certain resonance conditions, energy is transferred
from three “active” components controlling the
transfer rate to a “passive” fourth component.
The process is proportional to the fourth power
of the wave slope, giving an estimated order of
magnitude comparable to the magnitudes of the
generating and dissipating processes in a seaway.

PERTURBATION ANALYSIS

As the derivation of the perturbation equations
for a random sea surface with small mean square
wave slope has been described in detail by Mr.
Tick and Dr. Phillips, we can restrict ourselves
here to a brief outline of the method with indica-
tions of the additional aspects encountered in ex-
tending the analysis to the fifth order.

The sea surface z = h(z, y, t) is assumed to be
a homogeneous random function, which can thus
be represented as a Fourier sum

h(ﬁl), Y, t) =2 Hk(t)eik.x (]-)
k

where x = (x, ) and z, y, and z denote cartesian

coordinates with the z-axis directed vertically up-

wards. Approximating Fourier-sums will be used

throughout rather than exact Fourier-Stieltjes
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integrals as they allow a more condensed presenta-
tion of the rather complicated multiple integrals
occurring latet in the analysis.

In the linear approximation (denoted by a sub-
seript 1) the equations of motion and the boundary
conditions lead to the differential equation:

Hie@) + wh 1He (@) =0 (2)

where w, = \/g_k, k = |k| (neglecting surface ten-
sion). The general solution is

Hi(t) = Hy e~ 4 Hy el Hy const 3)
so that from Equation (1)

lh . 2 [1H|(+ eik-x—iwkt + lHk_, eik-x-}-iw;‘t] (4)

k
The sign-indices denote the direction of propaga-
tion of the waves relative to the wave-number k.
As 1k 1s real, the amplitudes satisfy the relation

IH: B (lH:k)* (5)

In the nonlinear case the amplitudes Hy(f) can
be developed in a perturbation series

Hi(t) = H(t) + oHu(t) + sHu(®) + -+ (6)

The nth amplitude ,Hy(t) satisfies the same dif-
ferential equation as (H(t), except that the equa-
tion is no longer homogeneous, the inhomogeneous,
exciting term depending on amplitudes of an order
lower than n. Assumfing these to be already deter-
mined in terms of the first-order amplitudes, the
resulting equation for ,Hg(?) has the general form

.y Py
nHk + wik nHk . 2
ki+ke+...+kp =k

81, 82, 83...8n

81,82...8p 81 82 Sn
Ckl,kz...k" (t)lHkx'lHlﬂ' e lHkm (7)
where s; represents a sign-index.

For n = 2 the coefficient Cirs, is sinusoidal and
the equation becomes

o 9
ZHk + Wi Hk = E
ki+kz =k
81, 82

81,82

St 82 —3 B 1
141“'1(2 . 1}'11{1 . 1[{]{2 e 1(81wkl+sawk2) (8)

where the coefficients Af:,',sl; are constant.
The exciting terms on the right-hand side gen-
erate steady, harmonic oscillations if

(SlwkI + s2wk2)2 + wi

and nonstationary oscillations with linearly in-

creasing amplitudes if (siwx, + Sox,)? = wy. For
gravity waves with wy = \/g—k it follows from
the inequalities

Vi k= Vin+ Vi
and ki + ko < k1 + ks
that (wk = )wk1+k2 = Wigy + Wk,

The substitution k/ = k; 4+ ky, k" = —k, yields
further

lIA

Wt — Wit Wk’ 4k’

so that finally
Wy — Wiy S Wit (= 0k) S o oo, (9)

The equality sign on the left holds only for k, = 0
or k; 4+ k; = 0 and the equality sign on the right
only for k; = 0 or ke = 0. It can be shown that

the coefficient Ay, in Equation (8) vanishes for
these cases. It thus follows that none of the
exciting terms in (8) can satisfy the resonance
condition (siwx, + Swk,)? = wk, s0 that the solu-
tion oHk(t) is composed entirely of steady har-
monic oscillations. It follows further that the
exciting terms in the differential equation for the
next perturbation amplitude Hi. again consist
solely of harmonic components

e
Iy 2 k 51,82,
sl + wxsHe = z Ak
ki1+ke+kyi=k

81, 82, 83

81 82 83 —1 -
Hyy 1 Hogy 1 H gy @ 10m T st ssnglt (10)

where A:{i;f;s is constant.

Equation (10) is the first perturbation equation
in which resonance occurs, as it can easily be
verified that the resonance condition

2
(Slwk, + Sk, + Sawk3)2 = wk

can be satisfied by a suitable choice of k; and s;.
The perturbation amplitude ;Hy(f) thus contains
unsteady, eontinuously increasing, resonant com-
ponents representing a continuous transfer of
energy from the wave components (Hy,, 1Hy,, and
M3 to the resultant component ;Hyx. Equation
(10) was derived independently by Dr. Phillips
for the case of two interacting, discrete wave
trains for which two of the three wave numbers
ki, ke, and k; coincide.

Although the third order perturbation equation
illustrates the main features of the resonance
mechanism responsible for the nonlinear energy
transfer; we shall find that the perturbation equa-
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tions have to be developed still further to the
fourth and fifth orders in order to actually evalu-
ate the energy flux. The equations for Hy(¢) and
sHi(t) are not as simple in structure as those for
the first three orders as the exciting terms depend
partly on the nonstationary perturbations ;Hy and
are thus no longer simply harmonic functions of ¢.
This leads to ‘‘higher-order” resonant excitation
of the amplitudes +Hx and Hy, i.e., resonant exci-
tation by terms which are themselves already
nonstationary resonant oscillations.

The mechanism of these interactions cannot be
discussed in detail here, but the implications for
the resulting energy flux will be considered briefly
in the next section.

THE ENERGY FLUX

The first step in determining the energy flux re-
sulting from the nonlinear interactions must obvi-
ously be to determine the total energy of the sea
in terms of the perturbation amplitudes con-
sidered in the previous section. The total energy
of the sea per unit projection area is
R
E = Epot + Eyin = P.(}_z

h 2
+p[_m@3—d"’—) & (11)

where ¢ is the velocity potential and the bars
denote ensemble means.
We develop E again in a perturbation series:

E=E+:E+E+E+ ... (12)

In the linear approximation the mean kinetic
energy is equal to the mean potential energy, and
we obtain, applying Equations (4) and (5),

B = pg TE = 209 2 |LH) |2 (13)
k

In the limiting case of a continuous spectrum
Fquation (13) takes the form

8 = [ [77 Padrar, (14)

where of" (k)dk.dk, is defined as the energy (in the
linear approximation) of all waves travelling in
the posttive k-direction whose wave numbers k'
lie in the rectangular interval

k=k' =2k +dk
We introduce now the basic hypothesis that the

sea is a Gaussian process in the linear approxima-
tion. In this case the linear wave components
\HE are statistically independent, and the sea is
completely specified statistically by the spectrum
oF (k). Further, it can easily be shown that for
this case all odd components in the perturbation
series (12) vanish.

In the higher-order expressions for £ the mean
kinetic energy is no longer equal to the mean
potential energy, so that in general we have

E = pgh? + AE (15)

where the perturbation series of AE begins with
a fourth-order term. AFE is no longer quadratic
in the surface elevation, which, as pointed out by
Mr. Tick, precludes expressing F as a spectral
integral in the general nonlinear case. However,
we shall find that the nonstationary components
of E representing the continuous energy flux can
nonetheless still be expressed completely in terms
of the linear spectrum .F (k).

The next (non-vanishing) term in the perturba-
tion series (12) is found from Equations (15),
(1), and (6) to be

& = pg Z [Hy(t)? + 2 Rey(HysH )]
* + J(AE) (16)

It can be shown that s(AE) contains only peri-
odic terms and thus does not contribute to the
nonlinear energy flux. The first term in the sum
is also constant. The remaining term contains
the nonstationary component 3H i, but the mean
product Re(1Hy,H_«) can also be shown to be
constant as the resonant components of ;H_x are
90 degrees out of phase with the corresponding
components of Hyx. 4F thus contains only sta-
tionary components yielding a constant correc-
tion term for the total energy of the sea. The
term has been analysed in detail by Mr. Tick
(with the exception of terms depending on the
third-order perturbation amplitude).

The next term in the perturbation series (12) is

ol = (44 z [laHk|2 + 2 Re(sz 4H—k)
“ 4 2Re(HysH )] + «(AE) (17)

Tt can again be shown that ¢(AE) contains only
constant terms. The terms in the sum, however,
are now no longer constant, and it is these terms
that describe the nonlinear energy flux that we
are seeking.

The problem is thus reduced to the determina-
tion of the three co-variance products entering in
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the sum in Equation (17), in which all perturba-
tion amplitudes from the first to the fifth order
occur. The perturbations are all solutions of har-
monic differential equations in which the exciting
terms are random functions of time, and the basic
statistical problem is thus to express the co-
variance products of these solutions in terms of
the statistical properties of the corresponding ex-
citing functions. The required relations can be
derived from certain asymptotic properties of the
solutions. However, it will not be possible to
cite or prove these relations here completely, and
we shall restrict ourselves to only a few character-
istic results.

Let ¢ be a solution of the differential equation

¥+ wp = p(t) (18)

where p(f) is a stationary, random (not neces-
sarily real) function with a continuous spectral
density function f(w). It can then be shown that
for large ¢

WE = % [ (w0) + ()] (19)

An expression similar to Equation (19), in which
the spectral density was expressed in terms of
the correlation function of p(¢), has been derived
by Dr. Phillips. In our specific problem f(w) is
given implicitly in terms of a multidimensional
wave-number spectrum f(k), where o = w(k), and
it is then convenient to express (19) in the more
general form

— wl e o«
W = o [ [ 70013000 — )
+ 6((,0 (k) + (AJ())]dkld]Cg P dkn, (20)

where § denotes the Dirac 6-function.

As the exciting term in the differential equation
for sHy (t) is a stationary random function, IEqua-
tion (20) can be applied immediately to obtain
the rate of increase of the mean product m
The linear increase in energy of ;Hyx must be
balanced by a corresponding loss in energy of the
interacting components representing the exciting
term in Equation (10). This energy loss is ex-
pressed by the remaining terms in ¢#, i.e., the
mean products of the stationary perturbations 1Hy
and .H with the nonstationary perturbations yH
and H _y excited by “higher-order” resonant inter-
actions. TFor large ¢ expressions similar in struec-
ture to Equation (20) can also be derived for
these products, but as nonstationary exciting
forces are involved, the results cannot be formu-

lated as simply as Equation (20) and will not be
given here. Once these asymptotic relations have
been derived, the determination of the nonlinear
energy transfer is then simply a matter of (rather
complicated) algebra. The formulation of the
final result depends decisively on two properties:

1. As the linear wave components are assumed to
be statistically independent, the rate of change
of the mean products in ¢, representing the
energy transfer, can be expressed completely
in terms of the linear spectrum ,F (k).

2. The rate of change of the mean products in
¢/ 1s determined entirely by resonant inter-
actions in which the perturbation components
+Hi (1) are excited with their natural frequencies
wk. The higher-harmonie, nonlinear compo-
nents with frequencies unequal to wx do not
participate in the energy transfer. The un-
steady components of the perturbations can
thus be interpreted directly as perturbations
of the linear wave components and, conse-
quently, the mean products in ¢ as perturba-
tions of the linear spectrum »# (k). On account
of these two properties the nonlinear energy
transfer can be expressed entirely in terms of
oF (k). Dropping the subsecript 2, the final
result is

OF (k +e
a(t ) _ ////_w F(k')F(k”)F’(k' + kl/
— KT, (K, k", k' + k" — k)dk.dk,dk"dk"

+ @
—rw [T RPN T W K0
AL dk,dikidk!,  (21)
where
O +,—
Ti(ky, ke, kg) = Aotalododks (Al—:.ljz_.—ks)Q
1/v2ivy
6(wkl+k2_k3 — Wk, T Wk, + wka) (22)

Ty (k, ky, ks)

4i—i— -

_ 97 Ak ==k A —ktratrs —to,—k
4p2]€1k2 Wy (wk — Wk, — wk:)
a(wk—kl—kg + wk, — Wk, — wk,)

Fo—
Ak,kl,——kg.A—k—k1+k2,—k1,—kz
+
wr(wk + ok, — wk,)
8 (Wi, — Wk — Ok, + Wig,)
+.—t =t
+ Ak,—k1,+k2'A—k+k1—k2,—k1.k2

wk(wk — Wk, + wkz)

S (o st — Wk + Wk, — i) (23)
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and
81,82,83 1 81,582,832 83,581,582 82,83,81
Ak].kz.k: = ;9; {Ckl,kz,ka + Ckak1k2 + Ckz,ka.kl} (24)
with
$1,82,83 2[1(2'1(3 e kzks](wz + w3) (wl + we + ws)“ﬁ“@ + k3| — k- (kz + ka)]
Ckx.kz,ka = 9 2
(Wkytky)? — (w2 + w3)
2, 2 2 3
S | [“’4‘(“2 = 50 (ol B ) e O O | )
2¢* 202 24
_ wl(wz + w3)|k2 + ksl . kl' (kz + k3>:| (25)
g 2
3
+ ”22‘;3 (ks + ko)ky - (ky + ks) — ;—gﬂ wea(wh + wF) (w2 + ws)
2 2
%;40)3 [waws (@ + w3) — wp — wil, (where w; = s;wk,).

Equations (21)—(25) can be checked by applying”

the law of energy conservation, which requires
that the total energy of the sea remains constant.
This gives the condition

2 {T1(k1,k2,k3) - Tz(k1;k2,k3)} =0 (26)

Permut. of kj

INTERPRETATION AND DISCUSSION

Equation (21) can be interpreted in terms of
quadruple-interactions in which — under cer-
tain resonance conditions — energy is transferred
from the three ‘“active” wave components ki,
k, and k; to a “passive’ fourth component ks =
tkitkotls!

The first positive integral in Equation (21) ex-
presses the energy gained by the component k by
all quadruple interactions in which k represents
the ‘“passive” component, whereas the second
integral expresses the energy lost by all inter-
actions in which k represents one of the three
“active’”’ components. The gain in energy is inde-
pendent of, but the loss is proportional to, the
value of the spectrum at k. The transfer process
can thus be expected to reduce sharp peaks in the
spectrum, distributing the energy more evenly
over all wave numbers. This can be understood
further by examining the quadruple interactions
themselves more closely. Tt can be shown that

1 In accordance with the definition of (k) the “com-
ponent k’’ refers always to the wave component travelling
in the positive k-direction.

interactions between four components ki, ki, ks
and ky occur if, and only if, two pairs of wave num-
bers, say (ki, ke) and (ks, ki), exist such that

k1 + kg = 1(3 + k4 (27)
and
Wik, + Wk, = Wiy + Wi, (28)

If these conditions are fulfilled, all four interac-
tions corresponding to the four possibilities of
choosing three active components and one passive
component occur. It can then be shown that if
all four values of the spectrum are equal, the
energy transfer is exactly balanced. It thus van-
ishes generally for an isotropic, white spectrum.
The net transfer for four wave numbers also van-
ishes if both wave number pairs are equal. This
is the case, for instance, for all interactions in a
uni-directional spectrum, as it can be shown that
in this case Equations (27) and (28) have only
trivial solutions. However, the unidirectional
state is unstable and breaks down for small two-
dimensional disturbances and would furthermore
probably be found to be nonstationary if the per-
turbation analysis were extended to higher orders.

In an actual wave spectrum the limiting case
of an isotropic, white spectrum is, of course, never
attained, as the nonlinear energy flux has to be
considered in conjunction with the other processes
determining the energy balance of the spectrum.
The nonlinear energy flux in a wave spectrum is
in many respects very similar to the nonlinear
energy flux in a homogeneous turbulence spec-
trum, which is also generally assumed to favour
a more uniform distribution of energy over all
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wave numbers. This suggests an equilibrium
structure in a fully developed wave spectrum
analogous to the “cascade” structure of a turbu-
lence spectrum. The dissipation of wave energy
due to wave breaking and turbulence is probably
concentrated in the high wave-number region of
the spectrum contributing significantly to the
mean-square wave slope. The generation of wave
energy by the wind forces, on the other hand, will
probably be concentrated more in the region of
small wave numbers corresponding to‘waves with
phase velocities nearly equal to the wind velocity.
The energy flux from low to high wave numbers
required to maintain equilibrium is then supplied
by the nonlinear interactions, which transfer
energy from the high spectral peak in the energy-
generating region to the low-energy region of
dissipation at higher wave numbers. TFor a non-
equilibrium spectrum in the development period

Figure 4-3-1. Energy flux for a fully-developed spectrum.

F(R)dkydky = F(k,0)dkd @

_I/k
= €

-kT cos2P dkd ¢

p=0 (all quantities dimensionless)

the situation will generally be different, as the
spectral maximum in this case lies closer to the
higher wave numbers. It is possible that in the
initial period considerable energy then also flows
in the direction of lower wave numbers. It is
hoped to investigate these cases further by compu-
tation of the right-hand side of Kquation (21)
for several spectra.

An indication of the order of magnitude of the
nonlinear energy flux can be obtained by dimen-
sional analysis of Equation (21). If T is the
characteristic time of the energy flux, ¢ the root
mean-square wave slope and 7', a suitably defined
mean wave period we find

T ~ T-9- (29)

Assuming the proportionality factor equal to one
[a very crude procedure on account of the com-
plicated functions 7; and T, in Equation (21)],
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we find that for T, = 10 sec. and ¢ = ¢, say,
T = 28h, which is comparable in magnitude to
the development periods of wave spectra.

A more accurate estimate of the order of magni-
tude of the energy flux was obtained by computing
the energy flux for the fully developed spectrum

e~ Uk . =4 cos? o, |¢| =<
Pk, ¢) =
T
0l¢| > 5

ul
2

where & and @ are nondimensional cylindrica-
coordinates, which corresponds to a frequency
spectrum

e vy cos? .

The computations were made on an IBM 650,2
which proved to be rather too small for accurate
integration of the integrals in Iquation (21).
The results should therefore be considered as only
qualitative with an inaccuracy factor of the order
of two. The resulting energy flux for three values
of ¢ is shown in Figure 4-3-1. As expected, the
transfer of energy is from longer to shorter waves.
As the transfer functions are weighted towards
higher wave numbers, the maximal energy loss
occurs at higher wave numbers than the maximum

2 The author is indebted to Miss C. Schwarz and Mr. G.
Krause for making the computations.

of the spectrum. The tendency to isotropy or
wave scattering is small. This may be due partly
to the strongly peaked form of the spectrum. A
little energy is scattered at angles greater than
90° and even at an angle ¢ = —180° but the
energy flux is of the order of 0.1 per cent and less
of the maximum energy flux for ¢ = 0°. Tor a
wind speed of 10 m/s, the characteristic times of
the energy flux in the region |¢| < x/2 were found
to be a few fractions of an hour for the shorter
waves and a few hours for the longer waves,
which is comparable with the characteristic times
of the generating and dissipating processes in a
wind-generated sea.
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DISCUSSION

Dr. Longuet-Higgins (prepared comment on the
papers concerning nonlinear aspects of the spec-
trum): Both .Mr. Tick and Dr. Pierson have
raised the question of whether the third-order
interaction terms discovered by Dr. Phillips,
which grow with time, represent a real transfer of
energy or whether they could be accommodated
by slightly perturbing the frequency of the original
components.
Now two wave components

arcos(ky;-x — oit) and  agcos(ks x — aat)
were shown to give rise to a secular term
At sin[(2k1 — kz) X — (20’1 — Ug)t], (1)

where A is independent of x and {. Generally the
frequency (201 — o2) of this secular term differs

from either o; or ¢ But by perturbing the fre-
quency of the first term, for example, we have

aycoslky x — (o + o)t} = aqcos(ks x — i)
+ ala't Sin(kl'x — Ult) + 0(010'/2t2), (2)

which shows that any secular term derived by
this method has itself a frequency a; or oy, gen-
erally different from (26, — a3).

Thus I am inclined to think that Dr. Phillips
and Dr. Hasselmann are correct in interpreting
terms of this type as a genuine transfer of energy
from one part of the spectrum to another.

From Dr. Phillips’ remarks it would appear
that two deep-water waves, travelling in the
same direction, and with frequencies ¢, and $a¢
(wave numbers ky and 2k,) will generate a third
wave travelling in the opposite direction, of fre-
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quency %0y and wave number —2%k,. This sug-
gested the following simple experiment:

In a long wave channel let the wavemaker be
given a motion with two harmonic components
oo and 20y (for finite depth the ratio must differ
slightly from $), and let the waves be absorbed
at the far end of the tank by a “beach” or other
wave absorber. Then let the two primary wave
trains be cut off, for example by inserting a thin,
rigid barrier vertically into the wave channel
quite close to the wavemaker. After the primary
waves have travelled away from the barrier there
will be left a region of almost calm water, in
which the tertiary wave, which travels in the
opposite direction, may be observed. According
to Phillips’s analysis, the amplitude of the tertiary
wave (in deep water) should be

a = C(alkl)z (ang)L (3)

where L is the distance from beach to barrier and
C is a constant of order 1. A somewhat lengthy
calculation (unchecked) gave ¢ = %. The crest-
to-trough height of the tertiary waves is 2a, and
this value is further doubled by reflection from
the vertical barrier inserted in the tank.

I carried out an experiment on these lines in a
wave tank 70 feet long at the Hydraulics Research
Station, Wallingford, Connecticut, with the kind
permission of Mr. Russell. The parameters were:
a; = 0.65 inch; a, = 0.045 inch; a;k; = 0.045, ask,
= 0.088; h (mean depth) = 21.5 inches. On the
basis of the above formula one would expect a =
0.12 inches, which would be readily observable.

The experiment showed no trace of such a
wave, and the accuracy of the measurements was
such that, if a tertiary wave existed, its amplitude
a was less than 0.02 inches. This is an apparent
contradiction.

[In carrying out the calculation for finite depth
it was discovered that in the previous calculation
for infinite depth a term had been omitted. Tak-
ing this into account, one finds C = 0 in Equa-
tion (3), although for waves intersecting at any
other angle (except 180 degrees), the coupling
does not vanish. This explains the null result in
the experiment. It also means that in order to
establish the interaction experimentally, observa-
tions must be made with wave trains that inter-
sect obliquely.

Both theory and experiment suggest that the
observations mentioned by Dr. Barber are due
to a different cause. Note added on 12 June 1961.]

Dr. Eckart: Usually, if one is working with a
hydrodynamic problem, it is a4 good idea to close
Lamb and ask oneself what Rayleigh did in this
field. I don’t know whether Rayleigh did any-
thing with nonlinear gravity waves, but he did
do something with a problem that involves non-
linearity, viscosity, and perturbation theory. The
problem is an amusing one, and it has been quite
thoroughly investigated experimentally. It illus-
trates the question of the difference between
perturbation and numerical order. The experi-
ment is an old-fashioned one.

You have a helmholtz resonator. This is a
cross-section. Here you have a lighted candle.
If you bring in a vibrating tuning fork to the
resonator, the candle flame is blown out. In the
more sophisticated experiment that lends itself to
a qualitative measurement you have a cylinder
closed by cellophane ends containing a fluid.
Here you place a crystal oscillator, which can
generate ultrasonic waves and a beam of waves to
send through the fluid. If the fluid is air, then
in a fraction of a second a ring vortex is formed.
If it is water, it will take somewhat longer for the
vortex to grow to a steady state. The velocity
in the vortex turns out to be proportional to the
energy in the beam of sound waves.

The formula for this turns out to be independ-
ent of the viscosity of“the fluid. The time re-
quired to reach a steady state, however, is depend-
ent on viscosity, as I have illustrated by air and
water. If you make the appropriate perturbation
calculation to second order, setting viscosity equal
to zero, you get nothing. If you leave the vis-
cosity in, you get the result. You get a driving
force on this vortex that is proportional to vis-
cosity. You also get a resistance at the wall
which is proportional to viscosity so the steady
state is independent of viscosity.

Moreover, the vorticity in this steady state is
quite high. You can calculate the motion essen-
tially as an incompressible fluid of constant den-
sity but you have to take solutions having no
potential. So this case again refers to one of the
problems that was brought up today — whether
or not it is permissible to neglect vorticity in
these higher-order calculations.

The most remarkable thing about this is that
the velocity in the vortex is hundreds or even
thousands of times greater than the velocity in
the sound wave. Yet you can deal with it by
perturbation theory. So I think we need not be
too afraid if some of the second-order terms turn
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out to be rather large. The perturbation theory
may still apply. The reason is fairly clear in
this case. The frequencies are so vastly different
that the interaction terms are not of any great
importance. There are also many other second-
order terms in this problem, some of which are
of very small magnitude. At least 1 hope they
are all of a small order of magnitude because this
is the one that I calculated at the time these
experiments were performed.

Myr. Harris: It seems to me that in any series
solutions, such as this perturbation high-order of
terms, it is essential to know what the convergence
is. Maybe the seventh or ninth order destroys
the perturbation theory. I think this should be
explained.

Dr. Hasselmann: There is an existence theorem
for the convergence of the perturbation series I
have used here, but I cannot remember now what
the conditions are.

Mr. Harris: There would have to be a function
of something. I don’t think it could be convergent
for all time, for example.

Dr. Hasselmann: 1 am not quite sure of this
point actually. Possibly it does not converge.
It is always practically semi-convergent. That
isenough. The mathematicians can trouble them-
selves with this if they want to. Physicists have
always assumed that the method works unless the
perturbation solutions show some form of irregu-
larity, and I know of no case where this attitude
has led them into trouble.

Mr. Tick: 1 think there are a number of mathe-
matical difficulties here. Since T was one of the
originators of this nonlinear attack, I feel justified
in cautioning of the danger. In order for pertur-
bation to have any meaning in the continuous
spectrum case, there must be some sort of uni-
formity of correctness of the expansion since the
size of the terms depends on wave length. That
is to say, the convergence or semi-convergence
depends on the wave number being considered.

In discussing the random case of continuous
spectra we may have various rates of convergence
for different parts of the problem, in which case
T think there is chaos, and I think we know very
little at this point. Certainly there is no place
to turn in the mathematical literature for any
discussion of this problem because it has never
arisen before.

Second, concerning the proof of existence or
nonexistence of certain stationary solutions, I
think we want to be careful to de-limit a couple
of problems here. The first problem is: is there
a stationary solution to the equations? It will
certainly be hard to prove. This is the proba-
balistic version of the LEVI-CIVITA problem.

Second, is there a stationary solution to the
third order — whatever that means. T want to
stress this point. Here it is best to go back to
Rayleigh. In obtaining the solution he had to
resort to a certain mathematical technique,
namely, to choose a co-ordinate system moving
with the phase speed. Such a technique is not
available in the two-wave case. It is also not
clear to me that the way to remove a secular
trend is by frequency perturbation.

If you look through the literature, the secular
trend removal techniques were evolved to deal
with a particular problem. They provide no guide
to other classes of problems. It just works, or it
doesn’t. First, we don’t know whether frequency
perturbation is the method. I have never sug-
gested that it is. T suggested that people who
have been concerned with the secular method
have used this technique.

Second, we don’t know if the frequency per-
turbation is of the form suggested by Dr. Longuet-
Higgins. Again 1 caution you that order is a
very tricky notion, which I don’t understand.

Mv. Harris:  If the perturbation theory gives rise
to something that increases with time, it obvi-
ously can’t apply forever. Whether or not it is
physically important can be evaluated when the
convergence condition is stated, so we can see
whether it becomes divergent very quickly or acts
in such a time that it is not important.

There is also the problem that the term of
second order may be one not included in the
original equation. Or some second-order term
not included in the original equation is far more
important than the one that arises in the original
equation.

Dr. Hasselmann: You get the rate of change of
the spectrum at a particular time ¢, and this rate
of change is then valid for all ¢ provided the orig-
inal assumption that you have a Gaussian process
remains valid. This is, in fact, a critical point.
The question is: how long does the process,
assuming it to be Gaussian originally, retain this
property when you begin integrating the integro-
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differential equation with respect to time? There
is no doubt that if you wait long enough, the
process will no longer be Gaussian. However,
it can be shown that the rate at which the proc-
ess loses its Gaussian character (apart from the
stationary, second-order terms) is at least two
orders of magnitude smaller than the rate of en-
ergy transfer, so that for the times that enter
in integrating the equation the process can be
considered to be Gaussian.

Mr. Harris: You may say that theoretically
this is not important, but from a practical point
of view it is very important. You can’t calculate
anything unless you have some notion of what
length time steps you can use.

Dr. Eckart: 1 believe that there is one other
point of view on this problem that may shed
some light on it. If one considers it not in the
Eulerian system, but as Pierson proposes, the
problem is simplified from a mathematical point
of view in that the boundary condition at least
is linear.

A number of perturbation techniques become
available. But now let us suppose that these do
converge. Let us suppose that there are no
secular terms. You may still get into trouble
because in this case the solution may become
multi-valued. The wave profile may take on a
double-valued shape. This is clearly a breaker,
but the whole question of the nonlinear effects
associated with breakers is completely outside
the differential equations.

In order to take this into account, one has to
introduce techniques that are similar to the shock
wave techniques in compressible fluid theory.
You won’t avoid this difficulty of the breaker and
the shock wave technique by staying with the
Eulerian method."

Iven granting convergence or granting that
there is a reasonable interpretation of the secular
term, there are still some difficulties that have

not been touched upon by any of the speakers
today.

Dr. Longuet-Higgins: 1 feel we can reduce these
difficulties of breaking by taking the waves at
one-tenth of the amplitude.

Dr. Eckart: Yes. If you restrict yourself in
amplitude, which you can on paper, this is fine.

Dr. Longuet-Higgins: Of course you can on
paper. But it means that the probabilities of
breaking are reduced exponentially. If you have
a more or less Gaussian probability of distribution
of slopes — which gets more and more Gaussian
as you reduce the amplitude — and if you reduce
it by half, I imagine you really do greatly reduce
the probability of breaking.

Dr. Eckart: Then I will stick my neck out and
make this prediction. If you do work on the
nonlinear theory and neglect the breakers, the
white caps, and the spray, then I think the non-
linear effects will turn out to be negligible.

Dr. Longuei-Higgins: The times taken for the
non-linear transfer of energy to become appreci-
able are inversely proportional to the square of
amplitude. On the other hand, the probabilities
of breaking are reduced by a very much larger
factor.

Dr. Eckart: Let me modify my prediction. You
may end up with an explanation of the wind-
driven currents or something of this sort. But I
don’t think you will add very much to the theory
of the surface waves themselves. You may add a
good deal to the theory of the motions of the sea.
Are we in agreement then?

Dr. Longuet-Higgins: 'There may be a range of
wave amplitudes in which the tertiary interac-
tions are appreciable though the wave breaking
is not.





