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Weak-interaction theory of ocean waves

K, Hasselmann

1, Introduction

Ocean wave research covers a broad range of topics including

the theoretical analysis of the basic processes of wave growth
and decay, semi-empirical methods of wave-~forecasting and engin-
eering problems related to the effects of waves on ships,.
structures and beaches. We shall be concerned here primarily
with the state of the sea as such, rather than the Eecopdary
effects of waves, :

The 1ncreased interest in ocean waves in the past two decades
was originally stimulated by the wave prediction problem. Since
dynamical wave theory was virtually nonexilstent, wave forecasting
evolved for many years as an essentially empirical art. How-
ever, the latest developments show promise of a stronger inter-
actlion with dynamical wave theory, which has made considerable
advances in recent years, A general theoretical framework has
emerged, enabling a rational discusslon of both the prediction
problem and the dynamical processes determining the local energy
balance of the waves, An assessment of the present state of the

fleld may be useful before proceeding to the more detailled
measurements and computatlions which will be needed to place the
theoretical framework on a sounder quantitative basis,

The first'prediction methods by Svedrup and Munk (1943,
unclassified 1947) and Suthons (1945) were based on a simplified
parametric description of both wind and wave fields. Emplrical
~relationships were established between the characteristic'para-
meters of each field. The 1ntroduction of a wave spectrum in the
prediction methods of Neumann (1953) and Pierson, Neumann and
James (1955) represented an important conceptual advance. However,
the reliabllity of these methods and the alternative prediction
formulae suggested by Darbyshire (1955, 1959), Bretschneider
(1959), Roll ‘and Fischer (1956), Burling (1959) and others was

[ 4




still baslcally limited by the parametric description of the
wind filelds, which was retained in the new methods, but was
now no longer matched to the more sophisticated description of
the wave field.

The present forecasting methods use a complete description

»f both the wind and wave fields and are based on the numerilcal
integration of the radlative transfer equation., The approach

was piloneered by Gelcl and collaborators (cf. Gelci et al, 1956,
Gelcl and Cazalé, 1962, Fons, 1966) and has been developed in-
dependently by Baer (1962), Plerson et al, (1966) and Barnett
(1966), The source functions used in these methods are still
largely emplirical., However, a closer interaction with

dynamical wave theory may be expected in the future, The function-
al form of most terms in the source function can now be predict-
ed theoretically, although extensive measurements and comput-
ations are stlll needed to fi111l in many detalls,

Dynamical wave theory 1s the statistical theory of the local
interactions of the wave fleld with the atmosphere and ocean,
The first significant contributions to this problem were
Phillips' (1957) and Miles' (1957) theories of wave generation,
which ylelded rigorous transfer expresslons for certaln aspects
of the wave~atmosphere interactlons which had been discussed
previously by Eckart (1953), Jeffreys (1925, 1926)» Wuest (1949),
Lock (1954) and others, A further contribution was the
determination and computation of the ‘:nergy transfer due

to non=linear wave-wave interactions (Phillips, 1960, Hasselmann
1960, 1962, 1963 a,b). '

We shall see in the followlng that these processes may be
regarded as partlcular applications of a general theory of weak
interactions, which ylelds the energy transfer for all expansible
interactions between the wave fileld and the atmosphere and

ocean.




The iowest-order set of transfer expressions for wave-
atmosphere interactions consists of the Phillips and Miles
processes, a non-llnear correction to Miles' process, and
wave-turbulence interactions., Present data suggests that
the wave-~turbulence interactions may be the most important
of the four,

The interactions between waves and the ocean are formally

very similar to wave-atmosphere interactions., The lowest-order
processes consist of parametric damping by mean currents, sqat-
tering by large and medlum-scale turbulence and parametric ‘
damping by small-sééle turbulence. The last process may be
interpreted as an eddy viscosity. /A further application of the
general interaction theory is the diffusion due to waves, hut
this will not be considered here,

The major part of this paper will be devoted to the development
and application of the weak Iinteraction theory. The theory
ylelds the source functions for the radliative transfer problem,
which will be discussed briefly in the first section. The
interaction and transfer problems are complementary aspects of
the complete problem of determining the state of the sea for a
given wind fleld. Although we shall consider only ocean waves
in detail, the basic concepts are applicable to all random wave
" filelds, We-shall accofdingly present the theory first for an
arbiltrary set of interacting flelds, following Hasselmann
(1966, 1967 a). Since the emphasis is on developing a general
approach, we cannot do adequate Justice to many specific con-
tributions to the subject; we refer in this respect.to the more
extensive expositions of’Kinsman (1965) and Phillips (1966).




2. The radiation balance

2.1 Representation of the wave fleld

Ocean waves are a statlistical phenomenon; it 1s meanlngful

to consider only average properties of the wave field., In
practice, the mean values are determined elther as time or

spacial averages. For theoretical purposes, it 1is more con-
venient to conslder the mean values as averages over a hypo-
thetical ensemble of fields, Our averages will be defined in

this latter sense. The two definitions are equlvalent if the field
is eilther statistically stationary or homogeneous, i.e, if all
‘mean quantities are invariant under either time or (horizontal)
spaclal translations.,

To a first approximation, an ocean wave field is both stationary
and homogeneous, This implles that the dynamical processes
changing the state of the field'are weak, and the fleld may

thus be regarded approximately as a superposition of free waves,
The field can then be represented as a Fourler-~Stieltilies integral
(which we write in a more convenlent sum notation)

| k. x-6¢) calk x-at)]
S(x6) = Z}.’ﬂe + "7:e (hx-< )} (2.1.1)
i (7k e |

-~

where ; '1s the surface displacement (positive upwards)

P (xl, x2) i1s the horizontal -—coordinate vector
k = (ky, k,) 1is the horizontal wave-number vector
6 = (gk tanh kH)i/2 is the frequency of a free surface

gravity wave in water of depth H, which we take
to be constant, and '

7@ 1s a random Fourler amplitude,
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For a homogeneous, stationary wave field, the covariange
matrix of the Fouriler amplitudes is dilagonal, -

hT? = o,
P> = 0 for bkl

LT > = 3;37- F(k)Ak

where the cornered parentheses denote ensemble means,
¢ 1s the denslty of water,
g 1s the acceleration of gravity,
A x 1s the wave-number increment of the Fourier
sum and
F(k) 1s the (continuous) enefgy spectrum,

The total wave ‘energy per unit surface area is then
2
E = ¢a(5>> = zfr(g)oqz_

The normalisation of F 1s that used in the general interaction
theory; it differs from the more usual definition by a factor

2/ S 8.

It can be shown that a homogeneous field consisting only of
dispersive, free-wave components rapidly attains a Gaussilan
state (Hasselmann, 1967 a). In this case the energy spectrum -
FQ&) completely specifies the fleld statistically.

Since the wave components undergo weak interactions, the

Gaussilan property, the statlonarity and the homogeneity of
the wave fleld are only approximately valid. The field can
still be described locally ¥y a spectrum, but this must now

be regarded as a slowly varying functlon of'g‘and t, where

= i OF
<4 =2 &41.
x£< »5-34
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2.2 The raciative transfer equation

The evolutilon of the spectrum F%geget) is determined by the
energy balance, or radlative transfer, equation‘

P-E-:: E-‘-;-E—F,‘...?F._ S
Dt T 2t texg T T (2.2.1)

where

CTTRR (2.2.2)
i = = F0xk) (2.2.3)

The source function S represents the net tranéfer of energy

to (or from) the spectrum at the wave number k due to all
interaction processes which affect the component‘gr %% is the
Lagranglian rate of change of the spectrum relative to a wave
group g‘moving along the path in.ﬁ‘- 5‘phase space determined by
the Hamlltonian equations (2.2.2) and (2.2.3) (the dot denotes
differentiation with respect to t.)It is assumed that the depth

H 1s slowly varying,-ﬁ oH << 4 , so that the geometrical re-

Ty
fractlion laws (2,2.2) and (2.2.3) are applicable . In deep water,
the refraction term kegg. in (2.2.1) vanishes. Equations

(2,2.1) = (2.2.3) apply for a plane ocean., The corresponding re-
lations for wave propagation .on a sphere are given in Groves
and Melcer (1961) and Backus (1962).

Equation (2.2.1) can. be derived from geometric ray theory by
assuming that the wave-numbers and amplitudes 1n equation (2.1.1)
are slowly varying functions oflg‘and t., It can best be understood
by regarding FQ&nﬁ) as the energy density in.gzg‘phase space of an
ensemble of wave groups. In the case S = 0, the energy of each
wave group remains constant, so that the energy density 1is propor-
tional to the number density. Eqdation (2,2.1) can then be inter-
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preted as the continuity equation for the number density of wave
groups in phase space. The number density, and therefore F, re- |
mains constant along a wave-group trajectory, since the flow in
phase space defined by equations (2,2.2) and (2,2.3) 1s incompress-
ible (Longuet-Higgins, 1957. The analogy with the Liouville theorem
was pointed out by Dorrestein, 1960). If the energy of a wave

group changes along 1its propagation path, a source term appears

on the right hand side of the equation.

The transfer equation may be expressed in the integral form

t
F(!g,g&,é) = F(};a,):o,t) +f5(}‘z_',zi’,t'>dé/ (2.2.4)
£

where’gj,’gj and t' vary along a wave group trajectory from an
initial valuef&o,‘ﬁo, t, to the polnt k, x, t. Equation

(2.2.4) does not, in general, represent a solution of the transfer
problem, since the source function in the integral 1s a function-
al of the spectrum.

The major part of this paper wlll be devoted to determining the
source functlon S. We shall show that S 1s of the general form

+S +S6+S +eo| (20205)

SQ&) = 5y + 5, 5 * Sy + Si+sé+sé+sﬂ+85 7
where
S, = oL
82 = (SF(!E) ‘
— ! /
s, = FOk) [ ¥(kK)FCK) Ak
I
sy, = - SF(k) + [£Ck,K)FC(K)Ak
Si, Sé, S% and S& are of the same functional form
as Sl’ 82, 83 and Su, respectively,

n
i

s = J0 PR - T FORYFOKYFCR) Tl

n
A
Hi

represents the as-yet-unknown dissipation due to

wave breaking,




We have expréssed only the dependehce on the wave spectrum F
explicitly. The coefficientS¢1,p ete, depend in a known manner
on the propertles of the other interacting fields.,

The source functilon 81 reprgsents the constant energy transfer
to the wave field through turbulent atmospheric pressure fluct-
uations (Eckart, 1953, Phillips, 1957); S, corresponds to Miles'
(1957) unstable coupling mechanism between the wave fleld and
the mean boundary layer flow; 83 is a npn-linear correction of
Miles' theory, and Su represents the energy transfer due to
wave-turbulence interactions (Hasselmann, 1967 a).

The procesées 81 to SM represent the complete set of lowest order
transfer expresslons due to interactions with the atmosphere.
With the possible exception of 82, all are probably I1mportant

in various frequency ranges and stages of development of a
wind-generated sea.

The interaction of waves with mean currents and turbulence in

- the ocean are formally very similar to the interactiors with the
| mean flow and turbulence in the atmosphere. The corresponding
transfer expressions Si to Sﬁ are of the same .functional form
as the transfer expressions S1 to Su. However, S{ and Sé are

normally negligible,

85 répresents the energy transfer due to non-linear wave-wave
interactions (Hasselmann, 1960, 1962). The energy transfer has
been computed for typlcal wave spectra and was found to be not
inconsistent wlth spectra observed to the lee of generating areas

(Snodgrass et al, 1966).

S6 represents the dissipation in shallow water due to turbulent
bottom friction (Hasselmann and Collins, 1967). yij is a known
functional of the wave spectrum. The expression is based on a
quadratic friction law. In contrast to the processes mentioned
above, it cannot be derived from the weak-linteraction theory;
since the friction law is non-expansible.




Another example of a weak, but probably non-expansible process
is the energy loss 87 due to wave-breaking, which 1s still

undetermined,

We note that with the exceptlon of Sl, 82 and S{, Sé s &1l source
functions depend on the entlre wave spectrum, and not only on the
componentlg: The source functions SM’ Sﬁ, SS’ S6 and 87 are
furthermore non-linear in F. The first property 1is common to many
transfer problems (c.f. Chandresekhar, 1960, Kourganoff, 1963).

It 1mplies that all wave components of the field are coupled., It

1s not possible to determine the spectrum at any point P in the
ocean by integrating the source function alsng onLy;-f."'_f?wave trajec-
tories which terminate in P; the spectrum must be determined
simultaﬁeously in the entire region of the ocean in which S 1is
non-zero, The numerical integration of the transfer equation
nontheless lies within the capacity of present-day digital computers,
and several programs for predlcting areal wave spectral distrlbutions
are already in operation.
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2.3 Empirical source functions

The source functions.adopted in present wave forecasting programs

are largely empirical.

In the latest version of their method DSA (dilstribution spectro=-
angulaire) Gelcl and Cazalé (1966) introduce a source function

S])sg:: A -~ HG#F(!E)f(B-Cmcp)F(E)dg (2.3.1)

where o 1s a function of X and the wind veloclty U, P 1s the
angle between k and U and A, B and C are constants. SDSA 1s of

the form Si + 83. However, the non-linear term 1s introduced as
the energy loss due to wave breaking, rather than a non-linear

correction to Miles"theory. A linear term S2 corresponding to
Miles' theory is not 1ncluded. '

Pierson, Tick and Baer (1966) suggest a source function

1’
[ (-85 B850 o v, gl (2052
o Fra el
¢ e el > Ty
in which

L, [ are functions of k and U,
‘ +_" . ~n [, o

E(k) = fF(k)kol? i1s$ the one-dimensional spectrum,
- T :
s(k,?) is an empirical angular spreading factor, with
+T .

fs(k,v)df = 4
n

% is a dissipation furiction which acts only for waves
travelling against the wing,

- E(X)
LI QQQZK)
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and F (k,U), E (k U) are empirical fully developed spectra taken
from Pierson and Moskowitz (196L4), As a function of frequency, the
one-dimensional Pierson-loskowitz spectrum is given by

E, () = 456 onpf-plase)} (3.3.3)

Nl\e.re, 6 = 9/u oA = 0,008 and = 0. 74

’

The form of the source function (2.3.2) ensures that the waves
tend to a fully-developed Plerson-Moskowitz spectrum in a uniform
wind field. For small values of the spectrum, the growth of the
one-dimensional spectrum E(k) (but not F(k)) 1s in accordance with
1 + 82. The functlons
and (3 were determined from the field measurements of Snyder and
Cox (1966) (section 4,6).

a combined Phllllps-Miles mechanism, S = S

Barnett (1966) introduces a source function

S. = L +BFY1-9)+ S,

B (2,3.4)
in which d'and # are functilons of k and U,
o~
é = aeipf-L(ﬂ-F)/Fz , with a,b constant, and
g '
R = Yk S(?O corresponds to Phillips' (1958) universal

equilibrium spectrum (sectlon 5.5), with ¥ = const, S(v):%%;dﬁm
For computational convenience, the wave-wave scattering integral
85 was approximated by a parametrical expressioﬂ.cx and 3

were determined from the measurements of Snyder and Cox (1966),

The source function SB 1s of the general form

- S = S1 + 8, + Sz + 8

2 5

7

(with 5, = -(S; + S,) ¢ )
suggested by Hasselmann (1960) on the basis of then existilng
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theories of wave generatlon and wave-wave scattering.

A similar source function, with S5 20, S7 = -(S1 + 82) (-—%—-)2
has been considered in the one-dimenslonal case by Inoue o2
(1966).

The discrepancy between the varlous empirical source functions

is consliderable, It points to the difficulty of making sufficiently
detalled, conclusive measurements of wave growth and decay in

the ocean., A consliderable gap exists still between our under-
standing of the basic dynamical processes, as indicated by the
general form of the theoretical source function (2.2.5), and the
application of this knowledge to the forecasting problem, The
aifficulty 1s that although theory can furnisHiH the transfer ex-
presslons for wave interactlons wilith other fields, the transfer
rates depend on the detailed statistical properties of the
interacting flelds,which can be determined only experlimentally.

To determine the source functions rellably, measurements of wave
growth and decay need to be combined with detailed measurements

of the Interacting fields., .Although the present source functions
wlll almost certainly be modlfied in the light of future experiments,
the development of the radlative transfer method is nontheless an
important first step towards a ratlonal treatment of the wave
predlction problem,




S
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Theory of weak interactlons in random fields

The principal goal of dynamical wave theory 1s the determination
of the theoretical source functions summarized in equation (2.2.5).
The problem may be divided into two:

(1) the determination of the coupling coefficlents charact-
erizing the interactions between the wave field and its physical

environment, and

(11) the evaluation of the energy transfer due to these inter-
actions,

The first problem 1involves the detalled analysis of the non-linear
equations of motion of the interacting fields. We shall consider
this 1n later sections,

The second problem may be treated without. specific reference to
the type of interacting field. The theory applies to any system
involving weak interactions between wave flelds and other random
fields, e.g. the generation of sound by turbulence, the scattering
of light and sound in the atmosphere, interactions between Rossby
waves and currents, plasma-wave interactlons, etc.

In this section we shall develop the theory in a general form,
considering later its speciflc application to ocean waves.

The'theory’fs as a rather Straightforward extension of the analysis
of conservative wave-wave interactions, which was first considered
in detail for the case of non-linear lattice vibrations in solids
by Pelerls (1929), and is well known in many branches of physics,
particularly in quantum field scattering theory.

One of the main difficulties which arise‘is keepling track of the
numerous terms occuring in the perturbation expansion of the
filelds and ordering the variocus transfer expressions assoclated
with different term combinations. Here, dlagram notations are
useful. In the case of conservative wave-wave interactions, both
the perturbation expansion and the transfer expressions can be
summarized by a single set of dlagrams, which may be interpreted
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in a particle picture and correspond to Feynman dlagrams in
quantum field theory (Hasselmann, 1966). The general case of
non-conservative interactions with non-wave filelds 1is more
complicated. Two types of dlagrams are needed: interaction
dlagrams, to describe the perturbatlon expansion of the fleld
amplltudes, and transfer dlagrams, to summarize the energy-
transfer expressions (Hasselmann, 1967 a).

3.1 The interacting flelads

Conslder a set of weakly interacting flelds consisting of wave
flelds, denoted by indices ¥ , and non-wave (external) fields m .
We shall be concerned only with interactions which affect .the

wave flelds, We can then distingulsh between two types'of
interaction: wave-wave interactions, involving wave components -only
and external Interactilons, involving both wave components and
external-field components. Interactlons between external filelds
only have no effect on the wave flelds.

The set of all wave flelds will be termed the wave-field system.,
We assume that the wave-wave 1nteractions conserve energy and
momentum of the wave-fleld system. (Non-conservative wave-wave
interactions can be treated formally as external interactions.)

The physicai system 1s assumed to be homogeneous in’ﬁ, where'i

is elther a two- or three-dimensional coordinate vector (in. the
case of the ocean, x = (xl, x2) is the horilzontal coor@inate

vector). We assume further that all fields are random and stat-
istically homogeneous with respect to P

In the linear approximation, let the wave-field system consist.
of a set of normal modes @ expf~(kx+ w}"t)}

where qz is an eigenfunctzbn (for three-dimensional’&,‘qi'
may degenerate to an eigenvector or simply a constant) and ‘?oz
ls the elgenfrequency. We assume that the amplitudes 9Z of i
the elgenfunctions represent a complete set of coordinates for
the wave-fleld systen.
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Let the evolution of the wave-fleld system, excluding the
non-conservative external 1lnteractions, be specified by a
Lagrangian

’Z("EQD - ”Zz + "é‘ut
where

Z Z ((?hqyk “(wh)olqu)

is the free-field Lagrangian of the linea? system and Lint

is the wave-wave 1Interaction Lagranglan. The harmonlc-osclllator
form of L2'is unliquely determined, except for an arbitrary
normalisation factor, by the form of the normal modes (symmetric-
al propagation characteristics in the positive and negativegg
direction) and the homogeneity condition.

It is convenient to transform to canonical variables qz, Pr >
~ A

[ ~

£ v .
Py = %p . Hf ) = ‘;qu; _Z

. J v
and then to standard wave variables @, , &, - defined by

Paad

v v

v
“k = ﬁ(?k""”kcf,ls,)

i NN
)

}n-l

-V
ab = ﬁ‘ (P‘k + T W

The equations of motion become in these variables

. 2K
.Y N (3.1.2)
ak = -2 -

X kR 24 e

where for negative indlces the frequency 1s defilned by
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The free-fleld Hamlltonlian is given by
Py Y
H, = Z: 7% Ak
g, V%o

The linear solution of equation (3.1.2) for H = H, 1s

o . .1.
k € , o(: cpn.s/'m\f', v = (3 3)

which represents a wave travelling in the positivelg:direction.
We assume now that the interactlon Hamilltonian can be regarded as a
small perturbation of the complete Hamlltonlan H = H2 + Hint’
int<K H2 . We assume further that H can be expanded in sa -
Taylor seriles,

int

*Hy o+ e | | (3.1.4)

Bing * Hs

where

T M Ve o

h — !&v'"k.‘ akcn.'a,‘ah (3.1.5)
MJ"D.‘S'?(C’ -

A
and I% . 1s a constant coupling coefficient,

M'"'M.‘

The condition Hint'4< H2 is implicit’in the definition of a .
wave fleld., If Hint = O(Hz), it 1s no longer meaningful to -speak
of normal modes, dilspersion relations, etc. The expansibility

assumption is valid in most cases, but not always. (For example,

Q(Ac |oh$ Qar

white-cappin 5 (probably non-expansible,)
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The Hamiltonlan represents the total energy of the wave-field
system per unlt x and 1s therefore real., The realilty of H2
implies

v -

The reality of H , together with the condition (3.1.6), ylelds
the relations

*
V,""'Vh -V 'Vk .
Dk"“k" = (D"k"" _k“) ' (3.1.7)

for the interaction coefficlents. A second conditlon for the
interaction coefficlents follows from the invarlance of the
physical system under horizontal translations,

\’..‘""Vh : . .

Dkl"'kh = 0 l¥or /k;.*“. +k“#—_o (3.108)

For under a translation 2{ = x ¢ E , the wave components'trans-
—uie, - .
form to ak,a ake * 5‘ . The coupling coefficlents therefore
IER Y/
transform to D vk = :D' ,," expf'“"'*'“*“")ﬁf _
which 1s invarilant only under condition (3.1.8).
Nyt .‘io'

We note further that the coefficlents :Dk,  ow can be defined.be

symmetrical with respect to the indices 1, ... n.

The equatlions of motion (3.1.2) for the Hamiltonian (3.1.4) become

v ~ VY,

, ) —YV||I:~]P o v
- 1) & 1
(p+1) b‘ZDkko"'Equsl"'agP — e
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To include external interaction within the same framework as
wave-wave Interactions, we assume now that the external flelds:
can be described by a set of variables '

_ta)kt

19'“ ’Xt} fsk(@ | (3.1.10)

in analogy with the representation (3.1.3) of the free wave fields,

The superscript 4 1s a combination of a discrete index specifying
the external fleld and an additional varlable which determines
the frequency a/“ « In the case of wave flelds, the frequency
+aﬁ is uniquely aetermined by a discrete index ¥ which
specifies the wave fileld and the appropriate dispersion curve.
Since the frequencies of the external fields can vary continuously
for. fixed‘&, a further varlable 1is needed to specify the frequency.
To maintain the analogy with the wave-component notation, we
choose /M such that &f>o for m >0 and

~

/‘4
©w, = - (3.1.11)

The varilable A. represents the set of all further parameters
specifying the external field,

The reality condition corresponding to equation (3.1.6) 1s

E/‘(ﬂ = <4>7“(’X>)* (3.1.12)
k ~k

As example, consider the turbulence fields in the ocean (w) or
the atmospheric boundary layer (a). We assume that the fields
are statistically stationary and homogeneous with respect to the
horizontal coorainate vector x (Xl’ x2). The fluctuating
veloclty filelds u,; (x, Z, t), where ¥ =were,z = vertical co-
ordinate, may then be expressed as Fourier sums (Fourier-
Stleltjes integrals)
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X .
u, (i,z,t) =‘¢2; “,k, w(z)e (3,1,13)

Jf we defilne

E:(’X,f) = ({('X)e U w(2)

and use the notation

/«E.(‘d"—w), w/-,:z——“, A= (,2)

this may be written

1

uj(fﬂ,z,g = Z I:;.‘(')\.*)e T

Using thils notation, we may include i1nteractions with external
flelds in equation (3.1.9) simply by adding further terms to the
right hand side,

. . v v ‘V'Vlvl v, Va _-U-V au\,
B‘ + wﬁa,‘.‘. = - 31&);, Z ke ke kzaﬁ'a"t -t = ‘(f”“)“kz e beyre-k ak-na’&

Lo JE B B SR B

) v vV \)' -V,\
. —24:“’%.(25‘1’1 k, Z’kkk)_,'n-o

A~

-V, ets *
Ny -~ J id“qﬂ Va4 (3.1, 1)4)
1({p+1)& ""
(P ) hz,kkuuh'k1 .“' k 0 M9 bﬁ;'.o bk
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. -V‘V,nu\{i,ﬂqhnc/dp
The external coupling coefficlents Eihuukqb”;uk?satiSfy

the same reality and homogeneilty conditions (3.1.7) and (3.1.8)
as the internal coupling coefficients, However, since they are
not derived from a Hamlltonlan, they are not symmetrical wilth
respect to all permutatlons of the 1ndices, Besldes the indices
shown, the coefficlents depend on the variables ﬁj , which are
also included in the summations in equation (3.1.14).

We note that the external interactilions include non-conservative
Interactions between wave components)and that the lowest order-
terms are linear.

Equations (3.1.14) represent the equations of motion for the wave
flelds only. The external flelds are regarded as givens The
back-interaction of the wave fields on the external fields is
assumed to be either negligible or already included in the
definition of the coupling coefficients E, In the latter case,
the external fleld components U: refer to the undisturbed ex-
ternal flelds, -

3.2 Interaction dlagrams

Since the interactions are weak, we can construct solutions of
equation (3.1.14) by perturbation or iteration methods. For a
general diScussion, the iteration method 1s more convenient, as
the perturbation parameters need not be specified. '

Wrilting equation (3.1.14) symbolically in the form
L [ a;I = N [ a, b]

the n'th iteration ha: is given by P
ﬁ .

o = L-lN[“_‘a,b] | (3.2.1)
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V
The first order solution &,  1s the free fleld solution,
equation (3.1.3).

Explicitly, equation (3.2.,1) 1s given by

v
v ~ "'"'”Et o) (e-t)
hak (f) = xke 4 fdtle"f g »

o)

©

—\"J‘l cv /A*.l ¢f
v P
{ll- .—5(P+')Z[ k k't"kq : '.nkF =t k (L)-u ak (6)

N (t)...b"f’(e)] } (3.2.2)
1w

where P

= aziéf=0).

I~ L

The structure of the solutions rapidly becomes complicated
as n 1lncreases and 1t 1s convenient to introduce a simpler
notation in terms of interaction diagrams. To this end, let us
represent the field components ag . Qg with +, s >0 by
arrows equal to the wave-number vectorsXk. Similarly, let the

complex conjugate anti-components qiz s EI: , with negative
indices -¥,~» , be represented by cross-stroked arrows equal.
to k. The sign .convention is chosen such that the arrows point
in the propogation directions for both components ﬂ¢*ana anti-
components /~

We may now represent the general term in the squari'parentheses

in equation (3.2.2) by p arrows (q components .MFj% and
p-q components bk. ) entering a vertex ana a single arrow
(the contribution of the term[:...] to nak ) leaving the

vertex, The llnear term o(;,e‘“kt &1 is represented simply
by an arrow. The complete expression (3.2.2) 1s then given by the
linear diagram and the set of all possible diagrams with one

vertex and one outgoing component.
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V.'
The ingolng components thKEJ in these dlagrams can be
3 -
reduced by further dlagrams to components ke , the
~ v
components ,,%, to 2%k s and so forth to the components

,ag' , which are given by the initial conditions, One obtailns

in this manner.branch diagrams contracting threygh a i?ries of
vertices from a number of input components ,ag& , kg'v to
a single output component, The n'th order iteration R 1s
represented by the set of all interaction dlagrams contailning

not more than n-1 vertices.

Each vertex of a digram is assoclated with a coupling coefficient
and a number of fleld components. In applications, these are
normally characterized by certain small parameters, The ordef

of an interaction diagram with respeéct to these parameters

1s immedlately apparent. The representation of the iteration -
solutions as a perturbation series involves only thégbrdering

of diagrams with respect to the parameters chosen; the diagrams
themselves are independent of the representation of the solutilon.

3.3 The resonant interaction

The forcing terms in equation (3.1.14) consist of products of
+

exponentlals é'iwt. If the resultant sum frequency is equal

tp the elgenfrequency GJ;, the response is non-stationary.

An interaction alagram fEbresents a resonant 1interaction if

ZSXCJK = ScJ UV (30301)
¥

-+ i ’f‘,r w‘-—r,ohul's
‘OL\efe, W > o s S. = i
d 4 -1 J,'— awhi - WPDMCH/S

and the sum 1is taken over all ingolng components . S

Further resonances occur if equation (3.3.1) holds for any
subdiagram within an interaction dlagram.
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The homogeneity condition (3.1.8) ylelds an analogous relation
for the wave numbers,

S .k, = s k
% ¥ ~3 -v)m‘lv (3.3‘2)

which is valid for all dlagrams.

We shall distingulish between resonant (free-wave) and forced
(virtual) components 1n a dlagram by full and dotted arrows,
respectively.

Forced components represent small modificationsof the free fields.,
They are normally of secondary physical interest. However,

the analysils of higher order non Gaussian propertles due to the
forceduﬁﬁfﬁ. ~/Ean yleld important information about the coupling

coefflclents(cfHasselmann et al, 1963).

The resonant interactions lead to a continuous redistribution
of energy between the interacting components. Our primary goal
will'be to determine the source functlons characterizing this
energy flux.

3.4 The energy transfer

Let us consider first the effect of theixﬁeractions on the
statistlical properties of the fields.

It can be shown that free, dispersive wave flelds asymptotically
become Gaussian, stationary and statistically independent
(Hasselmann, 1967 a). These properties hold in the coarse-
grained sense, assuning that all mean values can be determined
only with an arbitrary large, but finite spectral resolution.

In practice, this is always the case,

The fields are then completely determined statistically by
the set of time~indepencent energy spectra
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(3.4,1)

The total energy of the wave-fleld system is accordingly

. LV
H2 = Z Fj& = const

k,vzo

We may expect the interactions to modify this simple picture
in two respects: firstly, the non-linear distortion of the
fleld due to the forced-interaction components will give rise
to non-Gaussian statistical properties; secondly, the resonant
interactions will destroy the stationarity of the system,pro-
ducing , in particular, a continuous redistribution of energy
within the spectrum. We are concerned here with the latter D
effect, '

It 1s not immediately apparent that the energy transfer can be
considered separately from the non-Gaussian distortion, For
example, in the case of conservative wave-wave interactions, the
total energy H = H2 + Hint consists of the total spectral energy
H2 and the energy Hint assoclated with the field distortions.

It 1is an important result of weak-interaction theory that to
lowest order the resonant interactions affect only the spectral
dlstributions, and not the partition of energy between H2 and
Hint; thus the total spectral energy 1ls conserved, f;? = 0.,
The statistical properties of the distortion fleld are given

to lowest order as stationary functions of the spectral dis-
tributions. As the spectral distributions vary, there 1s
therefore a secondary, lower order redistribution of energy
between H2 and Hint‘ The same situation applles 1if energy

1s introduced or withdrawn by external lnteractions; to first
order, the energy transfer affects only the energy spectra

assoclated with H,.
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Thé redlstribution of energy can be determined by expanding

Fk in terms of the various dlagram contributions to é; and

e

53:. The resonant diagrams yield - secular spectral pé?%urbations
which grow linearly in t. The secular terms can then be

rewritten as the rate of change of a slowiy varyling spectrum,

The analysis is well known from various scattering problems 1n
solld state and quantum fleld theory. A derivatlon in the present
context 1s gilven in Hasselmann (1967 a). We indicate here only

the structure of the analysis in terms of the interaction diagrams
associated wlth typical transfer terms.'Since F; is quadratic,
each term involves two diagrams representing tﬁg'felevant contribu-

tions to d; and g&;, respectively.

The net energy transfer, or source functlon S, consists of a
number of contributions, which are listed bel8w. We return to

the continuous spectrum notation F., (’15‘) = :;%_- » where Ak 1s
the wave-number increment of the Fourier sum. The source functions

9
represent the energy transfer to the normal mode +V, S[‘&):ﬁ%ﬁ(b)

The llnear interactions yleld the transfer expressions

SJ(k) = T(k)R(k) (3.4.2)
and
S v . ' , /
S(/«:» (&.) = f-i;«-)v(h'q’q);(k'/x'q)5(“;““;)0{4\?(?“ )

where

VY .
T (k) = 4op G E-!s.ka) (3.4.4)
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T (kA

/,._.7')’ ~

i

3’“(“">Ekk(4)( ;/’X'))* (3..4.5)

and

E(k,A) = o b (v (3.1.6)

Ak

1s the external fileld spectrum,

The index notation for source functions S and tranSfep functions T
refer to the transfer dlagrams introduced in the next section,

The relevant interaction diagram pairs are shown in figure 1.

We note that although both processes are linear, the transfer
rates (3.4.2) and (3.4.3) are of different order with respect to
the coupling coefficlents.

The non-linear interactlons yleld transfer integrals involving
quadratic and higher products or spectra. We give here only the

quadratic expressions.

The wave-wave interactions lead to four transfer expressions

which in the general, non-conservative case are glven by

1
.9
(32 ¥) ~ f( 'v,vz-r/ , »’;. , Ti, >vzt16. = v, ':’E’z)o (3.4.7)

S(k +k1"h>5(wk + U}to“r:)dkudkt

H

~
S&%’J)

.( T;J - - 7.$ £ —
Vl;z‘>yr'9' '/2_* -7*(‘-—‘7V15 4[ - )'972 7.4‘ Fﬁ). (30408)

.8("( 1-k)§(wk ""‘)k w;)dkldkt
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Y

(4%, 5)

= equation (3.4.8) with indices 1 und 2 interchanged,
and ' '

v
‘fTW‘ F-;F;Idﬁk‘l . (3.’409)

where Fy = Fv(k)s’ v-;; = FV‘(EJ.)

w? > 0 is any wave iﬂaex, incluaing ﬁ’, and
Tv 7 / “VYI“"z/ -
= (78]
V| Vy = 2ﬂ(k> k k, ka2 (3.14.10)

Tasw = 727 w‘,:w"; (Re) Al 2)
| | (3.4.11)

TW,_ -, = 72m 40; w';" (Re) A (2, ) ‘
- : (3.4,12)

T = Nk (h)E .:Z’::‘i + lag g (P,
'Eﬂ#x (h2) + A/—’,z) ~A(1,-2) -X(-:,-z§}<3~“'-13>
with
(21.%2) = E:;zz,/: E:L::;.: (3,.4.’1'4)
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~ + 1 4 - )
Al 22) v o, v, *’z) (3.4.15)

The transfer functions of equation (3.4.8) follow from equations
(3.4,10) - (3.4.,12) by changing the signs of the indices \3 and‘}.‘c_J
in the cougiing coefficlents wherever components \3 and anti-
components wﬁ are Interchanged in the transfer functions. Operators
in parentheses apply to all later expressions in the transfer

integrals. P denotes the Chauchy principal value,

The 1lnteraction diagrams aséociated with the various terms of the
source function 54‘, 3) equation (3.4.7), are shown in figure 2.
The. source function .S%E,v)is identlcal with Skvyhy)except for a
notational interchange of the 1ndices 1 and 2. It has been listed
as a distinct source function, however, since the net energy
transfer is obtained by adding all source function seperately.

In the case of conservative wave-wave interactions, the coupling
coefficients E are replaced by the symmetrical coefficients D.
The three transfer functions (3.4.10), (3.4.11) and (3.4.,12)
then become identical except for a frequency factor, and the
source functions S IvaD) S(\Nz\,) and S(,,,,.,) can each be
characterlized by a single transfer function. The fourth source
functilon S:” vanlishes, since the expressions in the parentheses
{--~'} become real (section 3,6),

The interactlions with external flelds yleld the seven transfer
expresslions

~
IS R 3
("n/“z'v) (TI/.‘.—;'V b, t}‘)_ l-v;’__>y‘ E/cﬁvl)‘ (3.”‘016)

o ¥ (it ks - k)s(w,, +w£f -w“,’}_)dg_,dkz
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4 ] N v _
. S(-q.fv,_'-ﬁ) = f(";l‘ﬁz—ni ;‘ 7;/‘.1.>-,l,6';1>.

)
.(3.1‘.17)
. S(El—hz—k)S(wh. “h,-—wh)J‘( 61!&
S:; = (ty EF + T; FF )
(:‘70/‘2-;) 'V,/";—%'v' Vi f2 -\-"/-1‘?"1 MEAT A (3 ! 18)

. S(kz—k.—h)E(wha —wk -—wk)dkcdk’!

"
S(/‘-/‘z"*") = f_r/:./«;. v G a3 (k0 *k“k>5("k Wy, —wk>a’1z,«/l-(3 4.19)

s, = | T ELE Sv(k ~ka -k )5(% - —oBJkdk (3.4.20)
(/A,/‘,,_'{)) - Puype >V gy pa CLETAET A B~ "ka 2
-q .
(pam3) = -equation (3.4,20) with indices 1 and 2 interchanged,
and '
v v _ '
Sy,, = - | T, f}.,(k-)ﬁ(k)dtls, | (3.4.21)

e A1)

/w{ >0 and

v _ JUREEES o . .
7:«/‘1—>v = 36(e) (fe)Ekk.kzM)( u/; ("")) (3.4.22)
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= 36wy, u\,:‘(Ke) A(2,0)

Npa =P,

(3.4,23)
v ‘ 2 N Mg *
-T/:'o;*z—>"' = 7217(“k> (Ke) Ek/;’k ( HA )( ‘t key ‘(z (x' ‘)z)>
(3.4,24)
v -V '
Ty = -324y (¥w>Ek k Z.N + 320,

3, G (P)] AOD » K40 - K (1 - B (-1 -2]

7o © (3.4.25)

where andJK are defined as in equations (3.4.14), (3.4.15),
the ihdices Wy being replaced where appropriate by /h

The first coefficilent E in the expressions for A , A aepends
on Q » the second on %-.

The transfer functions of equations (3.4.17), (3.4.18) and
(3.4.20) are obtained from equations (3.4.20) - (3.4.22) as before by
changlng the signs of indices.

The source functions (3.4.165 - (3.4,20) are similar in structure
to the source functions (3.4.7) and (3.4.8) for wave-wave |
interactlons. They are assoclated with the interaction-aiagram
combinations shown in fig. 2. The source function Sﬂr. is analogous
to the function va and i1s characterized by the interaction
dlagram of fig. 3. (The numerical factors in the transfer functions
differ from the corresponding factors for wave-wave interactions.
This 1s due to a difference in the admissable permutatilons of the
indices of the coupling coefficients. For external interactions,

. the permutations are restricted by the side condition that wave
indices precede external'indices.) '
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The total source function S is given by the sum over all
individual source functions, including all combinations of

indices \3-> 0, 4.)0.

The derivation of closed transfer expresslons in terms of the
field spectra is based on certain statistical assumptions,

In transfer expressions involving mixed spectral prodﬁcts of
more than one field, the interacting fields are assumed to be
statisticallj independent. In the case of interactions involving
several components of the same fleld, the components are treated
as statistically independent, i.e. the field is regarded as
Gaussian, The corresponding transfer expressions are characterized
by quadratic or higher-order products of the spectrum of a single
field, The linear transfer éxpressions involve no statistical
assumptions, .

The validity of these assumptions has been demonstrated for the
case of weakly interacting ane fields by Prigogine (1962),

The proof is rather complicated, but can be understood physically
by interpreting the energy transfer in terms of interacting

wawve packets. The assumptions are then seen to be very similar

to the Boltzmann hypothesis of statistical independence of
interacting particles in a dilute gas (cf. Hasselmann, 1966),

The physical argument can be similarly applied to support the
hypothesis'of statistical independence between wave fields and
external fields., On the other hand, the external fields them-
selves are in general neilther statlstically independent nor
Gaussian, In this sense, the transfer expressions (3,4,19) and
(3.,4,20) are only approximate, the complete transfer expressions
including further integrals over cross spectra and third and
fourth cumulants. However, we shall not require these in our
applications., The expressions (3,4,19) - (3.,4,20) can be a

useful approximation in cases in which the cunulants are not well
knowﬂ, for example, in the problem of aerodynamically generated
sound (c¢f, Lighthill, 1963).
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3,5 Transfer diagrams

The formal analysis of a weakly interacting system of wave filelds
and external fields has lead to thirteen distinct source functions
at lowest order, most of which involve several transfer terms,

Thus even in rather simple systems we may expect a wide variety

of transfer processes (as we shall indeed find). To discuss these,
some form of systematic nomenclature is clearly needed, It is

again convenient to base this on a diagram notation,>

We shall refer in the present context to transfer dlagrams, as
distinct from the interactiown dlagrams introduced in section 3.S.

Each transfer term in a source function may be associated with

a particular component of a transfer diagram, The superscript of
the transfer functions in section 3.4 refers to the component,
the group of subscripts to the dlagram., We shall distinguilsh
between two types of diagrams:

a) Scattering diagrams consist of a number of components

or antl-components entering a vertex and a single wave
component leaving the vertex, The frequencies and wave-
numbers of the components satisfy the relations (3.3.1)
and (3.3.2) for a resonant interaction diagram.

b) Parametric diagrams consist only of a number of compo-

nents entering a vertex, The diagram contains no anti-
components and no outgoing components, There is no res-
triction on the wave-numbers and frequencies,

4 the
We shall denote scattering diagrams by/§§mbols Y, V2>V, Y27,
etc,, parametric dlagrams by @Y W, ete,

Scattering diagraggfzuH?§eht both conservative and non-conservative
processes, Thefe .is always a net transfer of energy from the

ingoing componmts to the ouﬁgoing component., In the case of
conservative wave-wave interactions, the energy transfer of each
component is proportional to the frequency of the component,

The scattering diagrams can then be interpreted as collision
diagrams in a particle pilcture (section 3.6 ), The wave-particle
analogy 1s not applicable for non-conservative interactions,
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The dlagram resonance conditions correspond to § -functions
in the transfer integrals., '

Parametric diagrams apply only to non-conservative interactions,
They represent processes analogous to the parametric amplifi-
cation of signals in non-linear electronic circuilts. The rate

of growth of a component is proportional to the power present

in other components. In the simplest case, the diagrams contain
only two components (excluding the degenerate linear case);
there 1is no energy scattered into a third component. The diagrams
are assoclated with transfer expressions which contain no

& -function resonance terms (the energy transfer is nontheless
due to resonant interaction diagrams, cf. fig. 3). The dis-
tinction between components and anti-comporents is thereforq
lost, as this is'based - for transfer diagrams - on the sign
combinations occuring in the resonance conditions,

The transfer expressions of any interacting system can be derived
from the transfer diagrams with the aid of a single transfer rule:
the rate of change of the spectrum of any wave component or anti-

wave component in a diagram is proportiocnal to the product of the

spectra of the ingoing components,

/o( Qkﬂhf‘e‘
The lowest-order transfer expressions of section (4.4),(are

obtained by applying the transfer rule to the components <’ Iand

Y in the set of all transfer diagrams containing not more than
two ingoing components. The transfer expressions (3.4.3), (3.4.7),
(3.4,8) and (3.4,16) - (3.4,20) correspond to scattering diagrams,
the expressions (3.4.2), (3.4.9) and (3.4,21) to parametric
diagrams, Typical transfer diagrams are shown in figure U4, (The
degenerate linear transfer expression (3,4,2) may be characterized
by either a scattering or parametric diagram. In Hasselmann

(1967 a) a scattering diagram 1s used, A parametric diagram is

in some respects preferable, cf, section 4,6 ). We could dis-
tingulsh further between 'generating' processes, in which all
ingoing components of a scattering dliagram are external components,
and'scattering processes proper in which at least one ingoing
component is a wave component., However, we shall not do this in
the following,
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Scattering transfer expressions containing the same & -function
resonance factors have been grouped into a single source function,
The associated scattering diagrams define a diagram set, Members

of a diagram set are obtained by interchanging ingoing and out-
going components of a scattering dlagram, the interchanged
components changing sign (1r this leads to an outgoing anti=wave
component instead of a wave component, all components of the '
diagram change sign). For cxample, the diagrams v, v, —>v ,

':J'lw? ~>Y and —\72V—->\J, represent a diagram set, We denote
the set by the symmetrical symbol () ‘_\/9_'5) ), which lists
all interacting components on the same side of the resonance
equation, The source functions ‘S?ZA-J;V) represents the net
energy transfer of the wave component ¥ or 9 for all diagrams
of the set (¥, v27) (figure 4),

We have introduced transfer diagrams primarily as a notational
convenlence, They reflect the structure of the transfer expressions,
but yield no information about the transfer functions themselves,
These can be determined only from the detailed interaction analysis
as characterized by the interaction diagrams. Comparison of

figures 1-3 with figure 4 indicate that the interaction and
transfer dlagrams of a given transfer expression are generally

not very closely related.,

However, in the case of conservative wave-wave interactions an
interrelationship exists on account of the symmetry of the
coupling coefficients, Both the interaction analysis and the
transfer expressions c¢an be characterized in this case by a
single set of diagrams., The transfer rules become particularly
simple if expressed in a parﬁicie plcture, They are closely re-
lated to the transition rules of quantum field scattering theory,
and the diagrams themselves may be regarded as mddified Feynman
dlagrams,
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3.6 Conservative wave-wave interactions

The lowest-order energy transfer due to conservative wave-wave
interactions is given by

3 . .
St) = ~f Ty (mme = min=nam) § s ke -k}, (3.6.0)

LY ..
‘5(“3,'+“k:* “1’)4!3'4,’51

.’
S, _ -\ =
fvﬂ;*l) B (—v,“)("mz""‘"‘ ’”1“)‘;(""“““> (3.6.2)
Vv,
.3 (‘Jk _w,,_‘_- wkyk Alee .
and
Sg:-- = equation (3.6.2) with indices 1 and 2 interchanged,
2 lv)
(k) e Gk |
where n 3 , nd = ﬂ d> , ,
i ol -
~
and
2 .
— VY Y,
l(wﬁ) = Zzww “b ulek,,,, ‘/ (34643)
-7— ‘ v, ¥ -V - }2 ( 6 4)
(‘\,‘32:,) = 727-“)& “kz“k/b..k k,.—hg 3400

Equations (3.6.1) - (3.6.4) follow from the general transfer
expressions (3.4.7) - (3.4.12) in the case of symmetrical coupiing
coefficients, They were first derived by Peierls (1929) for
non-linear interactions between crystal lattice vibrations,
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We shall be interested primarily in wave-wave Iinteractions
within a gravity wave spectrum. On account of the negative
~curvature of the dispersion curve, 1t 1s not possible in this
case to satisfy the resonance conditions with only three wave
components (Phillips, 1960), The lowest order energy transfer
involves scattering from three components to a fourth,

S% . = 9D g
(9'523’3) wﬁb'f - w (]172333)61n2+n3n “nmi=na)e (36.5)
8 s ko e I ) S(,  Wiea- iy~ 0 )l dils
where
T _ . = 3,7 93 -1 3
(J05233§) 172-"- Uh'ukzwk-s k ] Dﬁ kz__fa_k (3.6.6)
99 -8y 3995 (2
- ‘72 Z s Dk.k,-g’ D'y i
pe:‘-'_‘s (Hk'—{-wk __.5 ~,>
with “?e . 4\)‘2‘ wZ' >o and k'= ks ks,

The coupling coefficients and transfer fuctions are given

in Hasselmann (1962, 1963 a). The general features of the
computed transfer rates agree with observations made by Snodgrass
et al (1966), cf section ( 5,6 ).

The transfer expressions (3,6.1), (3.642) and (3.6,5) have the
general form of Boltzmann colllision integrals for an ensemble

of interacting particles, the spectra ny = Fvégcorresponaing

to the number densities in X - k phase space of particles

of momentum k ana energy w The resonance conditions represent
the conservation of energy and momentum, and the transfer functions
correspond to interaction c¢cross sections.
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The wave-particle analogy 1s understandable if one regards

the interacting wave-system formally as the classical limit of
a set of quantised fields, The transfer expressions follow in
this limit from the interactlon rates of an ensemble of bosons
(ef. Pelerls, y955).

An alternative particle picture which is not related to the

rules of second quantisation may be defined in terms of an
ensemble of both particles and anti-particles, anti-particles
being characterized by negative energieé, momenta and number
densities, Although not realisable physically, the particle
picture leads to simpler interaction rules and is more conven-
ient for geophysical applications, The scattering diagrams '
may be Interpreted in this picture as collision processes in
which particles and antil-particles are created or annihilated.’
The expressions for the transfer functions may‘be summarized by

a few rules involving the coupling coefficients of interaction
diagrams with the same inputs and output as the assoclated
scattering diagram (fig, 5). In the case of the lowest-order
processes, only one coupling coefficient occurs, and the
expressions become particularly simple, equations (3.6.3),
(3.6,4), We refer to Hasselmann (1966) for a summary of the
interaction rules and their application to geophysical scattering
problems, An advantage of the particle analogy 1s that it determines
the ratios of the energy and momentum transfer rates of all com-
ponents of a scattering process, However, we shall be concerned
here primarily with non-conservative processes, which can be
characterized only by the general transfer rule stated in the

3

previous section,

Once the general form of the transfer expressions has been
established, the analysis of the wave energy balance of an
interacting system 1s reduced to the determination of coupling
coefficients, In the following, we consider the various coupling
coefficients occuring in oeean wave interactions,
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Interactions between gravity waves and the atmosphere

4,1 The lowest order processes

We consider in this section the interactions between a gravity-
wave field and a turbulent atmospheric boundary-layer. We shall
assume that the boundary-layer flow consists of a mean horlzontal
velocity field}f:{(/.(z),uz(l)la)and a superimposed fluctuating
field u (%, z, t) which is statistically stationary and
homogenous with respect to pL

The fluctuéting field is characterized by the spectrum

*
.-J-('la,w,z, z’) = YLk, (2)[”'d',£.w (7-')] C(4,141)

where Uy l,w 1s the Fourier component of the fluctuating
velocity field, equation (3.,1.13) (the index (a) refering to
the atmosphere may be discarded in this section),

We shall find that the wave-atmosphere interactions can be
expanded in the form (3,1.14) with respect to the gravity-wave
components g and the turbulence Fourler components ¢t ;

the mean flow enters only implicitly in the coupling coefficients,
We are thus concerned formally with a two-component system,

The complete set of lowest-order transfer diagrams for this
system are shown in figure 6. All combinations involving not
more than three components occur, with the exception of the
diagram set ( g1g2§3), which cannot satisfy the resonance
conditions, Interactions between gravity waves and oceanic
turbulence or currents are characterized by the same diagrams,
cf. section 5, '

Diagram (i) corresponds to Miles' linear interaction between
the wave field and the mean boundary layer flow, A non-linear
correction to Miles' theory is represented by diagram (ii).
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The three diagrams (1ii) correspond to the Eckart-Phillips theory
of wave generation by random turbulent pressure fluctuations,
They may be replaced more simply by the linear diagram pt—9 g,

"~ where 5t is the turbulent pressure at the surface. The re=-
maining transfer diagrams (iv) and (v) represent wave~turbulence
interactions (Hasselmann, 1967 a). The net source function |
due to these processes 1s given by the first four terms of
equation (2.2.5). '

/

4,2 Thé‘generation of waves by turbulent pressure fluctuations '

Let
> (e
(x,t) = <. (e
and
< R.x
Plxt) = 2R®e (4.2,2)
e

be the Fouriler fepresentations of the surface elevation ﬁ; and
surface pressure p ,

For an ideal fluid, the response of the wave components & to.

" the forcing pressure components Pl 1ls determined in the linear
approximation by the harmonic oscillator equation
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Introducing standard wave variables, which in this case are

given by '
9 7/ % .
% = FE- 5
. ' (4e244)
.—-j .
G o= (Z -5
equation (4.,2.3) becomes
&Ii —{—4'6-511 = ""“6: 3 . (4,2.5)

ey %

g +q Fa6t

= 0, the free-wave solutions Qk = k e lead

q W
4%/75

For Py

to the representation (2.1.1), with o( oo gg?k)-—s

A

The determination of the wave-~atmosphere coupling coefficients
reauces to the determination of the coupling field »p as
a funection of the interacting fields.(We shall neglect the
effect of surface shear stresses, In the linear approximation,
shear stresses are not coupled to waves, but to rotational eddy
motlons and currents, We shall consider the interactions of
waves with these motions in section & , The local transfer

of wind energy to waves via shear stresses would require a
three fola coupllnw between waves, rotational flow in the ocean,
and air flow, which 1is probably negllgible.>

To determine all the coupling coefficients,

we shall expand the surface pressure later in powers of the
wave components and the turbulent velocity components. As first
step, we consider here the interactions which involve turbulence
components only. The lowest order energy transfer due to these

processes is represented by the three diagrams of figure 6 (iii),
However, since the pressdre field in this case is simply the

turbulent pressure pt in the absence of waves, it 1s more
convenient to regard the surface pressure as the given external
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field instead of the velocity field, The transfer diagrams
then reduce to the linear diagram pt—é>g.

Introducing the Fourier representation

<Ck, % + wi:)

Pt(,’.‘..é) = EZI P;we

and the three-dimensional pressure spectrum

< + *
: P P,
By Pro(Pis)
Ak Aw
- equations (4,2,5) and (3.4.3) yield the energy transfer

e D T g ’;t(h'-e)

We shall discuss the pressure spectrum in more detail in
section (4.6 ),

4,3 The linear interaction with the mean boundary-layer flow

As next step in the expansion of the pressure field we. consider
terms which are linear in the wave components but independent
of the turbulence field., This requires investigating the
veloclty field.ﬁg induced in the boundary layer by the waves.,
The problem has been considered in detail by Miles (1957,1959).

The velocity fieldgﬁ_lnay be represented as a superposition
of two-dimensional flows characterized by stream-functions 4&k
and horilzontal shear flows ¢, , -

| Lk, x |
___k’a‘/’ Tant an
Su. = zg Dy % +'7J~sﬂbf€ (j=h2) (h3.00)
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kox
dug = ;fik@'ﬁ-e (4.3.2)

A

where 77 1s the horizontal unlt vector perpendicular to Xk
and ka » @ are functions of =z, The representation (4,3.,1),
(4, 3 2)™is valid for any incompressible flow.

Since in the present approximation the flow is linear in the
wave components and the interactions 1lnvolve only the mean flow,
we may write

, ,
# -’2 e -6 -
’q-k = 4(28ﬂ> \/quh *N\{&O«é)

~ (4e343)
-€ -9 o
= 4,(2g V| CK + V& : -

&. j) ( k “k k Rl (Q}j\ﬁj

N

\‘\
. AN

tot  +w . oo

where NVL 'Vk represent the response of the boundary layer

to a periodic, unit-amplitude surface displacement of(arbltrary)
phase velocitJ '°Vk + We need consider only positive frequencies,
since \ML éyff)* q% -(ka ) on account of the reality

of the fields,

Neglecting variatiomsof the Reynolds'stresses, the perturbed
equations of mean motion yield

5 _
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and the inviscid Orr-Sommerfeld equation

- & ? Sz& 2
L w@ = {(U—C)(,’“z-‘? - ——;:}wk =
LI = L (4.3.6)
where U = ————k"'u > a = :F‘,('f and = %k
= _

The neglect of the viscous terms in equations (4.3.5),
(4+3.6) has been justified in greater detail by Benjamin (1959).
‘F!The appropriate boundary conditions are

(U-—c> abt z2=0 (4.3.7)

)3’

and

6 .
Y= O ab 2= (4.3.8)

Equation (4,3.7) follows from equations (4,2.4), (4, 3 2),
(4.3,3) and the kinematic boundary condition

D(; z) = 25 U—p-—-— — Uy / al z=0

t i(:2. ¥

where %%, denotes the substantilal derivative,
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After solution of equations (H.B.G) -~ (4,3.,8), the pressure
field at the surface follows from the horizontal equations of
motion,

& iz

. |
Pk~ Pa = ‘3"“ ;(u -sc)d“’k“’) Do “‘a/u‘(z (43.9)

where L{o = (/(0) and ga = dénsity of air,

The linear coupling coefficient is obtained from equations
(3.1.1’-‘) and (L‘OZUS),

AE__ﬂ; = 6‘ s«zf(u, >alvr oy JU{ | (443410)

~~

The energy transfer is then given by equation (3.4.2),

The solution 4ﬂ§ of the Orr-Sommerfeld equation can normally
be determined only numerically. However, the energy transfer can
be expressed in an alternative form which is easie? to estimate
and illustrates more clearly the physical nature of the pressure
feedback, )

According to equation (3.4.4), the energy transfer depends oniy
on the imaginary part of the coupling coefficient, i.e, on the
imaginary part of ‘Jka(o) . If we multiply equation

(4.3.6) by(ﬂﬁ)/ﬁbi) , subtract the complex conjugate expression
and integrate from z = 0 to E} we obtain

’\

Z. [dw“‘ (”'5)] ?u. i L, - (§,3.11)

dz (U-2)
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Taking 2 =g and applying the boundary conditions (4,3.7)

and (4,3.,8), this becomes o

dw?:(o)) L g f 4 5]
(7 Uy-c <) a2 (G-

]

The integral 1s indeterminate., The singularity at the critical
layer T-¢c = o arises from the singularity of the inviscid Orr-
Sommerfeld equation and can be removed either by inclusion of
the viscous terms or by treating the résonant response at the
critical layer as a non-stationary initlal-value problem, The
correct value of the integral is then found by indenting the
integration path below the singularity (c¢f. Lin, 1955). Hence

(4e3412)

/wf/o)) T [ U/ _
Slm ( dz = [(;-—c, dz dd-_;.e‘c l

2.
&
w‘:‘}

where the subscript ¢ refers to values at the critical layer.
The energy transfer follows then from equations (3.4.2), (4.3.10)
and (4.3.12),

-

Flk 3 e, [ 4l |
D ,_} _ S e /f@ [ ck) 31

bE v 283 = Az

The essential feature of expression; (4.,3,12) is the proportion-
ality to the curvature-slope ratio of the velocity profile at
the critical layer. The energy transfer is positive for normal
profiles with negative curvature and positive wave slope,

For a logarithmic profile, the energy transfer increases with
decreasing height of the c¢ritical layer. Thus the Miles
mechanism 1s particularly effective for waves with phase
velocities appreciably lower than the wind velocity. For phase
velocities greater than the maximal wind velocity or at angles
glteater thanl90° to the wind,the waves are neither damped nor

enhanced,
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The energy and momentum 1s transfered to the waves entirely

from the critical layer, This follows from equation (4,3.11)
d«} X T

by noting that ?L.[ & (v ) - -2___ » where Tp 1s the

shear stress gaxusﬁ‘ky for a unit amplitude wave {(the bar

denotes the time mean), The shear stress 1is zero above the

critical layer and constant begyeen the critical layer and the
e enel: trangfo

surface, A physical explanation¥in terms of the vortex forces

acting on fluld particles near the critical layer has been given
by Lighthill (1962).

We shall discuss measurements in connection with Miles' theory
in section (4.7 ),

4,4 Wave-turbulence interactions

We consider now the terms in the pressure expansion which are
linear in the wave-field but contain arbitrary powers of the
turbulence components, These arise from the wave-turbulence
interactions in the equations for the wave-induced velocity field
5‘% We linearise as before with respect to 5'& o The wviscous
terms can again be neglected,

Including the cross interactions between the wave-induced field
and the turbulence field, equations (".3,5) and (4,3,6) become

. D) 10> SE
LLw ] = Z, {H RART S Y j (Lo4,1)

S~
=
|
e
Vv

o (3) ) 4:‘0”#
)% ==+ 2 LLTTRLE TR s
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where
(4.4.3)

(we can now no longer apply the normalisation (4.3.3), (4.3.4) ).

The coupling coefficients A(n) = A(n) (ky k'', "', J) are
listed in the appendix,

The boundary conditions become

z n C')( 23t
,#( * (Zca S(U >ak + I w €
~ 233 s= 1 k;faku n af 2=0 (q‘l‘.u)
+2
s"')ld

and

g —>o fr 2> (4 o4e5)

where B(l)_is given in the appendix,

' In the inviscid approximation, the boundary condition (4.4,4)

must be applied at the edge of the laminar sublayer. The turbulent
velocity field at "z = O" is horizontal, but non zero, Although
the mean profiles and turbuient intensities vary rapidly in this
region, the final results are insensitive to the precise definitior
of the sublayer thickness, They involve only the pressure fieid,
which 1s effectively constant across the sublayer, (Similarly,

in Miles' theory the boundary condition (4.3.7) 1s sensitive to
the definition of z = O,‘buﬁ not the final transfer expression

(u ¢3412)).
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The pressure at the surface is again given by the horizontal .
component of the equations of motion,

z 9 )%k ' '
A 1)»- 5‘\ /a ‘l?t ?‘2. - g“'@!& 22 ‘ (uc 4,6 ) )
"‘)"b
;C 4/:&4 (7p k"w” - C C‘Ok; } e'L
+W :
(1) (2> are listed in the

The coupling coefficients C and C

appendix,

We attempt now to construct a solution to equations (4.4,1)
(4,4,4) by expanding 4tk and ?ui in powers of the turbulence

[ 2%

components,

(=) «) (2)
Yp = W * Up + %l 40

‘ (2) «) )
Ve o B o+ttt

() (o)
The leading term is the Miles' solution ‘Ug » P, which we

assume to be a good first-order approximation. Observations by
Longuet-Higgins et al (1961) indicate that this is indeed the
case (cf. section 4,7 ).

We note that this does not necessarily imply that the energy
transfer due to wave-turbulence interactions is small as compared
with the Miles transfer, Miles' (1959) calculations indicate
that the surface pressure is almost 180° out of phase with the
surface elevation over the greater part of the wave spectrum .

" (as one would expect from a simple constant-velocity model),

The energy transfer 1s due to the pressure component which is
,909 out of phase with the surface elevation, which is only a
small fraction of the total pressure., Thus the Miles feed-back
represents a small term in the first order theory; the higher-
order pressure corrections can well be of the same order or
larger.
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The h'th order terms of the expansion are obtained by solving
inhomogeneous Orr-Sommerfeld equations in which the (n-1)-
order terms appear as forcing terms in the bilinear expressions,
Substituting the expansioné in equations (4.4.,1) - (4,4.4)

we obtain, using symbolic notation,

) lw-0)
~ (w n(') (-1 A P u
= R4 « + A~
LI#7] (Bka7)
( = o\ ol ) H“) wed ) o) o
u-—:é—t>C€ = - HQP + Y u + ¢ X (4,4,8)
with boundary conditions
a) C) _(0) )
4 = 5 a | (4,4.9)
,q’(h) = o nz2 alt 2=z o0
. “) ) : .
4" —>o for 2—> @ (4.4,10)

+mns v, .
It can be shown that for the lowest-order(gzé%;;sions the time

+
dependence of aha in equation (4.4,9) can be taken as the free-
Fe&t

wave time dependence e + The solutions can then be expressed
in terms of the response functions G;u (z,z') and wi“ (z),
g~y e o)

where

| L[GZ(/Z.Z')] = 5(2—2') (2,2'>0)

GZ: (O,z') = G}:(oa, Z'):o
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is defined by equations (4.,3.6) - (4.3.8),
Lw 1l =0  (z7¢)

4.!’;3 (&o "w/k> at Z:vO

. w
and w

~

3

(%]
1, . .
.‘k —_— 0 «f"" Z > oo

The surface pressure 1is then obtained in the form

t (0) ) <z)
-tk = o0+ o e B

where Pk(o) is the Miles term and

A

) fz T‘"’(z) k’ e (2!) ol2'

fe = £k - (4.4a11)

A

50 - ([ T e v g O

' k"-fk”, ‘1 (u.u.12)
s,oo,w
| (‘) T-'(Z) )
The coupling coefficients T s depend on the response

EONINCONNED RRED

functions and the coupling coefficients A
and 9(2). They are given in the appendix,

The coupling coefficients E of equation (3.,1,15) follow from
equations (4.2.5), (4.4,11) and (4.4.12), The energy transfer,
finally, is given by equations (3.4,14) - (3.4,16) and (3.4,19),
It may be written in the form



PF(k) S/ (K Ts k' ‘F(.k

. F'd (L<+ s}g’, 6456, 2, z’)a(jg'dzdz'
(L,4,13)

- F(}g)gﬁ"‘d (k,k',w" Z, ZI)F':J (lf_’,w', z,L’) Jk’dw’dzdz’

S /\s ~ ¢

. LR LI
where the transfer functions Il ]% and 79 are
‘determined by equations (3.4.22), (3.4.23) and (3.4.25).

‘The first integral of equation (4.4,13) represents the con-
tributions from the three scattering diagrams, fig. 6 (iv).
The second integral corresponds to the parametric process,
fig. 6 (v). The scattering transfer expressions (3.4.16) and
(3.4,17) have been reordered with respect to components rather
than diagrams, The first term of the first integral represents
the net energy gained by the three outgoing components of the
dilagrams, The second term represents the energy lost by the
three ingoing components, The three sign combinations have
been reduced to two by using the symmetry relation

' )
F;'(&)w) 2,2.') = F-"I',{'h)-w) 2'z>
: 4 J ,
and including both positive and negative frequencies in the
transfer expression.
s

The first transfer function'7a

is always positive; the remaining
two may be of either sign.

The transfer functions depend on the response functions, which
for an arbitrary profile can be determined only numerically.,
However, for 1ldealised models such as a constant-veloclity or
line-segment profile, the functlions become rather simple analytic
expressions, In contrast to the laminar interaction problem,
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these models may yield acceptable approximations in the

present case, In the laminar interaction problem, the constant-
velocity model predicts the absolute value and phase of the
surface pressure quite well for a fairly broad of range of
phase velocities of the order of the wind velocity., However,
since the energy transfer is zero to this approximation, the
small phase shifts due to the critical layer are mes<estheless
wessentiatb . . In the case of wave-turbulence interactions,
the phase shifts can be treated as higher-order effects, since
an energy transfer occurs already in the first approximation

of a constant-velocity profile, |

4,5 Non-linear wave-atmosphere interactions

We consider finally the complete.expansion of the surface
pressure in which we include both the wave=-turbulence inter-
actions and the non-~linear wave-wave.mean flow intéractions,

In symbolic notation, the complete equations of the wave-
induced field are

~ ) (2) (s)
Llv] = Ay +n ‘P,‘—.‘.+’q"+"#+ﬁt)zpc( +A7 c(c(
(44541)
T _ Al (3) C4) (8) (1) o)
(B-32)e- 511**” v rAeg s Ader Ade +A gy
(4.5.2)
with boundary conditions
0 (3)
ZS(U SC)% + 3““* Bay + Bag + 'Scﬁa Hoore
(445.3)

a‘/— 2 =0

and

4 - o f;r 2 > w (4544)
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(s) (Ic) (2)
where A — A " and B IS ..., | are further

coupling coefficients.

Similarly, the surface pressure is now

+ 7 4 “ “
P -P = S;,0./(,(-—-2 'fadu’(f + C 'tf'u + C L (4.5.5)

%) ) $) &) c7)
+ C 4 4 _4.(,44,‘? +C Cfcf +era+C¢Fa+u—o

with additional coupling coefficients C(B), C(u), cees
The solutions can be constructed as beforeiby expanding about
the Miles solution with respect to both wave components and

turbulence components, We shall not go into details,

To lowest order, the only transfer expression not already in-
cluded in the previous analysis is the parametric process,
diagram 6 (i1),

DE(K)
D

Sjjj, = - FO)[ T G ) FCE) i (4.5.6)

The proceés 33' is probably less important than the wave-
turbulence. interactions, for the coupling coefficients are
similar in both cases, but the wave-induced velocity fluct-
uations are normally weaker than the turbulent fluctuatilons.,

4,6 The pressure spectra

The relationship between the varlous transfer processes becomes
clearer physically if one considers the surface-pressure dis-
tributions,

The turbulent surface pressure pt of the unmodified boundary
layer is characterized by a three-dimensional spectrum F t(k'“)
(., ) (section 4,2). The power spectrum of the free-wave
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field ;: ; on the other hand, is a two-dimensional distribution.

E(kn“’> = g—’é’ {F(k)g(w-rs').F F(_[:)g(w,e)}

confined to the positive and negative sheets of the dispefsion
surface @ =:t€(k). Interactions between the wave field and
turbulent boundary layer lead to mixed two- and three-~dimensional
distributions for both pressure and wave fields. For example,

the linear interactions between the wave field and the mean flow
yields a two-dimensional pressure distribution on the dispersion
surface. Conversely, the turbulent pressure fluctuations generate
a three-dimensional continuum of forced waves,

The energy transfered to the waves is equal to the work done

by the pressure against the surface, This is proportional to the
quadrature spectrum of the surface pressure and wave height,
which 1is zero everywhere except on the dispersion surface, Thus
the energy transfer is due entirely to the pressure components
in resonance with free waves, and we need consider only the
pressure dilstributions on the dispersion surface,

The three-dimensional pressure continuum yields an energy trans-
fer proportional to the three-~dimensional pressure spectrum at
the resonance frequency (see, for example, equation (4,2.7) ).

The two-dimensional pressure distribution ylelds an energy
transfer proportional to the wave spectrum (see, for example,.
cequation (L4,3.,13) ).

Three-dimensional pressure spectra are assoclated with
. scattering processes, two-dimensional distributions with

parametric processes,

The distributions of the lowest-order transfer processes are
indicated schematically in figure 7.
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~The general form of the turbulent-pressure distribution

follows from Taylor's hypothesis, which states that the fre-
guency and wave-number spectra of a turbulent field are
approximately related as though the turbulence were a "frozen"
spacial pattern convected downstream with the mean velocity

of the flow, In our case, this implies that the turbulent pressure
spectrum 1s concentrated about the surface60+kcuuﬁ=0,,where U,
is a "mean" boundary-layer velocity. Since the velocity profile
is curved, the effective mean velocity depends on the eddy scale
2Wﬁ « It is not precisely defined. The indeterminacy is
generally of the same order as the spread of the pressure QlS—
tribution about the surface w +lklUn = O, For simplicity,

Um has been taken as constant in figure 7,

Atmospheric turbulence spectra are normally peaked at
considerably lower frequencies then wave spectra, Hence, in the
range of wind-wave frequencles the turbulent pressure spectrum
decreases with increasing frequency along the surface w+kU,=0,

An appreciable energy transfer occurs only where the sﬁrface'

w + klU,=0 intercepts the dispersion surface w+ (k)= o0,

i,e. along the resonance curve 6= kRUnco @ , where @, is

the angle between the direction of wave propagation an&\thé
wind, The longest waves are generated in the wind directibq\

with a phase velocity equal to the wind speed. Shorter waveg\\\
are generated at the angles ¢ for which. the phase velocity .
S/en@,. in wind direction equals the wind speea.(An alter- ™
native explanation of the resonance angle <. 1n terms of the

- auto-correlation time scales of the pressure fluctuation 1s

given In Phillips (1957).) -

Linear interactions with the mean flow yield a two-dimensional
pressure distribution on the dispersion surface. The component’
in quadrature with the wave height is proportional to the '
curvature/slope ratio of the wind profile at the critical layer.,
If we identify Um with the "anemometer wind speed", the energdy
transfer per unit wave height is effectively zero to the left
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of the resonance curve for a logarithmic profile and increases
monotonically with frequency for 6 > kum““f}f .

Wave-turbulence interactions yield both two- and three-
dimensional pressure distributions,

The scattering processes ét —7 & éf-&? g and Ef —7 g
(diagrams (iv), fig.6) are characterized by three-dimensional
pressure spectra., The pressure fluctuations arise from quadratic
interactions between turbulence and wave-induced velocity
fluctuations, Since the most energetic turbulence components
are at low frequenciles, the sum and difference frequencies of
the resultant pressure components lie close to the frequenciles
of the wave-induced components, The same holds for the wave-
numbers, Hence the pressure distribution is concentrated about
the dispersion surface, the maximum lying close to the maximum
of the wave spectrum, (We have ignored weighting effects due to
the coupling coefficients, A more detailed analysis shows that
these do not affect the conclusion,)

The parametric process gt (dlagram (v), fig. 6) corresponds

to a two-dimensional pressure distribution. The pressure field
arises from a cubic interaction between a wave-induced component
and two turbulence components of opposite wave-number and
frequency (c¢f, figure 3),

The parametric process gg' (diagram (ii), fig., 6) is similarly
assoclated with a two-dimensional pressure distribution. In this
éase, the turbulence components of the process gt are replaced
by a conjugate pair of wave-=induced components.

Estimates of the transfer rates are Q@AQ&»L#’£avwadkelavﬁﬁautut
acctue by nesipn b 9 the 4ransfer integrals.

Transfer rates of parametric processes are proportional to the
alr-water density ratio‘ﬁa/g , Wwhereas scattering processes

8
yield an energy transfer proportional to(ﬁw@). This suggests
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that parametric processes generally dGominate over scattering
processes, However, it should be noted that parametric processes
depend critically on phase relationships, which can reduce the
energy transfer considerably. |

Similarly, tufbulent velocity fluctuatlions are generally greater

than wave-induced velocities, so that the turbulent processes
-tt'—dyg, seee Mmay be expected to dominate over the wave-

turbulence scattering processes' §t~—§ g, «s+However, this

is offset by the more favorable spectrél distribution of the

wave-turbulence pressure fluctuations, |

A reliable evaluation of the various transfer processes

requires numerical calculations of the transfer éXpressions

for typical boundary-layer models and comparison'witn.gbserved
wave growth and boundary layers. Some progress in this tirection

has been made, but our picture is still far from complete}\\

4,7 Comparison with observations

Our analysls of wave-atmosphere interactions was based on the
assumption that the wave-induced perturbations could be described
"to first order by the linear interactions with the mean air flow,
The hypothesis is supported by simultaneous measurements of

wave height and surface pressure made by.Longuet-Higgins et al.
(1961) with a buoy. High coherency (0.8) between the wave and
pressure records implied a two-~dimensional pressure spectrum,

and over 90 % of the coherent pressure was 180° out-of-phase

with the wave height, as would be expected for a mean-flow
interaction., The observed pressure spectra agreed well with
theoretical calculations of the 180°-out-of-phase component for
"a logarithmic profile, The resolution was 1lnadequate to determine
the energy transfer due to the small quadrature component of the
pressure or to estimate the spectral density of the residual
'turbulent pressure,
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Wq{ezjraw% Chas beenim easured:bysSngder: eovol Cox (14 66) The development
of a single spectral component was determined by towing a four-
buoy array seewards from a lee shore at the group velocity of
the wave component, The energy of the component was obtained
from the array records by appropriate directional and frequency
filtering. Only the 17 m wave-length component was analysedj;

29 runs were made under varying wind conditions,

The first parts of the growth curves were fitted to a Miles~
Phillips source function S = & +g@F . Initially, the oA -term
dominated, and the wave growth was linear., As F increased, the
second term became more important and the waves grew exponentically
The major part of the wave energy was generated in the exponentilal
phase,

The emperlcal value of £ wigs found to be reasonably consistent
with Philllips' transfer expression, assuming that three-
dimensional pressure spectra measured by Priestley (1965) over
land were typical alsoc of the ocean,

The ﬁg-ferm was found to be larger than predicted by Miles

by a factor of 6 to 8 (figure 8), The theoretical values were
based on a logarithmic wind profile, Although wind profiles
were not measured, the experiments were pérformed under neutral
conditions, for which logarithmic profiles are typical,

Barnett (1966) has measured wave growth at higher wind speeds
(40 knots) using as wave sensor an air-borne radar altimeter., -
The method yields the wave growth over a broad frequency band,
but the directional resolution: was smaller than in Snyder

and Cox's experiment., Only one case was analysed. The growth
curves were agaln fitted to a source function S= L+ (SF: .
The values of & and B3 , although more scattered, were con-
sistent with Snyder and Cox's results, provided the turbulent

pressure spectrum was scaled as the Sixth power of the wind
(Snyder and Cox assumed a more plausible fourth-power relation-

ship). The exponential growth rate was again considerably
larger than predicted by Miles,
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The experiments indicate that neither Miles' nor Phillips'
theory are capable of explaining the major part of the ob-
served wave growth, This suggests that the remaining lowest~ ¢
order processes, i.e. the wave turbulence interactions (or,
concelvably,non-linear interactions with the mean flow) afe

the principal source of wave energy. However, the conclusion
should be treated with caution, since the interaction theory

is limited to expansible interactions. Large, local disturbances,
such as flow separation at the wave crests, are excluded., (In
the case of flow separation, however, one would expect
Jeffreys' (1926) sheltering theory to apply, which is similarly
unable to explain the observed wave growth, cf. figure 8),

The mechanism of wave generation in the ocean is still an open
question.

It 1s of interest that Miles' mechanism has been verified in
the laboratory for sinusoidal water waves (Shemdin and Hsu,
1966) and artifical waves simulated by a mowing sinusoidal ﬁéip
(Zagustin et al., 1966), The phase shift of the wave-induced B
. perturbations across the critical layer was particulary clear
in the latter experiment,

" The natural turbulence spéctrum in laboratory experiments 1is
normally of too high frequency to study wave-turbulence
interactions. However, laboratory investigations of this
interaction mechanism by low-frequency modulation of the mean
air flow are feasible and would be of interest,
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Interactions within the ocean

5.1 The lowest-order processes

An incompressible velocilty field in an infinite, non-rotating
ocean may be decomposed into surface gravity waves g, a mean
current U and a residual turbulent fleld t. If the fluld is
stably stratified, the turbulence field can be decomposed further
into internal gravity-wave modes il, 12, sas and a horizontal
turbulence field h, The decomposition is meaningful i1f the cross
interactiohs between in and h are small compared with the linear
restoring forces of the internal modes, This is normally the case
for small wave-numbérs.

We consider first the decomposition g, U and t. As in the

case of wave-atmosphere interactions, the equations of motion of
the wave field g can be expanded in powers of the components

g and t, the mean flow entering only implicitly in the expressions
for the coupling coefficients. Formally, we are concerned with

a two-component system g, t, and the lowest-order transfer
processes are identical wilth the diagrams of figure 6,

Diagram (1) represents the energy transfer due to linear
interactions with mean currents, It vanishes in the weak-inter-
action approximation, IHJ<KC.

Diagram (i1i) represents the parametric energy transfer gg'

due to non-linear interactions with mean currents. The corres-
ponding interaction diagrams are shown in figure 3 (the coupling
coefficients depend on the current profile), For lU|<Zc, the
transfer is non zero only for]k h’h&l

Diagram (1il) represents the generation of waves by oceanic
turbulence, which 1s probably unimportant.
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Diagrams (iv) and (v) correspond, respectively, to scattering
and parametric damping of. waves by turbulence., The transfer
rate of the parametric process 1s proportional to the wave
spectrum, in accordance with the heuristic concept of a turbu-
~lent "eddy viscosity". The eddy viscosity can be expressed as
a linear functional of the turbulence spectrum,

If the turbulence field 1s decomposed further into internal

modes in and a horizontal turbulence field h, additional
scattering processes into internal modes occur, However, these
are normally unimportant for the'energy balance of surface

waves, (The process gé'—e>in and several internal-wave scattering
processes have been investigated by Kenyon, 1966).

Scattering by a random ocean bottom can also be included in

the weak-interaction theory, but will not be treated here
(¢f. Hasselmann, 1966),

5.2 The interaction equations

Consider the interactions between a mean current U = (Ul(Z)’

U2(z), 0), a turbulence field s(x, z, t) and a wave fleld w

A
We assume that the turbulence and wave field are statistically

homogeneous 1n x and that the density 1s constant through-out
the fluid.

Let the superposition of the mean flow and the turbulencé field
represent a stationary turbulent shear flow which satisfies

the equations:of motion and the boundary condition at the bottom.
At the surface, we assume S = 0, and therefore uz = 03

the condition of constant surface pressure 1s not satisfied,

(The fulfillment of both surface boundary conditions for the
domplete flow 1s treated as part of the wave-turbulence inter-
action,) We regard the turbulent shear flow as given,
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We define the wave field as the potential flow

.k.W»k(Zf-H) (d

W kx| T cohkl = 12)

SRR AOL
K k ook k(z+H) (5:2.1)
- cnbk H () - $>

which satisfies the kinematic boundary conditions

2% — —“ =0 :
‘ 2>z (5.2,2)
ntL ‘Z.-"$

—_ 9 ~r
(BD? $-2) = .4 L g8y

and

(A%:O né z:—-—h’

The wave field is uniquely determined by .;(ﬁwt) (except

for a constant horizontal velocity, which we assume to be zero),
In terms of the standard wave variables defined by equations
(h.2.4),

= _",9 9 -9 ~ (1) ~A(2) -
"qﬂ = - ‘-zfg(ahakah) -+ HA@; + F)a.aa v see s (,r 03)

A

Q)
where A, A?)oooo are coupling coefficlents determined by the

non-=linear terms in equation ('5;202)0

The complete flow consists of the turbulent shear flow, the
wave field and an interaction field 53@ which describes the
coupling between the wave field and the turbulence flow.
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The conditions for weak coupling depend in detail on the

type of interaction and must be 1nvestigated individually for.
each transfer process, Generally, the turbulent shear flow

'can be treated as a perturbation of the wave field if both
turbulent and mean velocitles are small compared with the wave
. phase velocities., Conversely, the wave field represents a
perturbation of the turbulent flow if the energy transfered
from the‘Waves to the turbulent flow is small compared with the
total turbulent dissipation.

We describe the interaction field by the representation (4.3.1),
(4.342). The equations for the components Mg ;‘Pg_ are ob-
tained by subtracting the eduations of motion of the tquulent
shear flow from the equatlons of motion of the complete f;eld,

\\

~ Y ) 0)) N
- d A A

. vl = 2° A u

Livd = S0% + Aledy +Agy (5.2.4)

(s) “ A )
PB4 sl r 21 2 AN 41 d)p + A @

17 a N (3) A 4

(u"‘:;t)tf = -%‘(@f@ y A (p+ By 4 A u
(5.2.5)

(8) A ‘o

Equations (5.2.3), (5.2.,4) dre identical with equations
(44541), (4.5.2) except for additional terms involving the wave=-
field stream function

4, = -if&ﬂﬁﬁ;‘.ﬂ’) (5.2.6)
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The kinematic boundary condition at the surface,
D (g
~ -2) =0 at z=
e (572) >

yields, on account of (5.2.2),

~ (1) ~(2)

“e= US, +B Sy + B g(vrd) e . (5.2.7)

s

_a& z=.c>'
Similarly,

/CPLQ.- = O af ‘Z:—H (5.2.8)

The condition of constant surface pressure yields

Laad AN

- ~l) A ~(2) (5-2a9)
+C (’¥+«+)g+ C pu +" .

- .
o A ' AT o . 7 A .
o (Ve %) - RSy = - HMS G ) ik 3/2[/(%*"’&)

at 2 =0
Equation (5.2.9) follows by Taylor expansion of the conditior
d ' . . - a .
%, (Poydrostatic + Pdynamic), . = 0, where =, is the

surface tangential derivative parallel to kX and %S('denamic)
is expressed in terms of the velocities by means of the equations

of motion.

A .
Introducing standard wave variables in % and §, , and
invoking equation (5.2,7), we obtain the wave equation

ag g g -— < / 2\
a ica), = G'V -:2)9% WAt AV B
k™% z/(u k3t "**%("'-W Ue + Ay

—AE A2 S5y A () ‘
Ig“d“(ak-“k + Cuy + ¢ U 4o <5‘1"°)
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To determine the coupling coefficients, we need to express

the forcing terms on the right hand side of the equation in terms
of the basic fields g, t and E& This involves solving equations
(5.2.4) = (5.2.8) for the interaction fields %je and ‘Pk~‘

5¢3° Interaétions with mean currents

Interactions between waves and currents can be treated as
perturbations if [Uléﬁc, where c is the phase velocity of
the waves. In this case, the linear coupling coefficient E}EE
is found to be real, and the energy transfer (3,4,2) vanishes.,
Linear interactlons modify only the frequency and velocity
distribution of the wave field. This is true generally for

U < c. As in Miles! problem, an energy transfer from the mean
flow to the waves arises only through the phase shifts produced
at a critical layer. In the present case, this would represent
a strong interaction (since the coupling is not reduced by the

factor $&/¢ ).

However, a weak energy transfer can occur at next order, Since
second-order scattering processes are excluded by the negative
curvature of the gravity-wave dispersion curve (section 3,6),
we need consider only the parametric process gg's

The relevant interaction diagram 1s shown Iin figure 9. The
difference interaction at the first vertex yields a forced
component g" with a phase velocity c" =(“‘“J»£_gr If c" > T,

the coupling coefflcients at both vertices are imaginary; the

net coefficient Eﬁj: Zz of the diagram is therefore real

and yields no contributlon to the energy transfer (3.4.13).
However, if c" = U passes through zero, a phase shift occurs in
the first coupling coefficient, and an energy transfer results,
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-

For U « ¢, a critical layer exists cnly for difference inter-
actions between components of approximately the same frequency.
The net energy transfer is then of the form )

F(l 9
1.2.!::2 = S, - _ F(E)Jk(k"i”)‘:(g)d‘f"
Dt 73 (54341)
, ¥ {
where k' = k, cosp = ]
The kernel K i1s a function of the mean current profile and can

be expressed in terms of the response functions w;) and G;

of section (4.4), The details of the analysis are"similar to the
case of wave-turbulence interactions and need not be repeated.-

5.4 Wave-turbulence interactions

Interactions between waves and turbulence in the ocean yield
the transfer processes shown in diagrams (iv), (v), figure 6,
The scattering processes (iv) involve interactions with turbu-
lence scales of the same order or larger than a gravity wave
length, whereas the paramétric process (v) depends primarily on
the small-scale turbulence structure,

Wave~turbulence scattering

The turbulence frequency a% can normally be neglected in the
scattering condition t+ ¢’ icut = w, It follows that a
gravity-wave component g' of frequency «' is scattered into a
component g of practically the same frequency but different
propagation direction. For a given component g', the wave—numbér

-of the scattering turbulence component‘gt = + 5: + 5‘ is
therefore confined to the interwal o<.kt < 2k'; turbulence
components of scale smaller than a half wave length do not

participate 1in scattering.
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In the approximatiqgﬁg% <4< @, the energy of the gravity-wéve
field is conserved oylscattering processes (Hasselmann, 1966),
The transfer expression follows from the form (3.,6.1) for
conservative wave-wave interactions in the limit of a zero-

frequency field <, ,

[4

b Gty T S(J'Zs') - K(kfk)gF(k)'F{k)}d'f/ (50841
, ¢ k.k
kk'

(The source function Saqﬁ) does not contribute, as the
process g't —>» g 1s not compatible with the scattering condition
for wt << Wy w' )The kernel K 1s symmetrical in k and ’&',amd,
is a linear functional of the turbulence spectrum.

Land

E:J.('&”'z:zl) = ff' (k ""1’7— Z)alw

where k" = k - k', Fyy 1s defined in equation (4,1.1),
The mean current‘g~represents a small correction in the present

. problem and can be neglected, The response function of the
interaction equations then reduce to exponentials and the transfer
function occuring in K becomes a straightforward combination

~ of the coupling coefficients of equations (5.2.4) = (5,2,10),

We shall not give K explicitly, however, as 1t is difficult to

go further without more information about the turbulence spectrum
Fij'
Phillips (1959) has estimated the decay of a single wave beam
due to scattering , i.e. equation (5.4.,1) with F(E:) = 0,
assuming an isotropic Kolmogoroff spectrum. The estimate 1s
probably not very reliable, as the turbulence scales lie in
the range in which the spéctrum is strongly anisotropic, and
the kernel K depends on both the scattering angle and the
detalled tensor properties of Fij° For the turbulence scales
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in question, it may be more appropriate to allow for the
density stratification of the ocean and regard the three-
dimensional "turbulence" as a superposition of internal waves
and a horizontal turbulence field, Formal expressions for
scattering by internal waves and horizontal turbulence are
given in Hasselmann (1966), but numerical estimates were not
made, Kenyon (1966) has computed several cases of scattering
between gravity-wave modes, but the processes considered were
more relevant for the energy balance of internal waves than
surface waves,

Parametric damping ("eddy viscosity")

The parametric process gt 1s determined by the interactions
shown in figure 10, The contributlion from a third diagram in
which the components g' and g' of the second diagram are inter=
changed turns out "o be negligible, A detalled analysis shows
that the principal interactions involve small-scale turbulence
components in the inertial subrange of the equilibrium spectrum.,

The interactions can be determined, as before, by expanding
the interaction fields in powers of wave components ai

and turbulence components “&k” « For the gt process we" need
retain only terms which are linear in a% and may therefore
write -

(o) ) (
’#t + 4@5 + 4@;)**""

a
i\

() (2)

(c
(P!a cpk‘) + °FL¢_ + P+

L]

where the superscript refers to the power of the turbulence
components,

For U = o, the zero'th-order terms vanish, since the un-
disturbed wave soclution is excluded in the definition of the
interaction field,
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The first-order solution 1s determined by the equations

~r Q)

LLy l = ~R Sy (5.4.2)
-4 (1) (3)

£2¢ - A%y (5.4.3)

with the boundary conditions

(1) ~(4)

Yy - B Sy at z-0 (5.4.4)

Vo= 0 at z = -H (5.4.,5)

Higher-order solutions are determined by solving the
equations (4.4,7) - (4.4,10).

For U = o, the inviscld Orr-Sommerfeld operator reduces to
the Laplacian form '

T _ %) _«22 kz) (5.4.6)

kR 3t \3z2 ~
which enables the analysis tobe carried through explicitly.
We need not give the complete solutlon, however, since the
major contrivution arises from interactions with turbulence
components of scale small compared with a gravity wave length,
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which simplifies the analysis considerably,

In the first-order equations (" ,4,2) = (..4.5), let ky k! and
k" be the respective waveanumber»of the components 4 (wave=
fiela)b u (turbulence) and 4f0,<f (first-order interaction
field) We assume that k' <« k. Then ’1&":‘: 'L&V, since k" - ur
+ ko

) ) .
The interaction fleld 4% , ¢ may be represented as a super-
position of two filelds «é?, qy) and @g ,qé” , where @éﬁ,<fco
satisfies the inhomogeneous field equations ( Bo2), (2,443)
wilth homogeneous boundary conditions and ﬁg ,‘?2\ is the solution
of the homogeneous field equations with the inhomogeneous boundary

conditions (. o4.4) = (“ol4,5),

Since the Green function G (z Z)Of the Laplace operator (. .4,6)

/
falls off a.se‘e‘2 2/l s the component ﬁ'(Z) is aetermined,

A
for large k', by the local values of the forcing functi%n A L
in a thin layer of thirkness S = Y « The component s is sin-
ilarly limited to a surface layer of the thickness & , ( qﬁ?

is rigorously local, &hel qéd vanishes).,

(2) (2)

The second-order fields 4 , ¢ ° are determined by s%milar
equations (!{,4,7) = (F,4,10) in which the products 4% Y ,4’“
occur as forcing terms, The wave-number of thelgrcomponent in
this case 1s —5f, so that the second-order excitation appears
at the wave-number k" - k' =z k of the gravity-wave component,

Vo - T . S
The net excitation involves a gravity=-wave component and two
turbulence components of opposite wave-number (figure 10).

The forcing functions consist of surface terms and volume

terms, both depending on small-scale turbulence components in

a layer of thickness & ., We assume that for these scales the
turbulence can be regarded as locally isotropic. The integration
over the layer can then be carried out and expressed in terms

of the local scalar turbulence spectrum E(k,®w), where

(cf, Batchelor, 1963)
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*.
F.(Kw) = <“"'5“(°§'5“’)> = M(&« - Kk
I 477 R
AL{ Aw K ( rouo7)
and we have introduced the Fouriler representation
1(£u§+k314-u¢9
X ;2 t) Z dkw
with respect to the three=dimensional wave-number }& = (’1& k3)°
€2)

The wave equation (  .2,10) involves the derivative é;gl

at the surface. This is proportiocnal to the surface forcing
function plus an integral over the depth of the volume forcing
function multiplied by ekz (for the present discussion,; we
take the depth as infinite, which eliminates the negative
exponential é'kz in the Green function), Noting that the forcing
functlions are proportional to d?'vekz(“;*"f)) the wave equation
finally reduces to the form

L] 3
aZ-f—zis"e«i: —X(ak+“ ) (5.4.8)
-~ . Jde e

2k2
¥ =X, + % =fT(£.K,w)E(K,N>C AdKdodz + 8
( ,b469)

K; depending on the turbulence spectrum at the surface, The
wave damping is given by the real part of ¥ ,

EF(‘/E) = S;t = —2?3(X)F(k>

Dt ("cuolo)
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The coefficients X}—and X; involve interactions in surface
layers of the thickness of a gravity wave length and a
turbulence scale, respectively., It may be expected that the
energy transfer is not critically dependent on the turbulence
characteristics in a thin surface layer of the order of a
turbulence scale, and that therefore ¥s < ¥, . However, an
inspection of the interactions in terms of the velocity
components indicates that this is not the case,

Let Y, =,2f**5kgbe the velocity of the combined wave and
interaction fields, Subtracting the equations of motion of the
turbulent field u from the equations of motion of the total
field'g_ + v , we obtain

o e e 2

YT (5ol,11)

where @ is the pressure difference between the filelds XN v,
ancil.}.,l‘° The viscous terms are found later to be negligible and
have been discarded. Equation (%5.,4.11) 1s equivalent to
equations ( ..2,4), (5:2:5)s

The boundary conditions are

2.
oe 2 few. _
{E,%+J§"“J“(§“") =e hzso (. h12)

~ dw -
w-7§+§a;§+;?%§ro alb 270
(79}4013)

Afs—-::>o tf&l' 2 —> — oo (5.4,11)
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If the field y 1s expanded, as before, in powers of the
turbulence components,
) )
Af = ’U!O).(— U -+ M -+ o
A~ An A~ o
we obtain for the second-order equation, following the analysils
outlined above,

QU; _ _L% 9 2)
2 S axg +a;.-r;'a' J= z<e° (+ o b415)
4
agfz) 4]—(2) @
( .b4,16)
~( 2
WZ)— 7 = O at 20
(5a8e17)
v(z)
P e frrros ¢ 4,18)

where the forcing terms Ti'(z) and R(2) are proportional to
the zero'th order wave-~height and the local turbulence spectrum.

The damping of the wave field can be deduced from energy
considerations, If the energy spectrum

o

E(k) = ;i{j@k SQ +‘[(4‘k %_k}dzf

o~
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~ ) NO) D)
is expanded in powers of the turbulence components, F = F + F+ F+.0

one finds readily that to Llowesl order

-~ ~(; )
B ?F ) () (2) (O)
- = e ? Tk k + Yk dz
° K ax- L, b.19)

rr"

where the subscripts’g”refer to Fourler components with respect .
to horizontal wave number, and

> 2k (J =h?)
> = () 2 . )
y) 2 d =3
The energy loss represents the work done against a surface ()
pressure proportional to Qk and the volume stress-~force aT}k

Bx-
The essential feature of equation ( .4,19) is that the work d

per volume 1s assoclated with a stress force, The total energy
loss can therefore not be uniquely divided into volume and surface
contributions. This may be seen by rewriting the stress term

in equation ( .4,19) as the difference between the work done by
the surface s.ress and the dissipation f%,

‘yT
Qef "‘!" A,—kd = Ke;»;zk ,.,‘- i - %‘,

2F0 -~

The surface-stress term and the dissipation are comparable if
the turbulence at the surface and within the fluld are of the
same order,

\)

where

A quantitative estimate of the surface contributions is “ficult,
ei.Ce the turvulencs in » surface layer of the dimension of a
turbulence scale is not isotropic, However, the dissipation .fk
is insensitive to the turbulence properties in the thin surface
layer and can be evaluated assuming local isotropy throughout.
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One finds, after some analysis (Hasselmann, 1967b)

DF o _pF
DE ¢ (' o4,20)
o m
2 2kz
F,s = -I-f-:’:ls { E(K//g)"”"fe 2 k2 Jh.21)
-~ 0
Equations ¢ 4,20) = ( U4,21) are exact 1f the turbuleti®does

not extend to the surface (e.g. turbulence caused by breaking
internal waves or internal shear layers),

In the inertial subrange, the scalar turbulence spectrum is
given by (e¢f, Batchelor, 1963)

ECK «) = 22/35593&5‘#[”/%)

where gé.is the turbulent energy dissipation per unit volume,

V3 %3
6%: e K

and f(x) is a universal function, Turbulence measuremeg&F in

a tidal channel by Grant et al, (1962) indicate that ‘f?éodx;: IS
-0

If the wave damping is due primarily to interactions in the

inertial subrange, equation (%.4,21) becomes

_ tks 5, 4,22
(5#’ = j (), )
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o

2k
where & -':fé(z)ZkB dz is the weighted mean dissipation
p- -4
et~ 4

over the depth and o= %ﬁ >gﬂ&)1x is a constant. (For
2]

o
— Y A o
finite depth, & :fs M)Akdz)o Equation (5.4,22)
gn.mlu QkH '
-H £5
. : 3 9 - .
corresponds to a "turbulent viscosity w@ 4jk

It is readily verified that the contributions to fg from
interactions outside the inertial subrange are negligilble,

At low wave-numbers, E(K!,6; —> o, since §z%f»¢'g the wave
frequency becomes large compared with the turbulence frequenciles
as the turbulence scales apprcach a wave-length, The contribution
from anisotroplc turbulence of scales comparable with are

1a£ger than a wave=length is negligible provided the integral
ijféadx converges at infinity, (This is ensured if the
zcceleration spectrum exists),

At high wave-numbers, the contribution from the dissipation
range of the turbulence spectrum is negligible if <« w, () =
£/sz:/3 , where Ks = E¥Y % 15 the upper limit of the inertial
subrange at which the wviscous and inertial forces berome comparable
( ¥ = viscosity), The condition yields £ > vE™ or, on account
of equation i(%.4,22), f2¢¥5>“yk25 o The viscous decay factor
for deep-water waves is f3, ='49kz ; the expression (5.,4,22)
1s therefore valid provided the parametric damping is large
compared with the laminar viscous damping, This i1s, in fact,
the only case of interest, since the viscous damping is always
negligible for ocean waves,

It remains to be verified that the interactions are weak from
the point of view of the turbulence field, This is presumably
the case 1f the energy gained by the turbulence through inter-
actions with waves is small compared with the energy transfer
due to internal turbulence interactions, The wave=turbulence
energy transfer per unit volume at depth z 1s %§§{F(5)E%;€;Lo
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This 1s clearly small compared with & if the mean square
wave slope 1s small, which we have assumed throughout,

Measurements of & im the open ocean have not been made, but
lower bounds can be infered from the known tidal dissipation of
the oceans, A uniform disslpation over all oceans corresponds
to £ = 16 ergs e sec , which yields entirely negligible
damping, However, it is belleved that the tidal energy is
dissipated mainly in shallow seas of rather limited area, In
these regions, the values of & may range from about o.1 to
maximally 10 ergscer>sec” (cf, Munk and MacDonald, 1960), This
corresponds to a damping factor for a 60 m wave of ﬂ¥ =10 b
I5ruzs, or a decay time of 100 days to 1 day. It appears that
the parametric damping due to tidal turbulcnce 1s weak even

in regions of high tidal dissipation, (We have assumed a failrly
uniform distribution of turbulence, Localised wave=turbulence
interactions in a boundary layer at the ocean bottom are more
important, cf, section 5.5),

Another source of turbulence 1s white=cappling., In this case &

is given by the energy lost by the waves through wave-breaking,
Since we have seen that the energy loss due to wave-=turbulence
interactions is small compared with € if the mean-square wave
slope 1is small, the parametric wave damping 1is negligible also
in this case(ﬁn a fully-developed sea. the mean square wave slope
is of the order of 0,02),

By the same reasoning, the "turbulent viscosity" will always

be negligible unless a source of turbulence energy exists which
is large compared with the energy lost by the waves, It is
difficult to find such a source in the open ocean., The energy
transfer from the atmosphere 1s almost certainly too small,
Excluding extreme situations such as very strong currents in
shallow water, 1t appears that the turbulent viscosity,
although often considered in wave-prediction methods, is not

an important parameter in the energy balance of ocean waves,
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5.5 Strong interactions

Our applications of the general interaction formalism have

been limlted to interaction which are weak and expansible.

For ocean waves, all interactions are clearly weak in the

mean, since the observed wave growth and decay times are large
compared with a wave period. However, the interactions may be
relatively strong in highly localized regions and can then no
longer be expanded., Formally, the theory breaks down if
abnormally large valuesof the skewness, kurtosis, etc. associated
with highly intermittent fields outweigh the expansion parameter

in the moment expansions,
The transfer expresslons can then no longer be truncated at

the lowest-order moments (the spectra), As examples of such
interactions we discuss briefly white capping and the damping
of finite-depth waves by bottom friction,

White capping

Quantitative measurements and an adequate theory of white
capping are both lacking, but it is generally believed that
white capping is the principal dissipative mechanism balancing
the generating processes in a "fully developed" equilibrium

spectrum,

Phillips (1958) has suggested that for dimensional reasons

white capping leads to an equilibrium frequency spectrum propor-
tional to OJQSQ The power law has been confirmed by several
measurements, the observed exponent varying between =4,5 and
=5:5., However, the dimensional argument 1is difficult to support.

An w2 frequency spectrum corresponds to a two=-dlmensional

wave=number spectrum

FCk) = Cqk*s(pk)
(5:5,1)
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where @ is the propagation direction, s(qo*,”g) is the
"spreading factor", normalized such tsat _ﬁ/ﬂs( P,k) 4@ = 1,
and C is a constant, Phillips deduced the spectrum (5,5.1)
essentially by assuming that the equilibrium spectrum was
determined entirely by the white capping process and that this
could be completely characterized locally by the three parameters
g,lgland Fgg)o However, this yields an isotropic spectrum, since
the parameters do not define a reference direction, The observed
spectrum is a strongly anisotroplc distribution (s(f) ~ cos%P )
with the mean propagation parallel tfo the wind. This
implies that the wind velocity is also an essential parameter

of the problem, and the dimensional argument leading to the A

)

law 1s not applicableo+

It is, indeed, difficult to imagine an equilibrium spectrum which
is independent of the energy input, unless the dissipative mecha-
nism is envisaged as a strong, on-off process which is effective
only after the spectrum has exceeded a fixed, locally defined
threshhold, But 1t is improbable that white capping

is local in k-space, The wvisual Impression suggests locality

in X and both properties are normally mutually exclusive,

This 1s also indicated by the form of the spectrum (5.5.1).

The instability conditions for white-capping are not known
precisely, but 1t 1is generally belleved that instability occurs
when the local downward acceleration of the surface exceeds the
gravitational acceleration g, Thus the root mean square
acceleration of the surface is presumably one of the principal
parameters characterizing white capping. For equation (5.5.1),
this quantity diverges at both ends of the spectrum, Thus the
probability of white capping is determined not only by the
equilibrium range, but depends also on the cut-off frequencies

of the range.

+)Phillj.ps actually applied the dimensional argument only to the
one-dimensional spectrum, which does not lead to a direct con-
tradiction, However, in thils case it must be assumed that the
dependence on the wind veloclty disappears after averaging our

all propagation directions, which 1s difficuir to Justify
physically,
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The effect of white capping on the equilibrium spectrum is

not yet understood; it appears that dimensional arguments

are inadequate and that the wave=breaking process itself needs
investigating.,

Bottom friction

The damping of finite-=depth waves by bottom friction involves
strongly non-linear, localized interactions in a non=stationary
turbulent boundary layer, A rigorous treatment appensrs ab present
impossible, We present here an approximate analysis (Hasselmann
and Collins, 1967b) based on the empirical friction law

T = —¢qulyl (505.2)
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where T 1s the shear stress at the wall, u 1s the flow
velocity at the edge of the boundary layer and Cp is a "constant"
friction coefficient., Equation (' .,5.,2) 1s known to be a fair
approximation for a wide range of turbulent flows, It has been
tested for periodic waves by Savage (1953), Iwagakl etal., (1965)
and Jonsson (1965), among others, and has been used in semi-
empirical wave prediction methods by Putna™ and Johnson (1949)
and Bretschneider and Reid (1954), The friction coefficient

is, in fact, a slowly varying function of the flow parameters,
but for the present first-order approach we shall regard Cp

as a constant,

We assume that the flow consists of a wave field gf and a
mean current &fo We ignore interactions between the wave fileld
and the mean current except in the turbulent boundary layer at

the bottom, The complete flow in the w = u'+ u® + ut, where ut
[ade e e pen o~
is the turbulent velocity field in the bottom boundary layer,
t

We regard u’ as zero outslde a thin boundary layer of thickness
04 H, (The wave velocity fleld is defined as the potential

flow, equation (%5.2.1), assoclated with the surface displacement
T o We define gf arbitrarily as constant in the boundary layer,
The turbulent velocity is then given as the difference between
the complete flow E‘and the velocity field gy + Ef)o

The surface displacement may be represented as

;:kzz!a

where to first order Zk are statistically orthogonal, free-wave

components, -
Pa
Zk = %, cos (’lgp’;; - 6t + /31{)
=N PN v,

with

N\
]
=
N
it
>

5 5503)

{z Zpo > = <z%2'> = Z:gﬁ':(k)gkk, (4550 04)
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The wave velocity field is accordingly

w
u = U
= 2l

where the components Q& depend linearly on Zko In particular,

oo o)

,_3:‘5_2

- -H :
P S (54505)

Y

On account of the boundary=layer interactions, the amplilitudes
Zk and phases,éz are not exactly constant, but vary slowly
with time, To first order, the damping of the amplitudes can
be determined from the free-wave field by czalculating the work
done by the bottom stress against the free-wave velocity.

If we multiply the equations of motion of the complete flow

Wy 2? _ ) ‘74*
f;zf’ fgx ( )*’ s
by u{& » take expectation values and then integrate over the
depth from -H to & we obtain, applying the usual boundary condi-
tions and the orthogonality property (. %5.4),

—H+8 -H¢&

SF (L)
2829 () ] s .

2t < & (T A >afz - «“*'*"*’M‘-'k Sz
. - -
where T"J. = ’gax“(ww)_{_ gonw is the total stress
tensor and T, = T,

~ 32

For o & H , the last two terms can be neglected, so that

24k %‘_;C’:) = Tl (5:5.6)

(tue factor 2 arises from the normalisation of F%E) in section
(2.1), fF(k) ak =E).
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In deriving (-.5,6) we invoked only the orthogonality of the
Fourler components. However, if the interactions are weak in
the mean, we may now substitute the free-wave velocities in the
expression on the right hand side of the equation , For o << H,
we may further replace the velocity 2;~»2f +’gf at the edge

of the boundary layer by the velocity at the wall in equation
(5.5,2) for T. In the following, all velocities refer to the

values at the wall,

It 1s convenient to introduce, for fixed k, the variables

u' = u
- =y

which are orthogonal to‘gk,

!
<IA~.MJ-£> = O
(equations ( 0503) - <5f0505) )

Since u' differs from u by an infinitesmal quantity, we may
express E in terms of 2_", y-k and then expand with respect to

Ye ¢ -
s~ u'

T o= oo ¢ (Wes)(ie B L)
so that

] uéu.’ A U\
<1; ‘{'k> = __gcf<uf(uiu,ck+u1‘h; +—-d_k_d£ +.,.)>(z;.5°7)

a!

always
Now, a linear fleld of dispersive free waves 13{6252;1an
(except for a short transition period after an initial, non-
Gausslan state, cf. Hasselmann, 1967 a), Since u' and U  depend
linearly on the wave field, they are Jjointly Gaussian, Wﬁreover,

they are statistically orthogonal, and one component, 2&, has
1
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zero mean. It follows that y' and gk are, in fact, statistically
independent., The mean product of edﬁhtion { 6507) can therefore
be divided into two factors,

<"l“~:g>:—gcff<% ,.><u>+<"k“k>< >

We may now replace gj again by gﬁand obtain, substituting in
equation (5.5.,6) and allowing for equations (5c5.4), (5:5.5¢),

F(k)

»t

= -y k;kJF(!s;) (54548)

where the anisotropic viscosity tensor

v = £ g u> +<——4}} (5:549)

Y &2cot kH

The quantities <“> s <"—:;4> are determined by the Gaussilan
probability distributlion of the wvariables uUs; , The mean of
the distributlon 1s equal to 253 the covariance matrix is
determined by the spectrum,

uE Y~ S
- g 3> = B[ Eh ROy

In the zero=current case, the mcan quantities of equation (45,5.9)
can be expressed 1in terms of complete elliptic integrals,

> = —21:5' £

<g> F("‘ - -5‘4(1 95‘))
L8y = [ (1= )k - g)
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2
where o9¢ = [I- % , K(3¢) ana E(2¢) are complete
ellliptic integrals of the first and second kind, respectively,

and the coordinate system has been chosen such that /ﬁz=c5/316hf

The damping 1s a maximum in the mean propagation direction.

Flgures 11 and 12 show two examples of the spectral decay
computed for the case of a zero mean current and a mean current
of 0,7 m/sec at MBO to the initial mean wave direction, The
(constant)water depth of 100 m is representative of the North
Sea, The initial energy distribution corresponds to a U40-knot
Pierson-Moskowitz spectrum, equation (2 3.,3), with a
cosuq> spreading factor, The friction factor Cp = 0,015 was
determined by comparison of theoretical predictions with wave
observations made at two off-=shore stations at Panama City,
Florida (Hasselmann and Collins, 1967), The value is consistent
with other experimental data for periodic waves (cf, Jonsson,
1965), but is probably too large for the mean-current case,
However, the same value of Cp Was taken in both cases for the
sake of comparison,

It appears that wave damping by bottom friction can be quite
important in ghallow seas and continental margins, ?th%.hnehken
that although ‘the computations were based on the rather crude
friction law (5.5.2), this was not essential for the analysis,
The same method can be applied for a more sophisticated friction
law,

5.6 Comparison with observations

Thé dicect method of investigating interaction processes experimen=
tally 1is by cross-spectral or cross-=bispectral analysis of the
interacting fields, Unfortunately, measurements of this type

are difficult to make , and one is limited largely to indirect
evidence from wave observationgi{ﬁowevera bispectral analysis

was used by Hasselmann et al, (1963) to measure second-order
wave interactions., In this case, the measurements involved only
the wave field,

(Footote )
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The propagation of ocean swell over long distances may be
expected to depend more strongly on interactions within the
ocean than wave-alr interactions, and should therefore shed
some light on the processes discussed in this chapter., We may
include here also the wave=wave interactions discussed in
section 3.6,

Snodgrass et al, (1966) have measured swell attenuation in

the Pacific, Waves radiated from storms South of New Zealand
were recorded at six stations spaced at approximately equal
distances along a 12,000 km = 110° great circle between New
Zealand and Alaska, Twelve major storms were identified during
the ten-week experiment., Only low-frequency storm waves

( %r < 0,1 cycles per second) could be detected above the
local-sea background., (An increase in wind speed adds addltional
low=frequency waves to the "fully developed" spectrum, but does
not appreciable affect the spectrum at intermediate and high
frequencies, cf. equation (2,3.3) o

A significant attenuation was observed only within the first
two or three thousand kilometers from the storm center, Over
the remalning distance, the waves propagated virtually undamped,

The computed attenuation due to wave=wave scattering was found
to be negligible for frequencies below 0.1 cycles per second

at distances greater than a few thousand kilometers from the
storm center, We have seen that the parametric damping due to
small=scale turbulence is also small, The observations show
further that wave=-turbulence scattering is unimportant to most
of the ocean. Scattering should have been noticable, besides

by wave attenuation, by the late arrival of scattered energy,
which was not detected,

The station spacing was inadequate for accurate measurement of
the wave attenuation in the near zone, However, the general
features of the observed decay were consistent with the computed
energy transfer due to wave-wave scattering., Figune 13 shows a
typlical example of the spectra observed close to the storm.
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The spectrum in the generating region was not measured, but

could be estimated from the winds reported in the generating
regiogb‘mgmzfthe Pierson-Moskowitz formula, The spectra are
corrected for distortion due to dispersion, The lower panels

show the computed energy transfer due to wave-wave scattering.
The small positive energy transfer at the peak appears to be
typical of a peak close to a low=frequency cut=off

(Hasselmann, 1963 b)., The energy lost at intermediate frequencles
is transfered to higher frequencies,;not shown in the figures,

The travel time for 80 millicycle-per-second waves from the
storm to the first station, Cape Palllser, New Zealand, was

5 secs (1 day); from Cape Palliser to the

approximately 10
second station, Tutuila, the travel time was approximately
20105 se¢s, Bearing in mind that the transfer rates in each
figure refer to the initial spectrum, the wave-wave scattering

accounts quite well for the observed changes,

Beyond Tutuila, the spectral densities were reduced so far by
dispersion and scattering that the computed scattering became
negligible (except for angular beam broadening, which has no
direct effect on the one-dimensional frequency spectrum),
The observed attenuation beyond Tutulla was also negligible,
be
Wave=breaking or scattering by turbulence ¢aw not(excluded in
the near zone by the data, However, the order-of-magnitude
agreement with the computed transfer rates due to wave=-wave
scattering demonstrate that wave-wave scattering is at least
an important term in the net energy balance of the wave
field,
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Conclusions

We have discussed the coupling between ocean waves and

random fields in the ocean and atmosphere from the viewpoint
of a general interaction formalism. The theory is complete,
in the sense that we have been able to treat all lowest-order
processes, However, it applies only to interactions which

are weak and expansible,

The validity of the expansion procedure must be investigated
for each process, A rigorous convergence proof was not
attemptedf but 1t can generally be verified that the expansions
are consistent in the sense that the expansion parameters are
small and the lowest=order interactlng fields may be regarded

as statistically independen.g| The convergence question is

not assoclated with finite-order interaction theory as such,
It ariges aLfeady in the linear represensation of 'free' wave
fields, The interaction analysis is neither more nor less
rigorous than the linear theory (excluding, of course,

the problem of statlstical closure), f&nteractions with at-

(F-anol-e)

mospheric turbulence are an important case in which this

was not demonstrated, although the assumptions appear plausible
and are valid for sufficliently small wave heights. The

question can be resolved by trilal computations or measurements,

Wave breaking and turbulent bottom friction are examples of
non-expansible process, However, in both cases the inter-
actions are weak in the mean, This property proved sufficient
to determine the damping due to a non-analytic turbulent
bottom stress.,

The analysis for expeansible inferactions is

baslcally straight forward, but can become involved alge-
braically, Interaction diagrams are useful in describing the
structure of the expansion huk¥emﬁmt?gigebraic details,

The net energy transfer is the result of many interaction
combinations, which may be classed into scattering and



- 88 -

parametric processes, Transfer diagrams afford a concise
notation for distinguishing between the various processes,
Even where the transfer functions are not known in detail,
the general structure of the transfer expressions summarized
by the transfer diagrams can be helpful in understanding

the overall energy balance of the wave field,

Numerical estimates exists at present for only a few
processes: the wave-generation processes of Philllips and
Miles, wave=wave scattering, and parametric damping by
turbulence, We have not attempted to estimate rather com-
plicated transfer expressions by order-of-magnitude dimen-
sional considerations, However, computations based on
simplified boundary-layer models should he feasible, A

more fundamental problem is estimating the energy loss due
to white-capping, at present the one basically undetermined
process in the radiation balance equation,

Only very few measurements bearing on the wave energy

balance have been made, but these have prowed extremely
fruitful, Further experiments of this kind would be very
desirable, Laboratory (and, if possible, field) studies of

the interaction mechanisms by cross correlation techniques
would also be 1nvaluable 1n assessing the relative significance
of the var{leus processes,
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Appendilx Coupling coefficlients

- (N : ,
(3= 367_5 ?,9 denote differenfiations with respect
to # of the component of wave-number k' and k", respectively.

Hence o= 3+ 2" Yo

a) VN I /
A= | Rhoyr (el v kebeh)oo 0 (oo
& 2 4 d
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(') Nt
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O du ik
+ g“B dz'* - :,;:']
Y k’ A
where U' = "";"“ , Ut = g,%' and all terms are taken

atr z', unless otherwlse indicated. The arguments of the
coefficients A(l) A(z), B(l), C(i)

as in the expressions given above,

’ and C(Z) are the same
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The arguments of the coefficients A§1>’ A§2), ... are the

same as in the previous expressions, The wave-=numbers k' and
S~

}5_" in the coefflcients ,,,A-.i“"‘), Agg), ssso are replaced by

}'{\o and }i'“: respectively, and J is replaced by 1,
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Interaction diagrams corresponding to the linear transfer
expressions (3.4,2) (diagrams (1)) and (3.4,3)
(diagrams (ii))

Interaction diagrams corresponding to the source function
(3.4,7), Diagrams (i), (ii) and (1ii) correspona to the

Vv, =YV >

hd
transfer functions T, 'T..,y. >va and ’T',, v,

respectively,

Interaction diagrams corresponding to the source function
(3.,4,19), Diagrams (i) yield the first term of the transfer

function 7;: , equation (3,4.23), Diagrams (ii) corre-

spond to the second of the four terms in the parentheses
{......} « The remaining terms in the parentheses are
obtained by interchanging components and anti-components,

Transfer alagrams corresponding to the transfer ex-
pressions: (1) S » equation (3.4,2); (ii) Sg,%> R
equation (3.4,3); (iii), (iv), (v) §¥;u;) , equation
(3.4.7); (vi) Sjw , equation (3.4.,13),

Diagrams (1i) - (v) represent scattering diagrams, (i)
and (vi) parametric diagrams. Diagrams (iii), (iv) and
(v) belong to a diagram set,

Interaction (Feynman) diagrams for conservative gravity-
wave interactions. The energy transfer 1s given by

equation (3.6.5). The corresponding transfer alagrams are of
the same(%%Jaiagram (iii). -

Lowest-order transfer diagrams for wave-atmosphere and
wave-ocean interactions. Diagrams (i), (ii) and (v)
represent parametric processes, diagrams (iil) and (iv)
scattering processes,



Wave-atmosphere interactions (i) : linear interactions with

the ocean boundary-layer flow according to HMiles,
(1i) : non-linear interaction with mean boundary-layer
flow, (ii1i) : Eckart-Phillips wave generation by turbulence,

The process can be represented by three diagrams in terms
of the turbulent velocity components t or an equivalent
linear diagram pt—afg, where pt is the turbulence
pressure at the surface., (iv), (v) : wave-turbulence

interactions.

Wave-ocean interactions (i) : linear interaction with mean

current. The energy transfer vanishes in the weak-interaction
approximation, (ii) : non-linear interactions with mean
currents ,(1ii) : generation of waves By turbulence, '

(iv) : scattering of waves by turbulence ; (v) : parametric
damping of waves by turbulence ("eddy viscosity").

Fig. 7 Spectral distribution of surface pressure for wave-
atmosphere interactions (schematic). Shading represents
distribution of the three-dimensional spectral density
F(k,@) in the k-« plane.

Fig. 8 The growth parameter (3 as fuﬁction of wind speed U,

T : Jeffreys (1925), MI : Miles, BF : best-fit experimen-
tally; T : an empirical relation 3= 3a(k.4-€) suggested

by Snyder and Cox (1966); The data points are divided into
short runs + and long runs 9 ., (From Snyder and Cox, 1966),

Fig. 9 - Non-linear interaction diagram for parametric damping of
waves by mean currents,

Fig. 10 Interaction diagrams for parametric damping of waves by
' turbulence ("eddy viscosity").

Fig. 11 Wave damping due to a turbulent bottom friction ‘_Es-—gc’..“.l.‘.‘.l,
with Cp = 0,015, The initial distribution correspogds
to a UO-knot Pierson-loskowitz spectrum with a cos ¢
spreading factor, The water depth is loo m. (From Hassel=-

mann and Collins, 1967).



Fig.

13

Wave damping due to turbulent bottom friction, The same
case as in fige. 11, with a superimposed bottom current

of 0.7 m/sec at 45° to the initial mean wave direction,
(From Hasselmann and Collins, 1967).

Wave spectra (upper panels) and the computed energy trans-
fer due to wave-wave scattering (lower panels) in the

near zone of a storm, Full and dashed curves in the lower
right panel correspond to a cosuq> and BOb step~-function

spreading factor, respectively. (From Snodgrass et al,
1966) . '
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