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Weak-interaction theory of ocean waves

K..Hasselmann

1. Introduction

Ocean wave research covers a broad range of topics incl~ding !

the theoretical analysis of the basic processes of wave growth

and decay, semi-empirical methods of wave-forecasting and engin-

eering problems related to the effects of,waves on ships"

structures and beaches. We shall be concerned here primarily

with the state of the sea as such, rather than the secondary
l

effects of waves.

The increased interest in ocean waves in the past two decades
.

was originally stimulated by the wave prediction problem. Since

dynamical wave theory was virtually nonexistent, wave fprecasting

evolved for many years as an essentially empirical art. How-

ever, the latest developments show promise of a stronger inter-

action with dynamical wave theory, which has made considerable

advances in recent years. A general theoretical framework has

emerged, enabling a rational discussion of both the prediction

problem and the dynamical processes determining the local energy

balance of the waves. An assessment of the present state of the

field may be useful before proceeding to the more detailed

measurements and computations which will be needed to place the

theoretical framework on a sounder quantitative basis.

The first prediction methods by Svedrup an~ Munk (1943,

unclassified 1947) and Suthons (1945) were based on a simplified

parametric description of both wind and wave fields. Empirical

relationships were established between the characteristic para-

meters of each f~e1d.. The introduction of a wave spectrum in the
prediction methods of Neumann(1953) and Pierson, Neumann and

James (1955) represented an important conceptual advance. However,

the reliability of these methods and the alternativeprediction'

formulae suggested by Darbyshire (1955, 1959), Bretschneider'

(1959), Roll 'and Fischer (1956), Burling (1959) arid others was
,

~---_.-



still basieally limited by the parametrie deseription of the

wind fields, whieh was retained in the new methods, but was

now no longer matehed to the more sophistieated deseription of

the wave fieldo

The present foreeasting methods use a eomplete deseription

.)fboth the wind and wave fields and are based on the numerical

integration of the radiative transfer equationo The approach

was pioneered by Gelei and collaborators (cf. Gelei et al~ 1956,

Gelei and Cazale, 1962, Fons, 1966) and has been developed in=

dependently by Baer (1962), Pierson et al, (1966) and Barnett

(1966). The source functions used in these methods are still

largely empirieal. However, a closer interaetion with

dynamical wave theory may be expeeted in the futureo The function=

al form of most terms in the source funetion can now be prediet=

ed theoretically, although extensive measurements and comput=

ations are still needed to fill in many details.

Dynamical wave theory is the statistical theory of the local

interactions of the wave field with the atmosphere and oceano

The first significant eontributions to this problem were

Phillipsw (1957) and Miles' (1957) theories of wave generation,

which yielded rigorous transfer expressions for eertain aspects

of the wave-atmosphere interactions which had been discussed

previously by Eekart (1953), Jeffreys (1925, 1926} Wuest (1949),

Lock (1954) and otherso A further contribution was the

determination and eomputation of the ~nergy transfer due

to non-linear wave=wave interactions (Phillips, 1960, Hasselmann

1960, 1962, 1963 a,b)o

We shall see in the following that these processes may be

regarded as particular applieations of a genera~ theory of weak

interaetions, whieh yields the energy transfer for all expansible

interaetions between the wave field and the atmosphere and

oeean.

~-_._...-
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The lowest-order set of transfer expressions for wave-

atmosphere interactions consists of the Phillips and Miles

processes, a non-linear correction to Miles' process, and

wave-turbulence interactions. Present data suggests that

the wave-turbulence interactions may be the most important

of the four.

The interactions between waves and the ocean are formally

very similar to wave-atmosphere interactions. The lowest-order

processes consist of parametric damping by mean currents, scat-

tering by large and medium-scale turbulence and parametric

damping by small-scale turbulence. The last process may be

interpreted as an eddy viscosi ty~ further application of the

general interaction theory is the diffusion due to waves, hut

thi~ will not be considered here.

The major part of this paper will.be devoted to the development

and application of the we~k interaction theory. The theory

yields the source functions for the radiative transfer problem,

which will be discussed briefly in the first section. The

interaction and transfer problems are complementary aspects of

the complete problem of determining the state of the sea far a

given wind field. Although we shall consider only ocean waves

in detail, the b~sic concepts are applicable to all random wave
. .

fields. We shall accordingly present the theory first for an

arbitrary set of interacting fields, following Hasselmann

(1966, 1967 a). Since the emphasis is on d~veloping a g~neral

approach, we cannot do adequate justice to many specific con-

tribut ions to the subjectj we refer in this respect to the more

extensive expositions of Kinsman f1965) and Phillips (1966).

--------



x = (x1, x2) is the horizontal ,'ooordinate vector
~k

= (k1, k2) is the horizontal wave-number vector
.-

6"= (gk tanh kH)1/2 is the frequency of a free surface

gravity 'ilaVein water of depth H, which we take

to be constant,o.t'\ol
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2. The radiation balance

2.1 Representation of the wave field

Ocean waves are a statistical phenomenon; it is meaningful

to consider only average properties of the wave field. In

practice, the mean values ~re determined either as time or

spacial averages. For theoretical purposes, it is more con-

venient to consider the mean values as averages over a hypo-

thetical ensemble of fields. Our averages will be defined in

this latter sense. The two definitions are equivalent if the field

is either statistically stationary or homogeneous, i.e. if all

mean quantities are invariant under ei~her time or (horiiontal)

spacial translations.

To a first approximation, an ocean wave field is both stationary

and homogeneous. This implies that the dynamical processes

changing the state of the field are weak, and the field ro~y

thU5 be regarded approximately as a superposition of free waves.

The field can then be represented as a Fourier-Stielties integral

(which we write in a more convenient sum notation)

(2.1.1)

where Sis the surface displacement (positive upwards)

~k
i5 a random Fourier amplitude.

_.



< 'rk, 7k~ > - o )-... .......

< 1.!!,ikt> - 0 ,for' k,:/: k1.- ...... -

« 'fb 7~ > :: .ß.. F(k)Ök

$'
...

- 5 -

For a homogeneous, stationary wave field, the covariance

matrix of the Fourier amplitudes is diagonal,

where the cornered parentheses denote ensemble means ,
~ is the density of water,

g is the acceleration of gravity,

Ä k is the wave-number increment of the Fourier..-
sum and

F(k) is the (continuous) energy spectrum.-
The total wave 'energy per unit surface area is then

E = ~g<Z;~> == 2 J F(~)Ji

The normalisation of F is that used in

theory; it differs from the more usual

2/ ~ g.

the general interaction
definition by a factor

It can be shown that a homogeneous field consisting only of

dispersive, free-wave components rapidly attains a Gaussian

state (Hasselmann, 1967 a). In this case the energy spectrum
F(k) completely specifies the field statisticaily.

~

Since the wave components undergo weak interactions, the

Gaussian property, the stationarity and the homogeneity of

the wave field are only approximately valid. The field can

still be described locally öy a spectrum, but this must now

be regarded as a slowly varying function of ~ and t, where

- ---~-
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2.2 The raäiative transfer equation

The evolution of the spectrum F(k)x)t) is determined by the~- ,

energy balance) or radiative transfer) equation

DF--
J)t - (2.2.1)

.

where

The source function S represents the net transfer of energy

to (or from) the spectrum at the wave number kaue to all
DFinteraction processes which affect the component~. Dt is the

Lagrangian rate of change of the spectrum relative to a wave

group k moving along the path in x - k phase space determined by
~ - ....

the Hamiltonian equations (2.2.2) and (2.2.3) (the dot denotes

differentiation with respect to t.lIt is assumed that the depth

H is slowly varying) ~ ~ ~< ~ ) so that the geometrical re-

fraction laws (2.2.2) and (2.2.3) are applicable . In deep water)

the refraction term ~ ~ in (2.2.1) vanishes. Equations
~ ~k~

(2.2.1) - (2.2.3) apply for a plane ocean. The corresponding re-

lations for wave propagation. on a sphere are given in Groves

and Melcer {1g61) and Backus (1962).

Equation (2.2.1) can.be derived from geometrie ray theory by

assuming that the wave-numbers and amplitudes in equation (2.1.1)

are slowly varying functions of x and t. It can best be understood
--by ~egarding F(k)x) as the energy density in x-k phase space of an

~ , ~ ~
ensemble of wave groups. In the case S = 0) the energy of each

wave group remains constant) so that the energy density is propor-

tional to the number densit~. EQuation (2.2.1) can then be 1nter-



8(k) = 81 + 82 +83 + 84 + 81+82+83+84+85+86+87+". ( 2.2. 5 )

""""

where

81 = oi.

82 = ~F(~)

83 = F(~) f
't((k.f)F(!i)Jk'

84 = - $ F(~) + fE(~JJ!.)F(Ji)J~'

8i, 82, 83 and 84 are of the same functional form

- 7 -

preted as the continuity equation for the number äensity of wave

groups in phase space.,The number density, and therefore F, re-

mains constant along a wave-group trajectory, since the flow in

phase space defined by equations (2.2.2) and (2.2.3) is incompress-

ible (Longuet-Higgins, 1957. The analogy with the Liouville theorem

was pointeä out by Dorrestein, 1960). If the energy of a wave

group changes along its propagation path, a source term appears

on the right hand side of the equation.

The transfer equation may be expressed in the integral form

t

F (k ,)!..,t) '" F (.l!.,~.. t) -I-Is (~'. ~I.c')Jt
I

1:0

(2.2.4)

where k', x' and t' vary along a wave group trajectory from an
-- ,....

initial value k , x , t to the point k, x, t. Equation
--0 0 0

"'""
,-.

(2.2.4) does not, in general,representa solutionof the transfer
problem, since the source function in the integral is a function-

al of the spectrum.

The major part of this paper will be devoted to determining the

source function 8. We shall show that 8 is of the general form

=

as 81, 82, 83 and 84, respectively,

JG; F={~')F(f)F(b.-kt-!d') - 72 F(!:.)F(~)F(Ji.')]dk'dlt

-
)/'.. k. k. F(Ie)

'J
~;J -=

87 represents the as-yet-unknown dissipation due to

wave breaking.
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We have expressed only the dependence on the wave spectrum F

~xplicitly. The coefficients ~Jp etc. depend in a known manner

on the properties of the other interacting fields.

The source function S1 represents the constant energy transfer

t'o the wave field through turbulent atmospheric pressure fluct-

uations (Eckart. 1953. Phillips. 1957); S2 corresponds to Miles'

(1957) unstable coupling mechanism between the wave field and

the mean boundary layer flow; S3 is a non-linear correction of

Miles' theorYJ and S4 represents the energy transfer due to

wave-turbulence interactions (Hasselmann. 1967 a).

The processes S1 to S4 represent the complete set of lowest order

transfer expressions due to interactions with the atmosphere.

With the possible exception of 82. all are probably important

in various frequency ranges and stages of development or a

wind-generated seal

The interaction of waves with mean currents and turbulence in

the ocean are formally very similar to the interactiomwith the

mean flow and turbulence in the atmosphere. The corresponding

transfer expressions SI to 84 are of the same .functional form

as the transfer expressions S1 to 84, However. 81 and 82 are

normally negligible.

85 represents the energy transfer due to non-linear wave-wave

interactions (HasselmannJ 1960J 1962). The energy transfer has

been computed for typical ~ave spectra and was found to be not

inconsistent with spectra observed to the lee of generating areas

(Snodgrass et alJ 1966).

86 represents the dissipation in shallow water due to turbulent

bottom friction (Hasselmann and COllins. 1967). Yij is a known

functional of the wave spectrum. The expression is based on a

quadratic friction law. In contrast to the processes mentioned

above. it cannot be derived from the weak-interact1on theorYJ

s1nce the fr1ct1on law 1s non-expansible.

~._...- .---
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Another ex~~ple of

is the energy loss

undetermined.

a weak) but probably non-expansible process

57 due to wave-breaking) which is still

We note that with the exception of 31) 32 and 3i) 3~ ~ all source

functions depend on the entire wave spectrum) and not only on the

component~. The source functions 34) 34) 35) 36 and 37 are

furthermore non-linear in F. The first property is common to many

transfer problems (c.f. Chandresekhar) 1960) Kourganoff) 1963).

It implies that all wave components of the field are coupled. It

is not possible to determine the spectrum at any point P in the

ocean by integrating the source function ~tD~~DnL5~!Wwave trajec-

tories which terminate in Pj the spectrum must be determined

simultineously in the entire region of the ocean in which 3 is

non-zero. The numerical integration of the transfer equation

nontheles~ lies within the capacity of.present-day digit~l computersJ

and several programs for predicting areal wave spectral distribution~

are already in operation.
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2.3 Empirical source functions

The source functions aäopted in present wave forec'asting programs

are largely empirical.

In the latest version of their method DSA (distribution spectro-

angulaire) Gelci anä Cazale (1966) introduce a source function

where 01...is a function of k and the wind velocity U, lD is the
.-- T

angle between ~ and
,.1r.

and A, Band C are constants. SDSA is of

the form S; + S3' However, the non-linear term is introduced as

the energy 1055 due to wave breaking, rather than a non-linear

correction to Miles' theory. A linear term 32 corresponding to

Miles' theory is not included.

Pier~on, Tick and Baer (1966) suggest a source function

S~T8 =

Jor F ~ ~ ) If/< 1fz.

(2. 3.2)

f'" F,>~) l<fl < 1f2.

I'"
I <pI '> %.

in which

are functions
+1T

=

f
F(~) kJf

-17

of k and U,
,..,..

f'I"

E(k) i~ the one-dimensional spectrum,

is an empirical angular spreading factor, with
+lt'

[S(k,tp) elf = 1-
-I'T

is a dissipation function which acts only for waves

travelling against the wind,

=
E (1<)
E::Tk)00,
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a.1id F :.(k,U), Eoo(k,U) are empirical fully developed spectra taken~.- ~

from Pierson and Moskowitz (1964). As a function of frequency. the

one-dimensional Pierson-I'-1oskowitz spectrum is given by

The form of the source function (2.3,2) ensures that the waves

tend to a fully-developed Pierson-Moskowitz spectrlli~in a uniform

wind field, For small values of the spectrum, the growth of the

one-dimensional spectrum E(k) (but not F(~» is in accordance with

a combined Phillips-Miles mechanism, S = Si + S2' The functions ~

and ~ were determined from the field measurements of Snyder and

Cox (1966) (section 4~6).

Barnett (1966) introduces a source function

(2,.3.4)

in which r;{and ~ are functions ofA and ~

The source function SB is of the general form

(with S7 = -(S1 + S2) i )

suggested by Hasselmann (1960) on the basis of then existing
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theories of wave generation and wave-wave scattering.

E 2A similar source function, with 85 = 0, 87 = -(81 + 82) (~)
has been considered in the one-dimensional case by Inoue

co

(1966).

The discrepancy between the various empirical source functions

is considerable. It points to the difficulty of making suffici~ntly

detailed, conclusive measurements of wave'growth and decay in

the ocean. A considerable gap exists still between our under-

standing of the basic dynamical processes, as indicated by the

general form of the theoretical source function (2.2.5), and the

application of this knowledge to the forecasting problem. The

difficulty is that although theory can furnish the transfer ex-

pressions for wave interactions with other fields, the transfer

rates depend on the detailed statistical properties of the

inte~acting fielös,which can be determined only experimentally.

To determine the source functions reliably, measurements of wave

growth and decay need to be combined with detailed measurements

of the interacting fields. .Although the present source functions

will almost certainly be modified in the light of future experiments,

the development of the radiative transfer method is nontheless an

important first step towards a rational treatment of the wave

prediction problem.
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3. Th~ory of weak interactions in random fields

The principal goal

of the theoretical

The problem may be

of dynamical wave theory is the determination

source functions summarized in equation (2.2.5).
divided into two:

(i) the determination of the coupling coefficients charac~-

erizing the interactions between the wave field and its physical

environment. and

(ii) the evaluation of the energy transfer due to these inter-

actions.

The first problem involves

equations of motion of the

this in later sections.

the detailed analysis of the non-linear

interacting fields. We shall consider

The second problem may be treated without,'specific reference to

the type of interacting field. The theory applies to any system

involving weak interactions between wave fields and other random

fieldsJ e.g. the generation of sound by turbulence. the scattering

of light and sound in the atmosphereJ interactions between Rossby

waves and currentsJ plasma-wave interactionsJ etc.

Jn this section we shall develop the theory in a general form.

considering later its specific application to ocean waves.

) .

The theory- is as a rather straight forward extension of the analysis

of conservative wave-wave interactions. which was first considered

in detail for the case of non-linear lattice vibrations in solids

by Peierls (1929). and is well known in many branches of physics.

particularly in quantum field scattering theory.

One of the main difficulties which arise is keeping track of the

numerous terms occuring in the perturbation expansion of the

fields and ordering the various transfer expressions associated

with different term combinations. Here. diagram notations are

useful. In the case of conservative wave-wave interactions. both

the perturbation expansion and the transfer expressions can be

summarized by'a single set of dlagrams. whlch may be lnterpreted
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in a particle picture and correspond to Feynman diagrams in

quantum field theory (HasselmannJ 1966). The general case of

non-conservative interactions with non-wave fields is more

complicated. Two types of diagrams are needed: interaction

diagrams, to describe the perturbation expansion of the field

amplitudes, and transfer diagrams, to summarize the energy-

transfer expressions (HasselmannJ 1967 a).

3.1 The interacting fields

Consider a set of weakly interacting fields consisting cf wave

fields, denoted by indices ~ J and non-wave (external) fieldsfA

We shall be concerned only with interactions which affect .the

wave fields. We can then distinguish between two types of

interaction: wave-wave interactionsJ involving wave components .only

and external interactionsJ involving both wave components and

external-field components. Interactions between external fields

only have no effect on the wave fields.

The set of all wave fields will be termed the wave-field system.

We assume that the wave-wave interactions conserve energy and

momentum of the wave-field system. (Non-conservative wave-wave

interactions can be treated formally as external interactions.)

The physical system isassumed to be homogeneous in xJ where x
,.. .....

is either a two- or three~dimensional coordinate vector (in.the

case of the oceanJ ~ = (x1J x2) is the horizontal coor~inate

vector). We assume further that all fields are random and stat-

istically homogeneous with respect to x .
,...

In the linear approximationJ let the wave-field system consist

of a set of normal modes
er;' Q"'rf'\'(~'~"1: (..;J~/;)}

where Cf~ is an eigenfunction(for three-dimensionalxJ 'f~
.

""'"'

~ ~

may degenerate to an eigenvector or simply a constant)and GV~
.y -

is the eigenfrequency. We ass~~e that the amplitudes 9~ of

the eigenfunctions represent a complete set of coordinates for

the wave-field system.



""I 'di
Pk -- ()

..... )

,.". Cfk/
,.,.
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v ,
(

v ~~)Otk - fi 1'..~ -
,j,

G.)~~~-

-""I -i ~~)

.
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,
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Let the evolution of the wave-field system, excluding the

non-conservative external interactions, be specified by a

Lagrangian

where

is the free-field Lagrangian of the linea~ system and Lint
is the wave-wave interaction Lagrangian. The harmonic-oscillator

form of L2 is uniquely determined, except for an arbitrary

normalisation ~actor, by the form of the normal modes (symmetric-

al propagation characteristics in the positive and negative k
~

direction) and the homogeneity condition.

It is convenient to transform to canonical variables

-I -v
and then to standard wave variables ak , Q.k. defined by

......

The equations of motion become in these variables

,..,

"'k -
.....

where for negative indices the frequency is defined by

------



- 16 -

The free-field Hamiltonian is given by

The linear solution of equation (~.1.2) for H = H2 is

-v

,Cl"
_

.....

..J

olle t'-o",~Irt..f") .y ~ 0
,....

which represents a wave travelling in the positive k-direction.
~

We assume now that the interaction

small perturbation of the complete

Hint<:<'H2 . We assume further that

Taylor series,.

Hamiltonian

Hamiltonian

Hint can be

can be regarded

H = H2 + Hint,
expanded in a.

as a

(3.1.4)

where

-..I.
,.

,~~

and J) is a constant coupling coefficient.
k. ... k..

-
.....

The condition Hint« H2 is implicit in the definition of a
wave field. If Hint = O(H2), it is no longer meaningful to speak
of normal modes, dispersion relations, etc. The expansibility

assumption is valid in most cases, but'not always. (For example,
U1t tq ("..cl,' tA.!:S-i

white-capp:lngl
. ,) rprobably non-expansible.)

~-------
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The Hamiltonian represents the total energy of the wave-field

system per unit ~ and is therefore real. The reality of H2

implies

(3.1.6)

The reality of H , together with the condition (3.1.6), yieldsn .

the relations

""," ,'"
])

k,,,,
k",

-
,..,

for the interaction coefficients. A second condition for the

interaction coefficients follows from the invariance of the

physical system under horizontal translations,

- ~, -4-
'"

+ k.. *' 0
"""

..... (3.1.8)

~ .
For under a translation x = x + t , the wave components trans-

NV. -v -:'M, ~ -- -
,

.

form to Q.k:a Qlee ...-- . The coupling coefficients therefore
- - -v J'" "'I ,,'"

f
)~

l
transform to J:>h.

'"
k ::: '])1.. L. QKD ~ (J~. +.. .+~.. "So

"",,' """,,'" ~'t"%...'"

, ,.

""""

which is invariant only under condition (3.1.8).

-." "
. --I",

\'le note furt her that the coefficients J)k,... Jq",. - -
symmetrical with respect to the indices ~, ... n.

.

Lto

can be definectrb~

The equations of motion (3.1.2) for the Hamiltonian (3.1.4) become
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To include external interaction within the same framework as

wave-wave interactions, we assume now that the external fields'

can be described by a set of variables

(3.1.10)

in analogy with the representation (3.1.3) of the free wave fields.

The superscript ~ is a combination of a discretß index specifying

the external field and an additional variable which determines

the frequency ~ . In the case of wave fields, the frequency
~ - ,

z~~ is uniquely determined by a discrete index v which

specifies the wave field and the appropriate dispersion curve.

Since the frequencies of the external fields can vary continuously

fo~ fixed k, a further variable is needed to specify the frequency.
---

To maintain the analogy with the wave-component notation, we

choose r such that W; '>0 for JA --;'0 and
.,...

-;'"

t..>k -
.....

(3.1.11)

The variable A represents the set of all further parameters

specifying the external field.

The reallty condition corresponding to equatlon (3.1.6) is

((A) -
-

(3.1.12)

As example, consider the turbulence fields in the ocean (w) or

the atmospherlc boundary layer (a). We assume that the fields

are statistically stationary and homogeneous with respect to the

horizontal coordin:te vector ~ = (xl' x2). The fluctuating

veloclty flelds W,;(~, z, t), where \\=WOrA>Z = vertical co-

ordinate, may then be expressed as Fourier sums (Fourier-

Stieltjes integrals)
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If we äefine

anä use the notation

J: ::: - G.)) 'A::: (~/Z)
...

this may be written

Using thisnotation) we mayincluäe interactions with external

fieläs in equation (3.1.9) ~imply by adding further terms to the

right hand side)

- "".
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-V"/,...Vljl'<jh
"'JAp

The external coupling coefficients
~~~I"'k1bf+,"'kp

satisfy

the same reality and homogeneity conditions (3.1.7) and (3.1.8)

as the internal coupling coefficients. However~ since they are

not derived from a Hamiltonian~ they are not symmetriaaZ with

respect to all permutations of the indices. Besides the inpices

shown~ the coefficients depend on the variables ~J ~ which are
also included in the summations in equation (3.1.14).

We note that the external interactions include non-conservative

interactions between wave components)and that the lowest order-

terms are linear.

Equations (3.1.14) represent the equations of motion for the wave

fields only. The external fields are regarded as given., The

back-interaction of the wave fields on the external fields is

assumed to be either negligible or already included in the

definition of the coupling coefficients E. In the latter case~

the external field components U; refer to the undisturbed ex-
-ternal fields.

3.2 Interaction &iahrams

Since the interactions are weak~ we can construct solutions of

equation (3.1.14) by perturbation or iteration methods. For a

general discussion~ the iteration method is more convenient~ as

the perturbation parameters need not be specified.

~.,rritingequation (3.1.14) symbolically in the form

L [ a] = N [ a~ b J

the n'th iteration is given by

(3.2.1)
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The first order solution

equation (3.1.3).

is the free field solution,

Explicitly, equation (3.2.1) is given by

v
h~1c (t:) -

-

t

J
'

_..:(.)~ (t-t~
dt e - ><

o
'

(3.2.2)

where

The structure of the solutions rapidly becomes complicated

as n increases and it 1s convenient to introduce a simpler

notation in terms of interaction diagrams. To this end, let us

represent the field components ~k, ~ with y)~ >0 by
-

,

arrows equal to the wave-number vectorsk. Similarly, let the
--

complex conJugate anti-components ~-t ,f~
'

with negative

indices -~-/' ,be represented by cross-stroked arrows equal

to k. The sign,convention is chosen such that the arrows point
-' "

in the propogation directions for both components v,~ and anti-

components ~/f
·

We may now represent the general term in the square parentheses
""in equation (3.2.2) by P arrows (q components tt_.CA..J.and

I'"'
,...~

p-q components ~k~ ) entering a vertex and a single arrow
,...~

~
(the contribution of the term [ 1 to 11Q.1c ) leaving the

v -t(,JVt -y -
vertex. The linear term g/.k,e l =-to.k. is represented simply
by an arrow. The complete expression (3.2.2) is then given by the

linear diagram and the set of all possible diagrams with one

vertex and one outgoing component.
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V.'
The ingoing components ",_,o..,~ in these diag::vams can be

reducec5. by further diagrams to component s tI-'1(;(. h , the
~ ~ -

components 1'1-1Ctt to h_?O-l3.
'

anc5. so forth to the components

I~; J which are given by the initial conditions. One obtains

in this manner branch diagrams Gontraot~ng ~hrouih a ser~es of
I

"'!1
.,.

vertices from a number of input components ,Cll!', b{ to
d -d 'V

a single output component. The n'th order iteration n~~ is
representec5. by the set of all interaction diagrams containing

not more than n-1 vertices.

Each vertex of a digram is associated with a coupling coefficient

and a number of field components. In applications, these are

normally characterized by certain small parameters. The order

of an interaction diagram with respect to these parameters

is i~~ediately apparent. The representation of the iteration '
. \.'Tl?

solutions as aperturbation series involves only the~ordering

of diagrams with respect to the para~eters chosen; the diagrams

themselves are independent of the representation of the solution.

3.3 The resonant interaction

The forcing terms in equation (3.1.14) consist of products of
+ i4>texponentials e . If the resultant sum frequency is equal

..J
to the eigenfrequency ~

k'
the response is non-stationary.

An interaction diagram represents aresonant interaetion if

L; St' Gjt = S.., "'.,.,

G.J,i > 0) s.:; {
+ I

cl -I
..j-or ~ro~,-k

Jor A,..h... ~pD"."'1s

and the sum is taken over all ingoing components t .

.
'Further resonances oeeur if equation (3.3.1) holds for any

subdiagramwithin an interaction diagram.
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The homogeneity condition (3.1.8) yields an analogous relation

for the wave numbers,

which is valid for all diagrams.

We shall distinguish

(virtual) components

respectively.

between resonant (free-wave) and forced

in a diagram by full and dotted arrows,

Forced components represent small modificationsof the free fields.

They are normally of secondary physical interest. However,

the analysis of higher order non Gaussian properties due to ~&
eo poncmsJ

forced .., _.' (can yield important information about the coupling

coefficients(c~Hasselmann et al, 1963).

The resonant interactions lead to a continuous redistribution

of energy between the int&rä~ing components. Dur primary goal

will be to determine the source functions characterizing this

energy flux.

3.4 The energy transfer

Let us consider first the effect of the interactions on the

statistical properties of the fields.

It can be s~own that free, dispersive wave fields asymptotically

become Gaussian, stationary and statistically independent

(Hasselmann, 1967 a). These properties hold in the coarse-

grained sense, assuming that all mean values can be determined

only with an arbitrary large, but finite spectral resolution.

In practice, this is always the case.

The fields are then completely determined statistically by

the set of time-independent energy spectra
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fkV ~ i(Ql ~~ >
-

The total energy of the wave-field system is accordingly .

Wemay expect the interactions to modify this simple picture

in two respects: firstly) the non-linear distortion of the

field due to the forced-interaction components will give rise

to non-Gaussian statistical properties; secondly) the resonant

interactions will destroy the stationarity of the system)pro-'

ducing , in particular) a continuous redistribution of energy

within the spectrum. We are concerned here with the latter

effect.

It is not immediately apparent that the energy transfer can be

considered separately from the non-Gaussian distortion. For

ex~~ple) in the case of conservative wave-wave interactions, the

total energy H = H2 + Hint consists of the total spectral energy

H2 and the energy Hint associated with the field distortions.

It is an important result of weak-interaction theory that to

lowest order the resonant interactions affect only the spectral

distributions) and not the partition of energy between H2 and
.

H
Hint; thus the total spectral energy is conserved) ~ = O.

The statistical properties of the distortion field are given

to lowest order as stationary functions of the spectral dis-

tributions. As the spectral distributions vary) there is

therefore a secondary, lower order redistribution of energy

between H2 and Hint, The same situation applies if energy

~s introduced or withdrawn by external interactions; to first

order) the energy transfer affects only theenergy spectra

associated with H2.



- 25.-

.

The redistribution of energy can be determined by expanding

Fk in terms of the various diagram contributions to a~ and
- -

~~~. The resonant diagrams yield ~ secular spectral perturbations
.-
which grow linearly in t. The secular terms can then be

rewritten as the rate of change of a slowly varying spectrum.

The analysis is well known from various scattering problems in

solid state and quantum field theory. A derivation in the present

context is given in Hasselmann (1967 a). We indicate here only

the structure of the analysis in terms of the interaction diagrams

associated with typical transfer terms. 'Since ~~ .is quadratic,

each term involves hlO diagrams representing the relevant contribu-

tions to a~ and .~~, respectively.

The net energy transfer, or source function S, consists of a

number of contributions, which are listed bel~w. We return to

the continuous spectrum notation F")) <J$.) = ~ '
where Al$. is

the wave-number increment of the Fourier sumo rhe source functions

represent the energy transfer to the normal mode -V,
S-.l

(k,.)-=:.p Ei(k )... ~ ut ,-.

.

The linear interactions yield the transfer expressions

(3.4.2)

and

- f~:"
(t, 1.1')~(h..1.1') ~(w~-"'f)Ji"'1/

(3.4.3)

where

(3 .4.4 )
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and

~
(
1! ) 1, 1.,)

:: (3.4.6)

AI<
-

is the external field spectrum.

The index notation for source functions Sand transfer functions T

refer to the transfer diagrarns introduced in the next section.

The relevant interaction diagrarn pairs are shown in figure 1.

We note that although both processes are linear, the transfer

rates (3.4.2) and (3.4.3) are of different order with respect to

the coupling coefficients.

The non-linear interactions yield transfer integrals involving

quadratic and higher products or spectra. We give here only the

quadratic expressions.

The wave-wave interactions lead to four transfer expressions

which in the general, non-conservative case are given by

(3.4.7)

(3.4.8)
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~ .

S(. _ _
)"'3 ,.'1

and
= equation (3.4.8) with indices 1 und 2 interchanged,

where Fy

"Y. "> 0
~

= F..,( ß).~) P)I': = F".( !!i) >
is any wave iÄdex, iJ~luding:V, and

(3.4.10)

(3.4.11)

( 3. 4 . 12)
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The transfer functions of equation (3.4.8) follow from equations

(3.4.10) - (3.4.12) by changing the signs of the indices Vj and ~j
in the coup.:ing coefficients wherever components Vj and anti-

components ~j are interchanged in the transfer f~nctions. Operators

in parentheses apply to all later expressions in the transfer

integrals. P denotes the Chaucny principal value.

The interaction diagrams associated with the various terms of the

source function S('~.y ~), equation (3.4.7), are shown in figure 2..." ;2 :::J ..,

The. source 'function 5(~~~)iS identical with ~~~~~)excePt for a

notational interchange of the indices 1 and 2. It has been listed

as a distinct source function, however, since the net energy

transfer is obtained by adding all source function seperately.

In the case of conservative wave-wave interactions, the coupling

coefficients E are replaced by the symmetrical coefficients D.

The three transfer functions (3.4.10), (3.4.11) and (3.4.12)

then becom& identical except for a frequency factor, and the
~ ; ~

source functions .s(-vIV.&.~) , S("'~2.=\1)and S(Y.z=i,~) can each be

characterized by a single transfer function. The fourth source
v

function SYY, vanishes, sincethe expressions in the parentheses

l J
become real (section 3.6).

The interactions with external fields yield the seven transfer

expressions

~
~( - -) =..,,~z. "'I (3..4.16)
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s..,
. -(-oJ./a.~)-

(3.4.17)

s; ~
_
)

:: r(1;,"
-+" ~ F... + T.." f.~, ) .

'I 1.~, JI
,/1. i '"4 'Vra.~'"

,

, b(~2.-k'-~)d(~;: -~;,_W;)"~IJ!:!'I

(3.4.18)

= equation (3.4.20) with indices 1 and 2 interchanged,

(3.4.21 )

with

/,'>0
I

and
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-

· L: ..,;: (p1~)1 A (I,,.) +- A(-I,?) - Ä (I, ~2) - A (-I, -2)}
.Y.1.~o .

<3.4.25)

'"where A and Aare defined as

the indices -YJ' being replaced

The first coefficient E in the

on 1;, the second on ~~ .

in equations (~.4.14), ('.4.15),

where appropriate by-I'i ·
expressions for A ,A depends

The transfer functions of equations (}.4.17),

(3.4.20) are obtained from equations (~.4.20)

changing the signs of indices.

(~.4.18) and

- (3.4.22) ~~ before by

The source functions (3.4.16) - (3.4.20) are similar in structure

to the source functions (3.4.7) and (3.4.8) for wave-wave

interactions. They are associated with the interaction-diagram
" . ~

combinations shown in fig. 2. The source function SV~I is analogous

to the function S~~ and is characterized by the interaction

diagram of fig. 3. (The numerical factors in the transfer functions

differ from the corresponding factors for wave-wave interactions.

This is due to a difference in the admissable permutations of the

indices of the coupling coefficients. For external interactions,

the permutations are restricted by the side condition that wave

indices precede external indices.)
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The total source function S

individual source functions,

indices "J'> 0, l"i'>O.

is given by the sum over all

including all combinations of

The derivation of closed transfer expressions in terms of the

field spectra is based on certain statistical assumptions.

In transfer expressions involving mixed spectral products of

more than one field, the interacting fields are assumed to be

statistically independent. In the case of interactions involving

several components of the same field, the components are treated

as statistically independent, i.e. the field is regarded as

Gaussian. The corresponding transfer expressions are characterized

by quadratic or higher-order products of the spectrum of a single

field. The linear transfer expressions involve no statistical

assumptions.

The validity of these assumptions has been demonstrated for the

case of weakly interacting wave fields by Prigogine (1962).

The proof is rather complicated, but can be understood physically

by interpreting the energy transfer in terms of interacting

wave packets. The assumptions are then seen to be very similar

to the Boltzmann hypothesis of statistical independence of

interacting particles in a dilute gas (cf. Hasselmann, 1966).

The physical argument can be similarly applied to support the

hypothesis of statistical independence between wave fields and

external fields. On the other hand, the external fields them-

selves are in general neither statistically independent nor

Gaussian. In this sense, the transfer expressions (3.4.19) and

(3.4.20) are only approximate, the complete transfer expressions

including further integrals over cross spectr~ and third and

fourth cumulants. However, we shall not require these in our

applications. The expressions (3.4.19) - (3.4.20) can be a

useful approximation in cases in which the cumulants are not well

known, for example, in the problem of aerodynamically generated

sound (cf. Lighthill, 1963).
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3.5 Transfer diagrams

The formal analysis of a weakly interacting system of wave fields

and external fields has lead to thirteen distinct source functißns

at lowest order) most of which involve several transfer terms. ,

Thus even in rather simple systems;we may expect a wide variety

of transfer processes (as we shall indeed find). To discuss'~hese)

some form of systematic nomenclature is clearly needed. It is

again convenient to base this on a diagram notation.

refer in the present context to transfer diagrams) as
<I

from the interactlo\'\~ diagrams introduced in section 3. S"".
.

Each transfer term in a source function may be associated with

a particular component of a transfer diagram. The superscript of

the transfer functions in section 3.~ refers to the component)

the group of subscripts to the diagram. We shall distinguish

between two types of diagrams:

a) Scatterin& diagrams consist of a number of components

or anti-components entering a vertex and a single ~
component leaving the vertex. The frequencies and wave-

numbers of the components satisfy the relations (3.3.1)

and (3.3.2) for aresonant interaction diagram.

b) Parametrie diagrams consist only of a number of compo-

nents entering a vertex. The diagram contains no anti-

components and no outgoing components. There is no res-

triction on the wave-numbers and frequencies.

. tl.?J

We shall denote scattering diagrams by{symbols

'etc.) parametrie diagrams by .y~,) ..y/'I) etc.

~,...,
Scattering diagrams ('1"e-pre.~~_tJ t;bothconservati ve and

processes . There ois &<L~~s a net transfer of energy

ingoing compon~ts to the outgoing component.

non-conservative

from the

In the case of

conservative wave-wave interactions) the energy transfer of each

component, is proportional to the frequency of the component.

The scattering diagrams can then be interpreted as collision

diagrams in a particle picture (section 3.6 ). The wave-particle

analogy is not applicable for non-conservative interactions.
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The diagram resonance conditions correspond to b -functions

in the transfer integrals.

Parametrie diagrams apply only to non-conservative interactions.

They represent processes analogous to the parametrie amplifi-

cation of signals in non-linear electronic circuits. The rate

of growth of a component is proportional to the power present

in other components. In the simplest case, the diagrams contain

only two components (excluding the degenerate linear case);

there 1s no energy scattered into a third component. The d1agrams

are assoc1ated with transfer expressions wh1ch conta1n po

~ -function resonance t~rms (the energy transfer 1s nontheless

due to resonant interact10n diagrams, cf. fig. 3). The dis-

tinct10n between components and anti-comporents is therefor~

lost, as this is.based - for transfer diagrams - on the s1gn
combinat1ons occur1ng 1n the resonance conditions.

The transfer expressions of any 1nteract1ng' system can be derived

from the transfer diagrams with the aid of a single transfer rule:

the rate of chan e of the sectrum of an wave com onent or anti-

wave com onent in a d1ar.rram roduct .cfthe

spectra of the ingoing components.

{ur Q>er-''''''r~

The lowest-order transfer expressions of section (4.4))rare

obtained by applying the transfer rule to the components ~ ,an~

~ in the set of all transfer diagrams containing not more than'

two ingoing components. The transfer expressions (3.4.3), (3.4.7),
,

(3.4.8) and (3.4.16) - (3.4.20) correspond to scattering diagrams,

the expressions (3.4.2), (3.4.9) .and (3.4.21) to parametrie

diagrams. Typical transfer diagrarns are shown in figure 4. (The

degenerate linear transfer expression (3.4.2) may be characterized

by either a scattering or parametrie diagram. In Hass~lmann

(1967 a) a scattering diagram is used. A pararnetric diagram is

in some respects preferable, cf. section 4.6 ). We could dis-

tinguish further between 'generating' processes, in which all

ingoing components of a scattering diagram are external components,

and'scattering processes properl in which at least one ingoing

component is a wave component. However, we shall not do this in

the following~
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Scattering transfer expressions containing the same ~ -function

resonance factors have been grouped into a single source function.

,The associated scattering diagrams define a diagram set. Members

of a diagram set are obtained by interchanging ingoing and out-

going components of a scattering diagram. the interchanged

oomponent8 changing 8ign (ir thil lead. to an outßo1ns anti-wave

component instead of a wave component. all components of the

'diagram change sign). For f'xample. the diagrams Y, v2.--?Y .

~ 1"; ~y and v2 y -";>~ represent a diagram set. We denote

,the set by the symmetrical symbol (v, 112.-V): ). which lists

all interacting components on the same side of the resonance
. S~equation. The source functions (~I~2~) represents the net

energy transfer of the wave component v or ~ for all diagrams

of the set (v,.,)2.~) (figure 4).

We have introduced transfer diagrams primarily as a notational

convenience. They reflect the structure of the transfer expressions.

but yield no information about the transfer functions themselves.

These can be determined only from the detailed interaction analysis

as characterized by the interaction diagrams. Comparison of

figures 1~3 with figure 4 indicate that the interaction and
.

transfer diagrams of a given transfer expression are generally

not very closely related.

However. in the case of conservative wave-wave interactions an

interrelationship exists on account of the symmetry of the

coupling coefficients. Both the interaction analysis and the

transfer expressions can be characterized in this case by a

single set of diagrams. The transfer rules become particularly

simple if expressed in a particle picture. They are closely re-

lated to the transition rules of quantum fiela scattering theory.

and the diagrams themselves may be regarded as modified Feynman

diagrams.
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3.6 Conservative wave-wave interactions

The lowest-order energy transfer due to conservative wave-wave

interactions is given by

, .

and
;;i

S( -_) = equation (3.6.2) with indices 1 and 2 interchanged.'~-VI~

where t'1' ::

d

and

--

=

Equations (3.6.1) - (3.6.4) follow from the general transfer

expressions (3.4.7) - (3.4.12) in the case of sy~~etrical coupling

coefficients. They were first derived by Peierls (1929) for

non-linear interactions between crystal lattice vibrations.
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We shall be interested primarily in wave-wave interactions

within a gravity wave spectrum. On account of the negative

curvature of the dispersion curve) it is not possible in this

case to satisfy the resonance conditions with only three wave

components (Phillips) 1960). The lowest order energy transfer

1nvolves scattering from three components to a fourth.

where

The coupling coefficients and transfer fuctions are given

in Hasselmann (1962, 1963 a). The general features of the

computed transfer rates agree with observations made by Snodgrass

et al (1966), cf section ( 5.6 ).

The transfer expressions (3.6.1), (3.6.2) and (3.6.5) have the

general form of Boltzmann collision integrals for an ensemble

of interacting particles, the spectra "y = F;,/G.J corresponding

to the number densities in x - k phase space of particles- -- .
of momentum k and energy CA:) . The resonance conditions represent

...".
"

. .
the conservation of energy and moment um, and the transfer functions

correspond to interaction cross s~ctions.



- 37 -

The wave-particleanalogy is unäerstanäable if one regards

the interacting wave-system formally as the classical limit cf

a set of quantiseä fieläs. The transfer expressions follow in

this limit from the interaction rates of an ensemble of bosons

(of. Peierls, 1955).,

An alternative particle picture which is not related to the

rules of seconä quantisation may be äefineä in terms of an

ensemble of both particles and anti-particles, anti-particles

being characterized by negative energies, momenta and number

densities. Although not realisable physically, the particle

picture leads to simpler interaction rules anä is more conven-

ient for geophysical applications. The scattering diagrams

may be interpreteä in this picture as collision processes in

which particles and anti-particles are created or annihilateä.'

The expressions for the transfer functions may be summarized by

a few rules involving the coupling coefficients of interaction

äiagrams with the same inputs anä output as the associateä

scattering äiagram (fig. 5). In the case of the lowest-order

processes, only one coupling coefficient occurs, anä the

expressions become particularly simple, equations (3.6.3),

(3.6.4). We refer to Hasselmann (1966) for a summary of the

interaction rules and their application to geophysical scattering

problems. An aävantage of the particle analogy is that it äetermines

the ratiosof the energy and momentum transfer rates of all com-

ponents of a scattering process. However, we shall be concerneä

here primarily with non-conservative processes, which can be

characterizeäcnly by the general transfer rule stateä in the

previous section.

Once the general form of the transfer expressions has been

establisheä, the analysis of the wave energy balance of an

interacting system is reäuceä to the determination of coupling

coefficients. In the following, weconsider the various coupling

coefficients occuring in ocean wave interactions.

r
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4.
;Interaetions between waves and the atmos here

4.1 The lowest order processes

We eonsiäer in this seetio~ the interactions between a gravity-

wave field anä a turbulent atmospherie boundary-layer. We sh~L~

assume that the boundary-layer flow eonsists of a mean horizontal

velocity fielä'y = (U,(z),IJ1.(z.),o) and a superimposed fluetuating

field u (x, z, t) whieh is statistieally stationary and
- -,.,-

homogenous with respeet to x.
-

The fluetuating field is eharaeterized by the speetrum

*
/,(-i,~,~ (Z)['d"!!IW (""LI)]

-
A~ ACA>

where 1.I~/~,c..J is the Fourier eomponent of the fluetuating

velocity field, equation (3.1.13) (the index (a) refering to

the atmosphere may be dis~arded in this seetion).

We shall finä that the wave-atmosphere interactions ean be

expanded in the form (3.1.14) with respeet to the gravity-wave

eomponents g and the turbulenee Fourier eomponents t ;

the mean flow enters only implieitly in the eoupling eoeffieients.

We are th~s eoneerned formally with a two-eomponent syst~m.

The eomplete set of lowest-order transfer diagrams for this

system are shown in figure 6. All eombinations involving not

more than three eomponents oeeur, with the exeeption of the

diagram set ( g1g2g3)' whieh eannot satisfy the resonanee
eonditions. Interactions between gravity waves and oeeanic

turbulenee or currents are eharaeterized by the same diagrams,

cf. seetion 5.

Diagram (i) eorresponds to Miles' linear interaction between

the wave field and the mean boundary layer flow. A non-linear

eorreetion to Miles' theory is represented by diagram (ii).
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The three diagrams (iii) eorrespond to the.Eekart-Phillips theory

of wave generation by random turbulent pressure fluetuations.

They may be replaeed more simply by the linear diagram pt~ g.

where p~ is the turbulent pressure at the surfaee. The re~

maining transfer diagrams (iv) and (v) represent wave-turbulence

interaetions (Hasselmann. 1967 a). The net souree funetion

due to these proeesses is given by the first four terms of

equation (2.2.5).

4.2 The eneration of waves b turbulent ressure fluetuations '

Let

. (4.2.1)

and

?(~,t)

be the Fourier representations of the surfaee elevation $ and

surfaee pressure p

For an ideal fluid, the response of the wave eomponents
.
the foreing pressure eomponents ~~ is determined in the

......

approximation by the harmonie oseIllator equation

~~ to

linear
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Introducing

given by

'3
ak -
.....

stanäard wave variables, which in this case are

equation (4.2.3) becomes

-

For Pk = 0, the free-wave solutions
.

......

to the representation (2.1.1), with

The determination of the ~ave-atmosphere coupling coefficients

reduces to the determination of the coupling field
P1i

as

a function of the interacting fields.(we shall neglect the

effect of surface shear stresses. In the linear approximation,

shear stresses are not coupled to waves, but to rotational eddy

motions anä currents. We shall consider the interact10ns of

waves with these mot1ons in section ~. The local transfer

of wind eriergy to waves via shear stresses would require a

three-fold coupling between waves, rotational flow in the ocean,

and air fIOW," "I'Ihich1s probably negligible.)

iO de1~r*",'!i2e. alL 7t.e. COtApÜ;'!j(vefliciQ fs~

~e shall expanä the surface pressure later in powers of the

wave components and the turbulent velocity components. As first

step, we consider here the interactions which involve turbulence

components only. The lowest order energy transfer due to these

processes is represented by the three diagrams of figure 6 (ii1).

However, since the pressure field in this case is simply th~

turbulent pressure pt in the absence of waves, it is more

convenient to regard the surface pressure as the given external
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field instead of the velocity field. The transfer diagrams

then reduce to the linear diagram pt~g.

Introducing the Fourier representation

t ( " ~ i: ~(~.~ ~r.Ji:)
P ~ ,-1:) = L.J Pk w e

I.. -',CÄJ

and the three-dimensional pressure spectrum

-to (
~ )*Pf,w p~,w

equatiöns (4.2.5) and (3.4.3) yield the energy transfer

-

We shall discuss the pressure spectrum in more detail in

section (4.6 ).

4.3 The linear interaction with the mean boundar -la er flow

As next stepin the expansion of the pressure field we. consider

terms which are linear in the wave components but independent

of the turbulence field. This requires investigating the

velocity field 6~ induced in the boundary layer by the waves.
, -
The problem has been considered in detail by Miles (1957,1959).

The velocity field '"j!may be represented as a superposition

of two-dimensional flows characterized by stream-functions rtfk
....

and horizontalshear flows fk ,
-

~v. ::
d
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(4.3.2)

where ~ is the horizontal unit vector perpendicular to ~
and '1.f k . CPk are functions of z. The representation (4.3.1).

(4.3.2)-is va~id for any incompressible flow.

Since in the present approximation the flow is linear in the

wave components and the interactions involve only the mean flow.

we may write

rW. ~w .

where ""'k . 'Vk. representthe responseof the boundarylayer
to a periodic, uni~amplitude surface displacement of(arbitrary)

phase velocity :t (,,)/k . '(!Je need consider only positive frequencies.
. W L -~

)
~ w (

.

-w
)
*"

.

s~nce ""'"~ = ("":.~ . <'Pie = 'f-~ on account of the reality

of the fields. -

Neglecting variatiChsof the Reynolds'stresses. the perturbed

equations of mean motion yield

-
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and the inviscid Orr-Sommerfeld equation

where
-
lA =

k,U
",.. ....

T )

The neglect of the viscous terms in equations (A.3.5).

(4.3.6) has been justified in greater detail by Benjamin (1959).

~e appropriate boundary conditions are

and

Equation (4.3.7) follows from equations (~.2.4). (~.3.2).

(4.3.3) and the kinematic boundary condition

D- (~-z) _
])(;

where
~c

denotes the substantial derivative.

, .
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After solution of equations (4.3.6) (4.3.8), the pressure

field at the surface follows from the horizontal equations of

motion,

where Uo =- Ü(0) and 1a = density of air.

The linear coupling coefficient is obtained from equations

(3.1.14) and (4.2.5),

I=~
~

-kk --......

The energy transfer is then given byequation (3.4.2). .

6"The solution ~ of the Orr-Sommerfeld equation can normally
....

be determined only numerically. However, the energy t~ansfer can

be expressed in an alternative form which is easier to estimate

and illustrates more clearly the physical nature of the pressure

feedback.

According to equation (3.4.4), the energy transfer depends only

on the imaginary part of the coupling coefficient, i.e. on the

imaginary part of d~f(o) . If we multiply equation

(~ .3.6) by ("1.)i(a.-c.)z-,- subtract the complex conj ugate expression
;-.

and integratefrom z = 0 to z, we obtain

(4.3.11)
.
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Taking 'i =Df}and applying the boundary conditions (lt.3.7)

and (4.3.8) this becomes

--
,

The integral is indeterminate. The singularity at the critical

layer Ü-c = 0 arises from the singularity of the inviscid Orr-

Sommerfeld equation and can be removed either by inclusion of

the viscous terms or by treating the resonant response at the

critical layer as a non-stationary initial-value pro9lem. The

correct value of the integral is then found by indenting the

integration path beZow the singularity (cf. Lin. 1955). Hence

~ ( IJ; (0)) 11

(
cI'tÜc.

~ -
) I

rQ
J

"2..- - - d ~'2. d 'l iJ":- - , Jedz. U- c::. - -o d-z.

(4.3.12)

where the subscript

The energy transfer

and (4.3.12).

c refers to values at the critical layer.

follows then from equations (3.4.2). (4.3.10)

--

The essential feature of expression:, (4.3.12) is the proportion-

ality to the curvature-slope ratio of the velocity profile at

the critical layer. The energy transfer is positive for normal

profiles with negative curvature and positive wave slope.

For a logarithmic profile) the energy transfer increases with

decreasing height Qf the critical layer. Thus the Miles

mechanism is particularly ~ffective for waves with phase

velocities appreciably lower than the wind velocity. For phase

velocities greater than the maximal wind velocity or at angles

gteater than,90o to the wind)the waves are neither damped nor

enhanced.
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The energy and momentum is transfered to the waves entirely

from the critical layer. This follows from equation (Jto3.11)

by noting that ~ [of'k}[ (...,.~)*
]

;; -2
"r~

~ where 1:'", is the,17 f41R .....

shear stress g~6~3r~~ for a unit amplitude wave (the bar

denotes the time mean)o The shear stress is zero above the

critical layer and constant between the critical layer and the
L 0./ #.e ~..

'-"
c-~

j
+.-a..s...('-" r)

surfacec A physical explanatlon~n terms of the vortex forces

acting on fluid particles near the critical layer has been given

by Lighthill (1962).

We shall discuss measurements in connection with Miles' theory

in section (4.7 ).

4.4 Wave-turbulence interactions

We consider now the terms in the pressure expansion which are

linear in the wave-field but contain arbitrary powers of the

turbulence components. These arise from the wave-turbulence

interactions in the equations for the wave~induced velocity field

&.1!..c We linearise as before with respect to 6~ 0 The viscous

terms can again be neglectedo

Including the cross interactions between the wave-induced field

and the turbulence field, equations (11.3.5)and (4.3.6) become
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where

L -

,
(we can now no longer apply the normalisation (4.3.3), (4.3.4) ).

The coupling coefficients A(n)

listed in the appendix.

= A
(n )

(k' k" c.)" j) are
-' -'

,

The boundary conditions become

and

where B(l), is given in the appendix.

In the inviscid approximation, the boundary condition (4.4.4)

must be applied at the edge of the laminar sublayer. The turbulent

velocity field at "z = 0" is horizontal, but non zero. Although

the me an profiles and turbulent intensities vary rapidly in this

'region, the final results are insensitive to the precise definitioI

of the sublayer thickness. They involve only the pressure field,

which is effectively constant across the sublayer. (Similarly,

in Miles' theory the boundary condition (4.3.7) is sensitive to

the definition of z = 0, ~ut not the final transfer expression

(4.3.12».
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The pressure at the surface is again given,by the horizontal

component of the equations of motion,

~ CI)

-+ '& l c ;t;-

J!.'

CA
'k,",,;)11

'H/t"di
d

...
wir- .

A

The coupling4coefficients

appendix.

f~ -,,: = fc.
( Ci -

t-i ):~ - ~~ 4f-J!;~
(~)

J
i.t..)"b

-#- C CP!lCAi~'d' e

C(1) and C(2) are listed in the

(~.4.6)

We attempt now to construct a solution to equations (~.4.1)

(4.4.4) by expanding "+

l$..

and l'
Js..

~n powers of the turbulence

components,

CPk
- -

(0) (0)

The leading term is the Miles' solution ~k , ~~ , which we
,. -

assume to be a good first-order approximation. Observations by

Longuet-Higgins et al (1961) indicate that this is indeed the

case (cf. section 4.7 ).

We note that this does not necessarily imply that the energy

transfer due to wave-turbulence interactions is small as compared

with the Miles transfer. Miles' (1959) calculations indicate

that the surface pressure is almost 1800 out of phase with the

surface elevation over the greater part of the wave spectrum
,

(as one would expect from a simple constant-velocity model).

The energy transfer 1s due to the,pressure component which 1s

,
900 out of phase with the surface elevation, which 1s only a

small fraction of the total pressure. Thus the Miles feed-back

represents a small term in the first order theory; the h1gher-

order pressure correctionscan well be of the same order or

larger.
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The h'th order terms of the expansion are obtained by solving

inhomogeneous Orr-Sommerfeld equations in whieh the (n-1)-

order terms appear as foreing terms in the bilinear expressions.

Substituting the expansions in equations (4.4.1) - (4.4.4)

we obtain, using symbolie notation,

(
- .

)
CI..)

lA-::"~ ce =
k"dt (4.4.8)

with boundary eonditions

CI)
(I) (0)

4 = B t'(J.- Cl

~(h}::;: 0, \1~ '2. Af "2:: 0

(4.4.10)

+r~..s r

It ean be shown that for the lowest-order expressions the time

dependenee of ~~' in equation (4.4.9) ean be taken as the"free-
i.f$"t

wave time dependenee e~ . The solutions ean then be
i f '" i G

w
(

'

)
"

wn terms 0 the response lunet ons k z,z ana wk
-.. 19'

expressed

(z) ,

where

, .
(2, 2 :> 0)
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cA)

and wk is defineä by equations (4.3.6) - (4.3.8).
....

L[ w:1 ;: 0 (2. 7 c:»
-

rw-;: ~ (Üo - "'Ik) (J\f- 'Z.:- 0

-

The surface pressure is then obtaineä in the form

where Pk(O) is the Miles term and
-

(~.4.11)

.

~) ~(~
'The coupling coefficients ~ .

I äepenä on the

functions and the coupling coefficients A(l) _ A(4).

and ~(2). They are given in the appendix.

response
B(l) c(l)

.

The coupling coefficients E of equation (3.1.15) follow from

equations (4.2.5). (4.4.11) and (4.4.12). The energy transfer.

finally. is given by equations (3.4.14) - (3.4.16) and (3.4.19).

It may be written in the form
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<.4.4.13)

- F(k )f:r..( k k' J L2.') F..(k W'2.,z!\JWclJoIz-dz.'
".,. 'J - J I J' 'J - " ).....

s /'os ---5
where the transfer funetions ~. , "T.'d' and -r;j' are
'determined by equations (3.4.22), (3.4.23) and (3.4.25).

The first integral of equation (4.4.13) represents the eon-

tribut ions from the three seattering diagrams, fig. 6 (iv).

The seeond integral eorresponds to the parametrie proeess,

fig. 6 (v). The scatteringtransfer expressions (3.4.16) and

(3.4.17) have been reordered with respect to components rather

than diagrams. The first term of the first integral represents

the net energy gained by the three outgoing components of the

diagrams. The second term represents the energy lost by the

three ingoing components. The three sign combinations have

been reduced to two by using the syrnrnetryrelation

F: (~ w ..,

2. ) - F: . (- Je - W ) 2', 2.)
'i '

,~, I
- J1. -'

and including both positive and negative frequencies in the

transfer expression.

The first transfer function~.5 is always positive; the remaining

two may be of either sign.

The transfer functions depend on the response functions, which

for an arbitrary profile can be determined only numerically.

However, for idealised models such as a constant-velocity or

line-segment profile, the funetions become rather simple analytic

expressions. In contrast to the laminar interaction problem,
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these models may yield aeeeptable approximations in the

present ease. In the laminar interaetion problem) the constant-

veloeity model predicts the absolute value and phase of the

surfaee pressure quite well for a fairly broad of range of

phase veloeities of the order of the wind veloeity. However,

sinee the energy transfer, is zero to this approximation, the

small phase shirts due to the eritieal layer are rn6~.e'..r.j-k(!,.te.>s

i.e:$~:et'\j:;:ilQ:6., In the ease of wave-turbulenee interactions )

the phase shifts ean be treated as higher-order effeets) sinee

an energy transfer oeeurs already in the first approximation

of a eonstant-velocity profile.

4.5 Non-linear wave-atmosphere interaetions

We eonsider

pressure in

aetions and

finally the eomplete expansion of the surfaee

whieh we include both the wave-turbulenee inter-

the non-linear "'lave-wave-ci~a.PitlOw"i:nteractiop.:;;,

In symbolie notation) the eomplete equations of the wave-

induced field are

tJu
f?;) (4) (fl) Cf) Cle»

:=

;;;.

1;
-+- A '4-~ + A O/~ + ~ '1f~ -r

,q
-<tf + A Cf'f

(4.5.2)

with boundary eonditions

.
5:]

Cf) (1)
(3)

c.~

~ =
~ ~';\ (Ü-s.c.)ak + 13 AJ:!. + ß t'tft -4- 8QcP

-+' i3:Ai:zs-f ~ I
.,... , .. ,

and

(4.5.4)
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where
(s) (10) (2.) ('~)

;ct - A ""'eX.15 ß ,
. . .

J ) are further

coupling coefficients.

SimilarlYi the surface pressure is now
.

f
- p~

:::

(4.5.5)

-t'.
,. I

with additional coupling coefficients c(3), c(4), ....

The solutions can be constructed as before by expanding about
.

the Miles solution with respect to both wave components and

turbulence components. We shall not go into details.

To lowest

cluded in

diagram 6

order, the only transfer expression not already in-

the previous analysis is the parametric process,

(ii),

- (4.5.6)

The process ~jl is probably less important than the wave-

turbulence. interactions, for the coupling coefficients are

similar in both cases, but the wave-induced velocity fluct-

uations are normally weaker than the turbulent fluctuations.

4.6 The pressure spectra

The relationship between the various transfer processes becomes

clearer physically if one considers the surface-pressure dis-

tributions.

The turbulent surface pressure pt of the unmodified boundary

layer is characterized by a three-dimensional spectrum F ~(k,w)
.

p~ -
(~, ) (section 4.2 ). The power spectrum of the free-wave
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field > . on the other hand. is a two-dim~nsional distribution,

confined to the positive and negative sheets of the dispersion

surface Go)
= :i:o(f.). Interactions between the wave fie'ld and

turbulent boundary layer lead to mixed two- and three-dimensional

distributions for both pressure and wave fields. For example.

the linear interactions between the wave field and the mean flow

yields a two-dimensional pressure distribution on the dispersion

surface. Conversely. the turbulent pressure fluctuations gen&rate

a three-dimensional continuum of forced waves~

The energy transfered to the waves is equal to the work done

by the pressure against the surface. This is proportional to the

quadrature spectrum of the surface pressure and wave'height.

which is zero everywhere except on the dispersion surface. Thus

the energy transfer is due entirely to the pressure components

in resonance with free waves. and we need consider only the

pressure distributions on the dispersion surface.

The three-dimensional pressure continuum yields an energy trans-

fer proportional to the three-dimensional pressure spectrum at

the resonance frequency (see. for example. equation (4.2.7) ).

The two-dimensional pressure distribution yields an energy

transfer proportional to the wave spectrum (see. for example..

equation (4.3.13) ).

Three-dimensional pressure spectra are associated with

scattering processes. two-dimensional distributions with

parametrie processes.

The distributions of the lowest-order transfer processes are

1ndicated schematically infigure 7.
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The general form ofthe turbulent-pressure distribution

follows from Taylor's hypothesis, which states that the fre-

quency and wave-number spectra of a turbulent field are

approximately related as though the turbulence were a "frozen"

spacial pattern convected downstream with the mean velo city

of the flow. In our case, this implies that the turbulent pressure

spectrum is concentrated about the surfac~ iW+ k,U~~ 0" where U"",

is a "mean" boundary-layer velocity. Since the vel~city profile

is curved, the effective mean velocity depends on the eddy scale

2rr/j,.
. It is not precisely defined. The indeterminacy is

.

generally of the same order as the spread of the pressure dis-

tribution about the surface W .-rJe.U~:; 0 . For simplicity.

U has been taken as constant in figure 7.m

Atmospheric turbulence spectra are normally peaked at

considerably lower frequencies then wave spectra. Hence, in the

range of wind-wave frequencies the turbulent pressure spectrum

decreases with increasing frequency along the surface (..;)-+ k,U~; o.

An appreciable energy transfer occurs only where the surface
CA)-rk.Ut;k=(} intercepts the dispersion surface w + ~(k):; 0)-

i.e. along the resonance curve ö.. JqU"",(.a:)<'f<, whereCf'-r is

the angle between the direction of wave propagation anCl."the

wind. The longest waves are generated in the wind directl~

with a phase velocity equal to the wind speed. Shorter wave~

are generated at the angles ~.,. for which.the phase velocity ,

~/~~< in wi~d direction equals the wind speed. (An alter-
".

native explanation of the resonance angle Cf.,. in terms of the

auto-correlation time scales of the pressure fluctuation ,is

given {"" Phillips (1957).)
,

Linear interactions with the mean flow yield a two-dimensional

pressure distribution on the dispersion surface. The component'

in quadrat ure with the wave height is proportional to the

curvature/slope ratio of the wind profile at the critical layer.

If we identify U with the "anemometer wind speed", theener~y
m

transfer per unit wave height is effectively zero to the left
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of the resonance curve for a logarithmic profile and increases

monotonically wi th frequency for 6" ':>jqU t.r3
'f..,.

.

Wave-turbulence interactions yield both two- and three-

dimensional pressure distributions.

I ,- -
The scattering processes gt ~ g, gt -7' g and gt -"'7g

(diagrams (iv), fig.6) are characterized by three-dimensional

pressure spectra. The pressure fluctuations arise from quadratic

interactions between turbulence and wave-induced velocity

fluctuations. Since the most energetic turbulence components

are at low frequencies, the sum and difference frequencies of

the resultant pressure components lie close to the frequencies

of the wave-induced components. The same holds for the wave-

numbers. Hence the pressure distribution is concentrated about

the dispersion surface, the maximum lying close to the maximum

of the wave spectrum. (We have ignored weighting effects due to

the 'coupling coefficients. A more detailed analysis shows that

these do not affect the conclusion.)

The parametric process gt (diagram (v), fig. 6) corresponds

to a two-dimensional pressure distribution. The pressure field

arises from a cubic interaction between a wave-induced component

and two turbulence components of opposite wave-number and

frequency (cf. figure 3).

The parametric process gg' (diagram (ii), fig. 6) is similarly

associated with a two-dimensional pressure distribution. In this

case, the turbulence components of the process gt are replaced

by a conjugate pair of wave~induced components.

Estimates of the transfer rates are r;I:i;P~~~ -I::o..~~Q..kelfYV(.H.Oi.l..t:;J.t

;-""c:."I"kt;..u.~r;~~~&,''''3 ft.e. -/T7I"'s/u" ;",te:Jm.Ls.

Transfer rates of parametric processes are proportional to the

air-water density ratio ~~/~ , whereas scattering processes .
yield an energy transfer proportional to (So../~)-z.. This suggests
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that parametrie processes generally dominate over seattering

processes. However, it should be noted that parametrie processes

depend eritieally on phase relationships, whieh ean reduee the

energy transfer eonsiderably.

Similarly, turbulent velocity fluetuations are generally greater

than wave-indueed veloeities, so that the turbulent processes

tt'--~g, may be expeeted to dominate over the wave-

turbulenee seattering processes gt ~ g,.. .However, this

is offset by the more favorable speetral distribution of the

wave-turbulenee pressure fluetuations.

A reliable evaluation of the various transfer ~~oeesses

requires numerieal ealeulations of the transfer e~pressions

for typieal boundary-layer models and eomparison witl~.observed
,

'
wave growth and boundary layers. Some progress in this ~ireetion

~
~as been made, but our pieture is still far from eomplete.,~

4.7 Comparison with observations

Our analysisof wave-atmosphere interactions was based on the

assumption that the wave-indueed perturbations eould be deseribed

to first order by the linear interactions with the mean air flow.

The hypothesis is supported by simultaneous measurements of

wave height and surface pressure made b~~LongUet-Higgins et all

(1961) with a buoy. High eohereney (0.8) between the wave and

pressure reeords implied a two-dimensional pressure speetrum,

and over 90 % of the eoherent pressure was 1800 out-of-phase

with the wave height, as would be expeeted for a mean-flow

interaction. The observed pressure speetra agreed weIl with

theoretieal ealeulations of the 1800-out-of-phase eomponent for

a logarithmie profile. The resolution was inadequate to determine

the energy ~ransfer due to the small quadrat ure eomponent of the

pressure or to estimate the speetral density of the residual

turbulent pressure.
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W~Ü!~='J("Ö~~ CO«s,be~b(J1.e~u.r(ed:lb~c,~~:I«~t7:,~P/ ,fpXJ(tQ6t). The development

of a single spectral component was determined by towing a four-

buoy array seewards from a lee shore at the group velocity of

the wave component. The energy of the component was obtained

from the array records by appropriate directiona~ and frequency

filtering.' Only the 17 m wave-length component '.'las analysed;

29 runs were made under varying wind conditions.

The first parts of the grm'lth curves were fitted to a Hiles-

Phillips source function S:: ~.,.~F .' Initially, the ~ -term

domina ted , and the wave growth was linear. As F increased, the

second term became more important and the waves grew exponentically

The major part of the wave energy was generated in the exponential

phase.

The emperical value of ~ was':fouhd to be reasonably consistent

withPhillips' transfer expression, assuming that three-

dimensional pressure spectra measured by Priestley (1965) over

land were typical also of the ocean.

The ß-term was found to be larger than predicted by Miles

by a factor of 6 to 8 (figure 8). The theoretical values were

based on a logarithmic wind profile. Although wind profiles
, ,

were not measured, the experiments were performed under neutral

conditions, for which logarithmic profiles are typ{cal.

Barnett (1966) has measured wave growth at higher wind speeds

(40 knots) using as wave sensor an air-borne radar altimeter.

The method yields the wave growth over a broad frequency band,

but the directional resolution~ was smaller than in Snyder

and Cox's experiment. Only one case was analysed. The growth

curves were again fitted to a source function S:="l. + ~F .

The values of oL and f3 , although more scattered, were con-
sistent with Snyder and Cox's results, provided the turbulent

pressure spectrum was scaled as the sixth power of the wind
(Snyder and Cox assumed a more plausible fourth-power relation-

ship). The exponential growth rate was again considerably

larger than predicted by Miles.
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The experiments indicate that neither Miles' nor Phillips'

theory are capable of explaining the major part of the ob-

served wave growth. This suggests that the remaining lowest-

order processes, i.e. the wave turbulence interactions (or,

conceivably,non-linear interactions .with the mean flow) are

the principal source of wave energy. However, the conclusion

should be treated with caution, since the interaction theory

is limited to expansible interactions. Large, local disturbanees,

such as flowseparation at the wave crests, are excluded. (In

the case of flow separation, however, one would expect

Jeffreys' (1926) sheltering theory to apply, which is similarly

unable to explain the observed wave growth, cf. figure 8).

The mechanism of wave generation in the ocean is still an open

question.

It is of interest that Miles' mechanism has been verified in

the laboratory for sinusoidal water waves (Shemdin and HSQ~

1966) and artifical waves simulated by a mo~ing sinusoidal b~~t,
(Zagustin et al., 1966). The phase shift of the wave-induced .

,perturbations across the critical layer was particulary clear

in the latter experiment.

,

The natural turbulence spectrum in laboratory experiments is

normally of too high frequency to study wave-turbulence

interactions. However, laboratory investigations of this

interaction mechanism by low-frequency modulation of the mean

air flow are feasible and would be of interest.
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5. Inte'ractions '\'1ithin the ocean

5.1 The lowest-order processes

An incompressible velocity field in an infinite, non-rotating

ocean may be decomposed into surface gravity waves g, a mean

current U and a residual turbulent field t. If the fluid is~

stably stratified, the turbulence field can be decomposed further

into internal gravity-wave modes i1, i2, ... and a horizontal
turbulence field h. The decomposition is meaningful if the cross

interactions between i and h are small compared with the linearn
restoring forges of the internal modest This is normally the case

for small wave-numbers.

We consider first the decomposition g, U and t. As in the
--

cas? of wave-atmosphere interactions, the equations of motion of

the wave field g can be expanded in powers of the components

g and t, the mean flow entering only implicitly in the expressions

for the coupling coeffici~nts. Formally, we are concerned with

a two-component system g, t, and the lowest-order transfer

processes are identical with the diagrams of figure 6.

Diagram (i) represents the energy transfer due to linear

interactions with mean currents. It va~hes in the weak-inter-

action approximation, Il!./..c< c.

Diagram (ii) represents the parametric energy transfer gg'
due to non-linear interactions with mean currents. The,corres-
ponding interaction diagrams are shown in figure 3 (the coupling
coefficients depend on the current profile). For lil«c, the

transfer is non zero only for l.w~ ~,/.

Diagram (iii) represents the generation of waves by oceanic

turbulence, which is probably unimportant.
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Diagrams (iv) and (v) correspond) respectively) to scattering

and parametrie damping of.waves by turbulence. The transfer

rate of the parametrie process is proportional to the wave

spectrum) in accordance with the heuristic concept of a turbu-

lent "eddy viscosity". The eddy viscosity can be expressed as

a linear functional of the turbulence spectrum.

If the turbulence field is decomposed further into internal

modes in and a horizontal turbulence field h) additional

scattering processes into internal modes occur. However) these

are normally unimportant for the energy balance of surface

waves. (The process gg'--7i and several internal-w.ave scatteringn
processes have been investigated by Kenyon) 1966).

Scattering by a random ocean bottom can also be included in

the weak-interaction theory) but will not be treated here

(cf. Hasselmann) 1966).

5.2 The interaction equations

Consider the interactions between a mean current ~ = (U1(z))

U2(z)) 0)) a turbulence field .s..~(~ z) t) and a wave field ~w .

We assurne that the turbulence and wave field are statistically

homogeneous in x and that the density is constant through-out-
the fluid.

Let the superposition of the mean flow and the turbulence field

represent a stationary turbulent shear flow which satisfies

the equations'of motion and the boundary condition at the bottom.

At the surface) we assurne> = 0) and therefore u3 = 0;
the condition of constant surface pressure is not satisfied.

(The fulfillment of both surface boundary ~onditions for the

complete flow is treated as part of the wave-turbulence inter-

action.) We regard the turbulent shear flow as given.
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We define the wave field as the potential flow

V
",. =
J

whfch satisfies the kinematic boundary conditions

and

The wave field is uniquely determined by ~(~,t) (except

for a constant horizontal velocity, which we assume to be zero)o

In terms of the standard wave variables defined by equations
(

4/"
2 Q 4 )

,

(.) (~)

where A, A, eoo~ are coupling coefficients determined by the
I

non-linear terms in equation (5)202)0

The complete flow consists of the turbulent shear flow, the

wave field and an interaction field ou, which describes the~
coupling between the wave field and the turbulence flow.
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The conditions for weak coupling depend in detail on the

type of interaction and must be investigated individually for,

each transfer process. Generally, the turbulent shear flow

can be treated as aperturbation of the wave field if both

turbulent and mean velocities aresmall compared with the wave

.phase velocities. Conversely, the wave field represents a

perturbation of the turbulent flow if the energy transfered

from the waves to the turbulent flow is small compared with the

total turbulent dissipation.

We describe the interaction field by the representation (4.3.1),
,

(4.3.2). The equations for the components ~kt, Cf'" are ob-... .

tained by subtracting the equations of motion of the t~?ule'nt

shear flow from the equations of motion of the complete f-ield,
".

(5.2.4)

Equations (5.2.3), (5.2.4) are identical with equations

(4.5.1), (4.5.2) except for additional terms involving the wave-

field stream function

(5.2.6)
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The kinematic boundary condition at the surface,

D' '\
- (r;-1.)=0
Jt

yields, on account of (5.2.2),

-0)
::

{,{

~Ic +- B C;~ -+
-

+
"

.,

Similarly,

(5.2.8)

The condition of constant surface pressure yields

Equation (5.2.9) follows hy Taylor expansion of the conditior

~s (Phydrostatic + Pdynamic) z = "> .= 0, where ~s ~s the
surface tangential derivative parallel to k and ~ (~dynamic ),... QS
is expressed in terms of the velocities by means of the equations'

of motion.
.

'"Introducing standard wave variables in ~k and >~ ,and
- .....

invoking equation (5.2.7), we obtain the wave equation
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To determine the coupling coefficientsJ we need to express

the forcing terms on the right hand side of the equation in terms

of the basic fields gJ t and U. This involves solving equations- .

(5.2.4) - (5.2.8). for the interaction fields '1f~ and <f'~ .
,... ......

5.3' Interactions with mean currents

Interactions between waves and currents can be treated as

perturbations if 1~14~CJ where c is the phase velocity of
-'jj

the waves. In this caseJ the linear coupling coefficient ~kk. --
is found to be realJ and the energy transfer (3.4.2) vanishes.

Linear interactions modify only the frequency and velocity

distribution of the wave field. This is true generally for

U .c::.c. As in rUles' problemJ an energy transfer from the mean

flow to the waves arises only through the phase shifts produced

at a critical layer. In the present caseJ th1s would represent

a strong interaction (since the coupling is not reduced by the

factor ~G./~ ) .

HoweverJ a weak energy transfer can occur at next order. Since

second-order scattering processes are excluded by the negative

curvature of the gravity-wave dispe~sion curve (section 3.6)J

we need consider only the parametrie process gg'.

The relevant interaction diagram is shown in figure 9. The

difference interaction at the first vertex yields a forced

component g" \'litha phase velocity eil =(tu_w'),{~_!!'I'If eil;> UJ

the coup11ng coefficients at both vertices are imaginary; the
-, ';II_~'~

net coefficient ~k JG'-k'k of the diagram is therefore real.
Aooo.,.,. ...........

and yields no contribution to the energy transfer (3.4.13).

HoweverJ if eil- U passes through zeroJ a phase shift occurs in

the first coupling coefficientJ and an energy transfer results.
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-For U« cJ a critical layer exists only for difference inter-

actions between components of approximately the same frequency.

The net energy transfer is then of the form

-

k t./I "",,'_where k' = kJ cos cP =
k/q'

The kernel K is a function of the mean current profile and can
w w

be expressed in terms of the response functions wk and Gk

of section (4.4). The details of the analysis are-'similar-to the

case of wave-turbulence interactions and need not be repeated."

5.4 Wave-turbulence interactions

Interactions between waves and turbulence in the ocean yield

the transfer processes shown in diagrams (iv)J (v)J figure 6.
The scattering processes (iv) involve interactions with turbu-

lence scales of the same order or larger than a gravity wave

lengthJ whereas the parametrie process (v) depenas primarily on

the small-scale turbulence structure.

Wave-turbulence scattering

The turbulence frequency ~t can normally be neglected in'the

scattering condition .:!:.
~,

.:!:. Wt =
(..). It follows that a

gravity-wave qomponent g' of frequency w' is scattered into a

component g of practically the same frequency but different

propagation direction. For a given component g'J the wave-number

of the scattering turbulence component~t =.:!:. ~' .:!:. ~ is

therefore confined to the intertfal o~ kt ~ 2k'; turbulence

components of scale smaller than a half wave length do not

participate in scattering.
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In the approximatio~Wt ~~~, the energy of the gravity-wave
\.''1e

fielä is conserved -~scattering processes (Hasselmann, 1966).

The transfer expression follows from the form (3.6.1) for

conservative wave-wave interactions in the limit of a zero-

frequency fielä v~,

(5.4.1)

k 1/
,->h'tr~ k

I
=- k) c.<nCf';;;~

kle'

(The sou::.cefunction S(~/i-'); does not contribute,as the
process g't ~ g is not compatible with the scattering condition

for c.Jt<.< w, w' ). The kernel K is symmetrical in ~ and ~' :~
18 a linear functional of the turbulence spectrum,

s (
II I

)
'j"

b. I 2, "2. f
- ( 11" 1\ /I

= r'i ~ J
IN

J "Z.,Z )olw

where k" = k
"" - ~'. Fij is defined in equation (4.1.1).

The mean current U represents a small correction in the present
,...

problem anä can be neglected. The response function of the

interaction equations then reduce to exponentials anä the transfer

function occuring in K becomes astraightforward combination
.

of the coupling coefficients of equations (5.2.4) - (5.2.10).

We shall not give K explicitly, however, as it is difficult to

go further without more information about the turbulence speetrum

Fij.

Phillips (1959) has estimated the deeay of a sfngle wave beam

due to seattering J ieee equation (~4.1) with F(k') = 0,-
assuming an isotropie Kolmogoroff speetrum. The estimate is

probably not very reliable, as the turbulenee seales lie in

the range in whieh the speetrum is strongly anisotropie, and

the kernel K depends on both the seattering angle and the

d~tailedt~sor properties of Fijo For the turbulenee seales



~I«
( 0) (f) (~)

= 4fk -+ l1.f k -+ 11.f~ -f-, ,-.... .... ...... .....

'Pie
(1:1) 0) ('t)

~cr~ 04- Cfk + 'fk -t....... .... ,... ....
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in questiont it may be more appropriate to allow for the

density stratification of the ocean and regard the three-

dimensional ~turbulence" as a superposition of internal waves

and a horizontal turbulence fielda Formal expressions for

scattering by internal waves and horizontal turbulence are

given in Hasselmann (1966). but numerical estimates were not

made. Kenyon (1966) has computed several cases of scattering

between gravity-wave modes~ but the processes considered were

more relevant for the energy balance of internal waves than

surface waveso

Parametric damping ("eddy viscosity")

The parametric process gt is determined by the interactions

shown in figure 100 The contribution from a third diagram in

which the components g~ and ~~, of the second diagram are inter-

changed turns out c,0 be negligible 0 A detailed analysis shows

that the principal interactions involve small-scale turbulence

components in the inertial subrange of the equilibrium spectrum.

as before. by expanding

wave components a~
-and turbulence components fAil.e.) For the gt process we need

retain only terms which are linear in a~ and may therefore

write -

The interactions can be determined.

the interaction fields in powers of

where the superscript refers to the power of the turbulence

componentso

For Q = o. the zero~th-order terms vanish. since the un-

disturbed wave solution is excluded in the definition of the

interaction fieldo
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The first-oräer solution is äetermineä by the equations

l [ "'t(I)
] ;:

(5.4.2)

-

with the bounäary conäitions

a.-c Z. - 0
(5.4.4)

(I)
'\y - 0

Higher-oräer solutions are äetermineä by solving the

equations (4.4.7) - (4.4.10).

For ~ = 0) the invisciä Orr-Sommerfelä operator reäuces to

the Laplacian form

L =
(5.4.6)

which enables the analysis tobe carrieä through exp~icitly.

We neeä not give the complete solution) however) since the

major contribution arises from interactions with turbulence

components of scale small compareä with a gravity wave length)
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whieh simplifies the analysis eonsiderablys

In the first~order equations ( ~4.2) - ( .4.5), let k~ k' and
.-

,.,..

k" be the respeetive wave~numbers of the components 1; (wave~,...
el) (I)

fielä) ~ u (turbulence) and ~ 3 'f (first~order interaetion
.-

fielä ) We assume that k'« k. Then k"~ k~ sinee ki',.. -' -.

.
.

r<

.-

+ ko-
(I) (I)

The interaction field ~ ,Cf may be represented as a super-
(/) (I) CI) (I) (I) CI)

position of two fields4J;v ,C{'-.r and ~s ,Cfs ,where "Y-'IJ' . 'f~

satisfies the inhomogeneous field equations ( .402), (Jo4.3)
(I) (,)

with homogeneous boundary conditions and ~s ,~s is the solution

of the homogeneous field equations with the inhomogeneous boundary

eonditions ( .4.4) = (, .4.5).

Sinee the Green funetion G(~/Z?Of the Laplaee operator (.4.6)
-1117.-2.1/ U)

)falls off as e , the eomponent 11-.".(2 is äetermined,
CI)

""for large k', by the loeal values of the forcing funetion A ~~
~ I 0

in a thin layer of thi l{ness ~ = Ik . The eomponent "+-s is sir:;

ilarly limited to a surfaee layer of the thiekness ~ .
( cP,:Y

(I)
is rigorously loeal, Q.."flIt«Ps vanishes) .

(2.) (2)
The seeond-order fields ~ ,f are determined by similar

(/) CI)
equations (L,4.7) = Uo4.10) in whieh the produets I(y

X!. ,Cf~
oeeur as foreing terms. The wave-numb0r of the u-eomponent in-
th1s ease 1s -k', so that the seeond-order exeitation appears

..,..

at the wave-number k" - k' = k of the gravity-wave eomponent., -- -
The net exeitation involves a gravity-wave eomponent and two

turbulenee eomponents of opposite wave-number (figure 10)0

The foreing funetions eonsist of surfaee terms and volume

terms, both depending on small~seale turbulenee eomponents in

a layer of thiekness ~ . We assume that for these seales the
turbulenee ean be regarded as loeally isotropie. The integration

over the layer ean then be earried out and expressed in terms

of the loeal sealar turbulenee speetrum E(k,Q), where

(ef. Batehelor, 1963)
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< tA,: ~ e.J (d~w)*>
~

c1~ A w

and we have introduced the Fourier representation

~
-i(k.)( +-k32-r wt)

'4'( ~, '2,1;;) = ~ ~'j( w e
...,..

I<:',W.....

with respect to the three=dimensional wave=number K- = (~k3 ) 0

(~)

~
~'"2.

at the surfaceo This is proportional to the surface forcing

function plus an integral over the depth of the volume forcing

function multiplied by e
&:2

(for the present discussioni\ we

take the depth as infinite, which eliminates the negative
-lu

exponential e in the Green function)o Noting that the forcing
""'"

kl. (. '.S ~ )functions are proportional to
'4- - e. ~~~ Qk

.>
the wave equation

finally reduces to the form

The wave equation Co c2010) involves the derivative

ts depending on the turbulence spectrum at the surfaceo The

wave damping is given by the real part of Q ,
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The coefficients ~Ar and rS involve interactions in surface

layers of the thickness of a gravity wave length and a

turbulence scale. respectivelyo It may be expected that the

energy transfer is not critically dependent on the turbulence

characteristics in a thin surface layer of the order of a

turbulence scale, and that therefore "5 <~ '{"1f'0 However, an

inspection of the interactions in terms of the velocity

components indicates that this is not the case.

Let ~ =);,.,W+<5};;.. be the velocity of the combined wave and

interaction fieldso Subtracting the equations of motion of the

turbulent field u from the equations of motion of the total-
field u + v ,we obtain,- --

,..,
where W is the pressure difference between the fields u + v- -
and u. The viscous terms are found later to be negligible and

--
have been discardedo Equation (504.11) is equivalent to

equations (/02.4), (j.2oS).

The boundary conditions are

( ,4.12)

and
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If the field v is expanded~ as before. in powers of the
,...

turbulenee eomponents.

we obtain for the seeond=order equation. following the analysis

outlined above.

(2.)

~ ::::.

"-i
(2.)

w

where the foreing terms T..(2) and R(2) are proportional to
'f.J

the zero'th order wave~height and the loeal turbulenee speetrum.

The damping of the wave field ean be dedueed from energy

eonsiderations, If the energy speetrum

o

F(!:!)~
tJJ ~k ~~~f~~ ~._~h}

-40
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,..., 'V'(o) ":::'(1)~('t)

is expanded in powers of the turbulence components, F: F + ~ + f "

one finds readily that -tt> L.tJwest order

}F-
-ot: -
-

where the subscripts k refer to Fourier components with respect..-
to horizontal wave number, and

~. ::. J
;~. (~. =I,Z)

oxJ ~"2. (J -= ?»
The energy loss represents the work done aga~nst a surface ~)

pressure proportional to R~'L) and the volume stress-force (ff~Jt 0

o)c;'

The essential feature of equation ( 4.19) i5 that the work a

per volume is associated with a stress forceo The total energy

loss can therefore not be uniquely divided into volume and surface

contributions. This may be seen by rewriting the stress term

in equation ( 04019) as the difference between the work done by
the surface s~ress and the dissipation fk,

-

where

The surface=stress term and the dissipation are comparable if

the turbulence at the surface and within the fluid are of the

same ordere

A quantitative estimate of the surface contributions is rficult,

si..c,"" l.u\.:: t-urbulenc:.) in A ,~;11.1:'face layer of the dimension of a

turbulence scale is not isotropico However, the dissipation ik
-......

is insensitive to the turbulence properties in the thin surface

layer and can be evaluated assuming local isotropy throughouto
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One finds. after some analysis (Hasselmann. 1967b)

'DF-
'Dt

o
()f)

($;:: '7~k'J { (UK:.-)dK'f/".2kh
.- tfI() 0

Equations ( 4020) = t 4021) are exact if the turbulet1 ,""rioes

not extend to the surface (eogo turbulence caused by breaking

internal waves or internal shear layers)o

In the inertial subrange. the scalar turbulence speetrum is

given by (efa Batchelor. 1963)
.

~3 -Si3 -6 P( IAJ/ )E (1<, w) = E K "& f' I/.Jo

where S~ is the turbulent energy dissipation per unit volume.

113 ~3
&0- E.. K
o

and fex) is a universal functiono Turbulence measurements in
-f-

a tidal channel by Grant et alo (1962) indicate that ft(~)d)( ~ LS.

-~
If the wave damping is due primarily to interactions in the

inertial subrange. equation (6.4021) becomes



where

(,)

f
2k7.

E = t'(z).2ke dz .;S the weighted mean dissipation

over the de~: and d:' 8T
f

~f()()dX is a constantc (For

o ~
o

finite depth. E::. rE, Sihh'2,k(z+H)1+kd'2.) 0 Equation U5c4022)
~"h~ ~ItlR ·

-H
eorresponds to a "turbulent viseosity"

It is readily verified that the eontributions to ~~ from

interactions outside the inertial subrange are negligibleo

At low v';i:.we=numbers~ E(K;! .(f; -> 0" sinee 6""~~oo g the wave
o

frequency becomes large compared with the turbulence frequeneies

as the turbulenee seales approach a wave=lengtho The contribution

from anisotropie turbulenee of seales comparable with are

larger than a wave=length is negligible provided the integral-
~X;(X)~K converges at infinityo (This 18 ensured 1f the

/)

aeceleration speetrum exists)o

At high wave=numbers, the eontribution from the dissipation

range of the turbulenee spectrum 113neg11gible 1f 6"""'-« w" (1($) -
r:''Ski3»where I<:s =

E'Iq.~-~'t-
is the upper limit of the inert1al

subrange at which the viscous and 1nertial forces be('-)meeomparable
( y ~ viscosity) 0 The eondltion yields €:;;> "';6"2.

or.. on aeeount

of equation ~ 04022).. (34;» vJl'$ 0 The viseous decay faetor
for deep=water waves is ~y ::

*..;k~
; the expression (So4022)

is therefore valid provided the parametrie damping 1s large

eompared with the laminar viscous dampingo This 1s. in fact..

the only case of interest. sinee the viscous damping is always

neg11gible for oeean waveso

It remains to be ver1f1ed that the interactions are weak from

the point of vlew of the turbulence fieldG This is presumably

the ease if the energy gained by the turbulence through inter~

actions w1th waves 1s small compared with the energy transfer

due to internal turbulenee interaet10nso The wave=turbulenee
-C'

T
"l. 2k2.

energy transfer per unit volume at depth z 1s ~I F(k)k e d-z.,o
~

.".
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This is c1ear1y sma11 compared with E if the mean square

wave slope 1s sma11, which we have assumed throughouto

r.1easurements of E. in. the open ocean have not been made ~ but

10wer bounds can be infered from the known tida1 dissipation of

the oceanso A uniform dissipation over all oceans corresponds
-S' -'J-!to E. ~ 10 (l~S c:~ j-e' , which yie1ds entire1y negligib1e

dampingo However. it is believed that the tida1 energy is

dissipated main1y in sha110w seas of rather 1imited areao In

these regions, the va1ues of ~ may range from about 001 to

maximal1y 10 q~~~3~~' (cfe Munk and MacDona1d. 1960)0 This
-7 f.correspondsto a damping factor for a 60 m wave of ßp = 10 0

löS'~, or a decay time of 100 days to 1 daYe It appears that

the parametric damping due to tida1 turbulence is weak even

in regions of high tidal dissipationo (We have assumed a fair1y

uniform distribution of turbu1enceo Localised wave=turbu1ence

interactions in a boundary 1ayer at the ocean bottom are more

important. cfo section 505)0

Another source of turbu1ence is white=cappingo In this case ~

is given by the energy lost by the waves through wave=breakingo

Since we have seen that the energy 10ss due to wave=turbu1ence

interactions is sma11 compared with t if the mean=square wave

slope is sma11, the parametric wave damping is negligib1e also

in this case(in a fully=deve10ped sea~the mean square wave slope

is of the order of .0002)0

By the same reasoning, the "turbulent viscosity" will a1ways

be negligib1e un1ess a source of turbu1ence energy exists which

is 1arge compared with the energy lost by the waveso It is

difficu1t to find such a source in the open oceano The energy

transfer from the atmosphere is almost certain1y too sma11e

Exc1uding extreme situations such as very strong currents in

sha110w water, it appears that the turbulent viscosity,

a1though often considered in wave=prediction methods, is not

an important parameter in the energy balance of ocean wavese
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505 Strong interactions

Gur applications of the general Interaction formalism have

been limited to interaction which are weak and expanslbleo

For ocean waves. all interactions are clearly weak in the

mean. since the observed wave growth and decay times are large

compared with a wave periodo However. the interactions may be

relatively strong in highly localized regions and can then no

longer be expandedo Formally, the theory breaks down if

abnormally large valuesof the skewness, kurtosis. etco associated

with highly intermittent fields outweigh the expansion parameter

in the moment expansionso

The transfer expressions can then no longer be truncated at

the lowest=order moments (the spectra)o As 8xamples of such

interactions we discuss briefly white capping and the damping

of finite=depth waves by bottom frict~ono

White capping

Quantitative measurements and an adequate theory of white

capping are both lacking. but it 1s generally believed that

white capping is the principal dissipative mechanism balancing

the generating processes in a "fully developed" equilibrium

spectrumo

Phillips (1958) has suggested that for dimensional reasons

white capping leads to an equilibrium frequency spectrum propor=

tional to CA)=50 The power law has been confirmed by several

measurements. the observed exponent varying between -405 and

-5050 However. the dimensional argument is difficult to support 0

An ~-5 frequency spectrum corresponds to a two=dimensional

wave=number spectrum
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where is the propagation directionJ s (
Cf ,k) is the

r
+ti

"spreading factor" J normalized such bhat _ s( tp,k) dep =
_"

and C is a constanto Phillips deduced the spectrum (50501)

essentially by assuming that the equilibrium spectrum was

determined entirely by the white capping proeess and that this

eould be eompletely eharacterized loeally by the three parameters

g, k and F(k)o However, this yields an isotropie speetrum, sinee- -
the parameters do not define a referenee directiono The observed

4
speetrum is a strongly anisotropie distribution (s(f) ~ eos ~
with 14emean propagation pi:fFtJ4:.LL:eLto the wind.. This

implies that the wind veloeity is also an essential parameter

of the problem, and the dimensional argument leading to the GU-5

law is not applicableo+)

Cf

)

It is, indeed, diffieult to imagine an equilibrium speetrum whieh

is independent of the energy input, unless the dissipative meeha-

nism is envisaged as a strong, on=off process which is effeetive

only after the speetrum has exeeeded a fixed. locally defined

threshholdo ~t t~ ~ improbable that white eapping

is loeal in k=spaeeo The visual impression suggests loeality-
in x, and both properties are normally mutually exelusiveo

-
This is also indieated by the form of the speetrum (50501).

The instability eonditions for white=eapping are not known

preeisely, but it is generally believed that instability oeeurs

when the loeal downward aeeeleration of the surface exceeds the

gravitational acceleration g. Thus the root mean square

acceleration of the surface is presumably one of the principal

parameters characterizing white cappingo For equation (50501),

this quantity diverges at both ends of the spectrumo Thus the

probability of white capping is determined not only by the

equilibrium range, but depends also on the cut=off frequencies

of the range 0

+)PhillipS actually applied the dimensional argument only to the

one=dimensional spectrum, which does not lead to a direct con=

tradictiono However. in this case it must be assumed that the

dependence on the wind velocity disappears after averaging our

all propagation directions, which is difficult to justify
physicallyo
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The effect of white capping on the equilibrium spectrum is

not yet understood; it appears that dimensional arguments

are inadequate and that the wave=breaking process itself needs

investigatingo

Bottom friction

The damping of finite=depth waves by bottom friction involves

strongly non=linear. localized interactions in a non~stationary

turbulent boundary layero A rigorous treatment (;1..p"e~H"S at-pr~~t

impossibleo We present here an approximate analysis (Hasselmann

and Collins. 1967b) based on the empirical friction law
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where -,; is the shear stress at the wall, u is the flow
.NO> "...

velocity at the edge of the boundary layer and cf is a "constant"

friction coefficiento Equation Cf.502) is known to be a fair

approximation for a wide range of turbulent flowso It has been

tested for periodic waves by Savage (1953)0 Iwagaki etalo (1965)

and Jonsson (1965), among others, and has been used in semi=

empirical wave prediction methods by Putna' and Johnson (1949)

and Bretschneider and Reid (1954)0 The friction coefficient

is, in fact, a slowly varying function of the flow parameters,

but for the present first-order approach we shall regard cf
as a constanto

We assume that the flow consists of a wave field UW and a-
mean current uCo We ignore interactions between the wave field

,...

and the mean current except in the turbulent boundary layer at

the bottomo The complete flow in the w ::: uw+ UC + ut, where ut
-. - -- --

"""
i5 the turbulent velocity field in the bottom boundary layero

We regard ut as zero outside a thin boundary layer of thickness-
J~< Ho (The wave velocity field is defined as the potential

flow, equation (5~201), associated with the surface displacement

S 0 We define ~c arbitrarily as constant in the boundary layero

The turbulent velocity is then given as the difference between

the complete flow wand the velocity field UW + uC)o
-- - -

The surface displacement may be represented as

where to first order Zk are statistically orthogonal, free=wave
........

components,

::: cos 6'""t +

with
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The wave velocity field is accordingly

where the components ~ depend linearlyon Zko In particular,
-. -.

z == -H

On account of the boundary-layer interactions, the amplitudes

Zk and phases )/;. are not exactly constant, but vary slowly
A

w~th timeo To 11rst orderj the damping of the amplitudes can

be determinea from the free-wave field by ~alculating the work

done by the bottom stress against the free=wave velocityo

If we multiply the equations of motion of the complete flow

where

'2

f
()~ = - ~ - p l. (~.~.) + -J.f"~
'M:: ?»c..;..) ~~. Q

by U~k , take expectationvalues and then integrateover the
-

depth from -H to ~ we obtain, applying the usual boundary condi~

tions and the orthogonality property (.)~504),

-II+~ -Ht-&

24k
dF:

t
(~)

;::
<:T,lA'jq } -}(1;, dlI,.;lt) J ~f( -t C

) /I

>
J,.,. ~ 1<

'" _ Il - - "z - - I.(· +- u. 1If.'L pr 2.
z; -U <i~)(i ot" '"~

-H G

-H
If d

, - - ~ ~ (-w-.Vj.)+ Pv \;7~.
?Jxl "'0 ~ ......

~ = ~i

is the total stress

tensor and

For ~« U , the last two terms can be neglected, so that

(tue factor 2 arises from the normalisation of F(",;)in section

(201), f F (k) dk = E;) 0".,.. ,.,.. .2,



u' :: U~,....-. -
whieh are orthogonal to lLkt>-

/... IA~.tii!> - 0

(equations ( 0503) - ( 505) )

= 82 =

In deriving ( .506) we invoked only the orthogonality of the

Fourier componentse However, if the interactions are weak in

the mean, we may now substitute the free-wave veloeities in the

expression on the right hand side of the equat.ion0 For ,,-~< U.J
w ewe may further replaee the velocity u :: U + U at the edge- - -

of the boundary layer by the veloeity at the wall in equation

(505&2) for~. In the following, all veloeities refer to the
4Y'

values at the wallo

It is eonvenient to introduce, for fixed k, the variables-

Sinee u' differs from u by an infinites~~~
-- ..-

express 1:'in terms of u' , Uk and then expand- -
U --k-.

quantity, we may

with respeet to

=

so that

~~
Now, a linear field of dispersive free waves is(Gaussian

(exeept for a short transition period after an initial, non=

Gaussian state, efo Hasselmann, 1967 a)o Sinee~' and~k depend
-on the wave field, they are jointly Gaussiano Moreover,

statistieally orthogonal, and one eomponent,
~k' has
-

linearly

they are



- 83 -

zero meano It follows that u',.....

independent. The mean product

be divided into two factors.

and ~k are. in fact, statistically

of eq'Üation( '0507) can therefore

We may now replace u' again by u and obtain, substituting in- -
equation (5.5.6) and allowing for equations (_10504), (60505.),

_ - v.. k,k. F( k)
'J '" J

--

where the anisotropic viscosity tensor

The quantities < t-l) , <"'~"'J
>

are determined by the Gaussian

probability distribution of the variables ~~ 0 The mean of

the distribution is equal to uC; the covariance matrix is
,....

determined by the spectrum,

In the zero-current case, the ms~n quantities of equation (5a509)

can be expressed in terms of complete elliptic integrals,

~

~
2r-,,'E
Ti -



- 84 -

where 'X = 1(- ;:;
,

/j 15 (~) and g (-;)L) are complete
elliptic integrals of the first and second kind, respectively.

and the coordinate system has been chosen such that jA,z-: o;,I"2.2.y,,o

The damping is a maximum in the mean propagation direction,

Figures 11 and 12 show two examples of the spectral decay

computed for the case of a zero mean current and a mean current

of 0.7 m/sec at 450 to the initial mean wave directiono The

(constant)water depth of 100 m is representative of the North

Seao The initial energy distribution corresponds to a 40~knot

Pierson-Moskowitz spectrum. equation (2 303). with a
4cos ~ spreading factoro The friction factor cf = 0.015 was

determined by comparison of theoretical predictions with wave

observations made at two off-shore stations at Panama City,

Florida (Hasselmann and Collins, 1967)0 The value is consistent

with other experimental data for periodic waves (cfa Jonsson.

1965). but is probably too large for the mean-current caseo

However, the same value of cf was taken in both cases for the

sake of comparisono

It appears that wave damping by bottom friction can be quite

important in f>hallow seas and continental margins 0 ~We.. W.4t",j.,'Oi;

that although~the computations were based on the rather crude

friction law ,(,50502). this was not essential for the analysis.

The same method can be applied for a more sophisticated friction

lawo

506 Comparison wlth observations

The oUrect method of investigatinr; interaction processes experimen-

tally is by cross-spectral or cross-bispectral analysis of the

interacting fieldso Unfortunately. measurements of this type

are difficult to rYI()(.ke. J and one is limited largely to indirect
4'evidence from wave observationso owever/j bispectral analysis ~

was used by Hasselmann et alo (1963) to measure second-order ~
<wave interactionso In this case. the measurements involved only ~

the wave fieldo ~



v-' -

~he propagation of ocean swell over long distances may be

~xpected to depend more strongly on interactions within the

)cean than wave-air interactions, and should therefore shed

.ome light on the processes discussed in this chaptero We may

,"' v
&.. .,~_o

Snodgrass et alo (lS~~, u_._ _n___ ~ ---

the Pacifico Waves radiated from storms South of New Zealand

were recorded at six stations spaced at approximately equal
odistances along a 12,000 km = 110 great circle between New

Zealand and Alaskas Twelve major storms were identified during

the ten-week experimente Only low-frequency storm waves

( ~/2.11" <: 001 cycles per second)could be detectedabove the
local-sea background. (An increase in wind speed adds additionaJ

low-frequency waves to the "fully developed" spectrum, but does

not appreciable affect the spectrum at intermediate and high

frequencies, cf. equation (20303) )0

-- -..--

;he remaining distance, the waves propagated virtually undampedo

~he computed attenuation due to wave-wave scattering was found

;0 be negligible for frequencies below 001 cycles per second

Lt distances greater than a few thousand kilometers from the

further that wave-turbulence sc~

,. "he oceane Scatt.ering should u_._ ___u .wv _______

)y wave attenuation. by the late arrival of scattered energy,

[hich was not detectedo

~he station spacing was inadequate for accurate measurement of

;he wave attenuation in the near zone. However, the general

~eatures of the observed decay were consistent with the computed

~nergy transfer due to wave-wave scatteringo Figu~13 shows a



-., ~ , - " .

eould be estimated from the winds reported in the generating

regiO~~ ~~the Pierson=Moskowitz formulao The spectra are

eorrected for distortion due to dispersiono The lower panels

show the eomputed energy transfer due to wave-wave scatteringo

t;ypJ.ea.L01 a peaK C.LO::>~ 1;,U CI. J.uw-J..n::4.u~U\,;'y ~U"'-VJ. J.

(Hasselmann, 1963 b)o The energy lost at intermediate frequenc:

is transfered to hJ.gner'.lr~qu~rH.:J.~öJ HU l.,. öHUWH J.H l.,.W:: J. .L!5l.1..I."I;::i:) 0

The travel time for 80 millieycle-per-second waves from the

storm to the first station, Cape Palliser, New Zealand, was

approximately 105 sees (1 day); from Cape Palliser to the

second station, Tutuila. the travel time ~as approximately

20105 secso Bearing in mind that the transfer rates in each

figure refer to the initial speetrum, the wave-wave scattering

aeeounts quite weIl for the observed ehangeso

Beyond Tutuila, the spectral densities were reduced so far by

dispersion and scattering that the computed scattering became

U.J..I."I;::~'" I;::J.J.I;::I,;'" VU "'UI;:: vUI;::=u.J.mI;::Ui:).J.vud..J. J..I."I;::4,l.I.I;::UI,;'y i:)!JI;::I,;"'.I."u.m/o

The observed attenuation beyond Tutuila was also negligibleo

h~
Wave-breaking or scattering by turbulence CQ~ not~xcluded in

the near zone by the datao However, the order-of-magnitude

agreement with the computed transfer rates due to wave-wave

fieldo

~



60 Conclusions

We have discussed the coupling between ocean waves and

random fields in the ocean and atmosphere from the viewpoint

of a general interaction formalismo The theory is complete,

in the sense that we have been able to treat all lowest~order

processeso However, it applies only to interactions which

are weak and expansibleo

The validity of the expansion procedure must be investigated

for each processo A rigorous convergence proof was not
:*attempted, but it can generally be verified that the expansions

are consistent in the sense that the expansion parameters are

small and the lowest-order in(iracting fields may be rep,:arded

as statistically independeDv The convergence question is

not associated with finite=order interaction theory as sucho

It 4d~es al.reo.elJ in the linear represensation of 'freev wave

fieldso The interaction analysis is neither more nor less

rigorous than the linear theory (excluding, of course

the problem of statistical closure)o Interactions with at-

mospheric turbulence are an important case in which this

was not demonstrated, although the assumptions appear plausible

and are valid for sufficiently small wave heightso The

question can be resolved by trial computations or measurernentso

Wave breaking and turbulent bottorn friction are exarnples of

non-expansible processo However, in both cases the inter-

actions are weak in the rneano This property proved sufficient

to deterrnine the damping due to a non-analytic turbulent

bottorn stresso

The analysis IQ,r- :e~pft.~.s.lble. i"tf2.rAc:t;cH'\S ;.s

basically straight forward, but can becorne involved alge-

braicallyo Interaction diagrams are useful in describing the

structure of the expansion i~e"d~t~lgebraiC detailso

The net energy transfer is the result of rnany interaction

cornbinations, which may be classed into scattering and
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parametric processese Transfer diagrams afford a concise

notation for distinguishing between the various processes.

Even where the transfer functions are not known in detail,

the general structure of the transfer expressions summarized

by the transfer diagrams can be helpful in understanding

the overall energy balance of the wave fielde

Numerical estimates exists at present for only a few

processes: the wave-generation processes cf Phillips and

Miles, wave-wave scattering, and parametric damping by

turbulenceo We have not attempted to estimate rather com-

plicated transfer expressions by order-of-magnitude dimen-

sional considerations. However, computations based on

simplified boundary-layer models should be feasible. A

more fundamental problem is estimating the energy loss due

to white-capping, at present the one basically undetermined

process in the radiation balance equationo

Only very few measurements bearing on the wave energy

balance have been made, but these have pro~ed extremely

fruitfulo Further experiments of this kind would be very

desirablee Laboratory (and, if possible. field) studies of

the interaction mechanisms by cross correlation techniques

would also be invaluable in assessing the relative significance

of fhe '(Q,...lfl~processes 0
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Appendix Coupling coefficients

I 'I
( a-= c~2..) ~ J d denote differen~iations with respect

to.~ of the component of wave-number k' and k". respecti vely 0.
"'"

.......

Hence c -= "d'+- c" ) 0

~('l)
=-
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3(1) . '//.J... 'Z-S ' (~' ~','Z)-

X.zS~' 2kJ

0
~. ~3)

(I)

~(k
'
k' ~I f IC - ~.~~C)' _ k'k'd'l)- k'1 J.!-.- ~+- (J'=I,'2JJe' Itt' d

0
(r =- ~)

Cz)
-~o. (k-' fit "')C --

k2. d''(.f t + kL~~. ~. ~,,2)

0
(~ = 3)

~.~' /' ,where U' = 7" ' U' = 2., and

B.:'b' z', unless otherwise indicated.
coefficients A(1), A(2), B(1). C(1)

as in the expressions given above.

all terms are taken

The arguments of the

and c(2) are the same
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-

k0:= k
I

+ I/'"'"' ......

The arguments of the coefficients A{l). A(2)
J ~ j . oIe. are the

same as in the previous expressions; The wave-numbers k' and

!." in the coefficients,Ai1») Ai2). . c e 0 are replaced .;;

kO and k'I'. respectively. and j ~s rep1aced by 10
"""

.,.,...
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Hasselmann

Interaction diagrams eorresponding to the linear transfer

expressions (3.4.2) (dia grams (i» and (3.4.3)

(dia grams (ii»

Interaction diagrams eorresponding to
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Interaction diagrams eorresponding to the souree funetion

(3.4.19). Diagrams (i) yield the first term of the transfer

.funetion'-~ ' equation (3.4.23). Diagrams (ii) eorre-

spond to the seeond of the four terms in the parentheses

f } . The remaining terms in the parentheses are
obtained by interchanging eomponents and anti-eomponents.

Transfer äiagrams eorresponding to the transfer ex-
y ~

pressions: (i) S~ .' equation (3.4~}); (ii) S(/'~) ,

equation (3.4.3); (iii), (iv), (v) S(:'Y.1~) . equation
(3.4.7); (vi) S~~ . equation (3.4.13).

Diagrams (ii) - (v) represent seattering diagrams. (i)

anä (vi) parametrie äiagrams. Diagrams (iii). (iv) and
(v) belong to a diagram set.

Inter~etion (Feynman) diagrams for eonservative gravity-

wave interaetions. The energy transfer is given by

equation (3.6.5). The eorresponding transfer diagrams are ~i
./()~m ..

the same as diagram (ili). . .

Lowest-oräer transfer diagrams for wave-atmosphere and

wave-oeean interaetions. Diagrams (i), (ii) and (v)

represent par ametrie processes. äiagrams (iii) and (iv)

seattering processes.



Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Wave-atmosphere interactions (i) : linear interactions with

the ocean boundary-layer flow according to Miles,

(ii) : non-linear interaction with meanboundary-layer

flow, (iii) : Eckart-Phillips wave generation by turbulence.

C:he process can be represented by three diagrams in terms

of the turbulent velocity components t or an equivalent

linear diagram pt__> g~ where pt is the turbulence

pressure at the surface. (iv)~ (v) : wave-turbulence

interactions.

Wave-ocean interactions (i) : linear interaction with mean

current. The energy transfer vanishes in the weak-interaction

approximation. (ii) : non-linear interactions with mean

currentst(iii) : generation of waves by turbulence)

(iv) : scattering of i'TaVeSby turbulence ) (v) : parametric

damping of waves by turbulence (lleddy viscosity").

Spectral distribution of surface pressure for wave-

atmosphere interactions (schematic). Shading represents

distribution of the three-dimensional spectral density

Fr>(~'~) in the k,-GV plane.

The growth parameter ~ as function of wind speed U.

T: Jeffreys (1925)~ MI : Miles~ BF : best-fit experimen-

tally; T : an empirical relation ß = ~(!,~-6"') suggested
~

by Snyder and Cox (1966); The data points are divided into

short runs + and long runs Q . (From Snyder and Cox~ 1966).

Non-linear interactiondiagram for parametrie damping cf

waves by mean currents.

Interaction diagrams for parametrie damping of waves by

turbulence ("eddy viscosity").

Wave damping due to a turbulent bottom friction !
""

- ~cf~ 1~1)

with cf = 0.015. The initial distribution corresponds

4
. 4

to a O-knot Pierson-Moskowitz spectrum with a cos ~
spreading factor. The water depth is 100 m. (From Hassel-

mann and Collins~ 1967).



Fig. 12

Fig. 13

Wave darnping due to turbulent bottorn friction. The same

case as in fig.11, with a superirnposed bottorn current

of 0.7 rn/sec at 450 to the initial rnean wave direction.

(Frorn Hasselrnann and COllins, 1967).

Wave spectra (upper panels) ana the cornputed energy trans-

fer due to wave-wavescattering (lower panels) in the

near zone of a storrn. Full ana dashed curves in the lower

right panel correspona to a cos4~ and 30Ö step-function

spreading factor, respectively. (Frorn Snodgrass et al,

1966).
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