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Scattering of Low-Frequency Sound in the Ocean

By H.-H. EsseN and K. HASSELMANN, Hamburg?)
Eingegangen am 27. April 1970

Summary: The scattering of acoustic modes by inhomogeneities in an oceanic wave guide is
investigated in the weak-interaction approximation. Application to the case of interactions
with surface gravity waves yields maximal damping factors due to scattering losses in the
range 1072—1073, in order-of-magnitude agreement with measurements. The calculations are
based on an empirical PIERSON-MoOskowITZ wave spectrum and a two-layer wave-guide
model. The scattered field for a given mode of a point source is computed in the single-
scattering approximation. Simultaneous measurements of the primary-signal attenuation, the
surface wave spectrum and the Doppler sprectrum of the scattered field would provide inde-
pendent quantitative comparisons between theory and experiment.

Zusammenfassung: Die Streuung von akustischen Eigenschwingungen durch Inhomogenitédten
eines ozeanischen Wellenleiters wird in der Naherung schwacher Wechselwirkungen unter-
sucht. Die Anwendung auf Wechselwirkungen mit Oberflichenschwerewellen liefert maximale
Dimpfungsfaktoren durch Streuverluste im Bereich 10-2—10-3, gréBenordnungsmaBig iiber-
einstimmend mit Messungen. Die Rechnungen basieren auf einem empirischen PIERSON-
MoskowiTtz-Seegangsspektrum und einem Zwei-Schichten-Modell des Wellenleiters. Das
gestreute Feld fiir eine vorgegebene Eigenschwingung einer Punktquelle wird in der ersten
Streundherung berechnet. Gleichzeitige Messungen der Dampfung des Primirsignales, des
Seegangsspektrums und der Doppler-Verschiebung des gestreuten Feldes wiirden unab-
hidngige quantitative Vergleiche zwischen Theorie und Experiment erlauben.

1. Introduction

The transmission of sound in the ocean is strongly affected by small-scale inhomo-
geneities of the wave-guide. For low-frequency waves, the scattering loss due to
interactions with inhomogeneities of length scales comparable with the acoustic wave-
length greatly exceeds the molecular damping. Since the exponential decay due to
scattering also dominates asymptotically over the geometric decay factors, the far-field
amplitude of the primary signal is largely determined by the scattering loss. The signal-
to-noise ratio is also affected by the incoherent scattered field, which generally con-
tains little signal information and therefore contributes mainly to the background
noise. Hence meaningful estimates of the hydroacoustic transmission range and its
dependence on environmental conditions require an understanding of the basic
scattering processes determining both the primary and scattered fields.

1) Professor Dr. KLAUs HASSELMANN, Institut fiir Geophysik der Universitit Hamburg,
2 Hamburg 13, Schliiterstr. 22.
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Previous theoretical investigations have concentrated mainly on the scattering of a
single incident wave train by random inhomogeneities, usually at a rough surface. A
recent summary of this work in relation to hydroacoustic wave propagation has been
given by ForTUIN [1969]. The approach is adapted to the ray description of sound
propagation, in which the field trapped in the wave guide is represented by rays
reflected back and forth between the upper and lower boundaries of the ocean. Ray
methods are restricted to high frequency fields, and are useful primarily for the investi-
gation of first arrivals, or the wave field close to source; in general, to applications in
which the number of separate ray paths contributing to the field is limited.

However, scattering is important mainly in the converse situation, i.e. large distances
from the source, and times significantly later than the first arrival time (or continuous
sources). In this case, normal-mode representations are more useful than ray descrip-
tions, and it appears natural to investigate hydroacoustic scattering in terms of con-
tinuous mode-mode interactions, rather than single-beam scattering theory.

We consider in this paper the scattering of a given (trapped) acoustic mode by
wave-guide inhomogeneities, due either to timedependent variations at the surface
and within the fluid (surface and internal gravity waves), or the physical inhomogenei-
ties of the bottom topography and the underlying stratification. The scattering of an
arbitrary wave field can be determined from single-mode scattering by superposition.

The interactions lead to a transfer of energy from the primary mode into other
trapped modes and into the leaking-mode continuum. In the trapped-trapped inter-
action, nearly all of the energy lost by the primary mode reappears in a random
acoustic wave field of approximately the same frequency, the signal is “randomised”.
In the trapped-leaking interaction, the energy transferred from the primary wave is
radiated into the lower half-space and is lost from the wave-guide. The primary signal
decays exponentially, without a corresponding increase in the scattered noise level.

If the set of all trapped modes of the wave-guide are regarded as a *‘physical system™,
the trapped-trapped interactions represent conservative processes which fall within
the general formalism for conservative wave-wave interactions (cf. [HASSELMANN,
1966]). The trapped-leaking interactions are non-conservative with respect to this
system, but can be treated by a corresponding generalisation of the theory to include
non-symmetrical coupling coefficients [HASSELMANN, 1967, 1968].

Alternatively, all interactions can be regarded as conservative by closing the wave
guide with a very deep, totally reflecting bottom below the elastic layer. This trans-
forms the leaking-mode continuum into discrete trapped modes. It can be shown that
the interactions between “shallow’’ and ‘‘deep”’ trapped modes yield the same energy
transfer in the limit of an infinitely deep bottom as the nonconservative (parametric)
interactions for an unbounded, open system*). We shall make use of this equivalence
to give a unified discussion in terms of conservative wave-wave interactions only.

*) This is not immediately obvious on account of the two-timing limit involved in the
derivation of the transfer expressions. Formally, the two-timing limit cannot be interchanged
with the infinite-depth limit.
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However, in computing the transfer expressions it is simpler to consider an unbounded
open system from the beginning, rather than go to the infinite-depth limit of a closed
system (cf. [Essen, 1970)).

Numerical results are presented for the case of scattering by surface gravity waves.
For simplicity, the computations were carried out for the model of a homogeneous
fluid over a homogeneous solid half-space, but the analysis is applicable also to
arbitrary, continuously stratified models, such as a SOFAR wave-guide. A PIERSON-
MoskowiTtz surface-wave spectrum yields maximum damping parameters (inverse
e-folding distances in units of wavelength) typically of the order 10-2—10-3,

Although existing field measurements do not permit a detailed quantitative com-
parison with theory, the theoretical damping factors of the primary signal and the
Doppler shifts of the scattered field are in reasonable order-of-magnitude agreement
with experiment (cf. [ToLsToY, 1966, SCRIMGER, 1961, NicHoLs, 1967, URICK, 1968]).

2. The mode-mode scattering formalism

We consider weak nonlinear interactions between the normal modes of a stably
stratified fluid over a stratified elastic half-space. The physical system is assumed to
be homogeneous in the horizontal plane (x = x,, x;), except for small physical
inhomogeneities of zero mean. Slow variations of the mean wave-guide properties can
be allowed for in the usual manner (equation 8), but are not relevant for scattering.

For small displacements, the system can be described to first order by the linearised
equations of motions. The general solution consists of a superposition of normal
modes (cf. [EWING, JARDETZKY, and Press, 1957]). To obtain an energetically closed
system, we introduce a totally reflecting bottom of the elastic layer at a large, but
finite, depth, going later to the infinite-depth limit. Introducing normal-mode coordi-
nates, the complete nonlinear equations of motion of the closed system can then be
written in the form [HASSELMANN, 1966],

_4iwszi“ha“ala,—... (l)

where a, represents the (time dependent) amplitude of a suitably normalised normal
mode

(Pv(t’ X, x3)=av(t)w\;(x3)e"‘x (2)

and y, (x3) denotes a vertical eigenfunction. The composite index » includes the

discrete mode index n and the continuous wavenumber variable k = (ky, k,): » =
(n, k).
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The left hand side of equation (1) represents the linearised equations of motion in
diagonal form, whereas the right hand side describes the nonlinear coupling between
modes. The coupling coefficients D,g,, D,g,s - - - are symmetrical with respect to their
indices on account of energy and momentum conservation.

Without coupling, the linear solutions are given by

a,(N=A4,e " 3)

where 4, = constant and w, is the eigenfrequency of the mode ». The normalisation
is chosen such that a,a,* represents the total energy of the mode ».

To each normal mode (2) there corresponds a complex conjugate solution with nega-
tive eigenfrequency. In linear problems, the complex conjugate mode is not usually
regarded as a separate solution, since one is interested only in the real part of the
field. However, in nonlinear problems the operation of taking the real part does not
commute with multiplication, and real fields have to be constructed by adding the
complex conjugate solution. It is convenient to denote the complex conjugate mode
to v by a negative index — v, or the index vV = — » = (— n, — k), so that o, = — w,
= — o-,. For real fields, a, = a;*. The sign convention is chosen such that positive
indices correspond to positive frequencies and the wavenumber k points in the positive
propagation direction for both » and v. The summation in equation (1) extends over
positive and negative indices.

The nonlinear coupling gives rise to further, forced wave components, whose fre-
quencies and wavenumbers do not satisfy the dispersion relation for free propagation.
At the same time, the free components undergo secular changes due to resonant inter-
actions between sets of three or more free components whose frequency and wave-
number sums vanish. The resonant transfer mechanism was first considered in detail
in [PEIERLS, 1929] classic paper on the heat conduction in solids and plays an
important role in various scattering problems of theoretical physics. Recently,
resonant wave-wave interactions have also gained interest in a number of applica-
tions in plasmas, fluid dynamics and geophysics. The general formulae for the
resonant energy transfer for nonlinear equations of the form (1) are given, e.g., in
[HASSELMANN, 1966].

We consider here the appropriate lowest-order transfer expressions for the particular
case that a) the energy E, of the primary acoustic wave field is concentrated in a
spectral line at the wave number k, of mode n, and b) the remaining energy in the
wave-guide consists of a spectral continuum of trapped gravitational and acoustic
modes. The fields are assumed to be locally homogeneous, but the spectra are regarded
as slowly varying in space and time. The transport equation for the primaryacoustic
wave field then reduces to the form (cf. [HASSELMANN, 1968])

OE,
ot

where V, is the group velocity of the mode ».

+V(VE)=-(W+W)E, O]
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The damping coefficient

F, .
=% [Ty,~Lé(w,-—0,—n,)dk, (5
1>0 w,
mz20
i =(l, kl)’ M =(ma km)
describes the energy loss of the mode v (n > 0) due to trapped-trapped scattering, and

vw= X [T,F,dk, (6)
mz20
describes the loss due to trapped-leaking scattering in the limit of an infinitely deep
wave-guide.

The spectrum F, = Fp, (k) of the mode u is defined as Fy, (k) Ak =X }<a, a,z),
where 1 = (m, k) and the sum is taken over an infinitesimal wavenumber element Ak.
The definition applies to both positive and negative indices, F, = F, (k) = Fpp (— k)
= F, the normalisation being such that F, + F; = 2 F, corresponds to the usual
spectrum of mode energy. The factor 2 arises from our use of a two-sided spectrum.
The energy E, is also defined in the two-sided sense, i.e. F, = F, (k) = E, 6 (k — ky),
F, = F.n (— k) = E; 6 (k + kn), so that E, = E; and the total energy of the primary
mode » is 2 E,. The summations in equation (5), (6) extend again over both positive
and negative indices (however, in equation (5) the frequency resonance condition can
be satisfied only for / > 0, see below).

The transfer function for trapped-trapped scattering is given by

Tlvu=72nwlwku |D1vy|2 (7)

The transfer function for trapped-leaking scattering is obtained by taking the infinite-
depth limit of expression (5),

dw, |!
Tw= {TI"“ l:w“ FI‘:I }wl =w,+, (®)
k =k, +k,

where the index / refers to a leaking mode and the frequency w; is a continuous func-
tion of / in the limit of a continuous leaking-mode ensemble.

We note that equation (6) contains no frequency d-function in the infinite-depth
limit and is formally identical with a non-conservative parametric transfer expression
[HasseLMANN, 1968, eq. (3.4.9)].

The energy loss of the primary wave » = (n, ky) due to trapped-trapped scattering
gives rise to an energy gain of other modes 2 = (/, k),

DF, OF, 0 0 (0w )¢
Dt - o +6_xj(v“ F)) ak,.<ax,- F;)=S, 9)
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where
E, .
Si=w,— L T,,Fé(w,+0,—w,) (10)

wvm%()
with km = kl - k".

The second and third terms on the left side of equation (9) represent the change in
the spectral density due to convection and refraction, respectively. (The refractive
term enters only if the wave-guide is slowly varying in the mean, cf. [DORRESTEIN, 1960].

The source function (10) represents only the energy gained from the primary field
» = (n, kp). The complete transport equation for the scattered field includes further
gain and loss terms due to scattering between modes », u, 4 within the spectral con-
tinuum (cf. section 4).

The energy gained by the leaking modes need not be considered. In the limit of an
infinitely deep reflecting bottom, the ratio of local energy density (per unit volume) to
total mode energy (per unit horizontal area) approaches zero for the deep (leaking)
modes. Thus although the total energy gained by the leaking modes is finite, there is
no observable change in local field quantities. Stated more simply in terms of the
open, half-infinite model: the energy transferred to leaking modes is lost from the
system by radiation to infinity.

The transfer integrals can be interpreted rather simply in terms of phonon collisions
in a particle picture. The lowest-order transfer expressions (4)—(10) arise from col-
lisions in which two phonons are annihilated and one is created (fig. 1). Energy and
momentum of a phonon are proportional to frequency and wavenumber respectively
The collision probability is proportional to the number densities n = F/w of the
ingoing phonons. Conservation of total energy and momentum in a collision is
expressed by the frequency d-function in equation (5) and the corresponding wave-
number side condition in equation (7). Modes with negative indices are represented
by antiphonons with negative energy and momentum, the annihilation of an anti-
phonon corresponding to the creation of a phonon. To obtain the correct transfer
expressions from the particle picture, only processes creating a single, positive-energy
outgoing particle are allowed. Apart from this side condition, all collisions compatible
with energy and momentum conservation are permissible*). In the present case, the
relevant interactions involve an ingoing phonon » of the primary acoustic field, an
ingoing phonon u or antiphonon ji (fig. 1) of another trapped mode, and an outgoing
phonon 7. The term phonon is used here in the wide sense to denote an arbitrary
gravitational or acoustic mode).

*) The present particle picture [HASSELMANN, 1966] differs slightly from the more usual
quantum-theoretical boson interpretation. In the boson picture, there are no antiparticles and
no restrictions on the number of outgoing particles. However, the boson interaction rules are
more complicated in the appropriate classical limit. In particular, the boson interpretation
does not lead to a simple one-to-one correspondence between annihilated and created particles
and individual terms in the transfer integrals.
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Since the nonlinear coupling between two acoustic modes is normally very small,
significant scattering occurs only if the mode u (or j1) represents a surface gravity mode,
internal gravity mode or a physical inhomogeneity (which can be treated formally as
a mode of zero frequency [HASSELMANN, 1966]). In all of these cases, w, < w,, so that
energy conservation yields w; = o, + w, ® ©,. Momentum conservation implies
that k; < 0 (ky), so that the outgoing phonon 4 is again a high phase-velocity mode,
and must therefore be either a trapped or leaking acoustic mode. Since 4 is positive (as
outgoing component), » is also positive. However, the scattering component x can be
either a phonon or antiphonon (fig. 1).

The side conditions on the indices have been allowed for in equation (4)—(10).
Equations (9), (10) describe only the energy gain of the outgoing acoustic component 4.
The associated energy loss or gain of the low-frequency scattering field u oder ji is of
the same form as (9), (10) but is generally small and can be neglected in the energy
balance of the field u (not considered here).

The above formalism applies to ‘“‘weak” interactions satisfying the following
criteria:

(i) The time scale © of the energy transfer is large compared with a wave period. More
precisely, T must be large compared with the time interval or corresponding spatial
interval required to resolve statistically the spectra occurring in the transfer

Fig. 1: Lowest order transfer diagrams for acoustic scattering. » and A represent acoustic
phonons, u and / the scattering phonon or antiphonon (surface wave, internal gravity
wave, or waveguide inhomogeneity).
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integrals (time and space resolution are related through the group velocity). The
condition is normally satisfied for reasonable smooth scattering spectra; it implies
essentially that the interactions are sufficiently weak that the linear concepts of
normal modes, dispersion curves etc. retain their meaning.

(ii) The higher-order terms in the interaction expansion are small compared with the
terms occurring in the lowest-order transfer expressions. For ‘‘well-behaved”
statistical distributions, this condition follows from the first. However, exceptions
can occur. For example, if the scattering field is highly intermittent, the higher
statistical moments are exceptionally large, and the lowest-order scattering expres-
sions, which depend only on the quadratic power spectra, may be a poor first
approximation, although the computed transfer rates are weak. Alternatively, if
the higher moments are ‘““‘well behaved”, but the spectra fall off very steeply at high
wavenumbers, cubic and higher-order interactions which couple into the energetic
part of the spectrum at low wavenumbers may dominate over the lowest-order
quadratic interactions. In this case, the disparity in energy levels overrides the
perturbation parameter of the nonlinear expansion.

The latter situation arises in the scattering of high-frequency acoustic modes in the
cm—m range by surface gravity waves. The lowest-order (quadratic) transfer expres-
sions represent the scattering due to short gravity waves with wavelengths comparable
to the acoustic wavelength. However, the scattering can in fact be strongly modulated
by the peak of the gravity-wave spectrum at wavelength of 10 m—500 m. The same
effect occurs in the scattering of radar waves in the cm range at the ocean surface,
cf. [WRIGHT, 1968, HASSELMANN and ScHIELER (to be published)]. The modulation
can be treated rigorously only by a higher-order interaction analysis. For this reason
the numerical results presented in sections 4 and 5 should be treated with caution for
acoustic wavelengths shorter than 10 m.

After evaluating the transfer integrals, the primary and scattered fields are obtained
by integrating the transport equations (4) and (9) under appropriate initial and
boundary conditions. In the case of the primary field, the solution can be obtained
immediately by integration along the wave-group trajectories, since there is no back-
interaction from the scattered field*). Thus the problem reduces to the determination
of the source function in equation (4). As example, we consider in the following
section the damping factors y, due to scattering by surface gravity waves.

The scattered field represents a more difficult radiative transfer problem, since the
transport equation for all scattered modes are coupled. We return to this problem in
section 4.

*) In general, second scattering leads to an energy transfer from the scattered field back to
the original mode ». However, the spectrum of the second-scattered field is continuous and
yields only an infinitesimal contribution to the line Ey.
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3. Damping factors for scattering by surface waves

The general expressions for the coupling coefficients and transfer functions for
acoustic-gravity-wave interactions are given in [Essen, 1970]. Numerical calculations

knh

s0 |

60*

30 J

g{°f

Fig. 2: Disperson curves for fluid/solid two-layer model. For better comparison with figs. 5
to 10 and 12 the axes have been interchanged with respect to the usual representation.

Sound velocity ratios:
Fluid : solid compressional : solid shear = c:cc1e5 = 1:2)/3:2

Density ratio:
fluid : solid = 1:2.5

were carried out for the simplest model of a homogeneous fluid over a homogeneous
elastic half space. The dispersion curves and physical parameters of this model are
shown in fig. 2.
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The gravity-wave field was represented by a PiErsoN-Moskowitz (1964) spectrum
with a cos? ¢ spreading factor (fig. 3),

G(w, p)=Epy () S(9)

AT
Epp (0)=0.0081 g w3 e™7* (%)
(11)

%cos“(p, Oslrp{<%

S(p)= i
0, TSI(PFSR

where G (w, @) is the usual two-dimensional power spectrum of the surface elevation
with respect to frequency w = }gk and the wave direction ¢ relative to the mean
wind U.

Equation (11) represents a one-dimensional family of self-similar spectra. We denote
a particular member of the family by the nondimensional parameter § = k h where
k is the gravity wavenumber corresponding to the peak frequency & of (11), k = ®2?/g.
The wind speed is related to § through

U=0.877- & (12)
B

The spectrum (11) cuts off rapidly for wavenumbers less than k and approaches the
wind-it}cdependent saturation form G = 0.0081 g2w~55 (¢) for k = k (more accurately,
k= 2k).
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Fig. 3: PIERSON-MOSKOWITZ spectrum
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Computed damping factors are presented in fig. 5, 7, 9 and 11. The horizontal
damping factors y¥ have been decomposed into the individual contributions y, due
to scattering into a particular trapped mode 2, so that

v'v'=2’_‘v'v';-

All damping factors are expressed in units of v,/h; thus the numerical coefficients
¥, = 7,h/v, shown in the figures represent the damping rate in units of water depth /
for a stationary spatially decaying mode,

~ X
E,~e ™.

In general, the damping factors are functions of g, the nondimensional frequency
whfc (where c is the velocity of sound in water), the propagation direction &« of the
primary wave relative to the mean wind direction, and a fourth nondimensional para-
meter @/w,. The last parameter is so small that it can be neglected in calculating the
coupling coefficients: the gravity-wave field may be regarded as frozen relative to the
acoustic waves (this does not imply, however, that the Doppler shift of the scattered
field is ignored, cf. section 4).

The overall dependence on the wind parameter  and propagation direction & can
be deduced from kinematical relationships between the interacting wavenumbers,
without going into details of the transfer functions. The wavenumbers occurring in
the sum interaction » + u — 2 are shown in fig. 4. For |w"/wv| < 1 the k; loci are
essentially circles. The difference interaction » + ji— A yields the same gravity
wavenumbers with opposite sign. The coupling coefficients for the sum and difference
interaction are almost identical. Thus the difference interaction can be accounted for
simply by superimposing a second gravity wave spectrum (11) with opposite propaga-
tion directions and considering then only sum interactions.

The largest and smallest wave numbers ky, for a given index combination n, / are

kmex =k, +k, and k™" =|k,—k,|.
If

k> h<pB=kh,

all gravity wavenumbers occurring in the scattering process » + u — 4 lie in the cut-
off region of the Pierson-Moskowitz spectrum, and the damping rates are small. If

k™" h>kh=§,

the gravity wavenumbers all lie in the saturated range of the Pierson-Moskowitz
spectrum, and the damping rate is equal to a saturation value which is independent of
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Fig. 4: Polar diagram of the primary acoustic mode kn, scattering gravity-wave component k,,
and scattered acoustic mode &; for interaction.

ki = kn + km, Wi = ©On + ©Om == w; = o for wh/c = 30 (constructed from fig. 1).

the wind speed. However, a directional dependence remains, the maximum damping
generally occurring for propagation parallel or antiparallel to the mean gravity wave
direction.
The values
:}axz k,n':ax h and B:}in s k::in h

for a given interaction » 4 ¢ — 4 can be read off directly from the intercepts of the
horizontal line w; & w, = w = const with the dispersion curves n and / in fig. 2.
Figs. 5, 7 and 9 show saturation damping factors for modes n = 1, 4 and 16 for
propagation parallel or antiparallel to the wind (x = 0 or x). The influence of the
wind parameter 8 can be infered from the accompanying figures 6, 8 and 10, which
show the curves
e and "

for each interaction. A wind dependence exists only in the segments between

min max

nl and nl -
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Fig. 5: Saturation damping factors $y (§ = 1), in units of inverse water depth for trapped-
trapped and trapped-leaking interactions, wind parallel (or antiparallel) to the primary
mode ky, n = 1.
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1 net ///// < s pmax
3 s
- 3
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3 V| st

204

wind  dependent

w
e

Fig. 6: Regions of wind dependence for trapped-trapped and trapped-leaking interactions,
n=1.

The attenuation is essentially zero for § > S5** and reaches an asymptotic saturated
value for f < fmIn (cf. fig. 5).
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Same as fig. 5, with n = 4.
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Same as fig. 6, with n = 4 (cf. fig. 7).

Fig. 8
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Fig. 9: Same as fig. 5, with n = 16.

U el
/m/nn /l-'l. Jx
%04 nel /;/ // 7
\ Z= -

1s leaky

1+ leaky

Fig. 10: Same as fig. 6, with n = 16 (cf. fig. 9).
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For

B> B,
the damping is negligible. For

B<Bm™ (or B<Sm™2),

the damping is essentially equal to the maximum saturation value. The same quali-
tative behaviour is found for propagation perpendicular to the wind, except that the
transition range is smaller. The variation of the damping factors in the transition range
is shown in fig. 11 for the case n = 4, w h/c = 30. In using figures S—11 it should
be noted that the Pierson-Moskowitz formula is applicable only to deep-water waves,
f = 1. For § < 1, the low-frequency end of the spectrum no longer increases appre-
ciably with wind speed on account of the dissipative losses due to bottom frictions.
As an order of magnitude estimate, we assume that for 8 < 1 the finite-depth spectrum
levels off to the fully-developed form given by Pierson-Moskowitz for f = 1. Thus
the region 8 < 1 in figures 6, 8 and 10 also correspond to wind-independent saturated
regions. The saturation damping factors of figures 5, 7 and 9 have been computed for
f = 1. The difference between the infinite-depth limit 8 = 0 and the finite-depth
limit 8 = 1 is appreciable only in the regions

mll'l

<l1,

i.e. for low and very high frequencies and the case / = n (cf. fig. 6, 8 and 10).
If B is greater than the largest value

max __ =sup, (ﬂmax

occurring in all interactions, the mode propagates virtually undamped. The corre-
sponding wind velocity

U =0.877 g/

is shown in fig. 12 as a function of frequency. The curves for n > [ lie only slightly
above UP*®. Thus to a good approximation it can be stated that all modes propagate
virtually undamped for wind velocities smaller than the ‘‘pass velocity”

gh_ 0877 [-B"

2kh Loh’

Upass Upass_o 877 \/
2 —_—
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Fig. 11: Damping factors 7y in units of inverse water depth for trapped-trapped and trapped-
leaking interactions in dependence of the wind parameter 8 for propagation parallel
(or antiparallel) and perpendicular to the wind, n = 4, wh/c = 30.
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Fig. 12: Wind velocity U as a function of frequency. For wind velocity less UP** the
mode n propagates nearly undamped.
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Table 1: e-folding attenuation distances in meters.

h=20m =50m
w/2 7 [Cps] U [m/sec] n=1 n=4 n=16 U][m/sec] n=1 n=4 n=16
8.2 (UPass)  7.0104 6.8 (UPass)  >447
20 9.5 1.9104 11.0 6.5105
11.0 7.2103 15.0 2.1305
1238 =1) 3.8103 1958 =1) 14105
3.0(UPass) >407 3.0(UP3ss)  >;07  3.5106
100 6.0 1.4105 8.0 2.2106 1.0104
9.0 3. 104 13.5 39105 1.1303
123 =1) 120 195(B =1 13105 48102
1.3 (UPass)  >4457  5.8106 1.3 (UPSsS)  >,07 >107 4.5106
500 5.0 9.2106 6.2103 1.5 >107 3.0104 6.6102
8.5 1.7106  1.0103 13.5 >107 4.7103  S.130l
123(f=1) 58105 2.0102 19.5(8=1) >107 14103 3.13l
h =100 m h = 500 m
w/2 7 [Cps] U [m/sec] n=1 n=4 n=16 U ][m/sec] n=1 n=4 n-—-16
6,7 (UP3sS)  >197 6.7(UP3S) >30T  >107
20 13.5 7.2105 18.0 >107 S.1104
20.0 1.9105 30.0 1.9106 5.4103
27.5(B=1) 59104 435 =1) 6.6105 2.4103
3.0(UPsss)y  >j07 >107 3.0(UPsss)  >jo7 >107 >107
100 11.0 >107 3.1104 16.5 >107  1.5105 3.3103
19.0 8.6106 S.1103 30.0 >107 23104 2.6102
275 =1) 29106 1.0103 435 =1 >107 72103 1.6302
1.3(UPsS)  >107 > 107 > 107 13(UPSS)  >307 > 107 > 107
500 10.0 >107 A~ 105 ~ 103 150 >107 5105 ~2104
18.5 >107 =~ 104 ~3102 29.0 >107 ~Tod =~2103
215 =1) >107 =~4103 =510l >107 Azdy02

4350 =1)
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Typical numerical values UPas8 and e-folding decay distances for U > UPass are

given in table 1. The corresponding attenuation distances for point-source fields
consisting of a superposition of normal modes are given in EsseN [1970].
For a given mode, the attenuation distance increases with increasing frequency. This
is due partly to the fact that the trapped modes approach grazing incidence at large
frequency : the number of ray reflections from the scattering surface for a given pro-
pagation distance becomes very small. Also, the fact that the wavenumber k, —
as w, - o implies that the area of the k; wavenumber plane corresponding to inter-
actions ky, + kp = k; with finite k, = 0 (k) approaches zero for W, > %.

For a given frequency, the attenuation distance decreases with mode number. In
the case of a point source located at a given depth in the wave guide, the proportion
of energy in higher modes increases with frequency. Thus the frequency dependence
of the net attenuation for a point source is given roughly by the diagonal in table 1.
For intermediate distances, the modenumber dependence dominates: the half-value
attenuation distance decreases with increasing frequency [Essen, 1970]. For large
distances, the lowest modes dominate, so that the asymptotic differential decay
distance increases with frequency.

4. The scattered field

In contrast to the primary wave field, the integration of the transport equations for
the scattered field represents a complex radiative transfer problem. In general, the
energy transferred between different scattered modes 42 and A’ through processes
% + pu— A’ is comparable with the energy gained from the primary mode » through
the process v + u — A. Thus all scattered modes are coupled, and the complete
scattered field is described by an infinite set of nonlinear transport equations.

The solution is usually constructed iteratively, using single-, double- and higher-
multiple scattering approximations. In the single-scattering approximation, only the
scattering processes involving the primary mode are retained in the source function
(equation (8)). Subsequent approximations are based on the full source functions,
which are evaluated using the spectra determined from the previous iteration. The
expansion is valid for distances not too far from the source, for which the scattered
energy density is small compared with the energy density of the primary mode.

We consider in this section only the single-scattering approximation. The primary
mode 7 is assumed to be generated by an isotropic, monochromatic point source of
frequency ws at x = x; (fig. 13). The transport equation of the spectrum F, is then
given by

°o . _09 _ L
vvia—xiFv—znké(x xt)é(k kn) )’vFv (13)

where Q, is the total energy input into the mode » and kj is the wavenumber of the
mode » corresponding to ws, ©, (ky) = ©s.
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The solution to (13) is

& Sk—kye (14)

To,r

F,(x)=

where
F= |I = xsl

For a given primary field » and scattering fields x, the source term S; in the single-
scattering equation (9) can be evaluated and the scattered field 7 determined by inte-
gration along the wave-group trajectories,

F,= F,(x,,,k,)——r _[ S, (x)ds
i — o0
where

k,
x=x,+— kr (15)

Substituting expression (10) for S; and transforming to spectral densities Fo, @)
with respect to frequency ¢ and propagation direction ¢

F(w,p)dwdp=F (k)dk, or F(w.tp)=%F(k)

equation (15) becomes

@,

Q.
Fi(w; )= { T*“‘_fmsmfe

F (o, tp,,,)e'(fJ'ﬁ)} (16)
resonance

where *“‘resonance” refers to the particular position along the ray for which the reso-
nant scattering conditions k; = ky -+ km, ©; = w, + o, are satisfied. For fixed
source and receiver positions X;, Xy, and given frequency «; and direction ¢; of the
scattered mode, the resonance conditions can be satisfied at only one position Xyes
(fig. 13). The scattered energy is proportional to the scattering spectrum at Xy,s at the
wavenumber k;;. The resonance position Xyr.s and wavenumber Ky, can be constructed
from the wavenumber scattering condition. noting that the moduli of the wavenumbers
are determined by the frequencies. In principal, measurement of the two-dimensional
scattered spectrum F7 (w, @) uniquely determines the two-dimensional spectrum
Fn (o, @) of a homogeneous scattering field m.
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The exponential factors in the solution (16) represent the scattering loss of the
primary field (equation 14) along the path from X; t0 Xyes and the scattering loss of the
field / along the path from xy.s to x,. Strictly, the energy loss due to trapped-trapped
scattering should not be included in the single-scattering approximation. The corre-
sponding exponential terms evolve automatically in the form of a TAYLOR series in
successive, higher-scattering iterations. Accordingly, only the trapped-leaking inter-

Fig. 13: Scattering path for interaction » + ¢ — Z. For given ¢, k; scattering occurs at only
one resonance point Xres.

actions have been considered in the evaluation of the damping coefficients. In regions
for which the single-scattering solution is a good approximation, the scattering losses
are negligible. However, it is convenient to include the damping factors to remove
singularities which would otherwise occur in the single-scattering solution (16) at
@ = 0 and = (the single-scattering approximation is poor for @ = 0 and ).

As example, fig. 14 shows the computed total scattered energy per unit angle

Fi(o)= (,! Fl (@;, o) dow,

for the case of scattering by a surface-wave spectrum (11). The wave-guide model is
the same as in the previous section. The wind parameter § = 1 corresponds to maxi-
mum scattering by a saturated surface wave spectrum. The source-receiver line was
taken at an angle of 45 ° to the mean surface-wave direction to illustrate the directional
asymmetry of the scattered field. Fig. 15 shows a similar asymmetry of the mean
Doppler shift

5.6 £ F 1(@; ¢) 0, do;
wy (p! = ®
(! FI (w3, 0))dw,
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Fig. 14: Scattered energy of modes / from a primary mode n = 4, wh/c = 30.
The scattering surface wave spectrum is saturated, § = 1.

Source-receiver distance d = 100 - A; mean surface-wave direction, » = 45°.

Fig. 15: Mean Doppler shift of the scattered energy per unit angle,

same parameters as in fig. 14.



Scattering of Low-Frequency Sound in the Ocean 677

Table 2: Total scattered energy densities of mode /.

1 E/E, for n = 4, whlc = 30
«=0° a=0° o =0° o =0° o = 45° & = 90°
dh=35 dlh =20 dlh = 100 dlh = 500 dlh =100 d/h =100
1 1.130—4 4.510—4 2.310—3 1.510—2 1.210—3 4.310—4
2 1.210—2 4,710—2 2.410—1 1.5 1.230—1 4.310—2
3 1.130—1 4.310—1 22 1.3101 1.0 4.410—1
4 1.410—4 1.610—4 2.710—4 6.710—4 1.1 4.6
5 21301 8.210—1 39 1.4101 2.0 7.T0—1
6 331302 1.310—1 5.310—1 1.3 3.710—1 1.510—1
7 1.070—2 3.610—2 1.130—1 1.510—1 1.130—1 4.710—2
8 3.510—3 9.030—3 1.310—2 1.810—2 2.610—2 1.310—2
9 1.410—4 2.910—4 3.910—4 1. 710—4 7.210—4 2.510—4

The total scattered energies £y = ([F7 (w;, 1) dw, dgy for three angles & = 0°,

45°,90° between the source-receiver line and the mean wave direction are shown
in table 2.

5. Conclusions

Scattering by surface gravity waves leads to a strong attenuation of acoustic modes.
For fixed frequency, the attenuation increases with modenumber, for fixed mode-
number, it decreases with increasing frequency.

All modes propagate virtually undamped for wind velocities smaller than a critical
velocity UP3s8, With increasing wind speed, the attenuation reaches a (frequency and
mode-number dependent) maximum asymptotic value determined by the wind-
independent w3 equilibrium gravity-wave spectrum.

In the case of a CW-source, the directional and frequency analysis of the scattered
field yields information on the two-dimensional spectrum of the scattering field. To-
gether with attenuation measurements, this provides an additional experimental check
on the scattering theory. A similar analysis can be carried through in terms of the time
delays for pulsed sinusoids, rather than the Doppler shifts of a CW-source.

The computed attenuation factors due to gravity-wave scattering are in order-of-
magnitude agreement with measurements (e.g. [ToLsToy and CLAY, 1966]). Observed
Doppler shifts of the scattered field also suggest gravity-waves as a principal source of
scattering [SCRIMGER, 1961, NicHoLs, 1967, UrIck, 1968]. However, a quantitative .
comparison of theory with existing acoustic attenuation or scattering measurements
is not possible on account of inadequate surface-wave information. Simultaneous
measurements of the signal attenuation, the spectra of the surface waves and the
scattered field characteristics are necessary to fully understand the observed attenua-
tion processes.



678 H.-H. EsseN and K. HASSELMANN

References

DorRESTEIN, R.: Simplified method of determining refraction coefficients for sea waves,
Journ. Geophys. Res., 65, 637—642, 1960.

EsseN, H.-H.: Streuung niederfrequenter akustischer Eigenschwingungen im ozeanischen
Wellenleiter. Berechnung der UbertragungsgroBen fiir Streuung an Oberflichenschwere
wellen und Anwendung der Ergebnisse auf eine Punktquelle, wird veroffentlicht in den
Hamburger Gophysikalischen Einzelschriften, 1970.

EwiNg, W. M., W. S. JARDETZKY, and F. Press: Elastic waves in layered media, McGraw-
Hill, 1957.

FoRTUIN, L.: A survey of literature on reflection and scattering of sound waves at the sea sur-
face, Saclant ASW Research Centre, La Spezia (Italy) Technical Report No. 138, 1969.

HASSELMANN, K.: Feynman diagrams and interaction rules of wave-wave scattering processes,
Rev. Geophys., 4, 1—32, 1966.

— : Nonlinear interactions treated by the methods of theoretical physics, Proc. Roy. Soc. A.,
299, 77—100, 1967.

— : Weak-interaction theory of ocean waves, Basic Developments in Fluid Dynamics, 2,
117—182, 1968.

NicHois, R. H., and H. J. Young, Fluctuations in low-frequency acoustic propagation in
the ocean, Journ. Acoust. Soc. Am., 43, 716—722, 1967.

PelerLs, R. E.: Zur kinetischen Theorie der Warmeleitungen in Kristallen, Ann. d. Phys., 3,
1055—1101, 1929.

PiErsON, W. J., and L. MoskowiTz: A proposed spectral form for fully developed wind seas
based on the similarity theory of S. A. Kitaigorodskii, Journ. Geophys. Res., 69, 5181 to
5190, 1964.

SCRIMGER, J. A.: Signal amplitude and phase fluctuations induced by surface waves in ducted
sound propagation, Journ. Acoust. Soc. Am., 33, 239247, 1961.

ToLsToy, I., and C. S. CLAY: Ocean Acoustics, McGraw-Hill, 124— 134, 1966.

URICK, R.J., G.R. LuND, and D. L. BRADLEY: Observations of fluctuation of transmitted
sound in shallow water, Journ. Acoust. Soc. Am., 45, 683—690, 1969.

WRIGHT, J. W.: A new model for sea clutter, IEEE Trans. on Antennas and Propagation,
AP-16, No. 2, 217—223, 1968.



