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K. Hasselmann

FiG. 1. Spectrum of the sea surface.
The spectrum E (f) is multiplied by
the frequency f to obtain the spectral
density E (log f), in accordance with
the logarithmic frequency plot.

The sea surface

Introduction

The frequency spectrum of a typical sea surface record displays two prominent
energy bands (Fig. 1): the tides, concentrated in discrete lines around the har-
monics of 1 cycle per day, and wind waves, in the continuous band from about 0.05
to 1 cycle per second. The root mean square displacement for each band is of the
order of a few metres, but the energies can vary considerably with location and
wind conditions. Separating these bands is a broad region of very low energy
representing a total root mean square displacement of a few centimetres, which
is probably produced by non-linear ‘surf beat’ interactions between wind waves.
The tidal lines are superimposed on a continuum of meteorological origin which
continues down to still lower frequencies. The over-all distributions are similar
for both deep and shallow water. The stronger non-linearities in shallow water
tend to enhance the higher tidal harmonies and the surf beat continuum, and the
low-frequency side of the wind wave band is reduced by bottom friction.

We shall be able to consider here only the wind wave continuum. Most
investigations of wind waves have centred around two interrelated problems:
the prediction of the wave spectrum at any time and position in the ocean, and
the analysis of the physical processes which determine the local energy balance
of the waves.

Wave prediction

The prediction of the wave spectrum generated at a given time and position in
the ocean by a given wind field is a problem of radiative transfer. As input to the
problem we need to know the local energy transfer rates, so that the analysis
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Fic. 2. Ray paths involved in the integration
of the radiative transfer equation (1).
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of the physical processes which determine these is clearly an essential part of the
complete prediction problem. We shall assume here, however, that the transfer
expressions are given. In practice, the problem may be approached in a semi-
empirical manner by introducing first an empirical expression for the net local
transfer and successively amending the expression as improved observations or
theoretical relations become available.

For a complete description of the sea surface we need a two-dimensional
spectrum describing the distribution of wave energy with respect to both frequency
and propagation direction. It is convenient to use the spectral distribution F(K)
in the wave number plane. The local rate of change of the spectrum is then given
by the radiative transfer, or energy balance equation (Dorrestein, 1960; Hassel-
mann, 1960).
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Here DF/Dt is the rate of change of the spectrum along the path of a
wave group in x-k phase space, as determined by the Hamiltonian equations
xi = 00Ok, ke = (Pw/0xi) where o = o (K, x) is the frequency. G is the net
local energy transfer to the spectrum at k, which we shall see is a functional of
the entire spectrum and the atmospheric boundary layer.
The implicit solution of equation (1) for a given wave group is obtained by
integrating along the path of the group in phase space,

Fk, x, ) = F(ky, Xo, 8y) + tj Gk(t"), x(2"), t")dt'.
1

The complete spectrum at (x, £) is then obtained by integrating along all rays
that terminate in x at time ¢ (Fig. 2). Since Gis a functional of the entire spectrum,
the integral can be evaluated only if we know the entire spectrum at each point P’
on each ray. This, again, involves integration along-all rays that terminate in P-,
and so on. It follows that all rays of the field are coupled, and it is impossible to
determine the spectrum at any one point in the ocean without simultaneously
determining the entire spectral field in the region in which G is non-zero. This
is a common feature of most transfer problems. Similar problems have been
treated successfully in reactor theory and astrophysics by numerical techniques.
In our case the transfer equations are generally more complicated (the fields
exhibit less symmetry and the functional G is non-linear), but with present-day
computers numerical procedures appear feasible. Recent advances in this direction
by Gelci and Cazale (1962), Baer (1962), Pierson and Tick (1965) and others
look very promising. It is perhaps not too optimistic to predict that wave fore-
casts based on the numerical integration of the transfer equation will in a few
years become routine. Much will depend, however, on our success in clarifying
the processes which determine the local transfer rates.

Local transfer processes

The common feature of many wind wave interactions can be explained by V. Laue’s
refraction experiment (Fig. 3). An incident plane wave of wave number k, can
be partially refracted by a crystal lattice into a plane wave of wave number Kk,
if the wave numbers satisfy the Bragg condition

ks =k, + k, (2)

where k, is the wave number of a periodic sct of lattice planes. If the lattice is
moved with constant velocity ¢, in the direction of kg, the incident radiation suffers




Bragg's condition: k3 = ki+k;
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FiG. 3. Scattering of a plan wave of wave
number &, and frequency w, into another
wave of wave number k, and frequency e,
by a periodic disturbance (for example,
crystal lattice) of wave number k, moving
with velocity ¢,.

The sea surface

a Doppler shift w, = c5k, on reflection at the lattice planes, so that the frequency
of the refracted wave is

g = 0y 1 0y 2

The conditions (2) and (3) follow from interference considerations and are
independent of the form of interaction between the incident radiation and the
periodic disturbance which gives rise to the refracted wave. They apply equally
to the case in which the disturbance is due to another plane wave rather than a
moving lattice. The equations then represent the interaction conditions for the
scattering of two waves (1) and (2) into a third wave (3).

Since the same plane wave can also be represented by negative values of the
frequency and wave number, the interaction conditions may be written with
arbitrary sign combinations of frequencies and wave numbers. It follows then
that if waves (1) and (2) can scatter into (3), (3) and (2) can scatter into (1), and (3)
and (1) into (2).

Similarly, n waves can interact if

n—1

kn —= Z Sjkj
I=1

n—1
wy = = §jj;, wheres; = 4-1.
J=1

It is convenient to represent the scattering of energy from n — 1 waves into
a wave n by a ‘Feynman’ diagram, in which the interacting wave components are
represented by their wave number vectors (Hasselmann, 1966). Negative signs
in the interaction conditions are associated with ‘anti-wave’ components, which
are denoted by cross-stroked arrows. Each diagram can be associated with a
particular term in the perturbation analysis of the interacting fields. If the wave
fields are random, the Feynman diagrams may be interpreted as collision diagrams
in a particle picture and thereby indicate the rate and direction in which energy («)
and momentum (k) is transferred between the interacting components.

The diagrams can also be used to describe interactions between wave fields
and periodic disturbances associated with non-wave fields, such as the Fourier
components of a turbulence field. In this case the particle picture is not valid,
but an essential feature of the diagrams is retained: the rate of change of energy
of any wave component in a diagram is proportional to the product of the spectral
densities of the incoming components.

Let us consider, for example, the interactions between gravity waves (g)
and the atmosphere. The atmospheric boundary layer consists of a mean flow
and fluctuating turbulent field (7).

Since the mean flow is independent of the horizontal co-ordinates and time
it has zero wave-number and frequency. It does not appear in the Feynman
diagrams, but it affects the interaction coefficients in the diagram vertices. The
complete sct of lowest order interactions involving a total of not more than three
components are then characterized by the diagrams in Figure 4.

The first interaction g — g (Fig. 4(a)) represents Miles’ (1957) mechanism
of an unstable coupling between the waves and the mean boundary layer flow.
This yields an energy transfer of the form

DF|Dt = BF C)]

where B is a function of the mean profile. The wave growth is exponential.

The three interactions ¢ —> g, ¢ — g and tf — g in Figure 4(b) correspond
to Phillips’ (1957) mechanism of wave generation through random turbulent
pressure fluctuations p. The interactions can be represented more simply by the
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Fi1G. 4. Interactions between gravity waves
() and turbulence (¢) in the atmospheric
boundary layer.
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linear interaction diagram p — g, but the pressure field is itself a derived field
which is generated by the turbulent velocity interactions shown in the figure. The
energy transfer is given by

DF|Dt = o (5)

where « is proportional to the spectrum of the turbulent pressure fluctuations at
the wave number and frequency of the waves. The wave growth is linear.

The remaining interactions g¢ — g, gf — g and gf - g (Fig. 4(c)) have not
been considered previously. They lead to an energy transfer of the form

DE (k) _

D — YF) + [ 30k k) FK")dK’ (6)

where v and 3 are linear functionals of the turbulent velocity spectrum. The wave
growth depends on y and §, which are difficult to predict on the basis of existing
turbulence measurements. It appears probable that the waves grow quasi-exponen-
tially at first and then approach an asymptotic equilibrium value in which the
terms on the right hand side of equation (6) balance each other.

Interactions between the waves themselves also produce an appreciable energy
transfer (Fig. 5). At least four components are necessary to conserve both energy
and momentum (Phillips, 1960). The energy transfer is given by

DF (k)

o = K FR)FI ) Fek -k — FOOKFR)FRAK K ()

where K, and K, are known kernels (Hasselmann, 1960, 1962). The energy
transfer is mainly from medium frequencies to higher frequencies, with a weak
flux also to low frequencies.

Further interactions produce scattering into internal gravity waves, seismic
waves, and the low frequency surf beat continuum. Although important for the
coupled fields, their effect on the energy balance of the wind wave spectrum is
probably negligible.

The total energy balance is obtained by summing over the transfer rates of
all processes. Apart from the processes considered above, this includes the energy



FiG. 5. Fourth order interactions between
gravity wave components g.
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losses due to wave breaking, small scale turbulence and, in shallow water, bottom
friction.

Virtually nothing is known of the losses due to wave breaking and turbulence.
The dissipation due to bottom friction is normally estimated by evaluating the
mean work <T .u> done by an approximate bottom stress T = — ¢ p ulu|
(with constant ¢s) against a bottom velocity u. This yields a quasi-linear spectral
dissipation of the form

DF|Dt = — ciKyjkk;F ®)

where the anisotropic tensor coefficient K; is a functional of the entire spectrum.
The decay rate is slightly slower than exponential.

Comparison with observations

Most wave observations have been made at single stations and unfortunately
give little insight into the energy balance of the spectra. Only a few measurements
of the rate of growth or decay of waves have been attempted.

Observations of the growth of waves of 3.3 second period by Snyder and
Cox (1966) indicate that the initial growth stage is linear. The growth rate is
consistent with Phillips’ theory, if pressure measurements made on land by
Priestley (1965) are assumed to apply also to the ocean. The linear phase is followed
by a more rapid exponential growth, which accounts for most of the wave energy.
The exponential growth is almost an order magnitude larger than that predicted
by Miles, or by the earlier theory of Jeffreys (1925). This naturally suggests the
remaining wave-turbulence interactions, Figure 4(c), as the main source of wind
waves. The qualitative features of the wave-turbulence appear to be in general
agreement with the observations, but a quantitative test must await more detailed
measurements of the turbulent structure in the boundary layer, including, in parti-
cular, the spectra of vertical correlations of the velocity components.

An interesting feature of the wave-turbulence interactions is that they
include a term representing a possible transfer of energy from the waves back
to the boundary layer. Hence an equilibrium of the high-frequency part of the
spectrum is conceivable without having to invoke a strong dissipative mechanism
to balance the energy transfer from the atmosphere to waves. This may have
bearing on estimates of the net transfer of momentum from the atmosphere to
ocean currents via waves (cf. Snyder and Cox, 1966).

The decay of ocean swell over large distances in the Pacific ocean has been
measured by Snodgrass et al. (1966). An appreciable decay was observed only
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measurements in the German Bight. Collins and Bretschneider’s measurements
are in agreement with the attenuation computed according to equation (8).

Conclusion

The recent years have seen considerable progress in our understanding of the
basic physical processes which determine the energy distribution in the wind-wave
continuum. Most of the processes involving linear or weakly non-linear inter-
actions, both between waves and the atmosphere and between the waves themselves,
have been clarified. More detailed observations are now needed to fill the gap
created by the strong interactions, where rapid theoretical progress is not to be
expected. This concerns primarily the turbulent velocity field of the boundary
layer and the effects of waves breaking. To test existing theories we also need
further wave observations designed specifically to determine not only the wave
spectra, but also the rates of change of the spectra in both space and time.
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