
1.  Introduction
Over the past decade, major advances in the prediction of sea ice have been made. This includes the de-
velopment of seasonal sea-ice prediction systems based on coupled global climate models (GCMs) utilized 
for operational predictions (e.g., Chevallier et al., 2013; Msadek et al., 2014; Peterson et al., 2015; Sigmond 
et al., 2013; Wang et al., 2013) and “perfect-model” studies (e.g., Blanchard-Wrigglesworth, Bitz, & Hol-
land, 2011; Day et al., 2016; Day, Hawkins, & Tietsche, 2014; Germe et al., 2014; Holland et al., 2011; Koe-
nigk & Mikolajewicz, 2009; Tietsche et al., 2014). The latter provide an upper limit of the predictability of 
sea ice within a given model framework under the assumption of perfect model physics and knowledge 
of initial conditions (potential predictability). While perfect-model studies show that pan-Arctic sea-ice 
area (SIA) or extent (SIE) are predictable at 12–36 month lead times, operational predictions of detrend-
ed pan-Arctic SIA/SIE are skillful only for lead times of a few months (1–6 months for summer SIE and 
1–11 months for winter SIE depending on the prediction system) (Bushuk et al., 2019; Guemas et al., 2016). 
This gap between potential predictability and operational forecast skill has been noted in previous studies 
(e.g., Blanchard-Wrigglesworth et  al.,  2015; Guemas et  al.,  2016). Bushuk et  al.  (2019) provide the first 
consistent assessment of potential and operational forecast skill within one GCM-based prediction system 
and find a substantial skill gap in nearly all Arctic regions. This predictability gap could indicate a strong 

Abstract  To investigate the inherent predictability of sea ice and its representation in climate models, 
we compare the seasonal-to-interannual memory of Arctic sea ice as given by lagged correlations of 
sea-ice area anomalies in large model ensembles (Max Planck Institute Grand Ensemble and Coupled 
Model Intercomparison Project phase 6) and multiple observational products. We find that state-of-the-
art climate models significantly overestimate the memory of pan-Arctic sea-ice area from the summer 
months into the following year. This cannot be explained by internal variability. We further show that 
the observed summer memory can be disentangled regionally into a reemergence of positive correlations 
in the perennial ice zone and negative correlations in the seasonal ice zone; the latter giving rise to the 
discrepancy between observations and model simulations. These findings could explain some of the 
predictability gap between potential and operational forecast skill of Arctic sea-ice area identified in 
previous studies.

Plain Language Summary  Sea ice, as a relatively slowly varying component in the climate 
system, holds “memory” on seasonal-to-interannual timescales. This means that, based on the current 
state of the sea ice, meaningful predictions of its state several months into the future can be made, 
for instance with the use of climate models. Such sea-ice predictions are of growing socioeconomic 
importance, particularly in the Arctic, where the strong sea-ice loss in the last decades is giving rise to 
new risks as well as economic opportunities. Here, we provide a comparison of the memory of Arctic sea 
ice based on model and observational data. We show that current global climate models systematically 
overestimate the memory of sea ice from one summer into the following year and beyond. We further 
show that this overestimation arises from how the outer region of the Arctic, which is only seasonally 
ice-covered, remembers previous summer sea ice. Our findings imply that, first, there is likely a 
misrepresentation of processes related to the memory of sea ice in climate models and, second, the 
potential of making skillful sea-ice predictions is less strong than previously assumed based on model 
simulations.
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potential for improvements of operational sea-ice predictions, either through improved initialization or 
improved model physics. However, the skill gap might also hint at a systematic overestimation of sea-ice 
predictability in state-of-the-art GCMs, as previously suggested by Notz  (2017) and Blanchard-Wriggles-
worth and Bushuk (2019). This brings up the question of which predictability can be expected based on 
observations, which we address here.

One way to analyze the inherent predictability of sea ice, arising from the memory/persistence of its ini-
tial conditions, in models as well as observations are lagged correlation studies (Blanchard-Wrigglesworth 
& Bushuk,  2019; Blanchard-Wrigglesworth, Armour, et  al.,  2011; Bushuk & Giannakis,  2015; Bushuk 
et  al.,  2015,  2017; Chevallier & Salas-Mélia,  2012; Day, Tietsche, & Hawkins,  2014; Krikken & Hazele-
ger, 2015; Ordoñez et al., 2018). As found by Blanchard-Wrigglesworth, Armour, et al. (2011), the memory 
of pan-Arctic SIA anomalies is characterized by an initial persistence of 2–5 months and two distinct modes 
of memory reemergence, in which lagged correlations increase again after an initial drop. The first iden-
tified mode of memory reemergence occurs between months of the melt and the freezing season (“melt-
to-growth season reemergence”) and is related to an imprint of SIA anomalies on sea surface temperature 
(SST) anomalies in the vicinity of the sea-ice edge, which persist over the summer season. The second mode 
occurs between the months of one summer and the next (“summer-to-summer reemergence” or in later 
works also “growth-to-melt season reemergence”) and can be explained by a similar exchange of anom-
alies between SIA and sea-ice thickness. In addition, the ice-albedo feedback adds to the persistence and 
reemergence during the summer months. Day, Tietsche, and Hawkins (2014) showed that, despite some 
inter-model spread in the magnitude of correlations, the memory patterns are robust across different GCMs.

Comparing the memory of pan-Arctic SIA in model simulations and observations, previous studies noted 
generally higher lagged correlations in the models than in the observations as well as differences in the oc-
currence of reemergence (Blanchard-Wrigglesworth, Armour, et al., 2011; Day, Tietsche, & Hawkins, 2014; 
Krikken & Hazeleger, 2015). While the melt-to-growth season reemergence is present in observational data, 
there is no significant signal of summer-to-summer reemergence. As pointed out by Day, Tietsche, and 
Hawkins  (2014), the attribution of discrepancies to potential causes is complicated by several factors of 
uncertainty, such as the shortness of the observational record and the detrending of the time series.

With the present study, we aim to systematically analyze differences in the memory of Arctic sea-ice in 
model simulations and observations: Can they be attributed to internal variability or errors in the model 
physics? Where do they occur regionally? In contrast to previous studies, we base our lagged correlation 
analysis of SIA anomalies on a multitude of simulated and observational data: the Max Planck Institute 
Grand Ensemble (MPI-GE, Maher et al., 2019), a Coupled Model Intercomparison Project phase 6 (CMIP6; 
Eyring et al., 2016) multi-model ensemble, and several observational data products. By comparing lagged 
correlations from observational data to the range of model internal variability of large ensemble simulations 
covering the same period, we systematically identify time lags at which simulated memory is over-/under-
estimated. By analyzing not only the memory of pan-Arctic SIA but also regional memory of SIA, we gain 
insights into the spatial origin of discrepancies between models and observations.

2.  Data and Methods
2.1.  Sea-Ice Concentration Data Sets

For our analysis, we use monthly sea-ice concentration (SIC) data of the period 1979–2018 from various 
model and observational data products. We analyze model data from the MPI-GE (Maher et  al.,  2019), 
combining historical simulations (1979–2005) and representative concentration pathway 4.5 (RCP4.5) sim-
ulations (2006–2018) performed with the Max Planck Institute Earth System Model (MPI-ESM, Giorget-
ta et  al.,  2013) from 100 model ensemble members. Additionally, we use a CMIP6 (Eyring et  al.,  2016) 
multi-model ensemble consisting of 240 members from 37 different models. For this ensemble, we use all 
available historical simulations (period 1979–2014) except those performed with MPI-ESM. This allows 
judgment on whether results obtained with the MPI-GE are model-specific or can be generalized for state-
of-the-art GCMs. Note that, due to the consideration of all available simulations, the individual models are 
weighted differently depending on the amount of provided ensemble members, but qualitatively similar 
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results are obtained when analyzing only one member per model. A table listing the contributing CMIP6 
models with their number of ensemble members is provided in the supporting information (Table S1).

Furthermore, we use three observational products of SIC retrieved from satellite records with different 
retrieval algorithms, namely Bootstrap (Comiso, 2017) and NASA Team (Cavalieri et al., 1996) data from 
the National Snow and Ice Data Center (NSIDC) and EUMETSAT Ocean and Sea Ice Satellite Application 
Facility (OSI SAF) data (Lavergne et al., 2019; OSI SAF, 2017, 2019). The usage of different observational 
products allows us to take into account the uncertainty in observed SIC (e.g., Kern et al., 2019, 2020).

2.2.  Quantification of Memory

We quantify memory of Arctic sea ice in terms of lagged correlations of SIA anomalies. From the SIC data 
sets, we compute monthly time series of pan-Arctic and regional SIA, differentiating between a seasonal 
ice zone (SIZ) and a perennial ice zone (PIZ). We define the PIZ to consist of all grid cells with a September 
SIC of ≥0.15 (corresponding to the annual minimum ice extent) in at least 80% of the years based on the 
NSIDC Bootstrap data; all other grid cells are considered as SIZ. For the CMIP6 multi-model ensemble, we 
consider only pan-Arctic SIA, determined as described in SIMIP Community (2020). To remove externally 
driven long-term trends, we detrend the time series of individual months using locally weighted scatterplot 
smoothing (LOWESS; Cleveland, 1979). This local regression provides a more accurate representation of 
the sea-ice decline than a linear regression, as the negative trend is increasing with time, particularly in the 
sea-ice minimum months (e.g., Serreze & Stroeve, 2015). In the supporting information, we provide a visual 
comparison of the LOWESS and linear detrending (Figure S1) and show some key results based on linearly 
detrended time series, allowing for a direct comparison to previous studies. From the resulting monthly SIA 
anomalies, we calculate lagged correlations with time lags of up to 18 months using Pearson’s correlation 
coefficient r. For details on the computation of SIA and the statistical methods applied for the combination 
of correlation coefficients of ensemble members, the computation of statistical significance, and the de-
trending, we refer to the supporting information (Text S1).

3.  Results
3.1.  Memory of Pan-Arctic Sea-Ice Area

Analyzing the lagged correlations of pan-Arctic SIA, all data sets show an initial decline of memory as-
sociated with the persistence of SIA anomalies (Figures 1a–1c and Figure S2 for the individual observa-
tional data sets). Related to the seasonal cycle, two persistence regimes can be differentiated: one centered 
around the sea-ice maximum (winter persistence, January to May start months) and one centered around 
the sea-ice minimum (summer persistence, June to December start months). The e-folding decorrelation 
time ranges between 1 and 6 months depending on the initial month and data set, which is consistent with 
previous studies (Blanchard-Wrigglesworth, Armour, et al., 2011; Day, Tietsche, & Hawkins, 2014; Krik-
ken & Hazeleger, 2015). Furthermore, all data sets show a melt-to-growth-season reemergence of memory 
(high correlations between pairs of months around the sea-ice minimum, i.e., August–September, July–
October, etc.; Blanchard-Wrigglesworth, Armour, et al.,  2011). The correlation between pairs of months 
around the sea-ice minimum is less clear-cut in the observations than in the models. However, the relation 
from winter to winter is stronger in the observations than in the MPI-GE, as also noted in previous studies 
(Blanchard-Wrigglesworth, Armour, et al., 2011; Krikken & Hazeleger, 2015). The CMIP6 ensemble repro-
duces the observed winter-to-winter memory better than the MPI-GE.

For the summer-to-summer memory, differences between observations and model simulations are more 
apparent than for other time lags. The model ensembles show a clear summer-to-summer reemergence 
(high correlations between the summer minimum months, particularly August/September, from one year 
to the next; Blanchard-Wrigglesworth, Armour, et al., 2011). The signal is more pronounced in the MPI-
GE than in the CMIP6 ensemble (September 1-year lag correlation of 0.31 and 0.24, respectively). In the 
observations, the correlations from the summer months beyond the persistence timescale are substantially 
lower than in the models (e.g., September 1-year lag correlation of −0.06), with even significant negative 
correlations from summer to spring of the next year. Despite these low correlation coefficients, there is 
an increase in correlations (from −0.35 at minimum to around zero) in the summer months. This could 
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indicate a reemergence of summer SIA anomalies that is superimposed with negative summer-to-summer 
correlations caused by a different process. Note that when detrending the time series linearly, the correla-
tion coefficients are higher, rendering the summer-to-summer reemergence in the observations more visi-
ble (Figure S3), but we still find statistically significant negative correlations from summer to spring.

As the model correlation values represent an average of many ensemble members and the observations 
represent only a single time series, differences could be due to internal variability. Still, one would expect 
the observations to lie within the range of model variability. There are several patterns or individual time 
lags for which the correlation coefficients from observations are at the edge of model variability (Figure 1d). 
Most evident is the pattern of time lags from the summer months into the following year, in which the ob-
served correlations are consistently within or below the 5th percentile of MPI-GE correlation coefficients. 
This is a strong indication for a systematic overestimation of memory related to errors in the model physics. 
Similar patterns of model over-/underestimation are found when ranking the observed correlations within 
the CMIP6 ensemble (not shown).

For a more detailed view of the internal model variability, we define four different memory regimes (winter 
persistence, winter long-term memory, summer persistence, and summer long-term memory regime; Fig-
ure 2a) and compare the mean correlation coefficients for each of these memory regimes in the individual 
data products to their distribution in the MPI-GE and CMIP6 ensemble (Figures 2b–2e). The distributions 
of correlation coefficients in the MPI-GE and CMIP6 ensemble have a large overlap (75%–90% depending 
on the memory regime), indicating that the MPI-ESM model behaves similarly to other CMIP6 models in 
terms of memory. The CMIP6 ensemble has a wider spread than the MPI-GE, which is expected due to the 
larger ensemble size and the variety of contributing models.

Comparing the model ensembles against observations, we find that for the winter persistence, winter long-
term memory, and summer persistence regimes (Figures  2b–2d), despite some spread, all observational 
products show correlation coefficients that lie within the range of correlations simulated in both the CMIP6 
ensemble and the MPI-GE. For the summer long-term memory (Figure 2e), however, the correlations of 
all three observational data sets are below the model ensemble range (except for two CMIP6 ensemble 
members having a lower correlation than the NSIDC NASA Team and Bootstrap data). This indicates that 
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Figure 1.  (a–c) Lagged correlations of monthly pan-Arctic sea-ice area anomalies in (a) the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-
model ensemble, (b) the Max Planck Institute Grand Ensemble (MPI-GE), and (c) the observational products (National Snow and Ice Data Center [NSIDC] 
Bootstrap, NSIDC NASA Team, and Ocean and Sea Ice Satellite Application Facility [OSI SAF] data) combined to a “3-member ensemble.” Correlation 
coefficients of individual ensemble members or data products are combined using a Fisher's z-transformation. Black dots indicate statistical significance on 
the 99% level. (d) Percentile of MPI-GE members with a lower correlation than observational data for the respective time lag. Downward and upward triangles 
mark values within the 5th and 95th percentile. Time lags with correlations coefficients outside of the model range (0th and 100th percentile) are marked with a 
larger triangle.
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the observations are not just an “outlier,” but that climate models systematically overestimate the memory 
in the summer long-term regime. In the case of linearly detrended time series, the observed correlations 
are within the range of CMIP6 and MPI-GE internal variability, but also in the lower tail of the distribution 
(Figure S4).

Note that qualitatively similar results are obtained when analyzing lagged correlations of pan-Arctic SIE 
(see Figures S5 and S6). As noted by Blanchard-Wrigglesworth, Armour, et al. (2011), SIE anomalies are 
slightly less persistent than SIA anomalies as they are more sensitive to dynamic wind forcing. Moreover, 
the SIE does not account for variations in the interior of the ice cover in summer. As a consequence, there 
is only a weak signal of simulated summer-to-summer reemergence for SIE. Observed summer-to-spring 
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Figure 2.  (a) Definition of different memory regimes. (b–e) Distribution of mean correlation coefficients for the four different memory regimes shown as 
histograms for the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model ensemble (gray) and the Max Planck Institute Grand Ensemble 
(MPI-GE) (blue), and as lines for the observational data sets (National Snow and Ice Data Center [NSIDC] Bootstrap, NSIDC NASA Team, and Ocean and Sea 
Ice Satellite Application Facility [OSI SAF] data). The black and blue lines show normal distribution fits to the CMIP6 and MPI-GE data, respectively. Shadings 
indicate the 2σ-range.
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correlations are negative also for SIE, albeit lower in magnitude than for SIA, suggesting that both varia-
tions in the ice pack as well as in the position of the sea-ice edge are involved. Equally as for SIA, all ob-
servational data sets show correlations of SIE in the summer long-term memory regime that are below the 
model ensemble range.

3.2.  Regional Memory of Sea-Ice Area

To investigate whether some of the memory properties and differences between the data sets have a certain 
spatial origin, we analyze the memory of SIA on a regional level. As shown by Ordoñez et al. (2018), the 
memory of regional SIA can vary substantially between different Arctic basins: It is impacted on the one 
hand by the geographic location and associated ocean dynamics, and on the other hand by the seasonal 
cycle of the regional SIA and its variability. For simplicity, we here choose a variability-based regional sep-
aration, differentiating only between the SIZ, which is characterized by thin, seasonal ice in the vicinity of 
the ice edge, and the PIZ, which contains thick, multi-year ice in the center of the Arctic Ocean (see map in 
Figure 3a). While the SIA of the SIZ has a pronounced seasonal cycle and year-round variability (Figures 3b 
and 3d), the SIA of the PIZ is practically constant throughout most of the year with a dip and substantial 
interannual variability in the months around the sea-ice minimum (Figures 3c and 3e). From analyzing the 
lagged correlations between different combinations of SIZ, PIZ, and pan-Arctic SIA anomalies (Figures 3f–
3w), we can gain information on the spatial occurrence and origin of memory.

The different memory characteristics, identified on the pan-Arctic scale, show different regional occur-
rences. The persistence of SIA anomalies is strongly connected to the seasonal cycle. As both ice zones 
exhibit seasonal variations of ice area in summer, SIA anomalies of both SIZ (Figures 3f and 3o) and PIZ 
(Figures 3j and 3s) persist during summer and contribute to the summer persistence on the pan-Arctic scale 
(Figures 3h, 3k, 3q, and 3t). In winter, the ice area in the SIZ shows strong seasonal variations, while the ice 
area in the PIZ is practically constant. Thus, only the SIZ (Figures 3f and 3o) shows a pronounced signal of 
winter persistence, reflected also on the pan-Arctic scale (Figures 3h and 3q). The observations also show an 
intra-regional persistence of winter SIA anomalies in the PIZ (Figure 3s) not present in the model. However, 
these correlations result from only small fluctuations of the otherwise full ice cover and do not transfer any 
memory to the pan-Arctic scale (Figure 3t). Similar to the winter persistence, the melt-to-growth season 
reemergence is only apparent in the SIZ (Figure 3, left column) but not in the PIZ (Figure 3, middle col-
umn), as it is related to the imprint of SIA anomalies to the SST in the vicinity of the sea-ice edge. Overall, 
the regional memory in the persistence and winter long-term memory regimes is consistent between MPI-
GE and observations.

The most striking result on the pan-Arctic scale is the overestimation of the summer long-term memo-
ry, which is characterized by a summer-to-summer reemergence in the model simulations and negative 
correlations in the observations. The inter-regional correlations show that summer SIA anomalies from 
both ice zones (especially from the SIZ) reemerge in the PIZ (Figure 3, middle column) but barely in the 
SIZ (Figure 3, left column). Albeit weaker than in the MPI-GE data, the reemergence signal is also pres-
ent in the observations, implying that it is a real-world phenomenon and not just a model artifact. As the 
summer-to-summer reemergence is explained by an imprint of the SIA anomalies to the ice thickness that 
persists throughout the winter (e.g., Blanchard-Wrigglesworth, Armour, et al., 2011), its occurrence in the 
PIZ but not in the SIZ is plausible. In the SIZ, instead of a reemergence, the MPI-GE shows low, positive cor-
relations in the summer long-term memory regime, whereas the observations show negative correlations in 
spring and summer of the next year. The observed negative correlations arise primarily from summer SIA 
anomalies in the PIZ (summer-to-spring, Figure 3r) and to a smaller extent from summer SIA anomalies in 
the SIZ (mainly summer-to-summer, Figure 3o).

Hence, the superposition of reemergence and negative correlations, as seen on the pan-Arctic scale, can be 
disentangled regionally and the discrepancies between model simulations and observations arise from a dif-
ferent relation between SIA anomalies in the SIZ and preceding summer anomalies. This finding is further 
reinforced by comparing the inter-regional lagged correlations in the observations to their internal model 
variability in the MPI-GE (Figures S7 and S8). While the memory of pan-Arctic summer SIA anomalies in 
the PIZ agrees well between the data sets, in the SIZ the correlation coefficients of all observational data 
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Figure 3.  (a) Map showing the geographical area of the perennial ice zone (PIZ; grid cells with September sea-ice concentration larger than 0.15 in 80% of the 
years in the National Snow and Ice Data Center [NSIDC] Bootstrap time series) and seasonal ice zone (SIZ; remaining grid cells). The bold black line indicates 
the average annual maximum sea-ice extent. (b and c) Seasonal cycle of mean sea-ice area in the SIZ and PIZ in Max Planck Institute Grand Ensemble (MPI-
GE) and observational data sets (NSIDC Bootstrap, NSIDC NASA Team, and Ocean and Sea Ice Satellite Application Facility [OSI SAF] data). (d and e) Seasonal 
cycle of the standard deviation of sea-ice area in the SIZ and PIZ in MPI-GE and observational data sets. (d–l) Inter-regional lagged correlations between sea-ice 
area anomalies in the SIZ (upper row), PIZ (middle row), and entire Arctic (lower row) with succeeding sea-ice area anomalies in the SIZ (left column), PIZ 
(middle column), and entire Arctic (right column) in the MPI Grand Ensemble. (m–u) Same as (d–l) but for the observational ensemble.
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sets are below the MPI-GE range of correlation values, indicating a significant overestimation of memory, 
similar to the pan-Arctic scale (Figure 2e).

4.  Discussion
We presented a comprehensive overview and comparison of Arctic sea-ice memory/persistence in a 
large set of model and observational data based on lagged correlations of SIA anomalies. Our results are 
consistent with previous studies (e.g., Blanchard-Wrigglesworth, Armour, et  al.,  2011; Day, Tietsche, & 
Hawkins, 2014; Krikken & Hazeleger, 2015) in identifying the same persistence and reemergence charac-
teristics of pan-Arctic SIA and noting an overestimation of the memory from summer into the following 
year (summer long-term memory) in model simulations compared to observations. While previous studies 
point out the lack of summer-to-summer reemergence in observations, we additionally note an even larger 
discrepancy between models and observations in the persistence of summer anomalies into the following 
spring, where observational data consistently show negative correlations which are not found in model 
simulations. Comparing our results to Blanchard-Wrigglesworth and Bushuk (2019), CMIP6 models show 
better agreement with observations than CMIP5 models, particularly in the winter-to-winter memory (see 
their Figure 1e). These differences could be related to model improvements or changes in the forcing, but 
may also be influenced by differences in the methodology (i.e., different time periods, detrending methods, 
and memory regime definitions).

Beyond that, this study shows the robustness of models overestimating the summer long-term memory in 
many aspects. By analyzing the distribution of lagged correlations in large model ensembles for the same 
period as the observational record, we show that the overestimation cannot be explained by internal vari-
ability. This reduces the likelihood of the discrepancy being caused by a “sampling error” due to the short-
ness of the observational time series as suggested by Day, Tietsche, and Hawkins (2014). The overestimation 
is present not only within a single-model ensemble but also in the CMIP6 multi-model ensemble, showing 
its robustness across state-of-the-art GCMs. Moreover, the overestimation of summer long-term memory 
is independent of the considered observational data set. Using three observational data products (NSIDC 
Bootstrap, NASA Team, OSI SAF) that use different retrieval algorithms to determine SIC from satellite 
measurements, we reduce the uncertainty associated with observations. However, it should be noted that 
the discrepancy between model simulations and observations is related to SIC anomalies in the summer 
months, in which observations have their largest uncertainty due to the presence of melt ponds (e.g., Kern 
et al., 2020). Another factor of uncertainty is the applied method of detrending, which could either not fully 
capture the long-term trend or remove parts of the low-frequency internal variability. Applying a linear 
detrending instead of the LOWESS detrending, as done for instance by Blanchard-Wrigglesworth, Armour, 
et al. (2011) and Day, Tietsche, and Hawkins (2014), yields higher correlations and observed summer long-
term memory correlations that are no longer outside the range of model internal variability, but still in the 
lower tail of the distribution (Figures S3 and S4). This could be due to the remaining non-linear part of the 
trend, which may be stronger in observations than model simulations.

While on the pan-Arctic scale the summer-to-summer reemergence is only detectable in model simulations, 
we could show that, in the PIZ, summer SIA anomalies reemerge also in observational data. The discrep-
ancy between models and observations, however, is found in the relation between SIA anomalies in the 
SIZ and preceding summer SIA anomalies, where observational data show significant negative correlations 
not present in the model simulations. The negative correlations arise primarily from SIA anomalies in the 
PIZ, which suggests a non-local mechanism. However, a part of the negative correlations arises in the SIZ, 
indicating that also the position of the ice edge is involved. This is reinforced by the finding that the model 
overestimation of summer long-term memory is significant not only for pan-Arctic SIA but also for SIE 
(Figures S5 and S6). While the variability-based separation between PIZ and SIZ nicely disentangles the 
summer-to-summer reemergence from the negative correlations, it does not reflect the geographical com-
plexity of the Arctic Ocean and regional sea-ice dynamics. As shown by Ordoñez et al. (2018), the strength 
of persistence and reemergence features strongly depends on the geographical location. Moreover, it should 
be noted that the fixed separation between SIZ and PIZ can only be an approximation as it does not reflect 
the changing mean sea-ice state in the period of interest. Still, our regional analysis provides guidance for 
future work identifying the causes of the discrepancy between models and observations.
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The findings of this study have important implications for the predictability of sea ice. As previously sug-
gested by Notz (2017) and Blanchard-Wrigglesworth and Bushuk (2019), the overestimation of memory of 
pan-Arctic SIA in the summer long-term memory regime could explain a part of the predictability gap be-
tween perfect-model experiments and operational forecasts (e.g., Bushuk et al., 2019). This would imply that 
perfect-model studies overestimate the potential predictability of pan-Arctic SIA arising from knowledge of 
summer sea-ice conditions and that the potential for improvement of sea-ice predictions is less strong than 
these studies suggest. Nevertheless, this can only be a partial explanation of the year-round predictability 
gap and does not diminish the potential for improved operational sea-ice predictions, for instance, through 
a better initialization. Moreover, there are additional sources of sea-ice predictability that are not considered 
here, such as ice thickness/volume and oceanic variables. Regarding future research, it should be of high 
priority to identify the causes of the overestimation of summer long-term memory in state-of-the-art GCMs.

5.  Conclusions
In summary, we draw the following conclusions from our analysis and data set-intercomparison of lagged 
correlations of Arctic SIA anomalies:

•	 �The memory of pan-Arctic SIA from the summer months into the following year and beyond (“sum-
mer long-term memory”) is significantly overestimated in model simulations compared to observations. 
Observed lagged correlations in this memory regime are below the range of internal model variability 
(MPI-GE) and inter-model variability (CMIP6 multi-model ensemble), showing that the result is robust 
across state-of-the-art climate models.

•	 �The observed summer long-term memory can be disentangled regionally into a summer-to-summer 
reemergence in the PIZ and negative correlations in the SIZ. The observed negative relation between 
summer SIA anomalies in both ice zones, particularly in the PIZ, and succeeding spring and summer 
SIA anomalies in the SIZ is not present in model simulations, giving rise to the model overestimation.

•	 �The results reinforce that a part of the predictability gap between potential and operational forecast skill 
of Arctic SIA could be caused by over-persistence of summer SIA in models.

Data Availability Statement
All data used for this study are publicly available. The MPI Grand Ensemble and CMIP6 data can be ac-
cessed from the ESGF (MPI-GE: https://esgf-data.dkrz.de/projects/mpi-ge/, CMIP6: https://esgf-node.llnl.
gov/projects/cmip6/). The observational sea-ice concentration data sets are available online (NSIDC Boot-
strap: https://nsidc.org/data/nsidc-0079/, NSIDC NASA Team: https://nsidc.org/data/nsidc-0051, OSI SAF: 
www.osi-saf.org).
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