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Large-scale emergence of regional changes
in year-to-year temperature variability by the
end of the 21st century
Dirk Olonscheck 1,2✉, Andrew P. Schurer1, Lucie Lücke1 & Gabriele C. Hegerl 1

Global warming is expected to not only impact mean temperatures but also temperature

variability, substantially altering climate extremes. Here we show that human-caused chan-

ges in internal year-to-year temperature variability are expected to emerge from the unforced

range by the end of the 21st century across climate model initial-condition large ensembles

forced with a strong global warming scenario. Different simulated changes in globally aver-

aged regional temperature variability between models can be explained by a trade-off

between strong increases in variability on tropical land and substantial decreases in high

latitudes, both shown by most models. This latitudinal pattern of temperature variability

change is consistent with loss of sea ice in high latitudes and changes in vegetation cover in

the tropics. Instrumental records are broadly in line with this emerging pattern, but have data

gaps in key regions. Paleoclimate proxy reconstructions support the simulated magnitude and

distribution of temperature variability. Our findings strengthen the need for urgent mitigation

to avoid unprecedented changes in temperature variability.
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The past and projected trajectory of global warming are
relatively well understood, but changes in climate varia-
bility and associated climate extremes remain uncertain.

Changes in temperature variability are at least as important as the
change in mean temperature because increased variability poses a
greater risk to species and human society than global warming1,2.
Despite this relevance, we know little about changes in tem-
perature variability3 due to the difficulty of reliably quantifying
changes in variability based on instrumental records, single cli-
mate model simulations or multi-model ensembles from Climate
Model Intercomparison Projects (CMIPs). The challenge of dis-
entangling the forced response and changes in internal variability
with these traditional tools results in inconclusive estimates of
projected change, ranging from no change4, slight global-mean
decreases5–7, to regional increases in temperature variability7–9.
We use the unprecedented opportunity to investigate changes in
temperature variability with single-model initial-condition large
ensembles (SMILEs10) from multiple models and contextualise
these recent and future results with estimates from instrumental
records, paleoclimate proxies, and model simulations of the past
climate such as the Last Millennium Ensemble of the Community
Earth System Model (CESM1-CAM5 LME11). SMILEs allow us to
separate internal variability from the variability due to external
forcing10,12, making it possible to derive continuous and robust
estimates of internal temperature variability.

We here show that anthropogenically forced changes in
internal interannual temperature variability are projected to
emerge from the unforced range of internal variability over the
21st century. While future globally averaged regional temperature
variability decreases only slightly across the model average,
the contrasting pattern of increasing variability over tropical land
and decreasing variability in high latitudes is projected to become
much more pronounced under strong global warming.

Results
Paleoclimate and instrumentally recorded evidence. To quan-
tify the evolution of regional near-surface air temperature varia-
bility from 850 to 2100 CE, we compare estimates of internal
temperature variability from instrumental records, proxy recon-
structions and several model simulations (see the “Methods”
section, Fig. 1). To do so, we interpolate all data and simulations
to a nominal spatial resolution of 1° × 1°. After removal of the
forced response represented by the SMILE means, the global
average of local standard deviations from observations and model
simulations agree in magnitude with a central value of about 0.44
and 0.47 °C, respectively, which is relatively stable since 850 CE
(Fig. 1a, Supplementary Fig. 1 for the standard deviation of global
mean temperature). These are lower-bound estimates of the true
global value because primarily highly variable high-latitude
regions are masked out to account for data gaps and uncertain
data in HadCRUT5 (see the “Methods” section). To evaluate the
magnitude of variability in global mean temperature for the last
millennium, we compare the natural variability derived from the
multiproxy database PAGES2k with the CESM1-CAM5 LME
(Fig. 2a), the only last millennium ensemble with more than 10
ensemble members that currently exists. We find that CESM1-
CAM5 LME is at the upper end of the large spread from different
reconstruction methods of PAGES2k, in line with findings that
PAGES2k is insensitive to high-frequency variability13,14. In
periods with strong volcanic eruptions, the simulated variability
in global mean temperature substantially exceeds the variability
from PAGES2k. This is explained by the smaller impact of strong
volcanic eruptions such as the Samalas eruption in year 1257 in
proxy reconstructions compared to the model simulation13,15,16.
The single-forcing simulations of CESM1-CAM5 LME support

the primary importance of volcanic eruptions in driving
globally averaged regional temperature variability (Fig. 2b). Vol-
canic forcing dominates the natural forcings over the last mil-
lennium, while orbital variations, changes in the solar cycle,
natural variations in greenhouse gas concentrations and land-use/
land cover change are less relevant for interannual temperature
variability14,17.

To evaluate the spatial distribution of temperature variability
for the last millennium, we focus on the pattern of Northern
Hemisphere summer temperature variability estimated from tree
rings as compiled in the N-TREND database18. We find that
N-TREND resembles the average variability pattern from ten
models of the Paleoclimate Modelling Intercomparison Project 3
(PMIP319) and CESM1-CAM5 LME (Fig. 2c–e), except for
known biases of N-TREND in the Quebec region18. The models
generally show larger variability than N-TREND especially over
land, but the differences between simulated and observed
estimates have a similar magnitude to inter-model differences
(Supplementary Fig. 2). Overall, the broad consistency between
simulated estimates across different periods of the past and the
estimates from paleo-proxies and instrumental records increases
confidence in the ability of global climate models to simulate past
and future interannual temperature variability.

Estimating changes in temperature variability from instru-
mental records is challenging because observations are a single,
non-stationary realisation within the range of possible
trajectories10. Here we use the similarity between the instanta-
neous ensemble variability and the temporal standard deviation
after detrending to consistently compare the SMILE simulated
changes in temperature variability with observed changes7 (see
the “Methods” section, Fig. 1, Supplementary Fig. 3). To remove
the forced signal, we detrend the instrumental records with the
multi-model mean of the SMILE means. We evaluate the
standard deviation ratio between the two periods 1970–2019
and 1920–1969 averaged across SMILEs and observational
products (Fig. 1b, c). This result is robust to detrending the
instrumental records with each individual SMILE mean instead of
the multi-model mean, suggesting that the ratio of observed
variability between both periods is insensitive to the model used
to detrend the observations (Supplementary Fig. 4). We further
find that the observed pattern of temperature variability change is
consistent across datasets (Supplementary Figs. 5 and 6) and
confirms the large-scale simulated pattern with increased
variability on tropical and subtropical land and the central and
eastern Pacific20,21, and decreased variability at mid-latitudes.
The observed changes are generally stronger than the simulated
changes (Fig. 1b, c), despite the more conservative approach of
quantifying variability used here (Supplementary Fig. 3). The
observed increase in tropical Pacific temperature variability in the
period 1970–2019 compared to 1920–1969 might be caused by
natural multi-decadal changes in ENSO variability22. Differences
in simulated and observed temperature variability change at high
latitudes might result from uncertainty in the sparse observa-
tional data especially early in the record, or from different timing
of observed sea ice loss compared to simulations23. Possible
increases in observed temperature variability at high latitudes
could be explained by temporarily increased temperature
variability during the transition from ice-covered to seasonally
ice-free polar oceans7,24,25. This is supported by many models as
discussed below (compare Fig. 4a). Missing and uncertain data,
especially in regions of interest such as tropical land and high-
latitude oceans, limit the confidence in the observed pattern.
However, the large-scale similarity between the simulated and
observed pattern elsewhere increases confidence in the plausi-
bility of projected changes in variability (Fig. 1b, c, Supplemen-
tary Figs. 5 and 6).
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Inconsistent global mean change. Despite some confidence in
the simulated temperature variability, we find quite different
model responses in globally averaged regional temperature
variability change (Fig. 3a–c). Anthropogenic forcing caused by
human carbon emissions has only marginally changed the mean
SMILE response in globally averaged regional temperature
variability in 2010–2019 compared to preindustrial, which is
consistent with previous findings5,7. However, the SMILEs dis-
agree on the direction of globally averaged change over the 20th
century and more so, the 21st century (Figs. 1a, 3b, c, Supple-
mentary Fig. 1). Whereas most models project a continuous
decrease in globally averaged regional temperature variability, a
few models project a different evolution, such as no change in
variability (CSIRO-Mk3-6-0), first increasing and then decreas-
ing variability (CESM1-CAM5, MIROC6), or first decreasing and
then increasing variability (EC-EARTH, see Figs. 1a, 3g). The
projected change in globally averaged regional temperature
variability of most SMILEs emerges outside the range of
unforced temperature variability derived from each preindustrial
control simulation, but in different directions: averaged across
2080–2099, five models emerge below the range of unforced
temperature variability (CanESM2, CanESM5, GFDL-CM3,
GFDL-ESM2M, IPSL-CM6A-LR), while two models show an
increased variability above the range of unforced temperature
variability (EC-EARTH, MIROC6). Three models do not emerge
at the end of the 21st century (CESM1-CAM5, CSIRO-Mk3-6-0
and MPI-ESM-LR).

Consistent patterns of change. Because humans do not feel
changes in globally averaged temperature variability, but local
changes, we investigate the patterns of regional variability
change. In contrast to the inconsistent globally averaged change,
we find large-scale regions where all SMILEs have a consistent
sign of temperature variability change, namely on tropical land
(30°N–30°S) and at high latitudes (90–50°N and 50–90°S, Fig. 3).
In order to place the historical and future change in temperature
variability in context, we compare the patterns of change to the
magnitude of variability caused by natural external forcings. To
do this, we use the CESM1-CAM5 LME. We find that the
naturally forced change in 10-year averaged internal temperature
variability on tropical land and at high latitudes ranges from
−7.9% to 3.8% and −9.5% to 2.6% of the preindustrial control
variability, respectively (Fig. 3a, see the “Methods” section). This
reflects strong impacts of short-term natural external forcings
such as volcanic eruptions on temperature variability, and the—
on average—uniform pattern of internal temperature variability
change caused by natural external forcings (Fig. 3d). However,
and unlike natural external forcings, anthropogenic forcing
causes a distinct pattern of temperature variability change with
strong increases in temperature variability on tropical land on
average +6.5% (range: 0.8–14.8%), and substantial decreases in
temperature variability at high latitudes on average −6.4%
(range: −18.3% to 0.4%, Fig. 3b, e), averaged across 2010–2019.
According to the mean response of all SMILEs, the anthro-
pogenically forced changes of tropical land temperature

Observations / 
Reanalyses

SMILEs
a Global-mean evolution

b Model mean c Observational mean
1970-2019 / 1920-1969

[°C/°C]

HadCRUT4-CW

ESM-LR

Fig. 1 Evolution of interannual temperature variability from 850 to 2100 CE. a Annual globally averaged regional ensemble standard deviation for each
model year across SMILEs (coloured lines), including the CESM1-CAM5 Last Millennium Ensemble (grey line). Thick lines show centred 20-year running
averages. The filled dots with vertical lines show the standard deviation across detrended preindustrial control simulations, and the range of preindustrial
temperature variability derived from all standard deviations across consecutive overlapping 100-year running averages from each preindustrial control
simulation. The climate model estimates are compared to the interannual temperature variability estimated from observations and reanalyses that were
detrended with the multi-model mean of the SMILE means. All data and simulations are masked where HadCRUT5 has data gaps or insufficient data in
1920–1969 (see the “Methods” section). Compare with Supplementary Fig. 1 for the standard deviation of global mean temperature. b and c Average
spatial pattern of change in temperature variability determined as the ratio between the periods 1970–2019 and 1920–1969 from b eight SMILEs (CanESM2
and GFDL-ESM2M only start in 1950), and c five observational products (ERA-20C, NOAA-20C, HadCRUT4-CW, GISTEMP, and HadCRUT5; see the
“Methods” section). Variability in the observational products is calculated as standard deviation over both 50-year periods. Grid points with insufficient
temporal coverage in HadCRUT5 are masked out in (c). Stippling marks significant changes in temperature variability at a 5% level based on an F-test.
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variability should already exceed the naturally forced changes in
internal temperature variability at present day, which would
make human influences the main driver of historic temperature
variability change. The distinct pattern of regionally contrasting
forced change is expected to strengthen under strong forcing
scenarios SSP5-8.526 and RCP8.527 with +12.7% (range:
1.5–26.0%) increase in temperature variability on tropical land
and −23.7% (range: −39.7% to −9.8%) decrease in high latitudes
in 2090–2099, with a globally averaged decrease of −3.7% (range:
−9.1% to 4.3%, Fig. 3c, f). The transient evolution of internal
temperature variability change supports the strong multi-model
agreement on increases in temperature variability on tropical
land and decreases in temperature variability at high latitudes
(Fig. 3g–i).

Although the SMILEs differ in the sign and magnitude of the
pattern of change in small-scale regional temperature variability,
the projected changes averaged across 2090–2099 confirm the
common pattern of substantially decreasing temperature varia-
bility at high latitudes and increasing variability at low latitudes,
especially over land (Supplementary Fig. 7). This suggests that
the latitudinally contrasting pattern that is simulated for the
present decade 2010–2019 (Fig. 3b, e) will become much more
pronounced under strong global warming until the end of
the 21st century (Fig. 3c, f), in line with previous studies28,29. The
SMILEs all agree on substantial decreases in temperature
variability in high latitudes, with a similar magnitude over
the Arctic and Antarctic ocean regions and on adjacent land
(Supplementary Fig. 7). This is not yet evident in observations

1.5
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c d e
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[ºC]

V
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Fig. 2 Evaluation of (naturally forced combined with internal) last millennium temperature variability in climate models. a Variability in global mean
temperature in PAGES2k compared to CESM1-CAM5 LME. The estimates are derived from the temporal standard deviation of detrended consecutively
overlapping and centred 100-year periods. Note increases in variability in CESM1-CAM5 LME around large volcanic eruptions which are larger in the model
than data. The shading indicates the reconstruction uncertainty for PAGES2k, and the different implementations of internal variability for the 13 ensemble
members of CESM1-CAM5 LME (5th–95th percentile: lightest shading, 40th–60th: darkest shading, median: thick line). The violin plots include the
complete ensemble of 100-year periods (horizontal line: median, lower and upper end: minimum and maximum). b Contribution of external forcings to the
last millennium globally averaged regional temperature variability derived from the temporal standard deviation of consecutively overlapping and centred
100-year periods of the all-forcing and single-forcing simulations of CESM1-CAM5 LME. Shading and violin plots as in (a). c–e Spatial pattern of Northern
Hemisphere last millennium temperature variability in summer (MJJA) from c the mean of ten PMIP simulations, d the ensemble mean of CESM1-CAM5
LME and e the paleoclimate estimate N-TREND. Grey areas in e indicate land with no data.
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(Fig. 1c), in accordance with the mechanisms of temperature
variability change of first increasing variability with a more
seasonal ice cover in higher latitudes, accompanied by decreasing
variability in regions with open ocean all year long that
encompasses all the polar regions when the sea ice is gone8

(compare Fig. 4a and Mechanisms of variability change).
Furthermore, observational coverage in high latitudes is very
limited. Hotspot regions of substantially increased temperature
variability with multi-model agreement are the Amazon, South-
east Asia, Australia, and West Africa. The model agreement over
tropical and subtropical oceans is low, which is reflected by small
and insignificant multi-model mean changes. The different model
responses in the tropical Pacific may be caused by strong multi-
decadal changes in ENSO variability22 and support the uncertain
ENSO response to global warming caused by the interplay of
many amplifying and dampening feedbacks30,31. We find that
especially models with low globally averaged preindustrial
variability (CESM1-CAM5, EC-EARTH, MIROC6, see filled dots
in Fig. 1a) show substantial increases in temperature variability
over low-latitude oceans under strong global warming.

Emergence from unforced variability. In line with the latitud-
inally contrasting pattern of variability change, we find robust
signals of emergence of the anthropogenically forced change in
interannual temperature variability from the unforced range of
variability. This is evident from the fact that most SMILEs agree

on broad features of emergence at the end of the 21st century
(Fig. 4b). The unforced range of variability is derived from the
range of consecutive overlapping 100-year periods of the
respective preindustrial control simulation of a SMILE to which
the variability at the end of the 21st century is compared (see the
“Methods” section). While the future temperature variability in
many high-latitude regions emerges below the unforced range of
variability, many low-latitude regions show an increased varia-
bility that emerges above the unforced range of variability32, with
the most consistent emergence over land areas compared to
uncertain ocean patterns. In summary, despite their different
evolution of globally averaged regional temperature variability, all
SMILEs agree on a distinct pattern of anthropogenically forced
temperature variability change with unprecedented decreases in
temperature variability at high latitudes and unprecedented
increases in temperature variability on tropical land.

Mechanisms of variability change. To better understand the
pronounced changes in temperature variability at the end of the
21st century, we investigate the evolution of latitudinal tem-
perature variability from 1850 to 2100 compared to preindustrial
variability (Fig. 4a). We find that the SMILEs show a different
onset of changes in variability, with most models showing sub-
stantial increase in low-latitude variability and a decrease in mid-
to-high latitude variability from 2000 onward. MIROC6 shows an
earlier and EC-EARTH a later onset of increase in low-latitude

850-1849 2010-2019 2090-2099a b c d

CESM1-CAM5 LME

Multi-model mean
Observations

850-1849

e 2010-2019

f 2090-2099

CESM1-CAM5 LME

nae
m labol

G
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m l abol

G
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m l abol

G

Naturally forced Anthropogenically forced

[ºC / ºC]

g

h

i
Multi-model mean

Multi-model mean

Year

Global mean

Tropical land

High latitudes

ESM-LR

Fig. 3 Change in internal temperature variability due to natural and anthropogenic forcing. a Range of naturally forced globally averaged, tropical land-
only (30°N–30°S) and high latitude-only (90–50°N and 50–90°S) 10-year averaged temperature variability derived from CESM1-CAM5 LME. b and
c Anthropogenically forced change in globally averaged, tropical land-only and high latitude-only temperature variability averaged across b the present
period 2010–2019, and c the future period 2090–2099 forced with the high emission scenarios SSP5-8.5 or RCP8.5 relative to the standard deviation of the
preindustrial control simulation. The change projected by each SMILE is marked with a coloured filled dot, compared to the change in the multi-model
mean and observations. The change in observed variability is calculated as the ratio between the periods 1970–2019 and 1920–1969. d–f Pattern of
temperature-variability change averaged across d 1000 years of CESM1-CAM5 LME, e the years 2010–2019 and 10 SMILEs, and f the years 2090–2099
and 10 SMILEs. Stippling marks significant changes in temperature variability at a 5% level based on an F-test. g–i Transient evolution of interannual
temperature variability shown as percentage change relative to the respective preindustrial control variability. Range in temperature variability derived from
the CESM1-CAM5 LME (grey filled dots) compared to the past and future evolution of temperature variability derived from 10 SMILEs forced with the high
emission scenarios SSP5-8.5 or RCP8.5 for g the global mean, h tropical land only, and i high latitudes only. Thick lines show centred 10-year running
averages. The multi-model mean is shown as black line.
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variability than the multi-model mean response, in contrast to
their high-latitude decreases. We further find that all models
agree on increased temperature variability over the Arctic Ocean
as long as sea ice exists in the models, followed by a rapidly
decreasing temperature variability when sea ice is lost.

Based on the SMILEs, we investigate the underlying mechan-
isms for the latitudinally contrasting pattern of present-day and
future temperature variability change. Decrease in temperature
variability at high latitudes is primarily caused by the loss of sea
ice, as suggested before based on CMIP55,9 or a single climate
model6. It is widely acknowledged that anthropogenic CO2

emissions increase Arctic air temperature more than the global
mean (Arctic Amplification33), which in turn linearly decreases
Northern Hemisphere sea ice area34,35 (Fig. 5a). In response, the
decreasing sea ice area causes a substantial decrease in high-
latitude temperature variability7 (Fig. 5b), primarily due to the
larger heat capacity of the open ocean compared to the insulating
sea ice cover9,36,37. Additional causes for decreasing high-latitude
temperature variability, which also extends to mid-latitudes38,
may be the decreasing meridional temperature gradient39

and the decreasing land–sea temperature contrast40. The
decreasing meridional temperature gradient is caused by Arctic
Amplification41 which leads to fewer warm-air intrusions into
the Arctic25. Although strongly impacted by internal variability,
the relationship between declining sea ice area and decreasing
high-latitude temperature variability is consistent across SMILEs.
The initial amount of sea ice and the strength of Arctic warming
determines the timing and magnitude of decreases in tempera-
ture variability, largely explaining differences across models.
Observations show a comparatively high initial sea ice amount
with rather low Arctic temperatures (Fig. 5a) supporting a

delayed decrease in temperature variability compared to models
(Fig. 3b).

In contrast to decreasing temperature variability at high
latitudes, the increased variability on low-latitude land is
primarily caused by a transition to drier surface types, e.g. from
tropical forests to semi-arid landscapes. We use the Bowen ratio
as a measure for changes in vegetation cover, and revisit the
proposed relationship between the evaporative fraction and
tropical temperature variability6,9. The Bowen ratio is the ratio
between sensible and latent heat and indicates the land–surface
type, and hence vegetation cover42,43. We compare the distribu-
tion of changes in the Bowen ratio with the distribution of
changes in temperature variability over land and find a striking
similarity for all SMILEs averaged across 2090–2099 compared to
1950–1959 under the strong global-warming scenarios SSP5.8-5
and RCP8.5 (Fig. 5c, d, Supplementary Fig. 8, see the “Methods”
section). An increase in the Bowen ratio indicates the transition
to drier surface types, e.g. from tropical forests to semi-arid
landscapes. The congruity between regions with increasing
Bowen ratio and the hot-spot regions of increased temperature
variability supports the plausible mechanism that drier land-
surface types lead to increased temperature variability, associated
with soil-moisture reductions9. An exception are North and East
African regions, which might experience increased temperature
variability caused by increased precipitation and hence increased
vegetation cover44. There is no consensus yet on the causes for
the projected increased precipitation in North and East
Africa45,46. Elsewhere in the tropics, the transition to drier
land-surface types may be caused by land-use changes such as an
ongoing conversion of tropical forests to agriculture or bare
land47,48, accompanied by large-scale forest fires49,50, shifts in

CESM1-CAM5

a

[ºC/ºC]

b

MPI-ESM-LR

above preindustrial range 
of internal variability

below preindustrial range 
of internal variability

not emerged

Fig. 4 Emergence of the anthropogenically forced change in interannual temperature variability. a Evolution of the temperature-variability change of
10 SMILEs from 1850 to 2100 versus latitude with respect to the preindustrial variability. b Regions of emergence with a forced increase (decrease) in
variability outside the preindustrial range of variability during the period 2080–2099 are shown in red (blue), while regions that have not emerged on the
20-year average from the preindustrial range of internal variability are shown in grey. Stippling marks significant changes at a 5% level based on an F-test
(see also Fig. 1a).
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precipitation patterns6,51, and overall stronger evaporation in a
warmer climate. The identified mechanisms link the unprece-
dented temperature-variability changes to the human interference
with the climate system and explain the patterns of change that
are distinct compared to past climate variability.

Quantifying changes in internal variability is one of the most
data-intensive challenges in climate science, and while the much
better sample of variability in SMILE data sheds much more light
on these changes, it can still be questioned if the sampling is
sufficient for all regions52. Here we use all SMILEs that are
available to date to best estimate historical and future changes in
temperature variability and compare them to the preindustrial
and observed variability. We find that multiple sources of
information from different time periods and data sources broadly
support the simulated magnitude of globally averaged regional
temperature variability, evidencing a stable range of past
temperature variability. We further show that the projected
changes in temperature variability will be larger than the
comparatively stable unforced range of temperature variability
over the last 1000 years, with a strong increase in temperature
variability over some tropical land areas, and decreases in
temperature variability at mid and high latitudes. While the
decrease in temperature variability at high latitudes is driven by
global warming-induced sea ice loss, the increased variability on
tropical land is caused by the transition to a substantially drier
land surface. The present-day onset of this distinct pattern of

forced change is supported by observations, but robust observa-
tional confirmation is not possible due to substantial data gaps
and onset uncertainty in the regions of key changes. We find
strong evidence from SMILEs that large-scale forced changes in
internal year-to-year temperature variability will emerge from the
preindustrial envelope of variability, shifting the climate into a
state of unprecedented internal temperature variability. In close
analogy to global warming, these accompanied unprecedented
changes in temperature variability strengthen the need for urgent
climate mitigation to avoid substantial human-caused increases in
tropical temperature variability and related heat extremes.

Methods
Paleoclimate proxies, observations, and climate models. For the last millen-
nium, we use two paleo-proxy databases to evaluate the absolute temperature
variability from model simulations for the last millennium (850–1849): the mul-
tiproxy database PAGES2k13 and the gridded Northern Hemisphere summer
temperature tree-ring dataset N-TREND18. For the instrumental era, we use the
gridded observational datasets HadCRUT553 in its non-infilled mode, GISTEMP54,
HadCRUT4-CW55,56 that incorporates HadSST4, and the reanalyses ERA-20C57

and NOAA-20C58 to estimate temperature variability. In comparison to paleo-
proxies and observations and to quantify future changes in temperature variability,
we compile a large set of model simulations: last millennium simulations
(past1000) from 10 PMIP3 simulations19, the 13-member CESM1-CAM5 Last
Millennium Ensemble, and the respective ensembles of single-forcing simulations,
as well as preindustrial control simulations, historical simulations, and future
projections forced with the high-emission scenarios SSP5-8.5 or RCP8.5 from 10
single-model initial-condition large ensembles (SMILEs10). Seven SMILEs are from

c d

a b

[°C][ - ]

Fig. 5 Mechanisms for the contrasting evolution of temperature variability in high latitudes and the tropics. Relationship between annual mean
Northern Hemisphere sea ice area and a 60–90°N mean temperature, and b 60–90°N temperature variability from 1850 to 2100 for the SMILEs
(coloured) and, in a compared to observations (HadISST2 sea ice area vs. NOAA-20C, black). Each dot represents a single year and time runs from bottom
right to top left in a and from top right to bottom left in (b). c Ratio of changes in the Bowen ratio (sensible vs. latent heat) between 2090–2099 and
1950–1959 and d changes in the ratio of temperature variability over land between 2090–2099 and 1950–1959 averaged across SMILEs forced with
historical emissions and emission scenarios SSP5-8.5 or RCP8.5. Stippling in c and d marks significant changes at a 5% level based on an F-test. A high
Bowen ratio indicates semi-arid landscapes and deserts, whereas a low Bowen ratio indicates tropical or temperate forests. Individual model results are
shown in Supplementary Fig. 8.
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the CMIP5 generation of climate models, namely CanESM259, CESM1-CAM560,
CSIRO-Mk3.6.061, EC-EARTH62, GFDL-CM363, GFDL-ESM2M64, and MPI-
ESM-LR65. The remaining three SMILEs are from the recent CMIP6 generation,
namely CanESM566, IPSL-CM6A-LR67, and MIROC668. Note that for IPSL-
CM6A-LR the scenario results are only based on six instead of 31 ensemble
members. The last millennium simulations from PMIP3 used in this study are from
the following models: bcc-csm1-1, CCSM4, CSIRO-Mk3L-1-2, FGOALS-gl, GISS-
E2-R, HadCM3, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-P, and
MRI-CGCM3. We analysed the variables near-surface air temperature, sea ice
concentration, and sensible and latent heat. All data is regridded to a regular 1° × 1°
horizontal grid by bilinear interpolation to allow for comparisons between obser-
vational products and different climate models. This unprecedented amount of
data enables a robust quantification of past, present, and future changes in near-
surface air temperature variability, and reveals the driving mechanisms of
temperature-variability change.

Detrending and standard deviation. All last-millennium simulations and pre-
industrial control simulations are linearly detrended to remove model drift. The
observational products are detrended with the multi-model mean of eight SMILE
means that cover the period 1920–2019. We consider this multi-model ensemble
mean as the best estimate of the forced response, isolating the internal temperature
variability in the observational products69,70. From these detrended simulations
and observational products, the variability is determined by calculating the stan-
dard deviation across time:

σðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T � 1

∑
T

t¼1
ðxt � xÞ2

s

; ð1Þ

where σ is the standard deviation of the variable x, t is the output interval in years,
and T is the length of the simulation. To derive an estimate of observed tem-
perature variability, we calculate the temporal standard deviation across the 50-year
periods 1920–1969 and 1970–2019. In contrast, for the CESM1-CAM5 LME and
the 10 SMILEs, we estimate the internal variability by calculating the sample
ensemble standard deviation for each year across each model’s ensemble simula-
tions, providing a continuous robust estimate of internal temperature variability
through time:

σensðN; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

∑
N

n¼1
ðxn;t � xtÞ2

s

; ð2Þ

where σens is the sample ensemble standard deviation of the variable x, n are the
different ensemble simulations of a model with N ensemble simulations, t is the
output interval in years, and T is the simulation length. Following the quasi-ergodic
assumption, which states that the variance of one sequence of events over time
equals the ensemble variance at a given time, both approaches to estimate internal
variability are consistent7. We average the ensemble standard deviations derived for
each year over a 20-year time window in Fig. 1a, and over a 10-year time window
for the periods 2010–2019 and 2090–2099 from all SMILEs as well as all over-
lapping 10-year chunks from CESM1-CAM5 LME in Fig. 3 to derive more robust
estimates of grid-point temperature variability. We differentiate between globally
averaged regional temperature variability defined as grid-point temperature stan-
dard deviation that is globally averaged (see Figs. 1a, 2b, 3a–c, g), and variability in
global mean temperature defined as the standard deviation of global mean tem-
perature values, here only used in context with PAGES2k (see Fig. 2a) and in
Supplementary Fig. 1. The standard deviation of global mean temperature in
Supplementary Fig. 1 shows substantially smaller variability estimates than the
globally averaged regional temperature variability because globally averaging first
suppresses local variability. The standard deviation of global mean temperature is
unchanged or increasing (Supplementary Fig. 1), possibly caused by variability with
large spatial coherence (i.e. ENSO). In contrast, the globally averaged regional
temperature variability is decreasing for some models (Fig. 1a) because of the
strong impact of local variability (i.e. in high latitudes).

Emergence. We define emergence as the globally averaged or regional deviation of
the projected temperature variability for the period 2080–2099 from the full range
of past unforced temperature variability. The range of unforced variability is
determined by calculating the temporal standard deviation for all consecutive
overlapping 100-year periods of the respective preindustrial control simulation of a
SMILE. Emergence occurs if

avgðσens; 2080� 2099ÞðN; tÞ>maxðσpiCÞ ð3Þ
or

avgðσens; 2080� 2099ÞðN; tÞ<minðσpiCÞ ð4Þ
where N is the number of ensemble simulations of each model and σpiC is the
standard deviation of a 100-year long segment of the preindustrial control simu-
lation. The ensemble standard deviations derived for each year are averaged for the
20-year time window 2080–2099 for robust results of the projected end-of-century
temperature variability.

Significance testing. A significant change in temperature variability as shown by
stippling is calculated using an F-test at a 5% two-sided significance level. In
Fig. 4b, the F-test is partly less stringent than the emergence because the statistical
significance directly depends on the length of the preindustrial control simulation
of a model. For models with long preindustrial control simulations, i.e. MPI-ESM-
LR, this results in larger regions with statistically significant change than regions
that emerge from the larger range of sampled standard deviation.

Observational uncertainty and masking. To account for data gaps and uncer-
tainty in the observational products, we mask out grid points with insufficient
temporal coverage especially early in the record. We base our analysis on the non-
infilled HadCRUT5 record and mask out grid points that contain less than 25 years
of data in the 50-year reference period 1920–1969. This mask is also applied to the
other observational products.

Modelling of vegetation in SMILEs. The SMILE models simulate vegetation
dynamics differently71: GFDL-CM3, GFDL-ESM2M and MPI-ESM-LR include a
fully dynamic vegetation model. CanESM2, CanESM5, CESM1-CAM5, EC-
EARTH, IPSL-CM6A-LR, and MIROC6 predict vegetation phenology. CSIRO-
Mk3.6.0 has prescribed vegetation properties.

Data availability
The data used in this study are openly available in the following databases: The SMILE
model output is obtained from the Multi-Model Large Ensemble Archive under accession
code http://www.cesm.ucar.edu/projects/community-projects/MMLEA/. All other model
output used here is accessible from the Earth System Grid Federation under accession
code https://esgf-node.llnl.gov/projects/esgf-llnl/. The observations and reanalyses were
downloaded under the following accession codes: GISS Surface Temperature Analysis
(GISTEMP): https://psl.noaa.gov/data/gridded/data.gistemp.html; HadCRUT5 near-
surface temperature data version 5.0.1.0: https://www.metoffice.gov.uk/hadobs/hadcrut5/
data/current/download.html; HadCRUT4-CW: https://www-users.york.ac.uk/kdc3/
papers/coverage2013//had4sst4_krig_v2_0_0.nc.gz; HadISST2.2.0.0: https://
www.metoffice.gov.uk/hadobs/hadisst2/; ERA-20C reanalysis: https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era-20c; and NOAA-20C version 3: https://
psl.noaa.gov/data/gridded/data.20thCReanV3.html). The N-TREND dataset was
downloaded under accession code https://www.ncdc.noaa.gov/paleo-search/study/19743
and PAGES2k at https://www.ncdc.noaa.gov/paleo/study/26872.

Code availability
The code used to both process the data and create the figures for this paper can be
publicly accessed at https://pure.mpg.de/pubman/faces/ViewItemFullPage.jsp?itemId=
item_3332337
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