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ABSTRACT

The classic Lorenz equations were originally derived from the two-dimensional Rayleigh–Bénard convection system considering an idealized
case with the lowest order of harmonics. Although the low-order Lorenz equations have traditionally served as a minimal model for chaotic
and intermittent atmospheric motions, even the dynamics of the two-dimensional Rayleigh–Bénard convection system is not fully represented
by the Lorenz equations, and such differences have yet to be clearly identified in a systematic manner. In this paper, the convection problem is
revisited through an investigation of various dynamical behaviors exhibited by a two-dimensional direct numerical simulation (DNS) and the
generalized expansion of the Lorenz equations (GELE) derived by considering additional higher-order harmonics in the spectral expansions of
periodic solutions. Notably, GELE allows us to understand how nonlinear interactions among high-order modes alter the dynamical features
of the Lorenz equations including fixed points, chaotic attractors, and periodic solutions. It is verified that numerical solutions of the DNS
can be recovered from the solutions of GELE when we consider the system with sufficiently high-order harmonics. At the lowest order, the
classic Lorenz equations are recovered from GELE. Unlike in the Lorenz equations, we observe limit tori, which are the multi-dimensional
analog of limit cycles, in the solutions of the DNS and GELE at high orders. Initial condition dependency in the DNS and Lorenz equations is
also discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051482

The Lorenz equations are a simplified nonlinear dynamical
system derived from the two-dimensional Rayleigh–Bénard (RB)
convection problem. They have been one of the best-known
examples in chaos theory due to the peculiar bifurcation and
chaos behaviors. They are often regarded as the minimal chaotic
model for describing the convection system and, by extension,
weather. Such an interpretation is sometimes challenged due to
the simplifying restriction of considering only a few harmonics
in the derivation. This study loosens this restriction by consid-
ering additional high-order harmonics and derives a system we
call the generalized expansion of the Lorenz equations (GELE).
GELE allows us to study how solutions transition from the classic
Lorenz equations to high-order systems comparable to a two-
dimensional direct numerical simulation (DNS). This study also
proposes mathematical formulations for a direct comparison
between the Lorenz equations, GELE, and two-dimensional DNS

as the system’s order increases. This work advances our under-
standing of the convection system by bridging the gap between
the classic model of Lorenz and a more realistic convection
system.

I. INTRODUCTION

The Rayleigh–Bénard (RB) system is a canonical example of a
flow convection system driven by the temperature difference 1T
between two boundaries in a plane horizontal fluid layer. When
this condition of having a higher temperature (i.e., 1T > 0) and a
lower density at the bottom is maintained, such an unstable environ-
ment created by the thermal stratification can introduce a roll-type
convection motion for a high enough 1T. In more precise terms,
the onset of convection motion happens when the nondimensional
Rayleigh number Ra, the ratio between buoyancy force and viscous
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force, is above its critical value Rac. The critical Rayleigh number
Rac depends on the boundary conditions and other system config-
urations. As Ra increases further above Rac (i.e., r = Ra/Rac � 1),
the RB system exhibits very rich dynamical behaviors such as insta-
bility, bifurcation, turbulence, chaos, intermittency, etc. Due to its
simple configuration despite the flow’s complex behavior, the RB
system has remained a popular research topic for over a century
in diverse scientific disciplines including fluid mechanics, applied
mathematics, and atmospheric science.1,2

In 1962, Saltzman3 further simplified the governing equations
of the two-dimensional RB system into a highly truncated sys-
tem of ordinary differential equations, which was cast as an initial
value problem by applying the Fourier representations. The spec-
tral analysis allows us to better understand the convection roll by
considering it as the primary mode together with its nonlinear inter-
actions with higher-order Fourier modes. Although Saltzman3 was
first to propose these nonlinear dynamical equations, its lowest
order formulation by Lorenz4 called the Lorenz equations is more
widely recognized due to its association with Lorenz’s discovery of
deterministic chaos.

It is said that Lorenz had realized by chance that the finite
predictability of weather might lie in the nonlinearity of the govern-
ing systems in some fundamental sense. In order to best illustrate
the idea that even a simple deterministic system can exhibit sensi-
tive initial condition dependency and is, therefore, unpredictable,
Lorenz settled on a system of three ordinary differential equations
derived from the two-dimensional RB system, now known as the
Lorenz equations. Being simple and deterministic, its derivation is
still strongly rooted in the physics of thermal convection, follow-
ing the Fourier–Galerkin method of approximating the governing
equations for the two-dimensional RB system. As such, the Rayleigh
number retains its relevance through the normalized Rayleigh num-
ber r, an important parameter controlling the onset of chaos in
the Lorenz equations. The butterfly-shaped Lorenz attractor5 is
arguably the most prominent image of chaos theory, the field which
by mid-1980s morphed itself into some kind of a new scientific
movement with profound and lasting influences across different
disciplines.6

More recently, efforts have been made to understand how
nonlinear dynamical systems behave when the dimension of non-
linear dynamical systems increases. For instance, Shen7 extended
the Lorenz equations by incorporating two additional higher-order
Fourier modes and studied their influence on the system. The
nonlinear dynamical systems can also be extended by consider-
ing additional physical effects (e.g., rotation, scalar diffusion) in
the governing equations.8–10 These extended systems exhibit some-
what different and sometimes new dynamical behaviors compared
to the low-order Lorenz equations. For example, Felicio and Rech11

demonstrated that a six-dimensional Lorenz-like system can even
exhibit hyperchaos (i.e., solutions with at least two positive Lya-
punov exponents, which was not seen in the original Lorenz equa-
tions). For a systematic comparison between the classic Lorenz
equations and the higher-order extensions, Moon et al.12 thoroughly
investigated the dynamical behaviors and bifurcation structures of
the extended systems obtained by considering higher-order har-
monics at dimensions 5, 6, 8, 9, and 11 in wide ranges of parameters,
which was later generalized13 into explicit ODE expressions for

(3N)- and (3N + 2)-dimensional Lorenz systems for any positive
integer N.

Two issues, however, remain unresolved in such analyses of the
extensions at higher dimensions. First, as with all Lorenz and high-
order Lorenz-like systems, it is not well-understood how much of
the two-dimensional RB convection remains intact under the con-
version into the Lorenz equations even at very high dimensions.
Conversely, it is also important to assess to what extent the many
interesting nonlinear phenomena observed in the Lorenz equations
are also found in the two-dimensional RB convection. This study
aims to address this issue by directly comparing the solutions of the
Lorenz equations with results from a direct numerical simulation
(DNS) of the two-dimensional RB convection using the governing
equations. There have been a number of DNS studies on the 2D RB
convection,14,15 but most focus on instabilities and turbulence phe-
nomena; explicit investigations about similarities and differences
between the Lorenz equations and DNS have been rare still. Paul
et al.16 reported some bifurcation characteristics in the r parameter
space reminiscent of the Lorenz equations using the DNS. Neverthe-
less, a systematic and comparative investigation of the classic Lorenz
equations and the DNS is still missing.

The second issue is pertinent to the way in which the dimension
is raised in the previously investigated generalizations of the Lorenz
equations,12,13 wherein the additionally incorporated higher-order
harmonics are exclusively in the vertical direction of the thermal
convection problem. These studies have not simultaneously con-
sidered horizontal higher-order harmonics, and, consequently, the
convection cells corresponding to very high harmonics in their gen-
eralizations may appear to have been vertically squeezed, which can
lead to certain unnatural behaviors with regard to fluid convec-
tion. In this study, we newly formulate the generalized expansion of
the Lorenz equations (GELE) by simultaneously considering higher-
order harmonics in both vertical and horizontal directions. GELE
will serve as a link between the classic Lorenz equations and the
DNS and will allow us a more complete investigation of the impact
of higher-order harmonics on the various dynamical behaviors
observed in the Lorenz equations.

The formulations of the equations for the DNS and GELE nec-
essary for the systematic analysis are presented in Sec. II. Detailed
descriptions of the governing equations, the modal amplitudes,
energy relations, etc., are provided for the three different systems:
the Lorenz equations, the DNS, and GELE. In Sec. III, we demon-
strate various numerical results; for instance, chaotic and equilib-
rium solutions, solution transition from the Lorenz equations to the
DNS via variations of the order of GELE, periodic nature of the high-
order systems, and initial condition dependency. Finally, in Sec. IV,
conclusions and discussion are given.

II. PROBLEM FORMULATION

A. Primitive equations

In the Cartesian coordinate (x, z), where x and z are the stream-
wise (horizontal) and vertical coordinates, respectively, we consider
the two-dimensional Navier–Stokes equations under the Boussi-
nesq approximation together with the thermal diffusion equation as
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follows:

∂u

∂x
+ ∂w

∂z
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ 0

∂P

∂x
+ ν0∇2u, (2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂P

∂z
− 1ρ̄

ρ0

g + ν0∇2w, (3)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= κ0∇2T, (4)

where u is the streamwise velocity, w is the vertical velocity, P is the
pressure, T is the temperature, 1ρ̄ = ρ − ρ0 is the deviation of the
density ρ from the reference density ρ0, ν0 is the reference kinematic
viscosity, κ0 is the thermal diffusivity, and ∇2 = ∂2/∂x2 + ∂2/∂z2

is the Laplacian operator. The reference values are computed from
the properties at the bottom boundary z = 0. We assume that the
density ρ and the temperature T satisfy a linear relation

ρ − ρ0

ρ0

= −ε0 (T − T0), (5)

where ε0 is the thermal expansion coefficient and T0 is the reference
temperature. We assume that the temperature T is given as

T = T0 − 1T

H
z + θ , (6)

where 1T = T0 − T|z=H > 0 is the temperature difference between
z = 0 and z = H, where H is the domain height and θ is the tem-
perature perturbation. The pressure P is assumed to be decomposed
into P = P + p, where P is the pressure satisfying the hydrostatic
balance ∂P/∂z = −ρ0ε0g1T(z/H), and p is the pressure perturba-
tion. Applying the above assumptions, we obtain the following set of
equations:

∂u

∂x
+ ∂w

∂z
= 0, (7)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ 0

∂p

∂x
+ ν0∇2u, (8)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ε0gθ + ν0∇2w, (9)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
− 1T

H
w = κ0∇2θ . (10)

To analyze the system in a nondimensional form, we consider the
reference time scale as H2/κ0, the length scale as H, the velocity scale
as κ0/H, the pressure scale as ρ0κ

2
0/H

2, and the temperature scale

1T. Then, the nondimensional equations read

∂u

∂x
+ ∂w

∂z
= 0, (11)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+ σ∇2u, (12)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ σRaθ + σ∇2w, (13)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
− w = ∇2θ , (14)

where σ = ν0/κ0 is the Prandtl number and Ra = ε0gH31T/κ0ν0

is the Rayleigh number. Note that the variables (u, w, p, θ) are
now dimensionless. The set of equations (11)–(14) can be further
simplified if we consider the streamfunction ψ that satisfies

u = −∂ψ
∂z

, w = ∂ψ

∂x
. (15)

The simplified set of equations for ψ and θ becomes

∂

∂t
∇2ψ = ∂ψ

∂z

∂∇2ψ

∂x
− ∂ψ

∂x

∂∇2ψ

∂z
+ σ∇4ψ + σRa

∂θ

∂x
, (16)

∂θ

∂t
= ∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
+ ∇2θ + ∂ψ

∂x
(17)

(see also Saltzman3).
We solve Eqs. (16) and (17) by imposing the boundary condi-

tions such that variables ψ and θ are periodic in the x-direction

ψ(x = 0, z) = ψ(x = lx, z), θ(x = 0, z) = θ(x = lx, z), (18)

where lx is the streamwise domain length, while we consider in the
z-direction the following boundary conditions:

ψ = θ = ∂2ψ

∂z2
= 0 (19)

at z = 0 and z = 1. Equations (16) and (17) in the physical space
(x, z) as well as the boundary conditions (18) and (19) will be used
in the two-dimensional DNS. We will describe in Sec. II E the
numerical methods for performing the two-dimensional DNS.

B. Relation between DNS and Lorenz formulations

For the derivation of the classic Lorenz equations, we consider
the following transformations:

ψ(x, z, t) = X(t)

√
2(α2 + β2)

αβ
sin(αx) sin(βz),

θ(x, z, t) = Y(t)

√
2(α2 + β2)

3

α2βRa
cos(αx) sin(βz)

− Z(t)
(α2 + β2)

3

α2βRa
sin(2βz), (20)

where (X, Y, Z) are the time-dependent amplitudes, α = 2π/lx is the
streamwise wavenumber, and β = π is the vertical wavenumber.
Note that the above transformations truncate off other high-order
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harmonics in the x- and z-directions. Using (20) and neglecting
high-order nonlinear interactions as such, we derive the Lorenz
equations

dX

dτ
= σ(Y − X),

dY

dτ
= rX − Y − XZ,

dZ

dτ
= XY − bZ,

(21)

where τ = (α2 + β2)t is the rescaled time, r = Ra/Rac is the nor-
malized Rayleigh number [i.e., the ratio between the Rayleigh num-

ber and the critical Rayleigh number Rac = (α2 + β2)
3
/α2], and

b = 4β2/(α2 + β2) is the geometrical parameter.
Once we solve the Lorenz equation (21), we can recover the

Lorenz-based physical solutions ψ (Lo)(x, z) and θ (Lo)(x, z) by using
the backward transformations (20). Since nonlinear interactions
among high-order harmonics are ignored, ψ (Lo) and θ (Lo) are dif-
ferent from those ψ and θ obtained from the DNS. To quantify
the differences more systematically, we compute the DNS-based
amplitudes (X(D), Y(D), Z(D)) as follows:

X(D) =
√

2α2β

π(α2 + β2)

∫ lx

0

∫ 1

0

ψ sin(αx) sin(βz)dzdx,

Y(D) =
√

2α3βRa

π(α2 + β2)
3

∫ lx

0

∫ 1

0

θ cos(αx) sin(βz)dzdx,

Z(D) = −α3βRa

π(α2 + β2)
3

∫ lx

0

∫ 1

0

θ sin(2βz)dzdx,

(22)

where ψ(x, z) and θ(x, z) in (22) are the variables computed from
the DNS. Note that the DNS-based amplitudes (X(D), Y(D), Z(D)) are
obtained by integrations over the domain length in the vertical
direction z and one wavelength in the streamwise direction x.

C. Spectral formulation for generalized nonlinear

dynamical system

In this study, we assume that the solution is spatially periodic
in the x-direction and bounded in the z-direction as a way to allow
the Fourier representations.3 This consideration allows us to express
the physical solutionψ and θ in the spectral form. First, we consider
the spatial periodicity in the x-direction by expressing ψ and θ as

(

ψ(x, z, t)
θ(x, z, t)

)

=
L
∑

l=−L

(

ψ̃l(z, t)

θ̃l(z, t)

)

exp(iαlx), (23)

where l is the mode number, L is the largest mode number we

consider for the streamwise spectral modes, ψ̃l(z, t) and θ̃l(z, t) are
the mode shapes of ψ and θ , respectively, i =

√
−1, and αl = lα

is the streamwise wavenumber of the mode l. Since ψ and θ are
real, the complex-conjugate modal relations ψ̃−l = ψ̃∗

l and θ̃−l = θ̃∗
l

(where ∗ denotes the complex conjugate) must be satisfied for l ≥ 1,

while ψ̃0 and θ̃0 must be real. For each mode l, we express the

equations (16) and (17) in the modal form as

∂

∂t
∇̃2

l ψ̃l = σ ∇̃4
l ψ̃l + iαlσRaθ̃l + Ñ

ψ

l , (24)

∂θ̃l

∂t
= ∇̃2

l θ̃l + iαlψ̃l + Ñθ
l , (25)

where ∇̃2
l = ∂2

∂z2 − α2
l , and Ñ

ψ

l and Ñθ
l are the convolution terms

Ñ
ψ

l =
L
∑

j=−L

iαj

[

∇̃2
j ψ̃j

∂ψ̃l−j

∂z
− ψ̃j

∂

∂z

(

∇̃2
l−jψ̃l−j

)

]

,

Ñθ
l =

L
∑

j=−L

iαj

(

θ̃j

∂ψ̃l−j

∂z
− ψ̃j

∂θ̃l−j

∂z

)

,

(26)

which are related to the nonlinear terms in (16) and (17). Note that,
in the spectral transformation (23) and the nonlinear convolution
(26), high-order harmonics (|l| > L) generated by nonlinear interac-
tions of low-order harmonics (|l| ≤ L) are ignored. In principle, the
spectral solution in the limit L → ∞ will recover the DNS solution
in the physical space (x, z). On the other hand, if L = 1, the spectral
solution can match the Lorenz solution when low-order harmon-
ics in the z-direction are considered. The mode number limit L is,
therefore, an important control parameter that allows us to study
the transition from the Lorenz equations to the DNS.

The ansatz (23) is spectral only in the x-direction but we can

further expand the mode shapes ψ̃ and θ̃ using the sinuous series in
the z-direction as follows:

(

ψ̃l(z, t)

θ̃l(z, t)

)

=
M
∑

m=0

(

ψ̂lm(t)

θ̂lm(t)

)

sin(βmz), (27)

where ψ̂lm and θ̂lm are the time-dependent mode amplitudes, m is
the mode number in the z-direction, M is the largest mode number
we consider for the vertical spectral modes, and βm = mβ is the ver-
tical wavenumber of the mode m. Note that the sinuous series with
sin(βmz) satisfies the boundary conditions at z = 0 and 1 for any
m. Applying the expansion (27) to the equations (24)–(25) leads to
the following equations of the generalized expansion of the Lorenz
equations:

−
(

α2
l + β2

m

) dψ̂lm

dt
= σ

(

α2
l + β2

m

)2
ψ̂lm + iαlσRaθ̂lm + N̂

ψ

lm, (28)

dθ̂lm

dt
= −

(

α2
l + β2

m

)

θ̂lm + iαlψ̂lm + N̂θ
lm, (29)

where N̂
ψ

lm and N̂θ
lm are the convolution terms derived from the

nonlinear terms Ñ
ψ

l and Ñθ
l (see the Appendix for more details).

The practicality of the GELE above is in that Eqs. (28) and (29)
can produce either the DNS solutions or the Lorenz solutions
depending on the choice of L and M. For instance, GELE can be
simplified into the Lorenz equations when we consider L = 1 and
M = 2 and when proper initial conditions are imposed such that

initial mode amplitudes except =(ψ̂11), <(θ̂11), and θ̂02 are zero [i.e.,

<(ψ̂11) = =(θ̂11) = 0, ψ̂01 = ψ̂02 = ψ̂12 = θ̂01 = θ̂12 = 0, where <
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and = denote the real and imaginary parts, respectively]. As simi-
larly derived for the DNS-based amplitudes in (22), the GELE-based
amplitudes X(G), Y(G), and Z(G) can be computed from the following
relations:

X(G)(t) = −
√

2αβ

(α2 + β2)
=
[

ψ̂11(t)
]

,

Y(G)(t) =
√

2α2βRa

(α2 + β2)
3
<
[

θ̂11(t)
]

,

Z(G)(t) = − α2βRa

(α2 + β2)
3
θ̂02(t).

(30)

If we consider M > 2 and L = 1, we recover the high-order Lorenz
equations.12,13 We can also reproduce the results of the DNS math-
ematically in the limits L → ∞ and M → ∞ (in practice, when L
and M are sufficiently large). Furthermore, the mode amplitudes in
GELE can be directly compared with those from the DNS if we con-

sider the DNS-based mode amplitudes ψ̂ (D)
lm and θ̂ (D)lm obtained from

the following relations:

ψ̂
(D)
lm = α

π

∫ lx

0

∫ 1

0

ψ sin(βmz) exp(−iαlx)dzdx,

θ̂
(D)
lm = α

π

∫ lx

0

∫ 1

0

θ sin(βmz) exp(−iαlx)dzdx.

(31)

D. Dissipative system and energy relations

By taking the divergence, we can check whether GELE is
dissipative.4 Applying the partial derivatives of the Eqs. (28) and (29)

with respect to ψ̂lm and θ̂lm, we have

L
∑

l=−L

M
∑

m=0

[

∂

∂ψ̂lm

(

dψ̂lm

dt

)

+ ∂

∂θ̂lm

(

dθ̂lm

dt

)]

= −(σ + 1)

L
∑

l=−L

M
∑

m=0

(

α2
l + β2

m

)

. (32)

We clearly see that the right-hand-side term is always negative,
which implies that the system is dissipative. As similarly pointed out
by Moon et al.,12 the right-hand-side term of (32) becomes largely
negative and the volume contraction occurs at a faster rate when the
limits of the system’s order L and M increase.

It is also important to define the total energy ET, which is
the sum of the kinetic energy EK and potential energy EP (i.e., ET

= EK + EP), where these energies can be defined in dimensionless
forms

EK =
∫ 1

0

∫ lx

0

1

2

(

u2 + w2
)

dxdz, EP =
∫ 1

0

∫ lx

0

(−σRaz)θdxdz.

(33)

We note that the definition of EP above is different from that of
Saltzman,3 which is based on the square of the temperature per-
turbation. After manipulating Eqs. (11)–(14) and considering the
boundary conditions, the temporal evolution of the total energy can

be written as follows:

∂ET

∂t
=
∫ 1

0

∫ lx

0

(

u
∂u

∂t
+ w

∂w

∂t
− σRaz

∂θ

∂t

)

dxdz = Q + V , (34)

where Q is the temporal energy rate due to the thermal conduction
occurring at the boundary z = 1

Q = −σRa

∫ lx

0

z
∂θ

∂z

∣

∣

∣

∣

z=1

dx, (35)

and V is the temporal energy rate due to the viscous dissipation

V = −σ
∫ 1

0

∫ lx

0

[

(

∂u

∂x

)2

+
(

∂u

∂z

)2

+
(

∂w

∂x

)2

+
(

∂w

∂z

)2
]

dxdz.

(36)

It is important to note that V is always negative; thus, the viscous
dissipation is responsible for the loss of the total energy, while Q

can be positive or negative depending on the sign of the temperature
gradient ∂θ/∂z at z = 1.

If we use the spectral formulation (27), we can further simplify
the energy expressions without integrations; for instance, we have
the kinetic and potential energies

EK =
L
∑

l=−L

M
∑

m=0

π
(

α2
l + β2

m

)

2α
|ψ̂lm|2,

EP = σRa

M
∑

m=1

2π cos(βm)

αβm

θ̂0m.

(37)

Note that only the temperature modes θ̂lm with l = 0 contribute to
the potential energy since the integration in the x-direction in (33)

suppresses the contribution from the periodic modes θ̂lm of l > 0.
The energy rates can be re-expressed as follows:

V = −σ
L
∑

l=−L

M
∑

m=0

π
(

α2
l + β2

m

)2

α
|ψ̂lm|2,

D = −σRa

M
∑

m=1

2πβm cos(βm)

α
θ̂0m.

(38)

E. Numerical methods

Considering the boundary conditions (18) and (19), we use the
Chebyshev spectral method in the z-direction and the Fourier spec-
tral method in the x-direction for numerical discretizations in the
two-dimensional DNS.17–19 For the time stepping, we consider the
implicit Euler method on the linear terms and the Adams–Bashforth
scheme for the nonlinear terms.20 Direct numerical simulations in
the physical space (x, z) use an appropriate number of colloca-
tion points between 80 and 200 in both x- and z-directions and
the time step 1t between 10−6 and 10−4 in order to meet the
Courant–Friedrichs–Lewy (CFL) condition for numerical stability
in our parameter ranges of interest. When time-stepping GELE and
the Lorenz equations, we also consider the implicit Euler method
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FIG. 1. (a) Variable Z vs time t for the Lorenz solution (blue solid line) and the DNS solution (black solid line) at r = 30. (b) Trajectories on the (X , Z)-plane of the Lorenz

(blue) and DNS (black) solutions. (c) and (d) Amplitude distributions of the DNS solution: (c) log10 |ψ̂lm| and (d) log10 |θ̂lm| in the parameter space of mode numbers (l,m) at
t = 5.

on the linear operator while the nonlinear terms are solved explic-
itly with the forward Euler method. For all results presented in this
paper, some parameters such as σ = 10 and b = 8/3 are fixed (i.e.,
α = π/

√
2 and β = π , the parameters that give Rac = 27π 4/4). We

only vary the parameters r, L, and M as control parameters to elu-
cidate the similarities and differences between the DNS, GELE, and
the Lorenz equations.

In principle, a variety of types of initial conditions are
available for numerical computation. For instance, we can
impose Lorenz-like initial conditions where all the variables

except (X, Y, Z) are zero. The Lorenz-like initial conditions
in modal amplitudes can be converted into the DNS initial

conditions as ψ(x, z, 0) = 2|ψ̂11(0)| sin(αx) sin(βz) and θ(x, z, 0)
= 2|θ̂11(0)| cos(αx) sin(βz)+ θ̂02 sin(2βz). Although we can also
impose various other kinds of initial conditions [e.g., non-zero

higher harmonics where ψ̂lm(0) 6= 0 or θ̂lm(0) 6= 0 or random ini-
tial conditions with random profiles of ψ(x, z, 0) and θ(x, z, 0)],
we will mostly focus on the cases computed using the Lorenz-like
conditions, and the initial condition sensitivity with random initial
conditions will be discussed briefly.
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FIG. 2. DNS solution of ψ(x, z) (top) and θ(x, z) (bottom) at the steady-state
equilibrium at t = 5 for parameters in Fig. 1.

III. NUMERICAL RESULTS

We consider the regime r > 1 (i.e., Ra > Rac), where the two-
dimensional convection system is linearly unstable. As r is increased
from 1, we will investigate how dynamical behaviors such as bifur-
cation, nonlinear equilibration, chaos, or periodic attractors, all of
which are only observable in the unstable regime and vary with the
system orders L and M. Note that when we say a regime is stable,
we refer to the stability of the convection system not the stability of
attractors.

A. Chaotic and equilibrium states in the unstable

regime

In this subsection, we fix r = 30, a representative value at which
we can observe the chaotic attractor in the classic Lorenz equations.
In Fig. 1(a), we plot the amplitude Z vs time t and compare Z(t) of
the Lorenz equations with Z(D)(t) obtained from the DNS when the
Lorenz-like initial condition (X, Y, Z) = (0.01, 0, r − 1) is imposed
on both DNS and Lorenz equations. In fact, the temperature pertur-
bation with Y = 0 and Z > 0 yields a stable solution when X = 0,
since the corresponding temperature solution in the physical space:

θ(x, z, 0) = θ̂02(0) sin(2βz) with θ̂02(0) < 0 implies that the temper-
ature perturbation is stably stratified (i.e., θ is positive and the fluid
density is lighter in the upper region 0.5 < z < 1 while θ is nega-
tive and the fluid density is heavier in the lower region 0 < z < 0.5).
However, we impose X = 0.01 at t = 0 to have a small-amplitude
streamfunction perturbation, which has a roll shape and can cause
instability. Figure 1(a) shows that there is a short transient period
from t = 0 where variable Z decreases when X is very small. In this
transient period, the DNS amplitude Z(D)(t) matches the Lorenz
amplitude Z(t), but afterward Z increases as X is amplified and we

see an oscillatory behavior of Z in time t. A clear difference between
the Lorenz equations and the DNS is now such that the Lorenz
amplitude Z becomes chaotic after the transient oscillatory period,
while the DNS amplitude Z(D) reaches an equilibrium and converges
to Z(D) ' 29.75 as t increases. These different dynamical behaviors
can also be clearly distinguished in Fig. 1(b), where the Lorenz solu-
tion exhibits a chaotic attractor on the (X, Z)-plane while the DNS
solution moves along a spiral that converges to a fixed solution
(X(D), Z(D)) ' (12.46, 29.75). We note that this DNS fixed solution
is close to but is still different from the fixed point solution of the

Lorenz equations: (X, Z)|fixed = (
√

b(r − 1), r − 1) ' (8.79, 29). For
variable Y, the DNS solution converges to Y(D) ' 12.46, a value still

different from that of the fixed point solution Yfixed =
√

b(r − 1)
' 8.79 for the Lorenz equations.

The difference between the Lorenz and DNS solutions results
from the fact that the DNS allows nonlinear interactions among
higher-order modes. To see more clearly how the high-order nonlin-
ear interactions occur in the DNS, we plot in Figs. 1(c) and 1(d) the

log-scale absolute values of the amplitudes ψ̂lm and θ̂lm in the mode
number space (l, m) at t = 5. Note that we only need to display the
mode number space for non-negative l ≥ 0 due to the symmetries

ψ̂∗
(−l)m = ψ̂lm and θ̂∗

(−l)m = θ̂lm. The initial amplitudes we impose

at t = 0 are X = 0.01 and Z = r − 1 = 29 (i.e., ψ̂11 = −0.015i and
θ̂02 = −0.3077), while other variables are zero. On the one hand,
the Lorenz equations only allow nonlinear interactions between ψ̂11,

θ̂02, and θ̂11. If we plot the amplitudes in the mode number space
(l, m), all the amplitudes except the modes with (l, m) = (1, 1) and
(0, 2) will be displayed in white, as only these three modes vary
with time t in a chaotic manner. On the other hand, as time t
progresses in the DNS, the modal nonlinear interactions distribute
energies to higher-order harmonics and they allow the growth of

high-order streamfunction modes such as ψ̂31, ψ̂13, ψ̂22, etc., and

high-order temperature modes such as θ̂11, θ̂04, θ̂31, etc. As the
solution reaches the equilibrium, it is found that the largest ampli-
tudes of the DNS solution are still achieved for the streamfunction
mode ψ̂11 = −18.68i and the temperature mode θ̂02 = −0.3157 (i.e.,
X(D) ' 12.46 and Z(D) ' 29.75); however, other high-order modes
also have comparably large amplitudes. It is thus expected that the
streamfunction ψ and temperature θ in the physical space (x, z) are
represented not only by the dominant modes with (l, m) = (1, 1)
and (l, m) = (0, 2) but also by other high-order modes. In Figs. 1(c)
and 1(d), we also note that the amplitudes in the mode space (l, m)
become negligible with amplitudes of order less than O(10−4) for
l ≥ 18 and m ≥ 18. This implies that GELE requires the system
dimensions with at least L ' 18 and M ' 18 to reproduce the DNS-
like results with quantitatively and qualitatively similar nonlinear
interactions among the high-order modes.

Figure 2 displays the DNS solution at the steady-state equilib-
rium state at t = 5 in the physical space (x, z) over two streamwise
wavelengths (i.e., x/lx ∈ [0, 2]). The streamfunction ψ at the equi-
librium represents a pair of vortices (red region: clockwise rotating
vortex, blue region: anti-clockwise vortex). More interestingly, the
temperature perturbation θ exhibits mushroom-shaped convection.
For both ψ and θ , we see that the dominant spatial periodicity in
the x-direction is unity. On the other hand, we see that ψ(x, z) fea-
tures the spatial periodicity of unity in the z-direction while θ(x, z)
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FIG. 3. (a) and (b) Time variation of the total energy ET (black), kinetic energy EK (red), and potential energy EP (blue) for the (a) DNS and (b) Lorenz solutions in Fig. 1. (c)
and (d) Time variation of the total energy rate ∂ET/∂ t computed directly from ET (green dashed lines overlapped with black solid lines), Q (red solid lines), V (blue solid
lines), and the sum Q + V (black solid lines) for the (c) DNS and (d) Lorenz solutions.

shows the spatial periodicity of unity or two depending on the x
coordinate. These features are captured in the spectral amplitude
distributions in Figs. 1(c) and 1(d) as the most dominant mode

in the streamfunction is ψ̂11 while both modes θ̂11 and θ̂02 are
the most dominant ones for temperature perturbation. Moreover,
the high-order modes also have large amplitudes as we can see a

structure like a pointy stem part of the mushroom in the DNS
temperature solution θ(x, z).

In Fig. 3, we plot the perturbation energy and its time deriva-
tive vs time for the DNS and Lorenz solutions of Fig. 1. For
both cases, we impose at t = 0 a small kinetic energy (i.e., EK

' 4.71 × 10−3) with X = 0.01. The initial potential energy is
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FIG. 4. (a) Trajectories on the (X , Z)-plane for various solutions of the GELE with
different L and M (colored solid lines), the Lorenz equations (gray solid line), and
the DNS solution (black dashed line) at r = 30. Black circle indicates the initial
condition (X , Z) = (0.01, 29). (b) Various fixed points for converging solutions of
the GELE with different (L,M) and DNS solution in (a).

negative (i.e., EP ' −2.73 × 104) as the temperature perturbation
is stably stratified with Z = r − 1 at t = 0. The total energy ET is
also negative (i.e., ET ' −2.73 × 104) due to the largely negative
potential energy. Even though the initial kinetic energy is very small,
the pair of vortices triggers the instability and the total energy fluc-
tuates with an oscillatory behavior in a transient period, similar to
the behavior of Z(t) in Fig. 1(a). The time variation of the energies
for the DNS solution in Fig. 3(a) shows the saturation process with
the kinetic energy at equilibrium increased from the initial kinetic
energy (i.e., the kinetic energy difference 1EK =' 0.78 × 104). On
the other hand, the negative potential energy at the equilibrium
is decreased from the initial potential energy (i.e., the potential
energy difference 1EP ' −0.76 × 104, which implies that the mag-
nitude is increased in the negative direction). As for the sum, the
negative total energy at the equilibrium is slightly increased to ET

' −2.71 × 104 compared to the initial negative total energy (i.e., the

FIG. 5. Temperature perturbation θ(x, z) at t = 5 obtained from GELE for
various sets of (L,M) and parameters in Fig. 1.

increase of the total energy1ET ' 2 × 102, which implies a decrease
in magnitude). The Lorenz solution, on the other hand, does not
reach an equilibrium state but it fluctuates in a chaotic manner. Both
kinetic and potential energies exhibit chaotic temporal variations as
shown in Fig. 3(b). If we time-average the energies of the Lorenz
solution from t = 2 to t = 5, we obtain the average total energy
ĒT ' −2.10 × 104, the average kinetic energy ĒK ' 0.32 × 104, and
the average potential energy ĒP ' −2.42 × 104. While the average
kinetic energy of the Lorenz solution is smaller than that of the DNS
solution at the equilibrium, the kinetic energy of the Lorenz solu-
tion frequently exceeds the equilibrium DNS kinetic energy due to
the Lorenz equations’ intermittent nature.

Figures 3(c) and 3(d) display the time derivatives of the ener-
gies of the DNS and Lorenz solutions. For both solutions, we validate
the balance equation (34) by comparing the time derivative ∂ET/∂t
directly computed from time-differentiation of ET (red dashed line)
with the sum Q + V (black solid line). For the DNS solution, the
total energy time derivative becomes zero as it reaches the equilib-
rium and the balance is maintained between the constant negative
viscous dissipation V and the constant positive energy flux Q. On
the other hand, the Lorenz solution does not reach an equilibrium
as the viscous dissipation V , and the energy flux Q does not balance
but they fluctuate with time in a chaotic manner; therefore, the time
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FIG. 6. Bifurcation diagrams of Zmax vs r for the Lorenz (blue) and DNS (black)
solutions. Dots denote actual Zmax picked up at each local maximum, and gray
area denotes the possible range of Zmax due to the appearance of the limit tori for
r ≥ 58. For the DNS solutions, the interval1r = 1 is used.

derivative of the total energy ∂ET/∂t for the Lorenz solution never
stays at zero.

B. Connection between Lorenz and DNS solutions

In this subsection, we now investigate with GELE how solu-
tions transition from the Lorenz equations to the DNS as the
mode limits L and M are increased. Given the same initial con-
dition (X, Y, Z) = (0.01, 0, r − 1), Fig. 4(a) shows trajectories on
the (X, Z)-plane of solutions with various values of L and M.
The trajectories of the DNS and Lorenz solutions are the same
as the ones in Fig. 1(b), only displayed with different line styles
in Fig. 4. It is remarkable that the high-order solutions other
than the Lorenz solution do not exhibit chaotic attractors but
converge to fixed points; for instance, the trajectories converge
to (X(G), Z(G)) ' (−10.55, 29.49) for (L, M) = (4, 4), (X(G), Z(G))
' (−0.006, 29.63) for (L, M) = (6, 6), (X(G), Z(G)) ' (0, 25.94) for
(L, M) = (8, 8), (X(G), Z(G)) ' (12.39, 29.75) for (L, M) = (10, 10),
and (X(G), Z(G)) ' (12.46, 29.75) for (L, M) = (20, 20). Fixed points
of the GELE solutions depend on L and M as shown in Fig. 4(b) but
it is verified that they approach the fixed points of the DNS as L and
M increase. The trajectory of the system with (L, M) = (10, 10) is
slightly different from the trajectory of the DNS solution in the tran-
sient period but the final fixed point (X(G), Z(G)) ' (12.39, 29.75) is
very similar to the equilibrium (X(D), Z(D)) ' (12.46, 29.75) of the
DNS solution. For higher orders of L > 10 and M > 10, the tra-
jectories of the GELE solution become equivalent to those of the
DNS solution. As the system order increases, the number of pos-
sible fixed points increases and onto which fixed point a trajectory
settles depends on the initial condition. We have checked that the
same initial condition for different L and M leads to the same fixed

point when L and M are sufficiently large. Further discussion on the
initial condition dependency will be provided in Sec. III D.

To understand in a more visual way how a solution transitions
from the Lorenz equations to the DNS, Fig. 5 shows temperature
perturbation θ(x, z) over two streamwise wavelengths 2lx for the
GELE solutions with various sets of (L, M). Only the Lorenz solu-
tion with (L, M) = (1, 2) at the top of Fig. 5 is not at equilibrium
at t = 5 as the Lorenz solution lies on a chaotic attractor before
and after t = 5, while other GELE solutions of higher orders reach
their equilibrium states. For all solutions in Fig. 5, we recognize that
the dominant spatial periodicity in the z-direction is two (i.e., the
dominant mode number is m = 2). On the other hand, the dom-
inant spatial periodicity in the x-direction varies with the system
orders L and M. For instance, the temperature perturbations for
(L, M) = (4, 4) and (6, 6) show a wiggly pattern around the center-
line z = 0.5 and it is difficult to determine by inspection in which
mode number l is the dominant one. For the temperature perturba-
tion of (L, M) = (8, 8), it is noticeable that the dominant periodicity
in the x-direction is l = 3 (i.e. the dominant wavelength is lx/3).
A similar structure with the dominant spatial periodicity l = 3 is
observed for the case (L, M) = (3, 6) (not shown) when the same ini-
tial condition is imposed. As the system limits L and M are further
increased, the GELE equilibrium solutions for L ≥ 10 and M ≥ 10
become equivalent to the DNS solution in Fig. 2.

C. Periodic and chaotic solutions

We now investigate how the solution behaviors change as r is
increased. For each r, we still use the Lorenz-like initial condition
with (X, Y, Z) = (0.01, 0, r − 1) and other variables set to zero. In
Fig. 6, we plot the bifurcation diagrams of Zmax vs r for the Lorenz
and DNS solutions. The local maxima of Z, Zmax, are picked up after
truncation of the transient period (0 ≤ t ≤ 3) from the solution,21,22

and we define hereafter the Z-periodicity of the solution as the num-
ber of Zmax. Integer choices in r with the interval 1r = 1 are used
to plot the bifurcation diagram of the DNS solution. Our focus is
not on the blue-dotted Lorenz bifurcation, which has already been
investigated extensively in previous studies (see, e.g., Dullin et al.23),
but on the bifurcation behavior of the DNS solution in the param-
eter space r. While the Lorenz equations bifurcate beyond r > 24,
the trajectories of DNS solutions converge to fixed points in the
range 1 < r < 50. The DNS bifurcation curve is slightly dropped in
the range 30 < r < 50 due to the convergence to a fixed solution of
the streamwise periodicity of 3 in this particular range of r, while
the solutions in the range r ≤ 30 have the streamwise periodicity
of unity as shown in Fig. 2 for r = 30. Beyond r ≥ 50, it is found
that limit cycles with the Z-periodicity of unity appear in the range
50 ≤ r ≤ 58 and limit tori appear for r > 58. For a limit torus, it is
thought that there are infinitely many distinct Zmax, so we have the
gray shaded area in Fig. 6 indicating the possible range of Zmax. We
see that the width of the gray area increases gradually as r increases.

To see more clearly what types of periodic solutions are
observed, we show in Fig. 7 the trajectories of the DNS solutions on
the (X, Z)-plane. In the range 1 < r < 50, it is verified that the DNS
solution saturates nonlinearly and its trajectory converges to a fixed
solution as reaching the equilibrium state. If we plot only the fixed
solution on the (X, Z)-plane, it will appear as a dot. As r increases
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FIG. 7. Trajectories on the (X , Z)-plane computed from the DNS for (a) r = 50, (b) r = 55, (c) r = 60, and (d) r = 70. In (c) and (d), the changing colors of the limit tori
are based on time t as displayed in the colorbars.

further, in the range 50 ≤ r ≤ 58, the DNS solution becomes peri-
odic and the solution exhibits a limit cycle with the Z-periodicity
of unity as shown in Figs. 7(a) and 7(b) for r = 50 and 55. As r
increases beyond r = 58, the solution’s trajectory no longer lies on a
limit cycle; for instance, the trajectory in Fig. 7(c) at r = 60 does not
exhibit a limit cycle of the Z-periodicity of unity on the (X, Z)-plane.
The trajectory is, however, somehow regular and bounded. A more
regular pattern is observed for the trajectory at r = 70 as shown in
Fig. 7(d).

To better understand the bounded trajectories in the range
r > 58, we plot in Fig. 8 three-dimensional trajectories of the DNS
solutions in the (X, Y, Z)-space for various values of r, where the

solution no longer lies on a limit cycle and does not converge to
a fixed point. At r = 80 as shown in Fig. 8(a), the solution lies
on a smooth limit torus, which is known to be observed in the
presence of quasiperiodicity.24 It is verified that trajectories of the
solutions in the range 58 < r < 80 [including the ones at r = 60
and r = 70 shown in Figs. 7(c) and 7(d)] also lie on limit tori. The
solution at r = 100 in Fig. 8(b) exhibits a limit torus attractor as
well but it is now twisted along the toroidal direction. The solu-
tion’s irregularity becomes more apparent as r increases further. At
r = 110, the trajectory has an irregular torus shape [Fig. 8(c)], that
is, the solution does not exhibit any regular-shape attractor (e.g.,
limit cycles, limit tori). The trajectory continues to move irregularly
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FIG. 8. Trajectories of the DNS solutions in the (X , Y , Z)-space for (a) r = 80, (b) r = 100, (c) r = 110, (d) r = 120, (e) r = 150, and (f) r = 200. Colorbars display the
value of time t corresponding to each color of the trajectories.
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FIG. 9. (a) and (b) Trajectories of the GELE solutions on the (Y , Z)-plane after a transient time period for r = 80, (L,M) = (10, 10) from (a) Lorenz-like and (b) random

initial conditions. (c) Distribution of the amplitude log10(|ψ̂lm|) in the parameter space (l,m) for a GELE solution on the black limit cycle in (a). (d) The amplitude distribution

log10(|ψ̂lm|) for a GELE solution on the blue limit torus in (b).

as r ≥ 120 [see Figs. 8(d)–8(f)]. It is noticeable that such irregular
chaotic solutions cover wider ranges of (X, Y, Z) in the phase space
as r increases.

To verify if a limit torus is also observable in the GELE,
we compute the solutions of the GELE of orders (L, M)

= (10, 10) at r = 80 (Fig. 9). It is found that, if the Lorenz-

like initial condition [i.e., (X, Y, Z) = (0.01, 0, r − 1) and other

variables zero] is imposed, the GELE solution lies on a limit

cycle as shown in Fig. 9(a), which is different from the DNS
solution’s limit torus behavior. To understand this different

outcome, we plot the amplitude ψ̂lm in the parameter space (l, m)
in Fig. 9(b), and we see that the limit-cycle solution has the
distribution of non-zero amplitudes on higher-order harmonics of

ψ̂11 (e.g., ψ̂13, ψ̂15, . . . , ψ̂31, ψ̂51, . . .). On the other hand, the DNS
solution with the limit torus trajectory as shown in Fig. 8(a) does

not have a similar distribution of ψ̂ as displayed in Fig. 9(c) but
the amplitudes of other higher-order harmonics are also amplified
[not shown in this paper but is qualitatively similar to Fig. 9(d)].
Although the GELE solution considers perfect nonlinear modal
interactions among the harmonics inside the domain with l ≤ 10
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FIG. 10. Trajectories on the (X , Y , Z)-space for the (a) Lorenz and (b) DNS solutions at r = 30 (color solid lines). Black dots denote different initial conditions and dashed
lines are drawn for the purpose of clear display of the initial conditions.

and m ≤ 10, we conjecture that GELE may require higher-order
harmonic terms of orders l > 10 and m > 10 to fully reproduce
the DNS solution. We also conjecture that the DNS induces the

amplification of other harmonics (e.g., ψ̂21, ψ̂12, . . .) as the solutions
computed in the physical space (x, z) can introduce small amplitude
in the non-relevant harmonics as a result of the numerical discretiza-
tion. To validate this speculation, we compute the GELE solution
with a different initial condition where (X, Y, Z) = (0.01, 0, r − 1)
and other variables are now non-zero and random with very small

initial amplitudes of order |ψ̂lm| < 10−4. We clearly see in Fig. 9(b)
that the GELE solution with the random initial condition now
exhibits a limit torus behavior after the transient period. It is also
verified in Fig. 9(d) that every harmonics of the GELE solution on

the limit torus is now amplified and this amplitude distribution ψ̂lm

of the GELE solution resembles qualitatively the distribution of the
DNS solution.

FIG. 11. Trajectories on the (X , Y , Z)-space for DNS solutions at r = 80 with
different initial random perturbations |ψ(x, z)| < ε and |θ(x, z)| < ε, where
ε = 10−6 (black), ε = 10−4 (blue), and ε = 10−2 (red).

D. Initial condition dependency

It is now clear that the solution behavior strongly depends
on the mode limits (L, M) of the system, and the Lorenz equa-
tions are far different from the DNS in terms of the bifurcation
behavior in the parameter space along r. Other than the control
parameters (L, M), the initial condition also affects the bifurcation
behavior since high-order systems possess multiple stable/unstable
fixed points and the system’s limiting dynamics can depend on the
initial condition. As an example, we try different Lorenz-like ini-
tial conditions for the DNS and Lorenz solutions in Fig. 10. Black
dots denote 26 different initial conditions generated through com-
binations of possible initial values X ∈ {−20, 0, 20}, Y ∈ {−20, 0, 20}
and Z ∈ {−20, 0, 20} excluding the zero initial condition X = Y
= Z = 0. We see in Fig. 10(a) that the Lorenz solutions at r = 30
are chaotic and they all lie on a chaotic attractor after some transient
periods. On the other hand, each DNS solution at r = 30 reaches
an equilibrium state and different initial conditions lead to different
fixed points.

At higher r, the initial condition dependency becomes more
complex. For instance, in Fig. 11, we show the DNS solutions at
r = 80 computed from initial random perturbations that satisfy
|ψ(x, z)| < ε and |θ(x, z)| < ε where ε is the amplitude. It is found
that the limit tori have similar shapes for all DNS solutions, but
their locations in the (X, Y, Z)-space vary depending on the ini-
tial amplitude ε. One difference from the Lorenz equations is that,
while the Lorenz system has three fixed points, (X, Y, Z) = (0, 0, 0)

and (X, Y, Z) = (±
√

b(r − 1), ±
√

b(r − 1), r − 1), the higher-order
dynamical systems or the full 2D Rayleigh–Bénard system can have
many more or infinitely many fixed points, making them difficult to
locate analytically. As a result of having many fixed points, limit tori
from different DNS solutions are centered at various different loca-
tions depending on the initial amplitude of perturbation. This is dif-
ferent from the Lorenz attractor, which move around the two locally

unstable fixed points (X, Y, Z) = (±
√

b(r − 1), ±
√

b(r − 1), r − 1).
In this paper, we stop short of a full-fledged investigation of the ini-
tial condition dependency problem. It is possible, however, that the
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DNS solutions may possess additional fixed points with different
characteristics leading to interesting conclusions; as such, the prob-
lem of multistability in DNS solutions deserves further attention in
a future study.

IV. CONCLUSION AND DISCUSSION

In this paper, we propose the generalized expansion of the
Lorenz equations (GELE) for the two-dimensional convection sys-
tem, which is a generalized version of the Lorenz equations by
considering higher-order harmonics in both horizontal and vertical
directions. GELE allows us to study how solutions transition from
the Lorenz equations to the two-dimensional direct numerical sim-
ulation (DNS) as the system orders L and M in the horizontal and
vertical directions are varied. We also derived mathematical for-
mulations for a direct comparison between the Lorenz equations,
GELE, and DNS, and we verified in both qualitative and quantitative
aspects how the Lorenz solutions in the chaotic regime are different
from the DNS and high-order GELE solutions, which reach differ-
ent equilibria or chaotic states. More specifically, it is shown how
the GELE solutions vary with (L, M) and converge to those of the
DNS when L and M are sufficiently large. In this study, nonlinear
interactions among high-order harmonics as well as energy relations
of the solutions are thoroughly analyzed. Furthermore, the para-
metric study demonstrates how trajectories of the DNS and GELE
solutions converge to fixed points, lies on limit cycles or limit tori,
depart from regular limit solutions, and eventually become chaotic
as r increases. The initial condition dependency is also checked to
see how the GELE and DNS solutions behave with different initial
conditions.

The classic Lorenz equations have been considered as the min-
imal model that represents the chaotic nature of convection systems
or even a bigger and more complex systems such as weather. In this
study, we loosen an assumption on the minimal model by consider-
ing higher-order harmonics. We show by simple measures of mode
amplitudes that such added complexities can lead to very differ-
ent dynamical behaviors. The current work analyzes differences and
similarities between the Lorenz equations and high-order GELE in
a direct manner. This kind of analysis should be further extended to
the three-dimensional convection system to see how the increase in
the spatial dimension will modify behaviors of bifurcation and chaos
as the Rayleigh number increases, which will be of great interest in
relevant scientific disciplines.

SUPPLEMENTARY MATERIAL

In the supplementary material, we demonstrate a direct com-
parison between DNS and Lorenz equations by displaying the time-
varying solutions ofψ ,ψ (Lo), θ , and θ (Lo) on the plane (x, z) over one
streamwise wavelength lx for r = 30 and r = 80. In the movie, the
variables X and Z for the DNS and Lorenz solutions are also com-
pared. For r = 30, it is clearly seen that the DNS solution reaches
the equilibrium after t > 0.5 while the Lorenz solution demonstrates
a chaotic behavior. The chaotic variation of X(t) of the Lorenz
solution results in alternating appearances of positive and nega-
tive ψ , while the chaotic variations of Z(t) and Y(t) (not shown)
of the Lorenz solution lead to a meandering motion in the lateral

x-direction of θ . It is also notable that both solutions resemble at
the early development stage but then the DNS solution deviates
from the Lorenz solution as it involves nonlinear interactions among
higher-order modes and reaches the steady-state equilibrium as t
increases.

For r = 80, the DNS results of ψ and θ show a more complex
time-varying behavior than those at r = 30. For instance, at an early
stage in the range 0 < t < 1.5, we see a swirling motion of ψ and
time-periodic convective motion of θ . In the range 1.5 < t < 2.3, the
periodic convective motion of θ changes as the swirling motion ofψ
is modified in a way that the peaks of ψ rotate in a wider area of the
plane (x, z). For t > 2.3, the convective motion of θ involves lateral
meandering motion and the shapes of positive/negative patches of
ψ become irregular. We note that the limit torus in Fig. 8(a) appears
for t > 2.3; thus, we conjecture that the complex irregular motions
of ψ and θ with multiple time-periodicities appear as the limit torus
in the phase space (X, Y, Z). The Lorenz solution at r = 80 demon-
strates a chaotic behavior in a similar manner as the Lorenz solution
at r = 30.
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APPENDIX: DETAILS ON CONVOLUTION TERMS

The nonlinear terms in the primitive equations (16) and (17)

Nψ = ∂ψ

∂z

∂∇2ψ

∂x
− ∂ψ

∂x

∂∇2ψ

∂z
=

L
∑

l=−L

Ñ
ψ

l exp(iαlx), (A1)

Nθ = ∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
=

L
∑

l=−L

Ñθ
l exp(iαlx) (A2)

can be transformed into Ñ
ψ

l and Ñθ
l that satisfy relation (26). These

nonlinear terms can be further expanded when we consider

Ñ
ψ

l =
M
∑

m=0

N̂
ψ

lm sin(βmz), Ñθ
l =

M
∑

m=0

N̂θ
lm sin(βmz). (A3)

In the convolution process for the sine function series, we consider
the relation

M
∑

n=0

an sin(βnz)

M
∑

k=0

bk cos(βkz)

=
M
∑

m=0

M
∑

k=0

(

am−k − ak−m + am+k

2

)

bk sin(βmz), (A4)
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which is satisfied when we consider ai = bi = 0 for indices i < 0 or
i > M. Then, we get the following relations for N̂

ψ

lm and N̂θ
lm:

N̂
ψ

lm =
L
∑

j=−L

M
∑

k=0

iαjβk

2

[(

α2
l−j − α2

j + β2
k − β2

m−k

)

ψ̂j(m−k)

−
(

α2
l−j − α2

j + β2
k − β2

k−m

)

ψ̂j(k−m)

+
(

α2
l−j − α2

j + β2
k − β2

m+k

)

ψ̂j(m+k)

]

ψ̂(l−j)k, (A5)

N̂θ
l =

L
∑

j=−L

M
∑

k=0

iαjβk

2

[(

θ̂j(m−k) − θ̂j(k−m) + θ̂j(m+k)

)

ψ̂(l−j)k

(A6)

−
(

ψ̂j(m−k) − ψ̂j(k−m) + ψ̂j(m+k)

)

θ̂(l−j)k

]

. (A7)
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