
1.  Introduction
Large-scale circulation modes directly influence regional climate variability. A prominent example is the 
North Atlantic Oscillation (NAO) which substantially influences climate variability over Europe, Afri-
ca, and North America. It is well-known that during the wintertime, a positive phase of the NAO leads 
to warmer and wetter than normal conditions in northern and western Europe and the eastern coast of 
the United States, and cooler and drier conditions in eastern Canada, western Greenland, and northern 
parts of Africa (Hurrell,  1995; Hurrell & Deser,  2009; Hurrell et  al.,  2003). With increasing greenhouse 
gas (GHG) concentration, not only circulation modes and their relations to regional climate can change 
(Deser et al., 2017), their relations can also change in different ways on different timescales. Knowledge 
about how these relations on different time scales change with increasing GHG concentration is essential 
for improving our understanding of regional climate change and eventually improving regional projection 
and prediction. This paper examines the timescale-dependent changes in the relation between NAO and 
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surface temperatures by estimating the evolution of their spectra using an ensemble of 1% CO2-increase-
per-year climate change simulations from the Max Planck Institute-Grand Ensemble (MPI-GE) (Maher 
et al., 2019). Unlike a multi-model ensemble, such a single-model ensemble excludes variability introduced 
by inter-model uncertainties (Deser et al., 2012; Maher et al., 2018). The ensemble consists of 100 ensemble 
members. Each ensemble member is initialized from a coupled climate state taken from a 2000-years pre-in-
dustrial control (PI-control) run.

Quantifying changes between circulation modes and regional climate faces two major difficulties, both of 
which can be dealt with using large ensembles. First, being more closely linked to the dynamics than ther-
modynamics, circulation changes are much more difficult to detect than thermodynamic changes, such as 
those related to the global mean temperature and sea level (Shepherd, 2014). Deser et al. (2012) showed that 
the weak signals in circulation changes could be detected using a large ensemble. Second, a fundamental 
cause of a nonstationary climate system is the time-dependency of external forcings, such as an increasing 
CO2 concentration. Quantifying time-dependent statistics for such a system is difficult when using a single 
realization, but straightforward when using an ensemble. To ensure a high accuracy of these estimates, a 
large ensemble is required.

Science based on large ensembles has advanced in recent years (e.g., Deser et al., 2012; Fyfe et al., 2017; Kay 
et al., 2015; Kolstad & Screen, 2019; Manzini et al., 2018; Rodgers et al., 2015). The idea of using large en-
sembles to quantify temporal changes in statistics (e.g., variances or co-variances) of a nonstationary warm-
ing climate has been appreciated and adopted (Maher et al., 2019; Milinski, 2019). However, much less has 
been explored regarding changes in spectra for a nonstationary system. It is not clear how a non-stationary 
spectrum should be defined, at least within the climate change community. In this study, we use piecewise 
evolutionary spectra (PES), a particular case of evolutionary spectra, to evaluate the evolution of spectra of a 
nonstationary system and show how to use a large ensemble of climate change simulations to estimate such 
spectra. We apply this technique to investigate: (a) how the variability of NAO and surface temperatures on 
different timescales change and (b) how the relationship between NAO and surface temperatures on vari-
ous timescales change with increasing GHG concentration.

2.  Piecewise Evolutionary Spectra
2.1.  PES as a Special Case of Priestley's Evolutionary Spectra

The theory of spectral analysis virtually applies only to stationary processes. Nonstationary processes are 
usually dealt with by removing nonstationary features like trends from the first moment. For quantifying 
non-stationarity in second moments, a more general theory of spectral analysis is needed. Such a theo-
ry—that of evolutionary spectra (ES)—is proposed by Priestley (1965) and Priestley (1967, 1981, 1988) and 
briefly summarized in Section A of the supporting information (S1). We propose to consider a case of ES, 
named piecewise evolutionary spectra (PES).

Priestley's ES is defined for oscillatory processes that can be represented by oscillatory functions, ϕ, in the 
form of complex exponential functions (sine or cosine waves) with modulating amplitudes that vary ex-
tremely slowly with time. In the present study, Priestley's consideration for continuous oscillatory processes 
(see SI-A.1) is translated to discrete oscillatory processes, Xn, defined at integer time steps n. The evolution-
ary spectral density, hn(ω), at frequency ω and time step n can be determined by the variance of Yn, a process 
representing a general linear transformation of Xn. Consider a realization of Xn, denoted as xn with n = 0, …, 
N−1, then the realization of the linear transformation of xn, which is yn, is given by
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gm is a digital filter with a characteristic width and different weights at different time steps m. If xn is a real-
ization of a stationary Xn, then yn obtained from Equation 1 using a filter gm with unit weights throughout 
the entire time domain corresponds to the Fourier coefficient of xn at frequency ωj. Priestley showed that 
for a narrow enough g much smaller than the characteristic width of ϕ, and for h much smoother than the 
transfer function of the filter g, h is approximately given by the variance of Y (see SI-A.1). When translated 
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for discretized oscillatory processes, Xn, with similar assumptions, the ES 
of Xn, hn(ωj) at time step n and frequency ωj, is approximately given by 
| |,yn j

2.

The ES density, hn(ω), is a function of time step n and frequency ω, and 
its exact time- and frequency-dependence is controlled by the filter gm. 
In fact, hn(ω) can be considered to describe the spectral content of the 
process in the neighborhood of time step n, with the size of the “neigh-
borhood” being specified by the width of gm. Since a filter gm with a small 
width operates only locally on xn (see Equation  1), we can choose the 
width of gm to be as small as possible to assure a high degree of resolu-
tion in the time domain. However, if the width of gm is made too small, 
we would not resolve anything in the frequency domain. On the other 
extreme, using a filter width that covers the entire time domain would re-
solve many frequencies but provide no resolution in time. In other words, 
it is not possible to get a high resolution in both the time and frequency 
domain. This is the so-called uncertainty principle (SI-A.1) that we are 
confronted with when studying nonstationary spectra. Thus, the key to 
define ES in a meaningful way is to choose a proper gm, which allows 
a description of some-time dependence of spectral properties while si-
multaneously resolving some frequencies in the frequency domain. The 
choice of gm needs to be made in relation to the characteristic time scale 
of the modulating amplitudes of oscillatory functions used to represent 
the nonstationary process Xn. More specifically, the width of gm should 
be much shorter than the characteristic time scales of the modulating 
amplitudes of oscillatory functions used to represent Xn.

We define PES as a special case of ES. Similar to ES, PES are defined for 
oscillatory processes. A PES density, hn(ω), is obtained by replacing the 
linear filter gm by a simple box window corresponding to an interval In, 
where the subscript n indicates the central time step of the interval In. 
The box window has unit weights inside and zero weights outside the 
window. With this filter, we obtain a PES that evolves with n. Within the 
neighborhood of time step n, or more precisely within interval In, the 
variations of the modulating amplitudes of oscillatory functions are as-
sumed to be negligible, and the process is considered as if it is stationary. 
For the 1%-CO2 experiment, we assume that the modulating amplitudes 
of the oscillatory functions vary on time scales much longer than a cou-
ple of decades such that when we choose a time interval, In, of length 
20 years, then the time series within In can be considered as if they were 
realizations of stationary processes. Justification of this assumption will 
be presented at the end of this subsection.

Often, one has only a single experiment such that an assumption about 
the nonstationarity in second moments is difficult to validate. Fortunate-

ly, we are in possession of an ensemble containing 100 ensemble members. For the wintertime NAO-index 
(defined below) and the near-surface air temperature averaged over the UK, Figure 1 describes the non-sta-
tionarity in terms of ensemble statistics calculated from the 100-members 1%-CO2 ensemble. Before eval-
uating the non-stationarity in the second moments, we provide an impression of the ensemble and of the 
non-stationarity in the first moment by plotting the time series obtained from individual ensemble mem-
bers (cyan lines) and the ensemble mean as a function of simulation years (blue lines). We see that both the 
NAO-index and the UK surface temperature increase almost linearly with time in the 1% CO2 experiment. 
However, the trend in the temperature is much stronger than that in the NAO-index.

The non-stationarity in variance is shown by the ensemble standard deviation as a function of simulation 
years (red lines in Figure 1). Note that the ensemble standard deviation in a given year is calculated from 
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Figure 1.  Ensemble mean (blue, left axis) and ensemble standard 
deviation (red, right axis) as functions of simulation years for the NAO-
index (hPa; top panel) and the UK near-surface air temperature (°C; 
bottom panel), obtained from the 100-member 1%CO2 ensemble. Also 
shown are time series obtained from individual ensemble members (cyan, 
left axis), in the same unit as the respective ensemble mean. The dashed 
lines indicate, for the standard deviation of 100 values randomly chosen 
from a 2,000-year control simulation, the 2.5%- and 97.5%-percentile, 
respectively. The range between the 2.5%- and 97.5%-percentile 
corresponds the range in which the standard deviation obtained from 
100 values will lie in with 95% likelihood due to sampling variability. This 
range is 2.07 hPa for NAO-index and 0.17°C for UK surface temperature.
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ensemble anomalies in that year, defined as the deviations of each ensemble member from the respective 
ensemble mean for that year (blue lines in Figure 1). Thus, any non-stationarity in the variance is independ-
ent of the non-stationarity in the mean. For both NAO-index and the UK surface temperature, the ensemble 
standard deviation varies strongly with time. This variation is due to sampling rather than representing a 
non-stationarity in standard deviation. This sampling variation is quantified using the 2000-years control 
simulation performed with the same climate model, which has stationary statistics. The dashed lines in 
Figure 1 are the 2.5%- and 97.5%-percentile obtained from standard deviations, each calculated using 100 
NAO-indices or 100 UK surface temperatures randomly selected from the control simulation. The range 
between the two dashed lines indicates the 95% confidence interval, within which with 95% likelihood, the 
stationary standard deviation lies in. The 95% confidence interval amounts to 2.07 hPa for the NAO-index 
and 0.17°C for the UK temperature.

Since the statistics are stationary in the control simulation, the null-hypothesis of no-change in standard 
deviation can be rejected at 5%—significance level if the ensemble standard deviation in 1% CO2 experiment 
lies outside the range indicated by the dashed lines. We see that the null-hypothesis can be rejected for the 
UK surface temperature, but not for the NAO-index, indicating that the variance is essentially stationary 
for NAO-index, but nonstationary for UK surface temperature. The non-stationarity is characterized by a 
decrease in standard deviation of about 0.2°C in 150 years, which is slightly larger than the 95% confident 
interval range of about 0.17°C. The decrease in standard deviation is gradual with a trend of about −0.12°C 
per century.

Figure  1b shows changes in the ensemble standard deviation occurring within short time intervals. An 
example is the large decrease of about 0.16°C occurring from year 45 to 48. However, these changes are gen-
erally smaller than the 95% confidence interval of about 0.17°C and hence lie well within the range of the 
sampling-induced variability found in the control simulation. This result justifies our assumption that when 
considering time series from a 1% CO2 experiment as an oscillatory process represented by oscillatory func-
tions, the modulating amplitudes of oscillatory functions vary on time scales much longer than a couple of 
decades, meaning that time series within 20-years intervals can be considered as if they are realizations of 
stationary processes.

2.2.  Estimating PES Using Ensemble Periodogram

We estimate PES using an ensemble—a powerful aid not available for previous studies on nonstationary 
spectra. Priestley estimates ES using a weighting function without an ensemble to reduce sample fluc-
tuations (Section A.2 in SI). In our case, the weighting function of Priestley is replaced by an ensemble 
average.

Consider an ensemble of size M. We denote the raw periodogram derived from the i-th ensemble member 
in interval In by ( )i

nP , and an estimator of the PES by ( )nh . We estimate PES as the ensemble-averaged 
periodogram defined by

 
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The efficiency of ensemble averaging in reducing sample fluctuations to produce consistent spectral estima-
tors is shown by Figure 2a (compare dotted curves and black dashed curve). In a similar fashion, piecewise 
evolutionary cross spectra and the related coherence and phase spectra can be estimated using the ensem-
ble-averaged cross-periodograms and ensemble-averaged periodograms. Hereafter, PES (both the power 
spectra and the cross spectra and the related phase and coherence spectra) in an interval In are estimated 
using the respective ensemble periodograms, obtained by averaging over raw periodograms/cross-periodo-
grams of individual members in In.

Since applying a weighting function (as suggested by Priestley) can smear out the temporally evolving fea-
tures that one wants to address, the ES obtained using a weighting function are generally difficult to in-
terpret. Replacing the weighting function with ensemble periodogram allows an easier interpretation, in 
which two time-varying features are clearly separated. One feature results from the short-term variations 
(shorter than the length of In) and is represented by the ensemble periodogram derived for the interval In 

PUTRASAHAN AND STORCH

10.1029/2021GL093898

4 of 11



Geophysical Research Letters

PUTRASAHAN AND STORCH

10.1029/2021GL093898

5 of 11

Figure 2



Geophysical Research Letters

without involving any other intervals. The ensemble periodogram describes a frequency decomposition 
of the near-stationary variance within interval In. The other feature results from the slow nonstationary 
changes of the short-term variations, essentially providing the long-term time-dependence of the PES that 
is represented by the temporal evolution of the ensemble periodograms from interval to interval.

As a case study, we apply our PES to study the boreal wintertime (December-January-February [DJF]) re-
lationship between NAO and surface temperature. The NAO is described by the sea level pressure differ-
ence between Lisbon, Portugal, and Stykkisholmur/Reykjavik, Iceland (Hurrell, 1995). For all ensemble 
members and all 20-year intervals, linear trends are removed before deriving the respective periodograms. 
This ensures that the periodogram estimates are not affected by possible linear trends associated with the 
non-stationarity in the first moment. For spatial pattern changes, we concentrate on the first and the last 
20-year interval of the 1%-ensemble since we are interested in the largest possible change in the NAO-tem-
perature relation in response to CO2 forcing.

3.  Spectra of NAO and Surface Temperature
The PES of NAO (Figure 2a; dark to light curves) is essentially white on short timescales (shorter than 
and equal to 20 years), which is consistent with previous studies (Gámiz-Fortis et al., 2002; Hurrell & Van-
Loon, 1997; Rogers, 1984; Stephenson et al., 2000). The slow nonstationary changes as described by the 
PES of NAO in seven consecutive 20-year intervals are hardly noticeable from one interval to the next. Note 
that Figure 2a also illustrates the strong reduction of sampling fluctuations by estimating the PES using 
ensemble periodograms obtained from 100 (black dashed) ensemble members, compared to those obtained 
from one (magenta dotted) and 10 (red dotted) ensemble members. The differences in PES in later 20-year 
intervals relative to that in the first 20-year interval are tested against the null hypothesis that these differ-
ences are zero. The respective null-distribution is empirically estimated using the difference between two 
100-member-averaged periodograms derived by randomly chosen 20-year periods from the long PI-control 
simulation. The respective 2.5% and 97.5% confidence bounds of this distribution are shown as the gray 
band centered around the PES in the first 20-year interval in Figure 2a. Except for a few spectral values (e.g., 
the one for the PES in the 5-th interval on a timescale of 4 years), most NAO spectra do not significantly 
change on all time scales shorter than 20 years. Only the spectral value on the 20-year timescale is slightly 
lower in a statistically significant manner in most of the later 20-year intervals than in the first 20-year 
interval. We hence conclude that with increasing global warming, the NAO variability remains essentially 
white. Except for a slight weakening in NAO variability on the 20-year timescale, the NAO variability on 
timescales shorter than 20 years remains at about the same level independent of the degree of the warming.

We apply the same approach to quantify the PES of boreal winter (DJF) surface temperature over the North 
Atlantic and surrounding continents, concentrating on the first and last 20-year interval changes. Figure 2b 
shows the spectral variance on the decadal timescale derived from the first 20-year interval. Large decadal 
spectral variance is found over the high-latitude lands surrounding the North Atlantic, reflecting that the 
variability of wintertime surface temperature is much stronger over high-latitude land than over the adja-
cent open ocean. Over land, particularly on the European continent, there is larger decadal variability over 
Northern and Eastern Europe compared to western and southern Europe that is dampened by its closer 
proximity to the ocean. Over ocean grid-cells, the largest decadal variance is found over the Labrador Sea, 
and over the Greenland and Barent Seas, which can be further associated with sea-ice cover variability 
(Kolstad & Screen, 2019). Over the North Atlantic, a maximum of spectral variance is found over the Gulf 
Stream, a frontal region with strong temperature gradients (Groth et al., 2017; McCarthy et al., 2018; Sique-
ira & Kirtman, 2016). This distribution with a similar strength is also found for spectral variances at other 
time scales (not shown), suggesting that the DJF surface temperature is essentially white. For the last 20- 
year interval, a reduction in decadal spectral variance tends to occur over regions that originally had high 
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Figure 2.  (a) Piecewise evolutionary spectra (PES) of NAO for seven consecutive 20-year intervals (thick lines), estimated by ensemble periodograms. For the 
first 20-year interval, estimates derived from one single member (thin magenta dotted line), averaged over 10 members (thin red dotted line) are also shown. 
Gray shaded region marks the 2.5% and 97.5% confidence bounds for changes between the PES obtained from the first and the later 20-year intervals. (b) PES of 
surface temperature on decadal timescale for the first 20-year interval. (c) Difference in PES on decadal timescale between the last and the first 20-year intervals. 
Color shading is only provided for regions that have statistically significant difference (at 5% significant level).
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variability (Figure  2c), especially over the Labrador Sea and over the Greenland and Barent Seas. This 
reduction in decadal variance is likely due to sea-ice loss in a 4K warmer world that leaves these seas ice-
free, thereby decreasing surface temperature variability. Significant reduction in decadal spectral variance 
is seen over eastern North America and most of northern Europe, which may be attributed to being in the 
nearby vicinity of now ice-free waters. In general, similar changes in the last relative to the first 20-year 
interval are found for spectral variances on other timescales.

4.  Spectral Relations Between NAO and Surface Temperature
While the PES estimate of NAO does not change much in the 1% CO2 experiment, it does not presuppose 
that the relationship of NAO with other climate quantities remains unchanged. We assess this by first eval-
uating the piecewise evolutionary coherence spectrum (hereafter PEC) between NAO and surface tempera-
ture over the United Kingdom (UK; averaged over 10W–0W, 50–60N) (Figure 3a). The PEC estimated from 
100 ensemble members is between 0.25 and 0.5 in the first 20-year interval (black solid). Relative to the first 
20-year interval, the PEC values on all timescales tend to systematically reduce after about 60–80 years, albe-
it not yet statistically significant. We test the difference between the PEC values in the later 20-year intervals 
and the PEC values in the first 20-year interval against the null hypothesis that the differences are zero. Akin 
to the test performed for PES, the null-distribution is empirically constructed using differences between two 
100-member-averaged coherence spectra derived by randomly chosen 20-year intervals from the long con-
trol simulation. The respective 2.5% and 97.5% confidence bounds of this distribution are shown as the gray 
band centered around the PEC in the first 20-year interval in Figure 3a. After 100 years, hints of statistically 
significant reduction in PEC is seen on interannual timescales. In the last 20-year interval, PEC values are 
reduced to 0.1–0.2 at all resolved timescales. Unlike the PES of NAO (Figure 2a), the null-hypothesis that 
there is no change in PEC from the first to the last 20-year interval can be rejected on almost all resolved 
timescales (Figure 3a). The drop in PEC suggests that the regional influence of NAO on UK surface tem-
perature is reduced in a warmer world on almost all timescales. Associated with the PEC is the piecewise 
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Figure 3.  (a) Piecewise evolutionary coherence (PEC) between NAO and area-averaged UK surface temperature based on average over 100 members for the 
seven 20-year intervals. Gray shaded region marks the 2.5% and 97.5% confidence bounds for changes between the PEC obtained from the first and the later 
20-year intervals. Outside these bounds, change in PEC is statistically significant at 5% significant level; (b) PEP spectra corresponding to (a). PEP, Piecewise 
evolutionary phase.
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evolutionary phase spectrum (PEP) that provides a lead-lag information on the relation between the two 
quantities (Figure 3b). NAO and the surface temperature over the UK are essentially in-phase overall re-
solved timescales in the first 20-year interval (black dashed line). In general, the two variables remain by 
and large in-phase throughout of the experiment (dark to light lines), except for a slight increase in phase 
lag by roughly 30° on the decadal timescale.

We extend the calculation of PEC and PEP to NAO and surface temperatures everywhere on the globe, 
thereby producing spatial patterns of PEC- and PEP-values on various timescales in different 20-year inter-
vals. For a given timescale and a given 20-year interval, the respective PEC- and PEP-values are combined 
and displayed in a so called PEC-pattern, with the phase being described by the hue and the squared coher-
ence by the saturation. As an example, the PEC-pattern for the bi-decadal timescale in the first 20-year inter-
val is illustrated in Figure 4a. The figure reflects how NAO is related to the surface temperature, with large 
in-phase squared coherence values over eastern continental United States and northern Europe (in-phase 
relation illustrated with red hue), and 180°-out-of-phase coherence values over eastern Canada, Green-
land, and the region south of the Mediterranean (out-of-phase relation illustrated with turquoise hue). 
These phase relations are consistent with the large-scale circulation pattern associated with the positive 
winter-time NAO that draws cold polar air over eastern Canada and Greenland while bringing warm sub-
tropical air toward northern Europe during the positive NAO phase (Hurrell, 1995; Hurrell & Deser, 2009;  
Hurrell et al., 2003). These phase relations are similar irrespective of timescale, as seen by comparing the 
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Figure 4.  (a) PEC-pattern describing the coherence (saturation) and the phase in degrees (hue) between NAO and surface temperature on bi-decadal timescale 
for the first 20-year interval. (b) Same as (a) except for decadal timescale. (c) Same as (a) that is on bi-decadal timescale except for last 20-year interval. (d) Same 
as (b) that is on decadal timescale except for last 20-year interval. (e) Difference between PEC of NAO with surface temperature on bi-decadal timescale in 
the last and that in the first 20-year interval. Stippled regions mark changes in PEC in the last relative to that in the first 20-year interval, that are statistically 
significant at 5% significant level. (f) Same as (e) except for decadal timescale.
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PEC-pattern on the bi-decadal timescale (Figure  4a) with that on the decadal timescale (Figure  4c). 
Furthermore, the overall structure of the phase relation does not change much with time for future pro-
jections, as suggested by comparing the PEC-pattern for the first (Figures 4a and 4c) with that for the last 
20-year interval (Figures 4b and 4d).

The significant 180°-out-of-phase relation in Figure 4d suggests a tropical Pacific-Atlantic connection asso-
ciated with the NAO. Previous studies have shown that El Niño is typically associated with negative NAO 
(Brönnimann, 2007; Mathieu et al., 2004), consistent with the out-of-phase relation between tropical Pacific 
and NAO (Figure 4d), albeit for a future projection. El Niño-like conditions can weaken the polar vortex 
and induce weaker Azores high (negative NAO pattern) (Rodríguez-Fonseca et al., 2016; van Loon & Lebitz-
ke, 1987; van Loon & Madden, 1981). Weakened easterly trades during negative NAO phase (weaker Azores 
high) can reduce latent heat flux over the ocean and thereby warming sea surface temperatures (SST) in 
the tropical Atlantic (Giannini et al., 2021; Park & Li, 2019), reflecting an anti-phase relation between NAO 
and tropical Atlantic SST (Figure 4d). While both the relationship of tropical Pacific with NAO and that of 
tropical Atlantic with NAO are generally out-of-phase, note the bluer tinge of the phase relation between 
tropical Pacific and NAO compared to the turquoise out-of-phase color for tropical Atlantic/western Africa 
and NAO. The bluer tinge suggests that the tropical Pacific leads the NAO, possibly indicating ENSO-like 
modulation on the NAO.

We applied the same test for evaluating significance in the change of PEC between NAO and UK surface 
temperature to each grid point and find not only significant changes in squared coherence in some re-
gions (stippled regions in Figures 4e and 4f), but that the changes in squared coherence are also disparate 
on different timescales. More specifically, in some regions, changes in squared coherence on bi-decadal 
timescales differs from those on timescales shorter than 20  years. On the 20-year timescale, significant 
decrease in PEC is seen at high northern latitudes (Figure 4e), especially over northern Europe, eastern 
Canada, western Greenland, and Barents and Kara seas. This decrease could be related to sea-ice retreat. 
The proximity to sea ice induces high variability of surface temperature. However, as sea-ice coverage grad-
ually diminishes with increasing GHG, ice-free water could dampen the overlying and surrounding surface 
temperature variability.

On timescales shorter than 20  years, much of the decrease in PEC at high northern latitudes is muted 
(Figure 4f), except for a small region near the UK where the reduction of the in-phase squared coherence 
between NAO and the surface temperature is weaker than elsewhere, consistent with Figure 3a. It is curious 
that the strong and significant decline in PEC at high northern latitudes is only on bi-decadal timescales 
(Figure 4e), and not so much on the shorter timescales (Figure 4f). Even though the damping of the ice-free 
ocean on surface temperature can affect the squared coherence on all timescales, the gradual diminishing 
of sea ice induced by sea-ice retreat can make the changes in PEC on the longest resolved timescale (i.e., 
bi-decadal timescale) more prominent. Further investigation is certainly needed to fully understand the 
cause for the weakening of this relationship on bi-decadal timescale.

The most noticeable changes in PEC on decadal timescale are found over the tropical and subtropical north-
ern Africa, the tropical Atlantic, and even into the tropical Pacific (Figure 4f). Comparing Figure 4d with 4c 
suggests that the out-of-phase relation on decadal timescales is strongly increased over the tropical Atlantic 
and Pacific, and the Sahel region in the last 20-year interval, which corresponds to the increased squared 
coherence (Figure  4f). In general, the PEC between NAO and surface temperatures in the Sahel region 
tends to increase on timescales shorter than 20 years, while on bidecadal timescales, it is effectively zero 
(Figure S1). We speculate that the increase in squared coherence could be related to the weakening of the 
Hadley cell strength projected by the 1%-CO2 ensemble (Reimann & von Storch, 2020), which may allow 
more mid-latitude disturbances to pass through. As a consequence, surface temperature variability in the 
tropics and subtropics become more strongly related to large-scale mid-latitude circulation and eventually 
to NAO, leading to an increase in the squared coherence there. Further investigation is needed to verify 
the impact of the change in the Hadley circulation strength on the relationship between NAO and surface 
temperature in the tropical and subtropical regions.
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5.  Summary and Discussion
We use PES—a special case of Priestley's ES—derived from ensemble periodograms to investigate changes 
in spectra and spectral-relation patterns of climate variables in a warming climate. We emphasize the need 
for an ensemble to obtain the estimates of PES, not only because a large ensemble is required to make the 
estimates consistent and efficient. An ensemble is also a natural means for dealing with nonstationary pro-
cesses. Such an ensemble is not available from observations, but must be generated using numerical models. 
For a selected warming stage common to all ensemble members, piecewise evolutionary coherence spectra 
(PEC) and piecewise evolutionary phase spectra (PEP) obtained from ensemble periodograms provides us 
with global PEC-patterns on various timescales at this warming stage. Comparing these patterns obtained 
for different warming stages allows us to evaluate how the spectral relations on different time scales evolve 
in different parts of the world from one warming stage to another.

This whole approach is applied to the wintertime NAO-index and the wintertime near-surface air temper-
ature. We find that while the variability of both NAO and surface temperature remains essentially white 
with increasing GHG forcing, the spectral relation of NAO to surface temperatures in various regions of 
the world can change. Moreover, changes in these spectral relations reveal different spatial distributions, 
depending on the timescale of choice. On the bi-decadal timescale, the longest resolved timescale, strong 
reduction in PEC between NAO and surface temperatures are concentrated over high-latitude lands sur-
rounding the northern North Atlantic. However, on shorter timescales, significant increases in PEC be-
tween NAO and surface temperature are found in the tropical and subtropical regions of North Africa, 
and the tropical Atlantic and Pacific. The result that spectral relations on different timescales can change 
disparately at different stages of the warming shed new light on the influence of NAO on regional climate 
and could further improve future regional climate predictions.

The definition of both ES and PES relies on the assumption that the nonstationary process under consider-
ation can be represented by oscillatory functions. This means for PES defined for intervals In that the modu-
lating amplitudes of the oscillatory functions must vary on time scales longer than the length of In. At least 
for the NAO-index and the near-surface air temperature obtained from an ensemble of 1% CO2 experiments, 
the modulating amplitudes do not vary significantly on time scales shorter than a couple of decades so that 
it is reasonable to choose the length of interval In to be 20 years. Generally, if the modulating amplitudes 
vary strongly on short timescales, it is difficult to find an interval In or more generally a linear filter gm, 
which has a sufficiently large width to ensure a good resolution in frequency domain. The definition of both 
PES and ES becomes inappropriate. Other approaches that do not rely on oscillatory functions would then 
be needed. We expect that more and further improved approaches will come, as studying nonstationary 
spectra in the context of climate change climate is still in its infancy.

Data Availability Statement
Data used in this study is from the Max Planck Institute - Grand Ensemble, which is available on https://
esgf-data.dkrz.de/projects/mpi-ge/.
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