
1.  Introduction
ICON-ESM (V1.0) is the first release of the ICOsahedral Non-hydrostatic Earth System Model that is developed 
at the Max Planck Institute for Meteorology (MPI-M). It is based on the ICON framework, a joint development 

Abstract  This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first coupled 
model based on the ICON (ICOsahedral Non-hydrostatic) framework with its unstructured, icosahedral grid 
concept. The ICON-A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON-O builds 
on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a 
sea-ice model. The ICON-Land module provides a new framework for the modeling of land processes and 
the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg 
Ocean Carbon Cycle module. We describe the tuning and spin-up of a base-line version at a resolution typical 
for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON-
ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well-balanced top-of-
atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the 
historical surface temperature evolution. The model has overall biases, which are comparable to those of other 
CMIP models, but ICON-ESM performs less well than its predecessor, the Max Planck Institute Earth System 
Model. Problematic biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean zonal 
wind field. In the ocean, sub-surface temperature and salinity biases are of concern as is a too strong seasonal 
cycle of the sea-ice cover in both hemispheres. ICON-ESM V1.0 serves as a basis for further developments that 
will take advantage of ICON-specific properties such as spatially varying resolution, and configurations at very 
high resolution.

Plain Language Summary  ICON-ESM is a completely new coupled climate and earth system 
model that applies novel design principles and numerical techniques. The atmosphere model applies a 
non-hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the 
model is adapted for high-performance computing systems. This article describes how the component models 
for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain 
tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model 
by running a set of experiments under pre-industrial and historical climate conditions as well as a set of 
idealized greenhouse-gas-increase experiments. These experiments were designed by the Coupled Model 
Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the 
predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose 
overall satisfactory performance, we find that ICON-ESM features somewhat larger biases in several quantities 
compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves 
as a basis from where future development steps will open up new perspectives in earth system modeling.
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of MPI-M, the German Weather Service (Deutscher Wetterdienst, DWD), the Karlsruhe Institute for Technology, 
and other partner institutions in Germany and Switzerland. It should be noted that the non-hydrostatic part is 
currently only applicable to the atmospheric component. ICON-ESM combines the ocean ICON-O (Korn, 2017) 
and atmosphere ICON-A (Giorgetta et al., 2018) components of the ICON modeling system together with ICON-
Land, including the Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg JSBACH 4, a complete 
re-write of the land model JSBACH 3 (Reick et al., 2013, 2021), and the ocean biogeochemistry module Hamburg 
Ocean Carbon Cycle (HAMOCC6; Ilyina et al., 2013). The ocean and atmosphere are coupled using the newly 
developed coupling software Yet Another Coupler (YAC; Hanke et al., 2016).

At MPI-M, ICON-ESM succeeds the well-established Max Planck Institute for Meteorology Earth System Model 
(MPI-ESM; Mauritsen et al., 2019) with its component models for the atmosphere European Center Hamburg 
Model (ECHAM6; Stevens et  al.,  2013) and the Max Planck Institute Ocean Model (MPIOM; Jungclaus 
et  al.,  2013), the land model JSBACH 3 (Reick et  al.,  2013,  2021), and the ocean biogeochemistry module 
HAMOCC6 (Ilyina et al., 2013). Together with its predecessors, MPI-ESM1.2 has represented three decades of 
successful model development (see Mauritsen & Roeckner, 2020). The development of a completely new model 
system is an answer to the requirement for increasing resolution, the need for conservation for the representation 
of chemical tracers in the atmosphere, and for appropriate scalability on high-performance computers (HPC).

In general, the development of ocean and atmosphere models has taken innovative approaches in the last two 
decades regarding numerical algorithms, the grid lay-out, and the adaptation to high-performance computing 
systems. While previous generations of atmosphere models employed mainly spectral transform models, many 
new developments, in particular those aiming at very high spatial resolution, moved to grid-point methods. The 
advantages of the latter are more effective data communication (Staniforth & Thuburn, 2011), higher efficiencies 
at very high resolution (e.g., Satoh et al., 2014; Wedi, 2014), and quasi-homogeneous resolutions avoiding the 
overly strong grid-size convergence near the poles (Staniforth & Thuburn, 2011). Prominent examples of this new 
class of models are the Non-hydrostatic Icosahedral Atmospheric Model (NICAM, Satoh et al., 2014) launched 
by the Japan Agency for Marine Earth Science and Technology, and the Model for Prediction across scales 
(MPAS) first developed at the National Center for Atmospheric Research (Skamarock et al., 2012). An overview 
on dynamical core development is given in Ullrich et al. (2017). In ocean models, unstructured grids provide 
flexibility with respect to resolving the geometry of the basins and allow for highly varying resolution distribution 
(Danilov, 2013). Applications of these novel models include regionalized settings realized in The Unstructured 
Grid Finite Volume Community Ocean Model (FVCOM, Chen et  al.,  2003), and global configurations with 
highly varying resolution using the Finite-Element/volumE Sea ice-Ocean Model (FESOM; Scholz et al., 2019; 
Sein et al., 2017), and the MPAS ocean model (Petersen et al., 2019). Formulations on unstructured meshes also 
face difficulties, for example, spurious modes or generally higher costs per degree of freedom (Danilov, 2013; 
Staniforth & Thuburn, 2011), but progress in recent years has proposed solutions (e.g., with respect to spurious 
modes in Korn and Danilov  [2017]), and (component) models based on unstructured grids are now used in 
CMIP6 climate simulations (Golaz et al., 2019; Semmler et al., 2020).

While the innovative properties of ICON-ESM will be most beneficial in very high-resolution coupled configu-
rations, we present here, as a first step to introduce ICON-ESM to the scientific community, the physical model 
at a resolution that can be called “standard” in the context of climate simulations for the ongoing Coupled Model 
Intercomparison Project (CMIP6, Eyring et al., 2016). We describe a set-up with 158 km grid spacing in ICON-A 
and 40 km in ICON-O. Focusing on typical climate change experiments, that is, at least century-long simulations 
with parameterized physics, the set-up described here offers an efficient configuration for simulations of past, 
present and future climates, and large ensembles. It also forms the basis for higher-resolution versions as well as 
for configurations using specific properties of the ICON system, for example, grid refinement in ICON-O (Loge-
mann et al., 2021) or nesting in ICON-A (Klocke et al., 2017). In this manuscript, we present the first results of 
ICON-ESM and provide an examination of the model characteristics in a set of experiments following the CMIP6 
Diagnosis, Evaluation, and Characterization of Klima (DECK) protocol and include an ensemble of five CMIP6 
“historical” simulations (Eyring et al., 2016). We compare and evaluate the simulations with observations and 
reanalysis data as well as other models participating in CMIP6 and MPI-ESM.

Typically, model tuning happens initially at the component model level, such as on ICON-A (Giorgetta 
et al., 2018) and on ICON-O (Korn P. et al., “ICON-O: The ocean component of the ICON Earth System Model—
global simulation characteristics and local telescoping capability”, manuscript submitted to JAMES, Korn22 
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hereafter). Coupled together, these completely new ICON components for ocean, sea-ice, land, and atmosphere 
repeatedly revealed unexpected behavior that required detailed investigations and major tuning efforts, which we 
partly describe in this manuscript (Section 3). In the following, we provide information on the general circulation 
models for atmosphere and ocean, the sea-ice model, the ocean biogeochemistry module, the land model, and 
the coupler. Then we describe the spin-up and tuning of the coupled system that has led to the pre-industrial 
control simulation (piControl) under constant forcing agents. Evaluation in comparison with observations and 
reanalyses data is based on the last decades of a small ensemble of CMIP6 historical simulations and the model's 
climate sensitivity characteristics are assessed in idealized global warming experiments (i.e., the 1 %CO2 yr −1 
increase experiment (1pctCO2) and the experiment with an abrupt four-fold CO2 concentration (abrupt4xCO2)). 
We discuss tuning choices in Section 5 and end with a summary and conclusion (Section 6).

2.  Model Overview
The ICON model system (Zängl et al., 2015) provides common infrastructure (e.g., grid construction and output 
handling) and, in part, common numerical operators for the component models. A common feature is the basic 
grid construction based on unstructured, icosahedral grids. The grids for both the ICON-A and ICON-O model 
are created by recursively dividing the original 20 triangles of the icosahedron. This is done by bisecting the 
edges (Figure 1b). The vertices at each step are projected at the Earth sphere. The primary cells are triangles, 
while the dual cells are hexagons, except for the original 12 pentagons of the icosahedron which remain. A 
detailed description of the process is given in H. Wan et  al.  (2013) and Giorgetta et  al.  (2018). The spring 
dynamics grid optimization is applied on both grids. This is a grid optimization process that aims to smooth the 
grid in order to improve the numerical behavior of the model (see Tomita et al. [2001] and Tomita et al. [2002]). 
The grids are symmetrized with respect to the equator by reflecting the northern hemisphere to the south. The 
equatorial-symmetric grid has been tested with the ICON-O for shallow water set-ups and showed reduced errors 
(Korn & Linardakis, 2018). Local asymmetries in grids can be the cause of increased numerical errors (Weller 
et al., 2009). For the icosahedron, these asymmetries occur most profoundly in the vicinity of the pentagons (Korn 
& Linardakis, 2018). It is desirable to keep these “hot” spots away from areas where large velocities may occur, 
for example, due to the orography. Therefore the grid was rotated 37° eastwards, to avoid placing a pentagon over 
the Himalaya region. In the set-up presented here, the resolution for the ICON-A grid is 158 km, measured as the 
square root of the average triangle area, with a total of 20,480 triangles (the R2B4 grid in Table 1 of Giorgetta 

Figure 1.  (a) Schematic representation of the model components of the ICON-ESM and (b) the construction of the grid through the bisection process.



Journal of Advances in Modeling Earth Systems

JUNGCLAUS ET AL.

10.1029/2021MS002813

4 of 39

et al. [2018]). The ICON-O grid has an average resolution of 40 km and 235,403 triangles, the land triangles 
being removed to reduce memory and computing resources. The choices for horizontal and vertical resolutions 
reflect necessities for efficiently running the set-up for hundreds or thousands of years. The atmosphere's hori-
zontal resolution is comparable to the T63 version of MPI-ESM-LR (Mauritsen et al., 2019) and the ocean's 
globally uniform resolution of 40 km is close to the “TP04” grid used in MPI-ESM-HR (Müller et al., 2018). The 
40 km ocean resolution is barely “eddy permitting”, but allows for passages and straits to be adequately resolved.

The bathymetry was interpolated from the Shuttle Radar Topography Mission (SRTM) 3 PLUS data set (Becker 
et  al.,  2009), adjusted to conform with the sea-land mask given by the Global Land Cover Characterization 
(GLCC) 2.0 data set (GLCC, 2018). The ICON-O sea-land mask is then projected to the coarser ICON-A grid, 
allowing for triangles to be partially ocean.

The numerical schemes of the atmosphere and the ocean share commonalities but feature also significant differ-
ences. Identical in both components is the spatial discretization of differential operators such as divergence and 
curl through mimetic methods (cf., Korn, 2017). This takes advantage of identical grid structures and the Arak-
awa-C-type staggering of variables. The staggering necessitates reconstructions and interpolations to connect 
variables that are located at different grid positions to calculate fluxes. This is accomplished in ICON-O by the 
novel concept of Hilbert space admissible reconstructions (for details see Korn [2017] and Korn and Linarda-
kis  [2018]). The development of the atmosphere's dynamical core required different choices and therefore 
ICON-A relies on several interpolation methods (see Zängl et al., 2015).

2.1.  Atmosphere

The atmosphere component of the ICON-ESM is the icosahedral nonhydrostatic atmospheric general circula-
tion model ICON-A. The model version used here is similar to version 1.3.00 described in detail by Giorgetta 
et al. (2018), which was evaluated by Crueger et al. (2018). Modifications with respect to this earlier version are 
described below. The dynamical core of the model (Zängl et al., 2015) and the transport scheme are shared with a 
configuration used for numerical weather prediction (NWP) at the DWD. Other variants of the ICON atmosphere 
model include the option to interactively couple to the Aerosol and Reactive Trace gases scheme ART (Rieger 
et al., 2015) and a configuration including the upper atmosphere (UA-ICON, Borchert et al., 2019). The ICON-A 
discretization is based on an Arakawa-C grid finite difference approach, which provides better scaling behavior 
compared to the spectral method utilized by the previous ECHAM atmosphere model. These superior scaling 
capabilities of ICON have enabled global storm-resolving simulations down to a horizontal grid resolution of 
about 2.5 km (Stevens et al., 2019).

The model configuration used here differs from the NWP variant in particular with respect to the physics pack-
age, which was adopted from the ECHAM6 general circulation model (Stevens et al., 2013) used in the MPI-ESM 
(Giorgetta et al., 2013; Mauritsen et al., 2019). The physics parameterizations include the PSrad radiation scheme 
of Pincus and Stevens (2013), a scheme for turbulent vertical diffusion based on a total turbulent energy approach 
as proposed by Mauritsen et al. (2007), a convection parameterization based originally on the Tiedtke (1989) 
mass flux scheme, a parameterization for the representation of stratiform clouds including microphysics based on 
a scheme by U. Lohmann and Roeckner (1996) and cloud cover diagnosed following Sundqvist et al. (1989), a 
representation of the effects of gravity waves and blocking from sub-grid scale orography following Lott (1999), 
and the Hines (1997) parameterization of the effects of non-orographic gravity waves. Adaptations of the original 
ECHAM parameterization schemes for the use in ICON-A are described by Giorgetta et al. (2018). As in the latter 
publication, we use ICON-A here with a horizontal grid resolution of 158 km. In the vertical, the model employs 
a terrain following hybrid sigma-height grid with 47 layers extending to a model lid at 83 km. The lowermost 
layer has a thickness of 40 m. In total six layers cover the altitude range up to about 1 km, 23 layers up to about 
16 km, and 39 layers up to about 50 km. Also the prescription of solar irradiance, radiatively active trace gases, 
and aerosols is unchanged with respect to the description provided by Giorgetta et al. (2018).

Compared to the ICON-A version 1.3.00 described by Giorgetta et al. (2018) the following modifications have 
been made. (A) The coupling of the physical processes has been serialized completely using the following 
sequence: (1) radiative effects by terrestrial longwave and solar shortwave radiation, (2) vertical diffusion with 
implicitly coupled land surface processes, (3) non-orographic gravity wave drag, (4) subgrid-scale orographic 
(SSO) effects, (5) cumulus convection, and (6) cloud microphysics. This improved the numerical stability and 
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allowed to increase the model time step from 10 to 15 min. Furthermore, the time step for radiation, the only 
process not computed at every model time step, was shortened from 120 to 90 min. (B) The non-orographic 
gravity wave and SSO effects were re-tuned. Here, new SSO parameters for the statistical description of the unre-
solved terrain were used, which resolve both issues discussed in Section 4.7.1 of Giorgetta et al. (2018), that is, 
the error in the azimuthal angle of the unresolved mountains, and the standard deviation of unresolved orographic 
height, which is now computed with respect to the resolved sloped terrain. Additionally, a weighting factor for 
the non-ocean fraction has been introduced to account for the fact that the SSO parameters are computed for the 
area fraction that is land or lake or glacier, that is, non-oceanic. (C) The physical processes were re-tuned for 
a balanced top-of-atmosphere (TOA) radiation and in order to minimize the systematic errors in Atmosphere 
Model Intercomparison Project (AMIP) simulations.

In step (B), tuning parameters gkdrag, which scales the magnitude of the orographic gravity wave drag, and 
gkwake, which scales the blocking of low-level flow by unresolved orography, were tested with values in the range 
of 0.01–1 with the following goals: The first target was to reduce the systematic error in zonal mean zonal wind in 
boreal winter (December, January, February, DJF) at 60°N at 10 hPa. The secondary target was then to minimize 
errors in the zonal mean zonal wind in boreal summer (June, July, August, JJA) as well as errors in annual mean 
pressure at sea level and annual mean zonal wind stress at the ocean surface. This led to new default parameters 
gkdrag = 0.05 and gkwake = 0.05, instead of gkdrag = 0.10 and gkwake = 0.01 (Giorgetta et al., 2018). The 
tuning parameters for the non-orographic gravity wave drag remained as in Giorgetta et al. (2018).

In step (C) a range of tests was conducted with modifications in tuning parameters for fractional cloud 
cover, entrainment of environmental air in convective plumes, overshooting mass flux fraction at the top of 
convection, and cloud microphysics. From all tests a configuration with three modifications was chosen, 
compared to Giorgetta et al. (2018): The entrainment coefficients for deep and shallow convection were set to 
entrscv = entrpen = 0.0003 m −1 (compared to entrscv = 0.003 m −1 and entrpen = 0.0002 m −1), and the convec-
tive mass flux fraction across the level of neutral buoyancy at the top of convection was reduced to cmfctop = 0.1 
(compared to cmfctop = 0.2). The critical relative humidities for condensation near the surface (crs) and in the 
upper troposphere (crt) were kept unchanged. This configuration performed best following a similar evaluation 
as presented in Giorgetta et al. (2018). However, it should be noted that other tested configurations were equally 
acceptable concerning the radiation balance at the top of the atmosphere, which was the primary tuning goal.

The resulting atmospheric model configuration provided the starting point for the development of the coupled 
model system in the pre-industrial control experiment, which lead to additional changes of tuning parameters for 
dynamics as well as physics, as described in Section 3 and reviewed in the discussion section.

2.2.  Ocean

ICON-O, the ocean general circulation model that provides the ocean component of ICON-ESM, solves the 
hydrostatic Boussinesq equations. These dynamical equations are also referred to as the “primitive equations.” 
The state vector consists of horizontal velocity, the oceanic tracers potential temperature and salinity, as well as 
the surface elevation. The primitive equations are solved on the triangular ICON grid with an Arakawa C-type 
staggering that places tracers at the circumcenter of a triangular cell and the normal component of the velocity 
vector at the midpoint of the cells edge. The vertical coordinate-axis is given by the z-coordinate (or geopoten-
tial height). The two-dimensional triangles are simply extended by a height-based dimension. This generates 
three-dimensional prisms. The number of vertical levels depends on the topography and varies from cell to cell 
Nz = Nz(K). The grid used here applies 64 vertical levels with spacing varying between 10 m in the upper 100 and 
250 m in the deep ocean. The level thickness is constant in time, except for the surface layer with its varying sea 
surface elevation. The latter and the varying sea-ice draft dictates limits for the allowed “thinness” of the surface 
layer. To overcome this limitation, we are presently implementing the z* coordinate, where the vertical coordinate 
is scaled in proportion with the sea-surface elevation (Adcroft & Campin, 2004).

The subgrid scale closure for velocity uses a biharmonic operator based on the vector Laplacian with a viscosity 
coefficient that scales with the square root of edge length times cell center distance to the third power. Eddy-in-
duced diffusion and eddy-induced advection are parameterized following Redi  (1982) and Gent-McWilliams 
(GM; Gent & McWilliams, 1990), respectively. We employ the variational approach of S. Griffies et al. (1998) 
and S. Griffies (1998). The discretization of the variational approach is, however, different from the triad approach 
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of S. Griffies et al. (1998) and uses inherently unstructured grid methods. The Hilbert-space-compatible recon-
structions and mimetic differential operators of ICON-O's dynamical core provide a discrete Hilbert space that 
allows a direct and structure-preserving discretization of the eddy parameterization. Full details are given in 
Korn (2018). Since the 40 km ocean grid used here is barely eddy-permitting, we keep the GM scheme switched 
on using a default GM thickness diffusivity parameter κ of 400 m 2s −1, which is constant throughout the water 
column.

As equations of state that approximates the density as a function of potential temperature, salinity and depth we 
use the UNESCO-80 formulation. For the parameterization of turbulent vertical mixing, ICON-O offers differ-
ent choices: a Richardson-number-dependent parameterization (Pacanowski & Philander, 1981; PP) including 
an additional wind-mixing formulation as in MPIOM, the KPP scheme (Large et al., 1994), or, as the standard 
setting used here, a scheme based on a prognostic equation for turbulent kinetic energy (TKE) that implements 
the closure suggested by Gaspar et al. (1990). In the interior ocean, where vertical mixing is induced by breaking 
internal waves, the standard TKE scheme requires a constant value of turbulent kinetic energy, which is set to 
10 −6 m 2s −2 in the simulations described here. As part of our ongoing development work, the TKE scheme is pres-
ently implemented into the Community Vertical Mixing CVMix library (S. M. Griffies et al., 2015; Van Roekel 
et al., 2018) and extended by the Internal Wave Dissipation Energy and Mixing (IDEMIX) scheme (Olbers & 
Eden, 2013). IDEMIX describes energy transfers from internal wave sources to sinks and includes the effects of 
internal tides and near-inertial-wave induced mixing. Further extensions include a parameterization of Langmuir 
circulation following Axell (2002). Vertical dissipation and vertical diffusion are discretized implicitly. The trans-
port of potential temperature, salinity, and the biogeochemical tracers is accomplished by a flux-corrected trans-
port method with a Zalessak limiter, which utilizes flux calculation by compatible reconstructions (Korn, 2017). 
The free surface equation is solved implicitly in time with an iterative solver based on the conjugated gradient 
method. The remaining state variables are discretized explicitly. For details we refer to Korn (2017). ICON-O's 
time stepping applies a semi-implicit Adams-Bashford-2 scheme. In the present configuration, the ocean's time 
step is 30 min, which is also the frequency of data exchange with the atmosphere.

2.3.  Sea Ice

The sea-ice model consists of a dynamic and a thermodynamic component that are called once at every ocean 
time step. The thermodynamics of the ICON sea-ice code, which describe the freezing and melting of sea ice, 
have been adopted from MPI-OM (Notz et al., 2013) and employ a single-category, zero-layer formulation (Semt-
ner, 1976). For many climate-scale research questions, this simple setup has proven sufficient in comparison 
with more complex models (Notz & SIMIP Community, 2020). The sea-ice dynamics are based on the sea-ice 
dynamics component of the Finite Element Sea Ice Model (FESIM, Danilov et al., 2016), which uses the stand-
ard elastic-viscous-plastic (EVP) formulation. As ICON-O applies an analog of an Arakawa C-grid and FESIM 
uses an Arakawa A-grid type staggering, an interpolation between the ICON-O grid and the FESIM sea-ice 
dynamics is necessary. Furthermore, an additional rotation of the oceanic and atmospheric variables is required, 
because ICON-O uses local coordinates, whereas FESIM is based on rotated geographic spherical coordinates. 
Besides the computational overhead, the coupling between FESIM and ICON-O introduces numerical diffusion, 
for example, at least three grid cell wide passages are required to allow a sea-ice transport. To overcome those 
limitations we are currently working on the integration of a newly developed sea ice dynamic model (Mehlmann 
& Korn, 2021).

2.4.  Ocean Biogeochemistry

In ICON-ESM, ocean biogeochemistry is represented by HAMOCC6, which simulates biogeochemical tracers in 
the water column and in the upper sediment (Ilyina et al., 2013; Mauritsen et al., 2019; Paulsen et al., 2017). In the 
water column, currently at least 20 biogeochemical tracers are prognostically calculated, generally following an 
extended nutrient, phytoplankton, zooplankton, and detritus (NPZD) approach, also including dissolved organic 
matter, as described in Six and Maier-Reimer  (1996). The co-limiting nutrients consist of phosphate, nitrate, 
silicate and iron. A fixed stoichiometry for all organic compounds is considered. Phytoplankton is represented by 
bulk phytoplankton and diazotrophs (nitrogen fixers; Paulsen et al., 2017). Particulate organic matter (POM) is 
produced by zooplankton grazing on bulk phytoplankton and enters the detritus pool. Export production is sepa-
rated explicitly into CaCO3 and opal particles, each sinking with its own sinking velocity. The POM sinking speed 
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can be assigned using one of the three implemented methods: constant speed, linearly increasing speed with 
depths below the euphotic zone (also known as the “Martin curve”; Martin et al., 1987) or calculated using the 
recently developed M4AGO scheme (Maerz et al., 2020). The remineralization of detritus throughout the water 
column is either aerobic (if seawater oxygen concentration >0.5 μmolL −1) or anaerobic by denitrification and 
sulfate reduction. The upper sediment is resolved by 12 biologically active layers and a burial layer and simulates 
the dissolution and decomposition of particulate inorganic and organic matter and the diffusion of pore water 
constituents. The HAMOCC model is also part of the MPI-ESM and has been extensively evaluated in previous 
single-model (e.g., Ilyina et al., 2013; Maerz et al., 2020; Mauritsen et al., 2019; Müller et al., 2018; Paulsen 
et al., 2017) and multi-model studies (e.g., Bopp et al., 2013; Kwiatkowski et al., 2020; Séférian et al., 2020).

Within the HAMOCC core subroutines, only the biological and chemical sources and sinks, as well as tracer 
sinking and ascending are computed. Therefore, when implementing HAMOCC6 (the model version used in 
MPI-ESM CMIP6 simulations) in ICON-ESM, the HAMOCC6 interface to the ocean and atmosphere compo-
nents was adjusted to the ICON-ESM infrastructure accordingly. This adjustment includes the transport of bioge-
ochemical tracers with the same routines and numerical schemes as the physical tracers of the ICON-O model. 
As in previous model versions, it was ensured that all chemical constituents in HAMOCC are mass conserving 
within computational precision in this implementation.

2.5.  Land

ICON-Land is a novel framework developed at MPI-M for the modeling of land processes in ICON that clearly 
separates model infrastructure from land surface process descriptions. It features a flexible scheme of land surface 
tiling and object-oriented organization of physical and biogeochemical processes. Apart from the ICON-ESM 
configuration, ICON-Land is used in the ICON-A atmosphere configuration and can also be run in a land stand-
alone mode (see e.g., Nabel et al., 2020). The ICON-Land implementation used in the ICON-ESM v1, comprises 
physical and biogeochemical processes provided by the JSBACH 4 land model, a port of JSBACH 3.2 (Reick 
et al., 2021) to the ICON-Land framework. Previous JSBACH versions have represented the land components of 
the MPI-ESM versions used in CMIP5 (Giorgetta et al., 2013) and CMIP6 (Mauritsen et al., 2019).

Compared to Reick et  al.  (2021), JSBACH 4 features certain improvements of the physical processes at and 
below the surface, including a five-layer snow scheme and the phase change of water within the soil (de Vrese 
et al., 2021; Ekici et al., 2014). Also included are the options to calculate the soil thermophysical properties 
depending on the soil water content and the general properties depending on the organic matter content of a given 
soil layer. Surface runoff and sub-surface drainage from ICON grid cells are routed through a hydrologic discharge 
model (Hagemann & Dümenil, 1997) using a novel method for generating river directions (Riddick, 2021); the 
resulting river discharge is coupled as freshwater flux to the ocean via the YAC coupler (see Section 2.6). Surface 
temperature of lakes is computed by a simple mixed-layer scheme including ice and snow on lakes (Roeckner 
et al., 2003). The surface energy balance and the soil thermal layers on land are coupled implicitly to the vertical 
diffusion scheme of ICON-A.

In the model version discussed in this study, biogeochemical processes in JSBACH 4 are simplified relative to 
JSBACH 3 (Reick et al., 2021). Natural vegetation dynamics (Brovkin et al., 2009) coupled to land-use transitions 
(Reick et al., 2021), as well as the coupling of terrestrial carbon and nitrogen cycle (Goll et al., 2017) have not 
yet been ported from JSBACH 3, but are planned to be ported into future ICON-ESM versions. In the piControl 
and historical simulation ensemble (Section 4), natural vegetation and anthropogenic land cover change have 
been prescribed by annual maps of cover fractions on 11 Plant Functional Types (PFTs) based on Pongratz 
et al. (2008) and transient crop and pasture fractions derived from the land use harmonization (LUH) LUH2 v2h 
(Hurtt et al., 2019) as described in Mauritsen et al. (2019).

2.6.  Coupling

Ocean and atmosphere processes run concurrently. The data exchange between the two horizontal grids is imple-
mented using the Yet Another Coupler (YAC) coupling library (Hanke et al., 2016) in version YAC1.5 (Hanke & 
Redler, 2019). Figure 1 depicts a schematic view of the model components and the exchange of coupling fields. 
The components of the wind- and velocity vectors are interpolated using Bernstein-Bézier polynomials follow-
ing Liu and Schumaker (1996) to better represent the vorticity. Target cells for which this interpolation method 
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fails due to an incomplete interpolation stencil near land-sea borders are interpolated using a 4-nearest-neighbor 
arithmetic average interpolation. The river discharge is remapped to the target grid in a way that each source cell 
containing a river discharge value is assigned to a coastal target cell on the ocean grid. All other fields are inter-
polated using first-order conservative remapping. To avoid problems with the conservation of the field properties 
with this method, the grids and masks of the model components are constructed such that any unmasked source 
cell is always covered by unmasked target cells. The weights required for the remapping are calculated by YAC at 
the start of each run. This calculation is based on the grid information provided by the model.

The atmosphere component provides the zonal and meridional components of the wind-stress separately over ice 
and over water, the surface fresh water flux as rain and snow over the whole grid cell and evaporation over the 
ocean fraction of the cell, short and longwave radiation and latent and sensible heat fluxes over the ocean, sea 
ice surface, and bottom melt potentials, the 10 m wind speed and sea level pressure. The ocean provides the sea 
surface temperature, the zonal and meridional components of velocity at the sea surface as well as ice- and snow 
thickness, and ice concentration. The data exchange encompasses aggregation, averaging and repartitioning of 
the exchange fields. YAC routines are called at every model time step of the respective model component, and 
data are accumulated inside the YAC library. The model setup is configured such that every 1,800 s, the coupling 
period, the aggregated data are averaged and sent to the respective receiving processes. This coupling period has 
to be an integer multiple of the time steps of the model components taking part in this exchange.

2.7.  Computational Configuration and Performance

All simulations were performed with the bullx DLC 720 high performance computing system for Earth system 
research (HLRE-3) of the “Deutsches Klimarechenzentrum” (DKRZ). The simulations utilize 120 “Broadwell” 
compute nodes of the system named “Mistral,” which include 36 processing units each.

The domain decomposition is performed separately for ocean and atmosphere: the ocean decomposition at 40 km 
horizontal resolution, which includes only ocean grid points, and the global atmosphere decomposition at 158 km 
horizontal resolution. The sea-ice model is included in the ocean code and runs on its own FESIM grid (see 
Section 2.3), which is coupled directly to the ICON-O grid. The land model works within the ICON-A decompo-
sition. The YAC coupling library is linked to each of the two components of the ICON model (atmosphere/land 
and ocean/sea-ice) and performs the aggregation, averaging and repartitioning of the exchange fields using their 
respective decomposition.

Due to this technical setup, the load balancing has to be optimized for these two major components, only. The 
heavy workload due to multiple tracers in configurations with HAMOCC requires different weightings for run 
with and without ocean biogeochemistry. The best compromise between shortest return time and parallelization 
overhead was obtained for a load balancing of 74 nodes (2664 mpi-processes) for running ocean and sea-ice 
(without HAMOCC) on the 40 km grid and concurrently using 46 nodes (1656 mpi-processes) for atmosphere 
and land on the 158 km grid. With this configuration we achieve an average performance of 10 simulation years 
in one batch-job executing within roughly 2 hr. Without any queuing-time at the machine (depending on the load 
of the machine, or by assigning high-priority to the job-chain) it results in a performance of up-to 120 simulated 
years per day. A hybrid configuration using mpi- as well as openmp- (shared memory) parallelization was tested 
and exhibited less performance on the DKRZ machine, which is probably due to partly missing optimizations in 
the code. In the runs including HAMOCC, the best optimization was achieved for a load balancing of 46 nodes 
for atmosphere and land and 154 nodes for the ocean (physics and biogeochemistry) and sea ice. An average 
performance of 40 simulated years per day was achieved with this configuration.

3.  Tuning and Spin-Up
3.1.  Tuning Principles and Targets

Model tuning is an integral part of the model development process (Mauritsen et al., 2012). Since there are many 
similarities between ICON-ESM and MPI-ESM regarding physical parameterizations and the sea-ice thermody-
namics, the tuning process profited from several generations of MPI-ESM development (Jungclaus et al., 2013; 
Mauritsen et al., 2012, 2019; Notz et al., 2013). In the coupled system, a first-order tuning goal is to achieve stable 
climate conditions to minimize drifts in the piControl climate used as reference for climate change simulations. A 
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near-zero top-of-atmosphere energy-flux balance is required as well as long-
term stable circulation, for example, the Atlantic Meridional Overturning 
Circulation (AMOC) in the ocean. Furthermore, it is desired to match the 
model results with the observed climate conditions for the second half of the 
19th century and with the temperature evolution over the 20th century. Based 
on experience gained in the tuning of the stand-alone ocean and atmosphere 
set-ups (Giorgetta et al., 2018), a small number of parameters associated with 
the parameterization of specific processes were selected for tuning (Table 1). 
In the atmosphere these parameters are mainly related to convection, clouds, 
and subgrid-scale orographic processes, and largely overlap with parameters 
used in the tuning of the atmosphere stand-alone model (see Section 2.1). 
Parameters modified for tuning purposes in the ocean include the coefficient 
for isoneutral diffusion K and the coefficient for eddy-induced advection κ 
in the Gent-McWilliams closure (Korn, 2018). Apart from albedo settings 
in the atmosphere, the sea-ice model contains two main parameters that we 
use to tune the overall mean state of the sea-ice cover. One of these parame-
ters describes the change in ice-thickness distribution during freezing (lead-
close_1), and the other parameter describes the change in ice-thickness distri-
bution during melting (leadclose_2/3) as described in Notz et al. (2013).

3.2.  Spin-Up and Tuning History

The ocean initial conditions for temperature and salinity were taken from the 
Polar Science Center Hydrographic Climatology data set PHC 3.0 (Steele 
et  al.,  2001). First, a 200-year long stand-alone ICON-O simulation was 
carried out using the atmospheric climatology forcing and the respective bulk 
formulae described in Marsland et al. (2003). Starting from the restart fields 
obtained from the stand-alone ocean simulation, several experiments with 
different tuning choices were conducted, partly sequentially with parameter 
changes on the fly, partly in parallel to study difference in drift behavior. The 
final tuning sequence is documented in Figure 2.

ICON parameter Symbol Value Reference Description

Atmosphere

  crs r0,surf 0.978 Giorgetta et al. (2018) Critical relative humidity for 
condensation (surface)

  crt r0,top 0.8 Giorgetta et al. (2018) Critical relative humidity for 
condensation (upper troposphere)

  entrpen ϵ 1 0.00015 m −1 Nordeng (1994) Entrainment in deep convection

  gkdrag G 0.03 Lott (1999) Subgrid-scale orographic (SSO) 
gravity wave drag

  gkwake Cd 0.03 Lott (1999) SSO low-level blocking

  gklift C1 0.7 Lott (1999) SSO lifting

Ocean

  K K 400 m 2s −1 Korn (2018) Redi isoneutral diffusion

  κ κ 400 m 2s −1 Korn (2018) GM eddy-induced advection

Sea ice

  leadclose 1 cmelt 0.5 Notz et al. (2013) Ice area change during melting

  leadclose 2/3 cfreeze 0.666 Notz et al. (2013) Ice area change during freezing

Table 1 
Parameters Used for Tuning the Coupled Model

Figure 2.  (a) Spin-up history of the coupled simulation: time series of global 
mean surface air temperature, (b) top-of-atmosphere (TOA) radiation flux, 
and (c) volume-averaged ocean temperature evolution from a sequence of 
simulations leading to the piControl experiment.
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The start of the coupled simulation (slo1304) is characterized by a large drift, where both atmosphere and ocean are 
cooling and the TOA radiation balance is negative (Figure 2b). Introducing background tropospheric aerosols in the 
run slo1307 led to even stronger decrease in global mean surface air temperature (GSAT) that required counter-tun-
ing. This was achieved by increasing the critical relative humidities for condensation crs and crt and the entrainment 
parameter entrpen which led in particular to a reduction of global mean cloud fraction and an increase of net incom-
ing radiation at the TOA. While this resulted initially in overly strong warming, the long-term drift cooled the model 
to acceptable values and we finally obtained a solution with small overall drift even in the deep ocean (Figure 2c). 
While this may appear as a very straightforward tuning process, a large number (order 100) of further model exper-
iments with different parameter settings and simulated lengths of a few years to several hundreds of years have been 
performed to arrive at this spin-up sequence. The influences of some of the tuning choices on the simulated climate 
are discussed in several parts of the model evaluation of Section 4 and in Section 5.

A bug-fix related to erroneous snow accumulation in a few grid points required an update of the code in run 
slo1325 without noticeable effects on the climate. This simulation was carried out for another 500 years, where 
we defined the start of the piControl simulation. The starting point of piControl was also used to initialize the 
DECK experiments 1pctCO2 and abrupt4xCO2, and one realization of the historical simulations. Further real-
izations were started from different dates of piControl. In addition, an AMIP simulation was included using the 
same code version as the coupled experiments.

After the completion of the DECK experiments presented in this paper, a coding error was detected in the verti-
cal diffusion of ICON-A. The bug is related to the way ocean currents are taken into account in the wind-stress 
calculation. The effects of the error turned out to be time-step and grid-size dependent and had detrimental effects 
in a very high-resolution (5 km) coupled proto-type model. At the low resolutions applied here, we were able to 
identify typical effects of this error (e.g., some changes in the representation of the equatorial current system in 
the ocean), but most of the analyzes and illustrations presented here remain largely unaffected. The most notable 
effect is an even stronger variance of the ENSO time series, but we diagnosed otherwise very similar characteris-
tics of the variability (not shown). We have concluded that the bug must be fixed but changes to the results were 
too minor to justify a repetition of the DECK experiments and their post-processing. All conclusions regarding 
benefits and shortcomings of the ICON-ESM DECK simulations presented here remain unaffected.

The tuning of the ocean biogeochemistry was carried out after the tuning of the coupled setup. A first-order 
tuning goal for the ocean biogeochemistry in an ESM is to limit significant drifts in the biogeochemical tracer 
fields and fluxes in the piControl run. Furthermore, parameters are adapted within a reasonable range to drive the 
model closer to observations. The initial conditions for the biogeochemical tracer fields in the water column and 
sediment were interpolated from a previously well spun-up MPIOM piControl setup which was run for several 
thousands of years. Ocean and atmosphere were initialized from the end of the slo1325 run and ICON-ESM was 
run with the piControl climate. The dust deposition climatology of Mahowald et al. (2005) and historical nitrogen 
deposition fields from the CMIP6 input database (https://esgf-node.llnl.gov/projects/input4mips/) were used. The 
POM sinking speed was calculated based on the Martin curve.

To account for the ocean circulation simulated by ICON-ESM, some of the HAMOCC tuning parameters were 
changed from their default values. For this, first several experiments with different tuning choices were conducted 
to obtain the approximate values for the tuning parameters. The parameters were then fine tuned on the fly during 
a simulation length of 450 years. The appropriate weathering rates, which are used to compensate for the loss of 
carbon and nutrients from the water column to the sediment, were calculated and updated during the simulation. 
After that, the model was spun-up for 250 years, during which the model was in a semi-steady state in the ocean 
global monitoring values such as the global surface alkalinity, export from euphotic zone and 1,000 m, primary 
production and nutrients. The simulated annual global flux of CO2 into the ocean at this state was about 0.05 PgC/
yr, representative for the assumption of the pre-industrial steady-state condition.

4.  Model Evaluation
The set of experiments described in this paper is listed in Table 2. We start with a brief account of the piControl 
experiment. Since the evaluation in comparison with observations is based on data from the recent decades, we 
perform the analyzes based on the historical ensemble. The idealized climate change experiments 1pctCO2 and 
abrupt4xCO2 are used to estimate the climate sensitivity of ICON-ESM in Section 4.4.

https://esgf-node.llnl.gov/projects/input4mips/
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4.1.  The Pre-Industrial Control Simulation (piControl)

In Figure 2 we have compiled the temporal evolution of key quantities reflecting the stability of the climate over 
centuries. The time series include the 500-year long piControl experiment (black). The GSAT is stable over the 
500 years long piControl simulation with a small cooling of −0.01 K per century (Figure 2a). A pre-industrial 
GSAT of 13.73°C is consistent with the present temperature level based on reanalyses and the observed estimate 
of global warming over the historical period (Hawkins & Sutton, 2016). The goal of a very stable TOA energy flux 
is achieved with a small imbalance of 0.016 Wm −2 (Figure 2b). In contrast, the ocean is still cooling (Figure 2c) 
and the average ocean cooling over the piControl run translates to an energy loss of −0.047 Wm −2, leaving a 

mismatch of 0.063 Wm −2. This spurious energy loss reflects inconsistencies 
in the coupling procedure and/or the atmosphere that we are unable to iden-
tify at this stage. However, the imbalance is sufficiently small compared to 
changes in, for example, anthropogenic forcing and much smaller than the 
energy leakages identified in ECHAM6 by Mauritsen et al. (2012).

Figure  3 includes additional integrated measures of the stability of the 
simulations. The overall sea-ice distributes is sensitive to long-term drift in 
radiation balance and/or ocean heat transports (Figures 3a and 3b). While 
Southern Hemisphere summer sea-ice extent is always too close to zero, the 
remaining time series show multi-decadal variability, but only small long-
term drift.

The AMOC (Figure 3c) is a key quantity for the meridional heat exchange 
in the Atlantic Ocean and its stability is important for maintaining a proper 
sea-ice distribution and North Atlantic deep water formation (for more details 
see Section 4.2.5). The control run has a time-mean AMOC strength at 26°N 
of slightly less than 16 Sv (1 Sv = 1 Sverdrup = 10 6 m 3s −1). The AMOC is 
stable over the last 1000 years of the simulation, but exhibits relatively strong 
multi-decadal variations with an amplitude of up to 3 Sv.

4.2.  The Historical Simulation Ensemble

4.2.1.  Temperature Evolution During the Historical Period

ICON-ESM reproduces the evolution of the global mean surface temperature 
(GMST) largely in good agreement with observational products (Figure 4), 
where anomalies are shown relative to the average over the second half of 
the 19th century. Note that GMST is used here for comparison with obser-
vational products. GMST is a blend of surface air temperature over land and 
sea surface temperature over the oceans. The mid-20th century warming and 
the subsequent cooling toward the 1970s agree in magnitude and timing, and 
the effects of volcanic eruptions like Agung (1963) and Pinatubo (1991) are 
captured. The simulations slightly disagree with the observational records 
in the late 20th to early 21st century because the model overestimates the 

Experiment Description Period Ens.size Initialization

piControl Preindustrial Control 500 years 1 Spin-up run

1pctCO2 Idealized CO2-increase 150 years 1 Spin-up run

abrupt4xCO2 Idealized CO2 increase 150 years 1 Spin-up run

Historical Transient forcing 1850–2014 5 piControl (yrs 0, 100, 200, 300, 400)

AMIP Atmosphere-only 1978–2014 1 n.a.

HAMOCC historical Transient forcing 1850–2014 1 HAMOCC spin-up

Table 2 
Overview on the ICON-ESM Simulations

Figure 3.  Evolution of key quantities during the last 500 years of the spin-up 
and the 500-year piControl experiment: maximum and minimum sea-ice 
extent in million km 2 for (a) the Northern Hemisphere and (b) the Southern 
Hemisphere, and (c) the strength of the Atlantic Meridional Overturning 
streamfunction at 26°N and 956m depth in Sverdrup (1 Sverdrup = 10 6 m 3s −1). 
Red lines indicate the time mean.
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warming trends from the 1970s onward. On the other hand, the warming 
trends are underestimated near the end of the simulation so that the simu-
lated temperatures agree with the observations at the end of the simulated 
period. A decomposition into northern (Figure 4b) and southern (Figure 4c) 
hemispheres reveals that the deviations stem mainly from the northern hemi-
sphere. Assessing the reason for this discrepancy requires further investiga-
tions but the more pronounced biases in the northern hemisphere point to 
an underestimation of the cooling effect of anthropogenic aerosols (Maurit-
sen et al., 2019) rather than too high climate sensitivity in ICON-ESM (see 
Section 4.4).

4.2.2.  Atmosphere

For the evaluation of atmospheric quantities we follow as closely as possible 
plotting styles and use of data sets as in Crueger et al.  (2018) to enable a 
comparison of the performance of the coupled ICON-ESM with AMIP-style 
(i.e., atmosphere-only) simulations by ICON-A and predecessors. Data sets 
used in the comparison are listed in Table 3. We only use observations and 
reanalysis data from after the beginning of the satellite era and averages of 
the 5 members of the historical ensemble for the comparisons.

To allow a quantitative comparison of global model performance with prede-
cessors and uncoupled simulations of this and earlier model versions, we 
present skill scores for simulated annual mean quantities as proposed by 
Reichler and Kim (2008) in Figure 5. Values larger than unity represent larger 
departures from the observations and are indicative of worse performance 
relative to the predecessors, and smaller values imply smaller departures 
from the observations, hence better performance. We calculate these scores 
in the same way and with respect to the same observational data as described 
by Crueger et al.  (2018). Skill scores for model biases are calculated with 
respect to model biases in a reference simulation for which we use the histor-
ical CMIP6 simulation with the MPI-ESM-LR-1.2 (Mauritsen et al., 2019). 
It is obvious that the ICON-ESM performs worse than the reference model 
for many quantities both globally and in the three geographic regions: tropics, 
northern and southern extratropics. It performs also worse than the prede-
cessor MPI-ESM-LR (Stevens et  al.,  2013). The performance has clearly 
improved only for some quantities in the southern extratropics.

In general, a better agreement of uncoupled simulations with observations 
is expected as they are driven by observed sea surface temperatures and sea 
ice. This better agreement is clearly visible in Figure 5, where uncoupled 
scores for many quantities are below one in most regions, that is, the agree-
ment with observations is better than in the coupled reference simulation. 
Differences between our simulation and the uncoupled AMIP experiment 
of Crueger et  al.  (2018) are expected due to the coupling, but also due to 
parameter changes related to the tuning of the coupled model as described in 
Sections 3.2 and small code modifications as described in Section 2.1. The 
latter two effects can be estimated from comparing the skill scores of the 
ICON-ESM AMIP simulation with the predecessor ICON-A-1.3.00 used by 
Crueger et al. (2018). Although some quantities improve, the overall quality 
in our uncoupled experiment is lower than in the earlier AMIP simulation. 
A somewhat degraded skill can be expected because our tuning aimed at 
the performance in the coupled simulation. In the following we evaluate the 
spatial patterns of some atmospheric quantities.

Figure 6 shows annual mean sea level pressure from the European Center Reanalysis ERA-Interim and the differ-
ence of the ICON-ESM to this data set. Maximum anomalies of up to about 10 hPa are of the same order as 

Figure 4.  Time series of surface temperature relative to the respective 1850–
1899 averages over (a) the globe, (b) the northern hemisphere, and (c) the 
southern hemisphere for (red-orange) the ICON-ESM historical ensemble, and 
observational compilations by (blue) the Goddard Institute for Space Studies 
Surface Temperature product (Lenssen et al., 2019), (black) the blended 
Hadley Center/Climate Research Unit global temperature data set (Morice 
et al., 2012), and (light blue) the NOAA NCDC historical merged land–ocean 
surface temperature data set (Smith et al., 2008; Zhang et al., 2019). The 
simulated surface temperature is constructed using SSTs over the ocean and 
surface air temperatures over land.
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anomalies simulated in the uncoupled model (Crueger et al., 2018). However, the spatial structure is very differ-
ent. While in the uncoupled model there was an underestimation in most parts of the tropics and sub-tropics and 
a strong positive bias in particular over the Arctic, here we simulate strong positive biases centered near about 
45° in both hemispheres. Extratropical biases showed some sensitivity to the SSO parameters (see Table 1) in 
the tuning process. The positive bias of mean sea-level pressure over the Arctic found in Crueger et al. (2018) 
could be reduced by activating SSO mountain lift forces of using the parameter gklift. The tropical low bias was 
a feature in all our tuning attempts.

According to the skill scores presented in Figure 5, the ICON-ESM simulates precipitation over land and ocean 
in the extratropics similar or even better than predecessors or uncoupled model versions while it still, on aver-
age, slightly underestimates precipitation in both southern and northern hemispheric extratropics in comparison 
to data from the Global Precipitation Climatology Project (GPCP). It performs worse, however, in the tropics. 
Figure 7 shows annual mean precipitation patterns in the ICON-ESM in comparison to GPCP data. The model 
simulates the typical distribution of tropical and extratropical rainfall patterns. In the Pacific, rainfall maxima 
are too high and a double Intertropical Convergence Zone (ITCZ) bias, typical for many climate models (Tian 
& Dong, 2020), can be identified. North of the equator the Pacific ITCZ is located too far north, and south of 
the equator the area of high precipitation extends to far east. These features were also reported for the uncoupled 
ICON AMIP simulation from Crueger et al. (2018). Improvements with respect to this uncoupled simulation can 
be identified in the tropical Atlantic and Indian oceans. Concerning the seasonal cycle, a major bias is a shift of 
maximum precipitation from summer to winter in the boreal forest zone (50°–65°N) over the continental interior 
of Eurasia (not shown), which leads to a large regional deficit in simulated vegetation productivity. In the global 
mean, the ICON-ESM overestimates precipitation as given by GPCP only by about 3%. With respect to tropical 
precipitation there is the hope that storm-resolving simulations, that is, simulations with a horizontal resolution 
of few kilometers that avoid parameterizing convection, may overcome some of the deficiencies presented here 
(Fiedler et al., 2020). However, an early intercomparison of such models, including an ICON-A configuration, for 
a 1-month period only, indicated precipitation biases in the Pacific south of the equator that may be reminiscent 
of the double-ITCZ issue (Stevens et al., 2019).

Figures 8 and 9 show global annual mean total cloud fraction and zonal mean vertically distributed cloud fraction, 
respectively, in comparison to the GCM Oriented Cloud Calipso Product (CALIPSO-GOCCP) data. Total cloud 
fraction is clearly too low in subtropical regions in both hemispheres, a feature which was visible but less strong in 
the AMIP simulations of Crueger et al. (2018). The vertical distribution of cloud fraction indicates that this is in 
particular related to an underestimation of low clouds in the subtropics and tropics. High clouds are, by contrast, 
overestimated in the tropics and middle to high latitudes. Different tuning choices would be able to alleviate these 
deficiencies, but we did not reach a global energy balance for a realistic global mean temperature and better cloud 
distributions at the same time.

The global low bias in cloudiness and in particular low level clouds does not necessarily translate directly into a 
consistent bias of the cloud radiative effect (CRE) as it has been mentioned earlier for other atmospheric models 
(Nam et  al.,  2012) and ICON predecessors (Crueger et  al.,  2018). Figure  10 indicates that the global mean 
simulated short wave CRE at the TOA is almost equal to the value from the Clouds and Earth's Radiant Energy 
Systems (CERES) Energy Balanced and Filled (EBAF; we use Edition 4.1) data. The agreement is even better 

Quantity Name Period Reference

Sea level pressure ERA-Interim 1979–2014 Dee et al. (2011)

Zonal mean temperature ERA-Interim 1979–2014 Dee et al. (2011)

Zonal mean zonal wind ERA-Interim 1979–2014 Dee et al. (2011)

Cloud fraction CALIPSO-GOCCP (v3.1.2) 2007–2019 Chepfer et al. (2010)

Precipitation GPCP (v2.2) 1979–2013 Adler et al. (2003)

Cloud radiative effect CERES EBAF Ed4.1 2001–2020 Kato et al. (2018)

Note. Further data used for the computation of skill scores are specified by Crueger et al. (2018).

Table 3 
Data Used for Evaluation of Atmospheric Quantities
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than in the ICON-A AMIP simulations discussed by Crueger et al.  (2018) 
which however had a better net TOA CRE due to almost compensating short 
and long wave biases. Here, the long wave TOA CRE (not shown) of about 
23.5 Wm −2 is underestimating the CERES value of about 28 Wm −2. Patterns 
of both TOA CREs are reproduced fairly realistically as shown for the short 
wave CRE in Figure  10. Slight underestimations in the mid-latitudes are 
compensated by slight overestimations at lower latitudes.

The skill scores indicate that the performance of the ICON-ESM for annual 
zonal means of both temperature and zonal wind is in general worse than 
that of its predecessors. In particular, the score for zonal wind is above one, 
hence indicating stronger departure from the observations, in all geographi-
cal regions, but it should be noted, that zonal wind biases were very low for 
the reference simulation (Figure B3, Mauritsen et  al.,  2019). The positive 
temperature bias in the high latitude middle atmosphere and the cold bias 
near the high-latitude tropopause (Figure 11) are recurrent features of our 
models (Crueger et al., 2018). Their study also discusses that the latter can 
be reduced by an increase of the vertical model resolution in this region. In 
the troposphere, the model shows, in general, a warm bias at low and a cold 
bias at high latitudes. The large zonal wind bias (Figure 12) is dominated 
by too strong westerlies in the mid-latitude troposphere and stratosphere, 
a feature which is strongest in both hemispheres during boreal winter. The 
position of subtropical jets is biased poleward in both hemispheres. The skill 
scores of Figure  5 show clearly for both temperature and zonal wind that 
the ICON-ESM performs worse compared to its atmosphere model in an 
AMIP simulation. The large increase in biases is, hence, the result of changed 
atmospheric circulation due to the coupling. Additionally, the current AMIP 
simulation is performing somewhat worse than the ICON-A configuration 
(version 1.3.00) from Crueger et al. (2018) which we attribute to the tuning 
focusing on the coupled model performance. A reduction of the zonal wind 
biases, and subsequent effects on temperature, would be possible through 
different tuning choices in the parameterization of SSO effects, but in our 
tuning experiments this came in general at the expense of larger biases in sea 
ice and the AMOC.

4.2.3.  Land

We compare our model ensemble results for the surface albedo with the 
Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43C3 
CMG Albedo Product (C. Schaaf & Wang, 2015). Cescatti et al. (2012) and 
C. B. Schaaf et al. (2002) show that the product is suitable for climate model 
comparisons. It comes with quality information for each data point (quality 
flags). These flags condense uncertainties in the elicitation of the data, such 
as atmospheric scattering and absorption, anisotropy, inadequate temporal, 
spatial and spectral sampling, and narrow-band to broadband conversions. 
For our comparison we first exclude MODIS data with a low quality of the 
inversion (quality flags 4 and 5). Then we interpolate the data from the orig-

inal MODIS grid of 0.05° × 0.05° (about 5.6 km at the equator) and from our model grid to a Gaussian lon-lat 
grid of 96 × 192 (about 1.88° or 210 km at the equator). As the albedo varies strongly throughout the year due 
to variations in the angle of the incoming radiation, in leaf area index (LAI), and in snow cover, we take January 
and July data to represent the boreal winter and summer extremes, for which we average our model results and 
the MODIS data over the years 2001 till 2014. The differences are shown in Figure 13.

All albedo differences are in the range ±0.1. In general the biases are weak as compared to the absolute MODIS 
albedos. For example, in January the global near-infrared (NIR) albedo is 0.31 for the absolute values of MODIS, 
while the corresponding bias is only 0.003. Over glaciers we find a common pattern, where the NIR albedo is too 

Figure 5.  Standardized annual mean climatological errors of selected 
variables in several simulations with reference to the CMIP6 historical 
simulation with MPI-ESM-LR-1.2. A value smaller/larger than 1 indicates 
a smaller/larger bias compared to this reference for the evaluation period 
1979—2008. Scores are averaged over (from top to bottom) the full globe, the 
northern extratropics, the tropics (30°S–30°N), and the southern extratropics. 
Colored dots indicate scores for the coupled simulations with (red) the ICON-
ESM and (orange) the MPI-ESM-LR (Stevens et al., 2013), as well as for the 
AMIP simulations with (dark blue to light blue) the ICON-ESM, ICON-A-
1.3.00 (Crueger et al., 2018), and ECHAM6.3 (Mauritsen et al., 2019). See 
Section 4.2.2 for further details on the skill scores.
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high and the visible (VIS) albedo is too low (see in January over Antarctica and in July over Greenland), which 
is a direct result of the prescribed minimum and maximum albedo values for glaciers in JSBACH 4. In January, 
NIR and VIS albedo are too low in the northern mid latitudes, especially in eastern Europe and central Asia. 
Further analysis reveals that these biases are largely caused by a too small snow cover in JSBACH 4 (not shown). 
In July, the NIR albedo in eastern North America and large parts of Asia is too low. These low albedos are caused 
solely by the prescribed soil albedo of the model. Except for the mentioned areas, the albedos tend to be higher 
in JSBACH 4, for example, in most of Africa, Australia and India. However, the causes for this overestimation 
are rather complex and their investigation is beyond the scope of this paper; a deeper analysis of this issue will be 
published in a forthcoming paper.

For the evaluation of land surface temperature (LST) of our model ensemble, we use the MOD11C1 MODIS 
Terra Land Surface Temperature/Emissivity V006 data set (Z. Wan et al., 2015). For our analysis we excluded the 
data points where the quality flags indicate no retrieval because of clouds. The spatial resolution of the data set 
is 0.05° × 0.05° (about 5.6 km at the equator). Furthermore, we compare our results with the first five ensemble 
members of the MPI-ESM CMIP6 historical simulations (Wieners et al., 2019).

The global ICON-ESM LST time series (Figure 14, green lines) is highly correlated with the MPI-ESM 1.2 time 
series (blue lines, correlation coefficient of Spearman 0.93 and of Pearson 0.96) but shows a higher variability 

Figure 6.  Sea level pressure (hPa) averaged over the period 1979–2014 (a) from the ERA-Interim reanalysis and (b) difference between ICON-ESM historical 
simulation and ERA-Interim. Numbers below the panels indicate global means and root mean square difference between simulation and reanalysis.

Figure 7.  Precipitation (mm/day) (a) from the GPCP observations averaged over 1979–2013 and (b) from the ICON-ESM historical simulation averaged over 1979–
2014 and GPCP. Numbers below the panels indicate global means and root mean square difference between simulation and observation.
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in the course of the year (Figure 15). Over the historical period until about 1990, the annual averages of ICON-
ESM are slightly colder than those of MPI-ESM 1.2 but are about the same from then on. ICON-ESM is about 
0.6°C warmer than observed by MODIS (red lines) and its variability in the course of the year is nearly the same. 
Even when on short time scales both models annual means are not in good agreement with the historical Climate 
Research Unit Temperature (CRUTEM4) reconstruction (Figure 14, black lines), they agree with long term trend 
(e.g., the temperature rise after 1980).

The geographical LST comparison between ICON-ESM and MODIS averaged between 2001 and 2014 (Figure 16) 
reveals strong regional differences. The zonal means show a warm bias in the inner tropics and the extratropics. 
In principle, this can also be seen in the January and July averages. Regionally, the warm bias is throughout the 
year mostly pronounced in Europe, central Asia, central to north-eastern N-America, the Amazon region, and 
western Antarctica. The warm bias over Eurasia in January is at least partly caused by the too low snow cover 
and the associated snow-albedo feedback. The comparison with MPI-ESM (Figure 17) shows that the warm bias 
in Europe, central Asia and Amazonia, which is most pronounced in July, was much weaker or not existent in 
MPI-ESM. ICON-ESM is colder than the MODIS data in the outer tropics (see zonal means). Regionally, the 

Figure 8.  Total cloud fraction (%) (a) from the CALIPSO-GOCCP observations averaged over 2007–2019 and (b) from the ICON-ESM historical simulation averaged 
over 1979–2014. Numbers below the panels indicate global means and root mean square difference between simulation and observation.

Figure 9.  Zonal mean vertical distribution of cloud fraction (%) (a) from the CALIPSO-GOCCP observations averaged over 
2007–2019 and (b) from the ICON-ESM historical simulation averaged over 1979–2014.
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locations of the cold biases vary with the seasons but Australia, India and central eastern Antarctica (except for 
the coastal areas) are colder throughout the year. In Australia and central eastern Antarctica the cold bias was 
much weaker or not existent in MPI-ESM.

Overall, the annual zonal mean bias pattern of ICON-ESM as compared to MODIS is quite symmetric with cool 
biased subtropics and warm biased extratropics. Due to the complex continental distribution a land origin is 

Figure 10.  Short wave cloud radiative effect (Wm −2) from (a) CERES observations averaged over 2001–2020 and (b) from the ICON-ESM historical simulation 
averaged over 1979–2014. Numbers below the panels indicate global means and root mean square difference between simulation and observation.

Figure 11.  Zonal mean temperature (K) averaged over the period 1979–2014 (top row) from the ERA-Interim reanalysis and (bottom row) difference between ICON-
ESM historical simulation and ERA-Interim. From left to right are shown the annual, boreal winter (DJF), and austral winter (JJA) averages.
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implausible. It seems more likely that this pattern is caused by the modeled global atmospheric circulation, that 
is, the subtropical cold bias corresponds to the descending air of the Hadley cell. Nevertheless, the albedo biases 
surely contribute to the LST biases of ICON-ESM, especially in central Asia and over glaciers.

4.2.4.  Ocean

The simulated sea surface temperature (SST) obtained from the ensemble mean of the historical simulations and 
averaged over the period 1980—2014 is compared to the PHC 3.0 data set in Figures 18a and 18c. Deviations 
from the observation-based data set are largely smaller than 1°C over the open oceans, but we diagnose prominent 
regions with large errors. The most pronounced cold anomalies are found in the subpolar North Atlantic. As in 
many other coarse-resolution and even eddy-permitting models (e.g., Keeley et al., 2012) this feature is related 
to an overly zonal North Atlantic Current (Drews et al., 2015) and likely also related to too weak meridional heat 
transport. For MPI-ESM, Gutjahr et al. (2019) have shown that moving to eddy-resolving resolution in the ocean 
improves the sub-polar cold bias in the North Atlantic. Corresponding errors in atmospheric sea-level pressure 
(Figure 6) indicate that wind-driven circulation biases also contribute to the error. Large atmospheric SLP and 
circulation biases in the North Pacific are likely responsible for strong warm biases over the Kuroshio region.

The cold-tongue bias in the equatorial Pacific is also a well known model feature, but the ICON-ESM performs 
less well than the MPI-ESM (Müller et al., 2018), even though MPI-ESM-LR features much lower resolution 
in the ocean compared to the ICON ocean used here. The bias is a surface expression of the generally too cold 
sub-surface waters in the tropical oceans (Figure 19) so that the outcropping isotherms in the central and eastern 
Pacific are too cold. In the coupled system, the equatorial cold bias is important for the variability character-
istics of ENSO and the associated precipitation distribution (Section 4.2.7). Warm biases are diagnosed in the 
upwelling regions at the western coasts of the continents. They are most pronounced at the African coast south 
of the Equator. These features are common in coupled models and, in particular in the case of Africa, are related 

Figure 12.  Zonal mean zonal (westerly) wind (ms −1) averaged over the period 1979–2014 (top row) from the ERA-Interim reanalysis and (bottom row) difference 
between ICON-ESM historical simulation and ERA-Interim. From left to right are shown the annual, boreal winter (DJF), and austral winter (JJA) averages.
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to insufficient resolution in the atmosphere where coastal orography and along-shore winds cannot be properly 
simulated (Milinski et al., 2016).

The sea surface salinity (SSS) biases (Figures 18b and 18d) in ICON-ESM are relatively small over most of the 
oceans, except the high northern latitudes and around the Antarctic continent. The Arctic fresh bias extends also 
into the sub-polar North Atlantic, where overly fresh water is transported with the gyre circulation into the inte-
rior ocean making the cold bias in Figure 18c a fresh bias as well.

The time-mean biases in zonal averages over the global ocean reflect misrepresentations of water mass path-
ways and processes like vertical and along-isopycnal mixing. The most prominent error feature in the ICON-
ESM ocean is a generally too cold interior ocean with strong cold biases in the sub-tropical and tropical oceans 
(Figure 19a) that are accompanied by overly fresh conditions (Figure 19b). The reasons for the overly strong 
cooling are not fully understood, but comparison with an earlier version using the Pacanowski-Philander mixing 
scheme (PP, Pacanowski & Philander, 1981) showed that the PP scheme in combination with the wind-mixing 
parameterization used in MPIOM (Marsland et al., 2003) showed a better performance than the TKE scheme used 
here. Regarding the upper ocean, this is consistent with the findings of Gutjahr et al. (2019) for the MPI-ESM. 
Since the TKE scheme is more advanced and shall be further improved by including an energy-consistent scheme 
for the background mixing in the interior (see Gutjahr et al., 2021), we decided to keep the TKE scheme and 
attend to an improved tuning in forthcoming versions of ICON-ESM.

The overly cold sub-thermocline waters lead to a too strong stratification near the thermocline in particular in the 
tropical oceans and are likely responsible for too strong ENSO variability (see Section 4.2.7). The salinity biases 
resemble those in temperature in the tropical and southern sub-tropical region, but higher northern latitudes 
feature pronounced positive salinity in the sub-surface ocean. These underlay a too fresh surface layer and lead to 
a too strong halocline in the Arctic Ocean. The too fresh surface salinities could also be related to an underesti-
mation of Fram Strait fresh water export. While a complete fresh water budget is beyond the scope of this paper, 

Figure 13.  White Sky Albedo (WSA) ICON-ESM historical ensemble minus MODIS data. Shown are the NIR and VIS bands for January and July averaged from 2001 
till 2014.
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Figure 14.  Global Land Surface Temperatures yearly means averaged over historical times. Red: MODIS data. Green: 
ICON-ESM historical ensemble. Blue: MPI-ESM CMIP6 ensemble mean of the first five ensemble members. Black: 
CRUTEM4 historical reconstruction. Note, as CRUTEM4 includes only temperature changes without a determined absolute 
temperature the absolute offset is chosen to fit the curve with the satellite data.

Figure 15.  Global Land Surface Temperatures monthly means. Vertical dashed lines indicate the 15th of the respective 
month. The monthly means are averaged over the available time period of the data plotted in Figure 14.
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Figure 16.  Land surface temperatures in the ICON-ESM historical ensemble minus MODIS data averaged from 2001 to 2014 for all months (top), all January months 
(middle) and all July months (bottom). The curves on the right side show zonal means.
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Figure 17.  Land surface temperatures in the ICON-ESM historical ensemble minus MPI-ESM ensemble mean averaged from 2001 to 2014 for all months (top), all 
January months (middle) and all July months (bottom). The curves on the right side show zonal means.
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we diagnose a fresh water export through Fram Strait roughly 40% lower than the classical estimate by Aagaard 
and Carmack (1989).

4.2.5.  Large-Scale Ocean Circulation

The AMOC is an important part of the global overturning circulation and it 
is an important carrier of heat and fresh water in the Atlantic. The AMOC 
stream function (Figure 20a) represents the zonally integrated view. Facing 
west, the North Atlantic Deep Water cell is oriented clockwise and includes 
the downward motion associated with deep water formation in the Labrador 
Sea and Nordic Seas, as well as the overflows across the Greenland-Scot-
land Ridge. The maximum strength of the AMOC exceeds 16 Sv at approx-
imately 40°N and we diagnose an export of about 14 Sv at 30°S. The lower, 
counter-clockwise oriented cell is associated with Antarctic Bottom Water 
(AABW) entering the Atlantic and upwelling in the basin. The strength of 
the AABW cell in the North Atlantic is roughly consistent with the obser-
vations from the RAPID project, but for the South Atlantic the simulations 
likely underestimate the AABW inflow. While the simulated AABW maxi-
mum is slightly above 2 Sv, observation-based estimates point to values of 
6 Sv (Ganachaud & Wunsch, 2003) or 8 Sv (Talley et al., 2003). Although 
the overturning stream function cannot be compared directly with observa-
tion, the RAPID project has provided measurements of the respective flow 
components at 26.5°N. The profile obtained over more than a decade of 
observations (Smeed et al., 2018) is shown together with the profiles from 
the piControl run and the historical simulation (Figure 20b) and with their 
variability range estimated from the standard deviation of monthly fields. 
In the upper ocean, the model reproduces well the shape of the profile, the 
maximum near 1,000  m depth and also the range of variability. The zero 
crossing is located above 4,000 m in the model, but resides roughly 700 m 

Figure 18.  Climatology (1980–2014) of (a) sea surface temperature (SST, in °C) and (b) sea surface salinity (SSS, in PSU) simulated in the ICON-ESM historical 
simulations together with the model biases for (c) SST and (d) SSS with respect to the observation-based Polar Science Center Hydrographic Climatology PHC (Steele 
et al., 2001). The global-mean biases and the root-mean-square (rms) errors are also provided.

Figure 19.  Zonal mean global ocean (a) temperature (°C), and (b) salinity 
(PSU) bias relative to the PHC climatology.
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deeper in the RAPID data. Compared to various versions of MPI-ESM1.2 (Gutjahr et al., 2019) and other CMIP6 
models (e.g., Danabasoglu et al., 2020; Held et al., 2019), which show even shallower NADW cells, the ICON-
ESM results are, however, closer to the observations.

The transport through selected passages reflects the representation of the large-scale ocean circulation and can be 
evaluated in comparison with observational estimates. The total depth-integrated transports through the passages 
given in Table 4 are mostly simulated within the observational uncertainty found in the literature. The transport 
through Bering Strait is a key element of the Arctic fresh water budget and the historical simulations are close 
to the estimates by Woodgate et al. (2006, 2012). The exchange of water masses between the Atlantic Ocean and 
the Nordic Seas is important for the overturning circulation. The simulated transports are consistent with the 
circulation scheme by Hansen et al. (2008). The Indonesian Throughflow is another important contributor to the 
warm-water route of the global conveyor. The simulated transports are slightly underestimated in comparison 
with the estimate by Gordon et  al.  (2010). The Drake Passage transport is clearly underestimated in ICON-
ESM, both in comparison with the traditional estimate around 135  Sv (Cunningham et  al.,  2003; Nowlin & 
Klinck, 1986) and with the more recent compilation by Donohue et al. (2016). At this stage it is not clear if the 
mismatch between observed and simulated Drake Passage (and likely Antarctic Circumpolar Current) is related 
to biases in the wind stresses or the settings of the eddy and background diffusivity in the ocean circulation (Gent 
et al., 2001).

The equatorial hydrography and the representation of the zonally oriented current systems is important for varia-
bility features such as Tropical Instability Waves and for coupled ocean-atmosphere phenomena like the El-Nino 

Figure 20.  AMOC in ICON-ESM: (a) ensemble mean overturning stream function (in Sverdrup, 1 Sv = 10 6 m 3s −1) in the Atlantic from the five historical simulations 
averaged over the period 1980–2014; (b) AMOC profile at 26.5°N for the historical ensemble (blue) and the piControl simulation (red) together with the observational 
estimate from RAPID (gray); shown are the mean profiles (thick lines) and the range of variability derived from monthly standard deviations.

Section ICON-ESM Obs. Reference

Bering Strait 0.7–0.8 0.7–1.1 Woodgate et al. (2006) and Woodgate et al. (2012)

Fram Strait −(2.6–2.8) −1.75 ± 5.01 Fieg et al. (2010)

Denmark Strait −(4.7–4.9) −4.8 Hansen et al. (2008)

−3.4 ± 1.4 Jochumsen et al. (2012)

Iceland-Scotland 4.7–4.9 4.8 Hansen et al. (2008)

4.6 ± 0.25 Rossby and Flagg (2012)

Indonesian Throughflow 9.9–10.1 11.6–15.7 Gordon et al. (2010)

Drake Passage 108–112 134.0 ± 14.0 Nowlin and Klinck (1986)

173.3 ± 10.7 Donohue et al. (2016)

Table 4 
Simulated and Observed Net Volume Transports (Sverdrups) Across Sections (Positive Means Northward)
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Southern Oscillation (ENSO). Johnson et al. (2002) provided a compilation of temperature and salinity data and 
current measurements from the 1990s, which we compare with ICON-ESM results in Figure 21. At 110°W, the 
placement of the eastward equatorial undercurrent (EUC) and the westward flows on its northern and southern 
flanks are reproduced well in the model and the depth of the core of the undercurrent lies roughly at the correct 
depth of 75m (Figures 21a and 21b). The model underestimates, however, the speeds of the eastward undercurrent 
and the westward currents flanking the undercurrent. The observed maximum speed of the EUC reads 0.9 ms −1 
whereas the simulation produces a core speed of about 0.6 ms −1. While the 26°C isotherm outcrops roughly at the 
correct position, the near surface waters are up to 4°C too cold. This results in much stronger stratification and a 
tighter thermocline. The strong subsurface cold bias is reflected in the pronounced cold bias in the Pacific and the 
thermocline properties might influence the El Nino Southern Oscillation variability (Section 4.2.7). The section 
along the Equator confirms that the position of the EUC's core depth is well captured in the model, as are the 
amplitudes of the EUC and the westward flow near the surface. The weaker EUC seen in Figure 21b is therefore 
more related to a biased longitudinal positioning of the maximum strength of the EUC.

4.2.6.  Sea Ice

Sea-ice thickness distributions and extents for late boreal winter and late boreal summer are presented in Figures 22 
and 23 for both hemispheres. Arctic and Antarctic sea-ice edges are reproduced in good agreement with the Euro-
pean Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facilities 
on Ocean and Sea Ice (OSI SAF) data set (EUMETSAT, 2015) for the respective winter seasons but summer ice 
cover is clearly underestimated. Observations indicate that large parts of the Arctic are ice-covered in summer, 
or at least show sea-ice concentrations above 15%. In contrast the simulated concentrations exceed the 15% 
threshold only in a relatively small region between Fram Strait and the North Pole. Summer sea ice is also very 
thin, rarely reaching 1 m thickness. The winter sea-ice thickness distribution is too homogeneous and lacks the 
typical shape seen in observations (Schweiger et al., 2011) with maximum thicknesses of up to 5m at the northern 
coast of Greenland and north of the Canadian Archipelago. Deficiencies in the sea-ice thickness distributions are 
likely related to biases in the atmospheric circulation as indicated by the sea-level pressure errors in Figure 6. 
Mismatches in the seasonal amplitude and the too thin summer ice need further attention. During the tuning 
process we tried different options for albedo parameters or the lead-closing scheme. These were either unsuccess-
ful in improving summer sea ice or led to overly large sea-ice extent in winter (in particular in the Labrador Sea) 
with negative consequences for deep water formation and the strength of the AMOC. Comparing the coupled 

Figure 21.  Tropical Pacific zonal velocities (in ms −1, color shading) and temperatures (in °C, contour lines) in the ICON-ESM simulation (left) compared to the 
observation-based estimate by Johnson et al. (2002) (right) at 110°W (upper row) and along the Equator (lower row).
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simulation with a stand-alone ocean run (albeit at somewhat higher horizontal resolution in the Arctic) reveals 
that the more realistic forcing derived from atmospheric reanalysis leads to a better representation of the sea-ice 
distribution, while the forced ocean/sea-ice model also features too thin summer sea ice (cf., Korn22).

4.2.7.  Variability Simulated by ICON-ESM

Of the many aspects of climate variability, we have chosen here the El-Nino-Southern Oscillation (ENSO), the 
Madden-Julian Oscillation (MJO), and the North Atlantic Oscillation (NAO).

ENSO is one of the most important modes of tropical variability with global teleconnections. To analyze char-
acteristic features of ENSO and related quantities we apply the Climate Variability Diagnostics Package (CVDP; 
Phillips et al., 2014). CVDP allows assessment of simulations in comparison with observation to be carried out 
in a consistent way. CVDP results presented here can easily be compared with collections of CMIP5 and CMIP6 
model evaluations carried out by NCAR (www.cesm.ucar.edu/workinggroups/CVC/cvdp/data-repository.html). 
CVDP provides also links to observational data sets for comparison (the Extended Reconstructed Sea Surface 
Temperature ERSST [Huang et al., 2017; Smith et al., 2008] and the Hadley Center Sea Surface Temperature 
HADSST [Rayner et  al.,  2003] for sea surface temperature and GPCP [Adler et  al.,  2018] for precipitation). 
We show here a subset of ENSO features that are based on SST time series from the Nino3.4 region. First, 
we present spectra (Figure  24) obtained for boreal winter (DJF) conditions from the five-member historical 
ensemble (red lines) and from the piControl simulation (blue lines). The latter was split into three sections of 

Figure 22.  Ensemble mean sea-ice thickness (shading) for (a) March and (b) September in the northern hemisphere. Thick 
colored lines depict the 15% sea-ice extent boundary in the simulations (orange) and from the OSI SAF (EUMETSAT, 2015) 
observational data set (red) averaged over the period 1979–2005.

Figure 23.  Ensemble mean sea ice thickness (shading) for (a) March and (b) September in the southern hemisphere. Thick 
colored lines depict the 15% ice extent boundary in the simulations (orange) and from the OSI SAF (EUMETSAT, 2015) 
observational data set (red) averaged over the period 1979–2005.

http://www.cesm.ucar.edu/workinggroups/CVC/cvdp/data-repository.html
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160 years. All time series show a peak near 3 years and similar variability 
in the control and historical runs. The spectral peaks are more pronounced 
than those from the CMIP6 version of the MPI-ESM-LR and the level of 
variability is considerably higher than the observed spectra. ERSST data as 
well for the entire period (ERSST5, 1920–2014) as well as those from the last 
35 years (ERSST5_1) show a much broader spectrum and indicate less varia-
bility on the 3-year scale. Regarding the level of spectral power, ICON-ESM 
is not an exception compared to other CMIP5 and CMIP6 models according 
to the NCAR repository, but it belongs certainly not to the better perform-
ing models. We hypothesize that the sharp spectral peak at 3 years may be 
related to the overly strong stratification in the thermocline, which tends to 
enhance the thermocline feedback (Dewitte et al., 2013). Spatial composites 
of boreal winter ENSO-related anomalies of temperature and precipitation 
are shown in Figures 25a and 25b, respectively. While the general patterns 
are reproduced well, there are deficiencies in reproducing the amplitude of 
the SST response at the Equator, likely caused by the overly strong ther-
mocline. In particular, positive anomalies reach too far into the warm pool 
region, where they also shift the positive precipitation anomaly too far to the 
west (Figure 25b).

In the tropical atmosphere, convectively coupled equatorial waves show some 
dependency on the coupling with the SSTs. Therefore, we expect changes 
with respect to the results of the atmosphere-only version ICON-A (Crueger 
et al., 2018). Actually, we find an improved signature of the MJO in ICON-
ESM, while other waves show weaker power than in ICON-A (Figure 26). 
This can be assessed by the wave number-frequency spectra of daily precip-

itation (Kiladis et al., 2009). The GPCP precipitation spectra reveal the strongest power for the waves of the 
theoretical solutions of the shallow water theory indicated by the solid lines (Wheeler & Kiladis, 1999). In the 
symmetric spectra (Figures  26a and  26b), the eastward propagating Kelvin waves for ICON-ESM show less 
power than the observations and also ICON-A (Figure 16b, Crueger et al., 2018). On the other hand, the westward 
propagating Equatorial Rossby waves (ER), often associated with tropical easterly wave disturbances and hurri-
canes, show a nearly realistic power. A strong improvement is found for the MJO, whose signature is found for 

Figure 24.  El Nino-Southern Oscillation (ENSO) variability derived from 
Nino3.4 time series from (red) the historical ensemble, (blue) the piControl 
simulation, and (orange) a MPI-ESM-LR historical simulation (Mauritsen 
et al., 2019). The piControl experiment was subdivided into three 160-year 
long sections. Estimates from the observational ERSST5 data set (Huang 
et al., 2017) are included, where ERSST5_1 denotes a subset from the last 
35 years.

Figure 25.  Spatial composites of ENSO (Nino3.4) events for (a and c) SST (in °C), and (b and d) precipitation (in mm day −1) from (a and b) the historical ensemble 
mean, (c) the HadSST, and (d) the GPCP precipitation data sets.
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wave numbers between 1 and 3 and periods between 30 and 90 days. GPCP and ICON-ESM show a similar power 
for the MJO. This improvement for ICON-ESM compared to ICON-A confirms that the processes involved in 
the MJO are actually coupled to the ocean. The antisymmetric ICON-ESM spectrum (Figures 26c and 26d) only 
shows weak power in the coupled simulation. The eastward propagating inertio-gravity (EIG) or mixed Rossby 
gravity (MRG) waves are clearly underrepresented compared to GPCP. These results however, are similar to the 
ICON-A results, indicating that a coupling between atmosphere and ocean does not play a considerable role for 
these waves.

Another frequently discussed variability pattern is associated with the NAO. Its variations influence the North 
Atlantic region, water mass conversion in the Labrador Sea, and the European climate. We've calculated the 
NAO as the leading Empirical Orthogonal Function of sea-level pressure over the area 20°–80°N and 90°–40°W 

Figure 26.  Wave number-frequency power spectra of the symmetric (upper) and antisymmetric (lower) component of 
precipitation, summed from 13°N to 13°S, plotted as ratios between raw power and the power of smoothed red noise 
background spectra from GPCP (a and c) and ICON-ESM V1.0 (b and d) and Positive/negative wave numbers represent 
eastward/westward propagating waves. Horizontal dashed lines represent periods of 3, 6, and 30 days. Solid lines represent 
the solutions of the shallow-water equations: for the symmetric components Kelvin and equatorial Rossby (ER) waves and 
for the anti-symmetric components inertio gravity waves (EIG) and mixed Rossby gravity (MRG) waves. In (a and b) the 
Madden-Julian Oscillation (MJO) signal appears with strong power on the eastward propagating part with wave numbers 1–3 
and periods longer than 30 days (Kiladis et al., 2009). Analysis period is 1997–2014, as in Crueger et al. (2018).

    a)   GPCP                                                                                                 b)  ICON-ESM

c) GPCP                                                                                                d) ICON-ESM
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following Hurrell (1995) (not shown). The NAO signature is less pronounced compared to ICON-A (Crueger 
et al., 2018) and its dipole amplitude clearly underestimated compared to observations. Its positive center reveals 
a smaller extent and is displaced northeastward relative to what is observed. In addition, there is no pronounced 
negative center. The variance explained by the NAO is smaller in ICON-ESM (43.5%) than in the observations 
(49.5%). This too weak NAO in ICON-ESM may be related to the too weak extratropical stationary wave pattern 
(see Figure 6) in sea level pressure.

4.3.  Ocean Biogeochemistry Simulated by HAMOCC

The performance of ICON-ESM in simulating the ocean carbon cycle is evaluated in the historical simulation. 
Only one ensemble member was available including HAMOCC. We compare the climatological mean states of 
ocean pCO2, surface phosphate and total alkalinity to observations (Figure 27). The observational data include 
pCO2 compiled by Landschützer et al. (2015) for the time period of 1982–2015 and surface phosphate and total 
alkalinity from the Global Ocean Data Analysis Project version 2 database (Olsen et al., 2016) for 1972–2014. 
The modeled data are averaged over the time periods corresponding to their respective observations.

ICON-ESM captures the observed spatial pattern of phosphate concentration. Low concentrations are detected in 
the subtropical Atlantic and Pacific and Indian Ocean, while the highest concentrations are detected in the North 

Figure 27.  Climatological mean state of ocean biogeochemical variables from ICON-ESM (left column) and ICON-ESM minus observation (right column). The 
shown variables are ocean surface pCO2 (top row), surface phosphate concentration (middle row), and total alkalinity (bottom row). The observed pCO2 data are from 
Landschützer et al. (2015) and phosphate and total alkalinity data are from the Global Ocean Data Analysis Project version 2 database.
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Pacific and Southern Ocean. The surface phosphate is underestimated in the Southern Ocean and eastern equa-
torial Pacific and overestimated along the southern Chilean coast and in most low-concentration regions such as 
the subtropical North Atlantic and western Pacific. This pattern of phosphate bias is similar to the simulations of 
MPI-ESM1.2-HR (Müller et al., 2018).

The spatial pattern of the surface total alkalinity also matches the observations, with the highest values in the 
subtropical Atlantic and Pacific. The bias in surface alkalinity is relatively small in most regions and highly 
correlated with the SSS bias. A high negative bias in the Arctic extending into the sub-polar North Atlantic is 
apparent, attributed to the fresh SSS bias.

Regarding the ocean pCO2, the overall regional pattern is well reproduced, with maximum values detected in the 
tropical Pacific and minimum values in the extra-tropical regions; but differences are also detected. In the equa-
torial Pacific, high pCO2 biases are detected, with negative biases in the eastern equatorial Pacific and positive 
bias in the western equatorial Pacific. In general, ICON-ESM simulates higher pCO2 over most of the oceans 
compared to observations. This is mainly attributed to positive SST biases in most regions or negative alkalinity 
biases in the areas with fresh SSS bias. In addition, ICON-ESM simulates a lower net global ocean carbon sink 
compared to observations (not shown). ICON-ESM simulates a decadal mean net ocean carbon sink of 1.61 
GtC/yr for 2000–2009, which is on the lowest range of 2.1 ± 0.5 GtC/yr reported by the Global Carbon Budget 
(Friedlingstein et al., 2020).

4.4.  Idealized CO2 Increase Simulations and Climate Sensitivity

Two measures of the model's response to changes in radiative forcing are computed using the idealized CO2-in-
crease experiments in CMIP6 DECK: Transient Climate Response (TCR) and Equilibrium Climate Sensitivity 
(ECS). TCR is computed from the experiment where CO2 increases by 1% per year (1pctCO2). The TCR is 
estimated as the GSAT increase around the time of CO2-doubling, which happens after 70 years of simulation. 
To minimize effects of internal variability we take a 20-year average between years 60 and 79 as suggested by 
Meehl et al. (2020) and we arrive at a TCR of 2.1 K. This value is slightly higher than the 1.8 K derived for the 
CMIP6 version of MPI-ESM-LR and in the middle of the range found in the CMIP6 multi-model assessment 
by Meehl et al.  (2020). Differences in TCR are often related to variations in the ocean heat content changes 
under global warming, which could be different in MPIOM and ICON-O due to different formulations of verti-
cal mixing and the GM parameters (Semmler et al., 2021). ECS is estimated using the DECK “abrupt4xCO2” 
experiment applying the method of Gregory et al. (2004), which has also been used by Meehl et al. (2020). We 
perform a linear regression between the GSAT and the net downward radiative flux at the top-of-atmosphere 
over 150 years of simulation. ECS is then estimated from an extrapolation of the regression line to zero net heat 
imbalance (Figure 28b). This procedure results in an ECS of 3.7 K, which can be compared with the value of 2.9 
in MPI-ESM-LR. MPI-ESM and ICON-ESM are quite similar in their estimate of the effective forcing (estimated 
as the crossing of the regression lines with the y-axis in Figure 28b), but the slopes of the regression lines are 
considerably different. We note that the change of temperature over time differs for the later part of the experi-
ments. Redoing the ECS estimation excluding the first 20 years in the regression, we find a much higher value 
of 4.3 K in ICON, whereas there is only a relatively small change to 3.1 K in MPI-ESM. This difference is likely 
related to different evolution of local or regional feedbacks (Armour et al., 2013). However, for the ICON-ESM 
no effort was made to tune the climate sensitivity in order to better match the historical record as it was done for 
MPI-ESM1.2 (Mauritsen & Roeckner, 2020). ICON-ESM's ECS values are higher than those of its predeces-
sors, but are considerably lower than the estimates from several new CMIP6 models (Meehl et al., 2020; often 
exceeding 5 K). ICON-ESM's ECS lies well in the 5%–95% range of 2.3–4.7 K estimated from “multiple lines of 
evidence” by Sherwood et al. (2020).

5.  Discussion
During the tuning phase we have explored different parameter settings and, in the case of ocean vertical mixing, 
the choice between two different parameterization schemes (TKE, PP, see Section 2.2). We started the coupled 
experiments using parameter settings inherited from the stand-alone ocean and atmosphere simulations. While 
these gave good or at least acceptable results in ICON-A (Crueger et al., 2018) and ICON-O (Korn22), solutions 
meeting our tuning goals (see Section 3) were much harder to obtain.
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Problematic biases increased or became more apparent as feedbacks between the coupled components evolved. 
For example, the ICON-A AMIP simulation described in Crueger et  al.  (2018) exhibits relatively good skill 
scores, but features strong positive sea-level pressure biases in high northern latitudes (their Figure 3). In the 
coupled simulation, this error is accompanied by too weak winds over the subpolar North Atlantic that could 
lead to biases in ocean circulation, water mass transformation and, eventually, to a strong reduction or collapse 
of the AMOC. Changing parameter settings in the SSO parameterization (see Table 1) turned out to be an effec-
tive way to reduce the SLP bias. However, for instance, small values of gkdrag reducing SLP biases also led to 
stronger errors in upper tropospheric and stratospheric zonal wind strength and distribution. Therefore, the results 
presented here are the results of compromises. Avoiding detrimental effects in some key quantities, such as the 
collapse of the AMOC or a freeze-over of the Labrador Sea in the ocean, required sometimes parameter settings 
in the atmosphere that turned out to be sub-optimal in terms of atmospheric performance skill scores (Figure 5).

In general, we found that tuning choices had often complex and unexpected effects in the coupled system. Partly, 
these were hard to grasp as they require relatively long adjustment times. Experience gained in uncoupled simula-
tions can often not be transferred to the coupled system, and feedbacks working in the coupled system may modify 
or overrule the effects. Moreover, obtaining a tuning target is often dependent on several parameter settings and 
these may influence each other. We demonstrate this with the example of the AMOC strength taken from several 
ICON-ESM experiments (at least 100-year long) with different parameter settings. ICON-O stand-alone exper-
iments, where only the coefficients for isoneutral diffusion K and the thickness diffusion according to the GM 
parameterization κ have been changed, indicated that larger K and κ lead to weaker overall AMOC strength, likely 
due to a stronger flattening of isopycnals. This behavior has been analyzed by Marshall et al. (2017) in stand-
alone ocean model configurations. However, an inspection of the multitude of coupled experiments leads us to 
conclude that it is possible to arrive at any AMOC state even for K and κ set to zero. We found fewer solutions 
with weak overturning at high K and κ, but this may be due to the smaller number of experiments. It is also 
difficult to relate the AMOC strength uniquely to other parameters. For example, the experiments run with K/κ 
equal 400 ms −2 in Figure 29 come with various settings of the wave drag parameter gkdrag and an inspection 
of this column in isolation would lead us to conclude that lower wave drag parameters produce higher ocean 
overturning, possibly due to the effects on wind stress, and subsequently ocean and sea-ice circulation. As has 
been demonstrated by Putrasahan et al. (2019) and K. Lohmann et al. (2021) for MPI-ESM, wind stress changes 
influence sea-ice exports from the Arctic and cross-basin exchanges of salinity in the sub-polar North Atlantic 
resulting in modifications of deep-water formation and AMOC strength. But again, looking at all experiments 
using a moderately low gkdrag of 0.02 we find an AMOC range between 7.6 and almost 25 Sv. We conclude that 

Figure 28.  Estimating the Transient Climate Response (TCR) and Equilibrium Climate Sensitivity (ECS) from idealized DECK experiments. (a) Evolution of global 
surface air temperature in the 1pctCO2 (blue) and abrupt4XCO2 (red) together with the piControl experiment (black). Vertical lines indicate the period for the TCR 
calculation and (b) regression analyses to estimate ECS in ICON-ESM (dark red) and in MPI-ESM1.2. The small dots on the horizontal axis indicate twice the ECS 
based on a regression using the first 150 years following Gregory et al. (2004). The bigger dots show the respective intersection of the regression based on years 
20–200.
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a more thorough multi-cause/multi-parameter investigation on the sensitivity of the AMOC is required for the 
coupled ICON-ESM.

It is obvious that another round of tuning and an even more extensive set of sensitivity experiments could have 
improved some of the shortcomings mentioned above. We decided, however, to finalize “version 1” at this stage to 
set a milestone in the model development. Moreover, model development activities in the component models have 
continued in parallel and we prefer to postpone a second round of major tuning efforts until some innovations can 
be included in the standard model configurations. We mention here two developments in ICON-O: the z* vertical 
coordinate and a newly developed dynamical sea-ice model. z* is designated to replace “z-level” as standard 
coordinate and comes together with an improved representation of the bottom topography in the form of “partial 
cells,” which was already implemented in MPIOM and its predecessors. The implementation process includes a 
slight reorganization of level distribution in the upper ocean and we plan to achieve a better representation of the 
mixed layer processes and mixing by re-assessing the TKE parameterization. Mehlmann and Korn (2021) have 
developed a novel sea-ice dynamics formulation, which is based on an analogue of the Arakawa-CD grid. The 
CD-grid placement has appealing resolving properties at high spatial resolution compared to traditionally used 
discretizations (Mehlmann et al., 2021). Furthermore, the development allows a straightforward coupling to the 
Arakawa C-grid-like discretization used in ICON-O. As the new sea ice dynamics are realized on the same grid 
as ICON-O the coupling does not require rotations (cf. Section 2.3) and promises a better representation of the 
bathymetry. While the deficits in the simulated sea-ice climatology documented here may be related to problems 
in sea-ice thermodynamics, we expect improvement from the new dynamics, for example, for the representation 
of narrow passages and the related ice transports. By affecting fresh-water exchanges, the latter could lead to 
improvements in water mass properties and air-sea exchanges for example, in the Labrador Sea.

Ongoing development work will further explore ICON-specific opportunities like grid refinement in ICON-O 
(Logemann et al., 2021) and nesting in the atmosphere (Jungandreas et al., 2021). The excellent scaling capabil-
ities of ICON have been documented in the DYAMOND project with ICON-A setups between 80 and 2.5 km 
(Hohenegger et al., 2020; Stevens et al., 2019) and are further explored in very high resolution coupled set-ups 
with grid spacing of a few kilometers in the DYAMOND-WINTER project (https://www.esiwace.eu/services/
dyamond/winter).

While the ICON-A version described herein uses the physical parameterization package inherited from ECHAM6 
(Giorgetta et al., 2018; Stevens et al., 2013), which was designed for “climate” applications at grid sizes from 50 
to 350 km, higher-resolution ICON application will require other choices. At km-scale, some parameterizations 
may become obsolete or will be better represented by schemes from the numerical weather-prediction version of 
ICON (Zängl et al., 2015). Therefore, a longer-term goal of the ICON community is the development of a system 
for “seamless” predictions from weather to climate scales.

Figure 29.  Scatterplot relating the thickness diffusion parameter according to the GM parameterization κ with the strength of 
the AMOC at 26°N. The black circle indicates the standard experiment (piControl) and colors refer to different choices of the 
gravity wave drag parameter gkdrag. Shown are experiments with a runtime of at least 100 years.

https://www.esiwace.eu/services/dyamond/winter
https://www.esiwace.eu/services/dyamond/winter
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6.  Summary and Conclusions
In this paper, we have documented ICON-ESM (V1.0), the first coupled model that is based on the ICON frame-
work (Zängl et  al., 2015) with its icosahedral grid concept. We have presented the first simulations with the 
coupled ICON-ESM confronting it with the task to deliver reasonable results in a well-defined experimental 
framework, the CMIP6 DECK simulations, and we have published the results on the Earth System Grid Federa-
tion (ESGF) repository (Lorenz et al., 2021). Coupling of the newly developed component models and the tuning 
of the coupled model turned out to be more challenging than expected. Tuning choices that revealed robust 
results in stand-alone simulations needed adjustment or reconfiguration in the presence of coupled feedbacks. 
The performance of the ICON-ESM reported in this paper can be summarized as follows:

1.	 �We were able to fulfill the primary tuning goals: The 500-year long piControl simulation exhibits little drift in 
key quantities like GSAT, radiation, sea-ice cover, and the AMOC. TOA radiation is well balanced with little 
remaining drift. GSAT and other global quantities are close to observational estimates for the pre-industrial 
climate.

2.	 �A set of five historical simulations reproduces the observed global surface temperature evolution largely in 
agreement with observational data sets, albeit with somewhat too strong warming in the second half of the 
20th century.

3.	 �ICON-ESM's climate sensitivities (TCR, ECS) are slightly higher than the corresponding values from 
MPI-ESM, but well in the range of the CMIP6 multi-model ensemble (Meehl et al., 2020), and the recent 
estimate based on multiple lines of evidence by Sherwood et al. (2020).

4.	 �The present-day climate simulated for the last decades reproduces largely the climatology from observations 
and reanalyses, but biases are often larger than in ICON-ESM's predecessor model MPI-ESM1.2 and other 
CMIP6 models.

5.	 �The tuning of the ocean carbon cycle component represented by the model HAMOCC has been performed 
resulting in a stable piControl state with adequately represented distributions of the key ocean biogeochemical 
variables, like phosphate, total alkalinity and pCO2.

6.	 �Ocean carbon cycle in the historical simulation is overall in good agreement with observations regarding 
regional patterns and absolute values. Mismatches between modeled and observed patterns are to a first order 
attributable to the biases in SST and SSS. Overall, this shows a high sensitivity of ocean biogeochemical 
parameters to the underlying physical state of the ocean.

Problematic issues identified in the analyses are: In the atmosphere, the representation of both low-level and high-
level clouds showed considerable deficiencies. Bias patterns, which were already identified in stand-alone atmos-
phere simulations became more pronounced in the coupled system. Counter-tuning that could have improved 
cloud distributions had negative side effects on other parts of the climate system. Skill scores based on wind and 
temperature data are worse than in MPI-ESM. In particular zonal wind biases remain and there is some indication 
that the parameterization of sub-grid scale orographic effects requires further attention.

Overall, the rather zonal pattern of the land surface temperature biases hints to the global atmospheric circulation 
as their major cause. Nevertheless, the winter land surface temperatures show regional biases that may be traced 
to a misrepresentation of surface albedo values. The biases over Antarctica and Greenland partly reflect albedo 
deviations over glaciers. Errors in land temperatures over Eurasia are substantially caused by a too low snow 
cover and the associated snow-albedo feedback. The biases could be partly improved by changes in the near-in-
frared and visible albedo settings in JSBACH 4, but others are complex and related to deficits in snow cover or 
soil and canopy albedo biases.

In the ocean, SST and SSS climatologies show bias patterns and magnitudes comparable to other coarse-resolu-
tion CMIP5 or CMIP6 models, whereas the relatively large sub-surface biases are of concern in particular in the 
tropical oceans. Here, a retuning of the vertical mixing scheme might alleviate misrepresentation of wind-induced 
mixing. From improvements in the upper-ocean stratification we expect also positive effects on ENSO variability 
and processes in the tropical oceans. Northern hemisphere sea ice concentrations is somewhat too high in winter 
with too much ice cover, for example, in the Labrador Sea. On the other hand, the seasonal cycle is too strong 
leading to too thin sea-ice in summer with only half of the Arctic basis being ice-covered in summer. The seasonal 
cycle is also too strong in the southern hemisphere.
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ENSO variability in ICON-ESM is less close to observations than MPI-ESM's, but similar to many other CMIP5 
and CMIP6 models. The spectra derived from Nino3.4 timeseries of the historical simulations show a too narrow 
peak at about 3 years and an overly high level of variance. The spatial patterns associated to ENSO variability 
agree with the observed ones, but there are too strong signals in the warm pool and in the Indian Ocean.

We emphasize that the present configuration is the first milestone in establishing ICON-ESM as a highly flex-
ible modeling system. ICON-ESM V1 serves as a basis for further developments that will take advantage of 
ICON-specific properties such as spatially varying resolution, and coupled configurations at resolutions of a few 
kilometers in atmosphere, land, and ocean.

Data Availability Statement
The data from the ICON-ESM V1.0 DECK simulations are available at the CMIP6 repository of the Earth 
System Grid Federation (Lorenz et  al.,  2021) and can be accessed at http://esgf-data.dkrz.de/search/cmip6-
dkrz/. The model code of ICON is available to individuals under licenses (https://mpimet.mpg.de/en/science/
modeling-with-icon/code-availability). By downloading the ICON source code, the user accepts the licence 
agreement. The source code of the ICON-ESM-V1.0 used in this study, primary data, and scripts used in the 
analyses and for producing the figures can be obtained from the WDCC Long Term Archive (http://cera-
www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model Doi:10.35089/WDCC/
RUBY-0_ICON-_ESM_V1.0_Model).
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