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ABSTRACT

Models indicate a time-varying radiative response of the Earth system to CO2 forcing (Andrews

et al. 2012; Zhou et al. 2016). This variation implies a significant uncertainty in the estimates of

climate sensitivity to increasing atmospheric CO2 concentration (Hawkins and Sutton 2009; Grose

et al. 2018). In energy-balance models, the temporal variation is represented as an additional

feedback mechanism (Winton et al. 2010; Geoffroy et al. 2013a; Rohrschneider et al. 2019), which

also depends on the ocean temperature change. Models and observations also indicate that a

spatio-temporal pattern in surface warming controls this additional contribution to the radiative

response by modulating the tropospheric instability (Ceppi and Gregory 2017; Zhou et al. 2016).

Some authors focus on the atmospheric mechanisms that drive the feedback change (Stevens et al.

2016), reducing the role of the ocean’s energy uptake variations. For the first time, I derive,

using a linearized conceptual energy-balance model (Winton et al. 2010; Geoffroy et al. 2013a;

Rohrschneider et al. 2019), an explicit mathematical expression of the radiative response and its

temporal evolution. This expression connects the spatio-temporal warming pattern to a dynamical

thermal capacity, stemming from changes in the ocean energy uptake. In comparison with more

realistic energy-balance frameworks, and unlike the notion of additional feedback mechanisms,

I show that an expanded effective thermal capacity better explains the variation of the radiative

response, naturally connects with the spatio-temporal surface warming pattern and provides a

non-circular framework to explain the variation of the climate feedback parameter.
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Significance statement. Understanding the factors that change the Earth’s radiative response to26

forcing is central to reduce the uncertainty in the climate sensitivity estimates. The current27

atmospheric-only view on the problem of the time-varying climate feedback parameter unneces-28

sarily hides the ocean’s role. This work shows a novel perspective for the problem, enabling the29

development of a more general theory.30

1. Introduction31

Climatemodels show awide range of temporal variation in their radiative response to CO2 forcing32

(Senior andMitchell 2000;Andrews et al. 2012;Ceppi andGregory 2017). This variation appears in33

numerical experiments where the atmospheric CO2 concentration is raised andmaintained constant34

afterwards. The rise in the atmospheric CO2 concentration modifies the Earth’s emissivity to long-35

wave radiation, resulting in surface warming. Surface warming modifies the radiative flux at the36

top of the atmosphere (TOA). The modified flux tends to cancel the energy imbalance introduced37

by the radiative forcing. Surface warming also changes other variables, such as the atmospheric38

temperature and humidity, that further modify the radiative flux. These changes are the feedback39

mechanisms on surface warming. The net rate at which the globally-averaged surface warming40

reduces the globally-averaged TOA imbalance is known as the climate feedback parameter.41

If the feedback mechanisms did not change with time, the climate feedback parameter would be42

constant, and a diagram of globally-averaged TOA imbalance change N versus surface temperature43

change Tu (NT−diagram) would be linear. However, climate models present NT−diagrams with44

different degrees of curvature, indicating a non-constant climate feedback parameter (presented in45

Figure 1; Andrews et al. 2012; Ceppi and Gregory 2017). The degree of curvature is also modified46

by forcing strength (Senior and Mitchell 2000; Meraner et al. 2013; Rohrschneider et al. 2019).47

Temporal and state dependencies can be the root of climate feedback’s variation. Observations48
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indicate that a spatio-temporal pattern of surface warming modifies cloud feedback in decadal49

timescales by altering atmospheric stability, leading to feedback changes that depend not only50

on surface warming (Zhou et al. 2016; Mauritsen 2016; Ceppi and Gregory 2017). The spatio-51

temporal warming pattern should depend also on the state of the system leading to contributions52

to the climate feedback’s temporal and state dependencies.53

In a globally-averaged energy-balance framework, N should be equal to the forcing F plus the54

radiative response of the system R, N = F + R. Following the classical picture of the linearized55

feedback mechanisms depending only on the surface warming (Gregory et al. 2002) Tu, we should56

have R ∼ λTu, where λ is a constant climate feedback parameter. Thus, if we consider a constant57

forcing F, the slope of the NT−diagram would be constant and equal to λ, in contradiction with58

observations and complex models as discussed above. Thus, either the non-linear component plays59

a more significant role, or the feedback mechanisms depend on more than the surface warming.60

The problem cannot be solved by introducing more structure in the system. For instance, if61

we introduce two coupled layers (Winton et al. 2010; Geoffroy et al. 2013b; Rohrschneider et al.62

2019). One layer represents the atmosphere, land and the mixed upper ocean layer: the upper63

layer. The deep layer corresponds to the deep ocean. Both layers have different thermal capacities.64

The thermal capacities provide two timescales. One can show that these timescales only delay the65

equilibrium but do not alter the climate feedback parameter λ. For the upper layer, the energy66

budget is Nu = F + λTu −H, where H is the coupling between the upper and the deep layer: the67

deep-ocean energy uptake. The deep layer budget is, therefore, Nd = H. The sum of both budgets68

provides the planetary imbalance at the TOA N = F +λTu. Thus, N has the same form as before.69

Geoffroy et al. (2013a) introduced a perturbed deep-ocean energy uptake in the upper-layer70

budget, H′ := εH, where ε is the efficacy parameter. The deep-layer budget is still equal to71

H, leading to a different energy imbalance at the TOA: N = F + λTu + (H −H′). Although the72
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H−H′ term appears to violate the energy conservation principle, it can be interpreted as additional73

atmospheric feedbacks (e.g. Armour et al. 2013; Stevens et al. 2016) that depend on the deep74

ocean’s temperature. However, this explanation seems to be ad-hoc.75

One of the weakness of the classical approach is the linear approximation. The climate feedback76

parameter λ is defined in terms of the derivative of R evaluated at the initial state. In the same77

manner, the deep-ocean energy uptake H is defined in terms of a derivative evaluated at the initial78

state. Therefore, the seemingly ad-hoc term introduced by Geoffroy et al. (2013a) has a more79

concrete interpretation: the difference between the actual H′ and the reference H results in a80

surplus (1− ε)H. This surplus comes from a dynamically-expanded capacity of the deep ocean81

to uptake energy: an effective thermal capacity. This effective thermal capacity influences the82

flux between the upper and deep layers, modifying the surface temperature from below. Once the83

surface temperature is modified, the usual atmospheric feedbacks change.84

Considering the analytical solutions of the modified two-layer model, I derive for the first time85

an explicit mathematical expression for the slope of the NT−diagrams, including the explicit time86

evolution of this slope. At its core, this expression has the ratio of change of the energy stored87

by the upper and deep layers and supports the more concrete interpretation that I presented above.88

The interpretation of these results is that the atmosphere-ocean coupling sets the spatio-temporal89

warming pattern. Afterwards, the atmosphere adjusts, leading to the changes in the feedback90

mechanisms. I first show the theory of this novel mathematical expression using the linearized91

two-layer model. Afterwards, I take a step back away from the approximation to show why the92

interpretation given above is more relevant.93
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2. Theory94

The following equations define the modified linearized two-layer model (Geoffroy et al. 2013a)95 
Cu ÛTu = F+λTu−εγ(Tu−Td)

Cd ÛTd = γ(Tu−Td)

96

97

where the first equation corresponds to the upper-layer budget and the second equation to the deep98

layer. The parameters λ and γ are the climate feedback parameter and the rate of deep-ocean energy99

uptake in the neighbourhood of the initial state. Cu and Cd are respectively the thermal capacities100

(per unit area) of the upper and deep layers. Tu and Td are temperature anomalies referred to the101

initial state and the dotted quantities are time total derivatives. The planetary imbalance is the sum102

of both equations, resulting in N = F + λTu + (1− ε)γ(Tu −Td). Nonetheless, it is better to write103

these equations in the following fashion104 
ÛTu = F′+λ′Tu−εγ

′(Tu−Td)

ÛTd = γ′d(Tu−Td)

(1)105

106

where F′ := F/Cu with units of Ks−1 and, λ′ := λ/Cu, γ′ := γ/Cu and γ′d := γ/Cd with units107

of s−1. Equations (1) are a system of linear ordinary differential equations (Geoffroy et al.108

2013a; Rohrschneider et al. 2019). Although the solutions are standard and widely discussed in109

other articles (e.g. Geoffroy et al. 2013a; Rohrschneider et al. 2019), here I will use the normal110

mode approach. In the following, I proceed by summarizing the relevant facts, leaving the full111

mathematical discussion to the appendix A of this article.112

The homogeneous (F′ ≡ 0) version of the system (1) has two distinct eigenvalues µ± := (λ̂± κ)/2,113

where λ̂ := λ′−εγ′−γ′d and κ
2 := λ̂2+4λ′γ′d . These eigenvalues provide two distinct eigenvectors,114

forming a basis in which the full system (1) is uncoupled and, therefore, has a straight-forward115

solution. The eigensolutions T± are the solutions associated with each eigenvalue. Afterwards,116

one can return to the original representation, finding that Tu and Td are linear combinations of117
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T±. These linear combinations are the normal modes: the symmetric mode Ts := T++T− and the118

antisymmetric modeTa :=T+−T−. Themain result of this process is thatTu =Ts andTd = αTs+ βTa,119

where α and β are scalars that depend on the coefficients of the system (1). The normal-mode120

representation makes explicit the coupling of the deep layer with the upper layer.121

3. Results122

(i) The explicit slope of the NT−diagram From the solutions to system (1) written in terms of the123

normal modes, one can obtain an expression for the slope of the NT−diagram, ÛN/ ÛTu, of a system124

under constant forcing. In the appendix, I derive the following closed expression for the slope125

in terms of the derivatives of the normal modes and as a factor of the constant climate feedback126

parameter λ127

ÛN
ÛTu
=

{
ε+1
2ε
+
ε−1
2ε

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
−
ÛTa

ÛTs

]}
λ (2)128

129

The main characteristic of equation (2) is the square-bracket term of its right-hand side. It contains130

two parts. The first one sets a basic enhanced slope and contains the sum of the inverse of the131

thermal capacities as if we had an electrical circuit with capacitors in series. The second part132

provides the time evolution. It is a ratio of the changes in energy content. This ratio compares the133

change in energy content of the deep layer with that of the upper layer. To confirm the importance134

of the square-bracket term, one can take the limit as ε→ 1, where the pattern effect is cancelled in135

equation (2)136

lim
ε→1

ÛN
ÛTu
= λ137

138

The strong coupling between the upper and deep layers disappears. We end up with a constant139

slope. However, if ε , 1, the climate feedback parameter varies with the ratio of the changes in140
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energy content from the deep to the upper layer around a basic value that depends on the thermal141

capacities of the system, the square bracket term in equation (2).142

(ii) Explicit expression for the ratio term Using the full mathematical expressions for the solutions143

Ts and Ta for constant forcing, I write the ratio term in equation (2) as144

ÛTa

ÛTs
= tanh

[
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

)]
(3)145

146

The ratio (3) grows in a sigmoidal fashion from −1 to 1. This hyperbolic tangent has a scaling147

factor (κ/2) that sets the rate of change of the hyperbolic tangent between its extreme values. It also148

has a shift (the arctanh term) that determines when the hyperbolic tangent crosses zero, governing149

the contribution of the last term in equation (2). Both scaling and shift are in terms of Cu, Cd, ε, γ150

and λ.151

The interpretation of equation (3) is that, after the initial forcing, the deep ocean warms up slower152

than the upper layer, steepening the slope of the NT−diagram. Once the ratio reaches the sign-153

reversal point, the last term’s contribution in equation (2) only flattens the slope of the NT−diagram.154

The scaling factor and the shift of the ratio (3) set the timescale for the flattening. Equation (3)155

expresses precisely the time evolution of the climate feedback parameter that others have only156

approximated through numerical experiments with the modified two-layer model (Geoffroy et al.157

2013a; Rohrschneider et al. 2019). Additionally, it establishes a third timescale in the Earth system,158

related to the atmosphere-ocean coupling.159

(iii) Explicit expression of the climate feedback parameter Using the explicit expressions, the160

equation (2) for the climate feedback parameter is161

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
− tanh

(
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

))])
λ (4)162

163
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The factor of λ is composed of terms that are positive except for the ratio term coming from164

equation (3). One can prove that at the start (t = t0) the slope is165

ÛN
ÛTu
(t0) =

(
1+ (ε−1)

γ

|λ |

)
λ166

167

and from here up to the sign reversal of the ratio term, the slope flattens. The flattening is gentle168

at first, but towards the sign reversal it accelerates.169

At the time of sign reversal we have170

ÛN
ÛTu
(trev) =

ε+1
2ε

(
1+

ε−1
ε+1

(
ε

Cu
+

1
Cd

)
Cuγ

|λ |

)
λ171

172

and fromhere and on, the ratio termbecomes positive, leading to an even flatter slope. The flattening173

decelerates and becomes gentle again. The asymptotic value of the slope of the NT−diagram is174

lim
t→∞

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
−1

] )
λ175

176

(iv) Numerical estimates of the atmosphere-ocean coupling By substituting in expression (4) the177

parameter values found by Geoffroy et al. (2013a), I find the timescale for the sign reversal of the178

ÛTa/ ÛTs ratio term. I use the multimodel mean values reported by Geoffroy et al. (2013a). For the179

multimodel average values (Cu = 8.2Wyrm−2 K−1, Cd = 109Wyrm−2 K−1, γ = 0.67Wm−2 K−1,180

λ = −1.18Wm−2 K−1 and ε = 1.28) the sign reversal of the ratio term takes place after 18.3 years.181

This timescale lies between the fast (4.2 years) and slow (290 years) timescales established in terms182

of the thermal capacities alone (Geoffroy et al. 2013a). This timescale is when we are at one half183

of the change between the initial and final values of the slope.184

I calculate the time for sign reversal using the rest of values in the tables of Geoffroy et al. (2013a)185

and obtain that the multimodel average is 18.8 years. The minimum value is 8.8 years for GISS-186

E2-R, whereas the maximum is 25.1 years for CNRM-CM5.1. If I compare with their estimates187

of the fast and the slow timescales, even the extreme values fit well between both. Enlightening is188

9

ESSOAr | https://doi.org/10.1002/essoar.10506865.2 | Non-exclusive | First posted online: Tue, 14 Sep 2021 11:58:01 | This content has not been peer reviewed. 



that the timescale of the sign reversal seems to fit with the de-facto 20-year standard to evaluate189

the change in slope (e.g. Ceppi and Gregory 2017).190

I also compare between the multimodel averages for all parameters and with the thermal ca-191

pacities as calculated by Jiménez-de-la-Cuesta and Mauritsen (2019): Cu = 7.2Wyrm−2 K−1,192

Cd = 367Wyrm−2 K−1. The calculated deep-layer thermal capacity is larger than the CMIP5193

multi-model average, whereas the calculated value for the upper layer is smaller than the CMIP5194

average. From these differences, we can note changes in the slope evolution (figure 2). Although195

the difference in final slopes is small, the calculated thermal capacities strongly shift the sign-196

reversal timescale: a deeper deep ocean lengthens the sign-reversal timescale, whereas a shallower197

upper layer shortens it.198

4. Analysis and Discussion199

(i) Consequences of the equation (4) We have two terms in the factor of equation (4): the identity200

term and the (ε − 1)−term. The second term is only active if ε , 1, and has two contributions.201

The first one is a constant contribution linked to the thermal capacities of the system. The second202

contribution is time-varying and depends on the ratio ÛTa/ ÛTs. This ratio measures the proportion of203

energy that goes into the deep ocean compared to that stored in the upper layer. Together, these204

terms provide a physical picture in which the slope’s variation is determined by a basic thermal205

capacity, which is expanded dynamically. The expansion stems from the changing energy fluxes206

between the upper and deep layers that differ from the flux at the starting state represented by γ. This207

flux difference changes the surface temperature and connects with the evolving spatio-temporal208

warming pattern in a more concrete fashion, given that the evolution and spatial distribution of the209

sea surface temperature corresponds to changes in the energy fluxes.210
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I showed above that the thermal capacities have a strong effect on the timescale at which the slope211

of the NT−diagram changes (figure 2). Thermal capacities in complex models depend strongly on212

the depth of the ocean mixed-layer and, therefore, on the atmosphere-ocean coupling, providing213

diverse behaviors (figure 3)214

The above interpretation of the two-layer model in the context of the real Earth System is the215

following: The relative change in the energy fluxes due to the atmosphere-ocean coupling com-216

pels the atmospheric feedbacks to adjust. Thus, the magnitude of the changes in the atmospheric217

radiative response depend on the atmosphere-ocean coupling. One can argue that the non-local218

free-tropospheric warming from the deep-convective warm regions is enough to explain the change219

in feedbacks. However, for the pattern effect to act as proposed by Zhou et al. (2016); Mauritsen220

(2016); Ceppi and Gregory (2017), one needs the surface temperature variation in the subsidence221

areas. Here the atmosphere-ocean coupling and oceanic circulation enter to change the surface tem-222

perature, determining the spatio-temporal warming pattern. Thus, the atmosphere-ocean coupling223

can play a larger role than thought before (Kiehl 2007).224

(ii) State and forcing dependence In this article, I ignored the dependence on the strength of225

forcing (Senior and Mitchell 2000; Meraner et al. 2013; Rohrschneider et al. 2019). However, such226

dependence should come from the reference values ε, λ and γ that exist under a particular forcing.227

Values of λ and γ are first-order derivatives in the neighbourhood of the starting states. Therefore,228

we need to explore the physics behind the ε parameter to understand how it can change depending229

on forcing. The physics of ε is the atmosphere-ocean coupling, including circulation. Therefore,230

we should explore how forcing impacts the atmosphere-ocean coupling, resulting in changes in the231

spatio-temporal warming pattern.232
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There are versions of linearized energy balance models in which a simple non-linear term is233

introduced (Rohrschneider et al. 2019). Although higher-order terms in the Taylor expansion of234

either the radiative response R or the energy uptake H can provide additional information, the235

dependencies arising from the atmosphere-ocean coupling, as shown in this article, are far more236

important in light of the results presented above.237

(iii) Non-linear planetary energy balance Above I presented evidence favouring the ocean’s238

energy uptake central role in determining the spatio-temporal warming pattern and its effects on239

the atmospheric feedback mechanisms. I test this idea in a more general theoretical framework by240

writing the planetary energy budget in another widely-known representation241

d
dt
(CTu) = (1−α)S+G− εσ( f Tu)

4 (5)242

243

where S := S(t) in Wm−2 is the incoming solar radiative flux at the TOA, α is the planetary244

albedo, G := G(t) in Wm−2 represents the remaining inputs (natural and anthropogenic), and245

the last term is the usual planetary long-wave emission, in Wm−2, as a grey-body of emissivity246

ε and surface temperature Tu with f the lapse-rate scaling factor for the emission temperature.247

At first inspection, we have the origin of the feedback mechanisms: the planetary albedo α, the248

emissivity ε and the scaling factor f . On the one hand, we have the short-wave strand, the planetary249

albedo α := α(Tu,qcld,w, . . . ) that is a function of, e.g., the surface temperature (determining ice-250

sheet and sea-ice area) and the amount of liquid water in the atmosphere forming clouds. On251

the other hand, we have the long-wave thread, the emissivity and the lapse-rate scaling factor252

ε, f := f(Tu,qv,qcld,w, . . . ), depending on, e.g. the surface temperature, and the amount of water253

vapor and cloud liquid water in the atmosphere.254

The atmospheric feedback mechanisms cannot rely on any temperature we define inside the255

ocean. The ocean affects α, ε and f only through changing Tu. In equation (5), we cannot see such256
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dependence. Therefore, here we would be tempted to artificially introduce it by saying that α, ε257

and f depend on another temperature in the ocean, as others have interpreted from the modified258

two-layer model. In this work, I have shown that there is another more natural place where the259

ocean enters into play: the energy imbalance at the TOA, N .260

We usually picture N as N = (d/dt)(CTu) =C ÛTu. However, we can have processes that modify the261

thermal capacity: For example, (a) if the mixed-layer depth varies, it modifies the amount of water262

in contact with the atmosphere; (b) deep-water upwelling not only reduces the surface temperature263

but increases the thermal capacity of the mixed layer; (c) a similar effect comes from water from264

ice sheet melting. Therefore, the sea surface temperature is controlled by the oceanic circulation265

and the ocean-atmosphere interaction, setting the warming pattern. Thus, a more proper definition266

for N is N = (d/dt)(CTu)− ÛCTu =C ÛTu. The term ÛCTu considers these processes that modify the sea267

surface temperature and the ocean energy fluxes from below.268

If we rewrite equation (5) using the corrected N:269

N = (1−α)S+G− εσ( f Tu)
4− ÛCTu (6)270

271

The last term of equation (6) is the representation of the effect of the spatio-temporal warming272

pattern. The factor ÛC needs a new differential equation that describes the temporal variations of273

the energy uptake due to the ocean circulation and atmosphere-ocean interactions. If we want to274

use this non-linear framework, we would also need additional differential equations or constitutive275

relationships for α, ε and f .276

However, to look at the effect of this additional dynamical thermal capacity term on the atmo-277

spheric feedbacks, let us consider the total derivative of N . In the appendix B, I present the details278
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of this derivation. The expression for the total derivative of equation (6) divided by ÛTu is279

ÛN
ÛTu
=

[
(1−α)

ÛS
ÛTu
+
ÛG
ÛTu

]
280

−

[
1+

S
4εσ f ( f Tu)3

Ûα

ÛTu
+

Tu
4ε
Ûε

ÛTu
+

Tu
f

Ûf
ÛTu
+

ÛC
4εσ f ( f Tu)3

+
T

4εσ f ( f Tu)3

ÜC
ÛTu

]
4εσ f ( f Tu)

3 (7)281

282

The first term is the contribution from the forcing variation, whereas the second term is the283

contribution of the radiative response. This last term is the analogue for the expression of the284

square bracket term in equation (2). This last term has a non-dimensional factor multiplying285

the product of Planck feedback. In the non-dimensional factor we have a sum of terms. Each286

term represents the contributions of feedbacks and other processes to the radiative response in287

comparison to the Planck feedback. The first term in this factor is one, for the Planck feedback.288

The second term is the contribution of the planetary-albedo feedback, including surface albedo as289

well as short-wave cloud feedback. The third term is the contribution of the emissivity feedback,290

including water-vapor feedback. The fourth term is the lapse-rate feedback. The last two terms291

are the contribution of the atmosphere-ocean interaction and ocean circulation to the radiative292

response.293

Equation (7) is the non-linear analogue of equation (2) if we consider that the forcing is stationary.294

In a linearization, the first four terms would provide a term analogous to λ. The last two terms,295

considering that at least ÜC , 0, would provide the analogue of the remaining terms corresponding296

to a situation where ε , 1. If ε = 1, then ÛC = 0 and the linearization of equation (7), would297

provide a constant feedback parameter if we accept that α, ε and f covary with Tu except for sign.298

These facts provide more support for interpreting the modified two-layer model as introducing299

a dynamical thermal capacity, turning the limelight to the role of the ocean circulation and the300

atmosphere-ocean interactions in setting the sea surface temperature patterns.301
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5. Conclusions302

I presented for the first time an explicit mathematical expression of the slope of the NT−diagrams.303

For that end, I used the linearized framework of the two-layer energy balance model. From the304

analysis, I uncover another timescale in the Earth System: the timescale of the changes of the305

climate feedback parameter. The timescale is related to the ratio of change in the energy content306

between the deep- and the upper-layer (atmosphere, land and mixed upper ocean). In CMIP5307

models this time scale is around 18 years, providing theoretical support to the 20-year standard308

timescale used to study the change in the climate feedback parameter.309

The mathematical expression and the analysis of the modified linearized two-layer model suggest310

that the spatio-temporal warming pattern is a product of the atmosphere-ocean coupling (the H term311

in equations). Linearization uses the value of the coupling at the starting state. When introducing312

a modified coupling (H′) that represents departures from the starting state, the modified two-layer313

model can represent the variation of the slope of the NT−diagrams. The found mathematical314

expression suggest that the difference H −H′ acts as a dynamically-enlarged thermal capacity315

that depends on the ratio of change in the energy content between layers, changing the surface316

temperature. In the real Earth System, therefore, the atmosphere-ocean coupling and the circula-317

tion produce the evolving spatio-temporal warming pattern, to which the atmospheric feedbacks318

respond. I also shortly discussed this interpretation in terms of a non-linear framework, where319

feedback mechanisms not depending on the surface temperature are complicated to introduce. In-320

stead of introducing exogenous dependencies in the feedback terms, the solution is that the thermal321

capacity of the system varies. The variation represents the atmosphere-ocean coupling and ocean322

circulation and relates to the spatio-temporal surface warming pattern. Its effect on the surface323

temperature then seamlessly translates to changes on the atmospheric feedback mechanisms.324
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APPENDIX A333

Mathematical analysis of the modified two-layer model334

In Classical Mechanics, a very coarse thinking would be reducing the field to the task of solving335

the equation Ûp = F for any force term, either analytically or numerically. Going further leads to336

conservation principles and formulations of Classical Mechanics that provide more information337

without actually obtaining solutions, if that is possible at all. In this appendix, reduced to the scale338

of a simplified framework, I show that by delving deep into the mathematics of a system of linear339

ordinary differential equations, the structure of the solutions and its physical interpretation, one340

can obtain a new view on an old problem.341

The appendix is written in an exhaustive way and I leave few things without development. The342

cases in which I do not show some algebraic step is because the necessary step has been already343

done or is very simple.344
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Matrix form of the equations345

The equations of two-layer model Geoffroy et al. (2013a) are346

Nu = Cu ÛTu = F+λTu−εγ(Tu−Td)

Nd = Cd ÛTd = γ(Tu−Td)

(A1)347

348

and the planetary imbalance is N = Nu+Nd. I present another form of the equations, where I divide349

by the thermal capacities.350

ÛTu =
F
Cu
+ λ

Cu
Tu−ε

γ
Cu
(Tu−Td)

ÛTd =
γ

Cd
(Tu−Td)

351

352

If I define F′ := F/Cu, λ
′ := λ/Cu, γ

′ := γ/Cu, γ
′
d := γ/Cd, one can write the equations in a lean353

way354

ÛTu = F′+λ′Tu−εγ
′(Tu−Td)

ÛTd = γ′d(Tu−Td)

(A2)355

356

I will put the system in matrix form. I define T := (Tu,Td),F′ := (F′,0) and357

A :=
©«
λ′− εγ′ γ′d

εγ′ −γ′d

ª®®®¬ (A3)358

359

and the system can be written360

ÛT = F′+TA (A4)361

362

which is the representation of the system in the temperature basis.363

Eigenvalues and eigenvectors364

I want to analyse the normal modes of the system. For that end, I need the eigenvalues of the365

homogeneous system obtained as the solutions of the characteristic equation366

(λ′− εγ′− µ)(−γ′d − µ)− εγ
′γ′d = 0 (A5)367

368
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369

−λ′γ′d + εγ
′γ′d + µγ

′
d −λ

′µ+ εγ′µ+ µ2− εγ′γ′d = 0370

−λ′γ′d + µγ
′
d −λ

′µ+ εγ′µ+ µ2 = 0371

−λ′γ′d −(λ
′− εγ′−γ′d)µ+ µ

2 = 0372

373

The solutions of equation (A5) are374

µ =
(λ′− εγ′−γ′d)±

[
(λ′− εγ′−γ′d)

2+4λ′γ′d
]1/2

2
(A6)375

376

and, given that in the Earth Cu < Cd, one can prove that there are two real and different eigenval-377

ues. One needs to check that the square root term is not complex or zero. This only happens if the378

sum within the square root is negative or zero379

(λ′− εγ′−γ′d)
2+4λ′γ′d ≤ 0380

(λ′− εγ′)2−2(λ′− εγ′)γ′d +γ
′2
d +4λ′γ′d ≤ 0381

λ
′2−2λ′εγ′+ (εγ′)2−2(λ′− εγ′)γ′d +γ

′2
d +4λ′γ′d ≤ 0382

λ
′2−2λ′εγ′+ (εγ′)2−2λ′γ′d +2εγ′γ′d +γ

′2
d +4λ′γ′d ≤ 0383

(λ′/γ′d)
2−2(λ′/γ′d)ε(γ

′/γ′d)+ (ε(γ
′/γ′d))

2+2ε(γ′/γ′d)+1+2(λ′/γ′d) ≤ 0384

(λ′/γ′d)
2−2(λ′/γ′d)[ε(γ

′/γ′d)−1]+ (ε(γ′/γ′d))
2+2ε(γ′/γ′d)+1 ≤ 0385

(λ′/γ′d)
2−2(λ′/γ′d)[ε(γ

′/γ′d)−1]+ (ε(γ′/γ′d)+1)2 ≤ 0386

(λ′/γ′d)
2+ (ε(Cd/Cu)+1)2 ≤ 2(λ′/γ′d)[ε(Cd/Cu)−1]387

388

In the last inequality, the left-hand side is always positive. The right-hand side depends on the389

sign of the factors. The middle factor is negative since λ′ is negative and γ′d is positive. The third390

factor is positive provided that ε > Cu/Cd. Given that ε ≥ 1 and Cu < Cd, then the third factor391

is positive in our case. Then the right-hand side is negative. Thus, we obtained a contradiction392
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by supposing that the square root term was negative or zero. Therefore, the conclusion is that393

the eigenvalues are two real and distinct numbers. Some CMIP5 models show ε < 1 according394

to Geoffroy et al. (2013a). These also fit here. In the last condition of the above expression we395

require that ε(Cd/Cu) −1 > 0. If ε ≥ Cu/Cd this is fulfilled. Cu/Cd is a small quantity and, in the396

models that have a lesser than one ε, always the ε is larger than this small quantity by an order of397

magnitude. Thus, what I had said until now and will be said afterwards applies to all cases.398

I call the solutions µ+ and µ−, depending on the sign of the square root term. Let us rewrite their399

expression in more lean fashion. I define λ̂ := λ′− εγ′− γ′d and we call κ the square root term.400

Then, I rewrite the solutions (A6) as401

µ± =
λ̂± κ

2
(A7)402

403

Now that I know the eigenvalues, one should get the eigenvectors of the system and solve it404

easily. The eigenvectors are the generators of the kernel of the operators A− µ± id. Let us write405

the diagonal of the matrix A with the definition of λ̂406

A =
©«
λ̂+γ′d γ′d

εγ′ λ̂−(λ′− εγ′)

ª®®®¬407

408

and then the matrices for each eigenvalue have the form409

A− µ± id =
©«
λ̂+γ′d − µ± γ′d

εγ′ λ̂−(λ′− εγ′)− µ±

ª®®®¬410

=
©«
µ∓+γ

′
d γ′d

εγ′ µ∓−(λ
′− εγ′)

ª®®®¬411

412

Since eigenvalues are real and distinct, there should be two linearly-independent eigenvectors,413

one for each eigenvalue. These vectors should fulfill that e±(A− µ± id) = 0. Solving that linear414
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system, I find the eigenvectors in temperature representation415

e± = eu −
µ∓+γ

′
d

εγ′
ed (A8)416

417

The procedure to get the result is to solve the system of homogeneous linear equations e±(A−418

µ± id) = 0419 
(µ∓+γ

′
d)e±,u +εγ′e±,d = 0

γ′de±,u+[µ∓−(λ′− εγ′)]e±,d = 0
420

421

I solve the first equation for the component e±,d , and substitute this result on the second equation422

e±,d = −
µ∓+γ

′
d

εγ′
e±,u −→423 (

γ′d −
[µ∓−(λ

′− εγ′)](µ∓+γ
′
d)

εγ′

)
e±,u = 0424

εγ′γ′d −[µ∓−(λ
′− εγ′)](µ∓+γ

′
d)

εγ′
e±,u = 0, (ε,γ′ , 0) ∴425

426

427 {
εγ′γ′d −[µ∓−(λ

′− εγ′)](µ∓+γ
′
d)

}
e±,u = 0428 {

εγ′γ′d + [(λ
′− εγ′)− µ∓](γ

′
d + µ∓)

}
e±,u = 0429

−
{
−εγ′γ′d + [(λ

′− εγ′)− µ∓](−γ
′
d − µ∓)

}
e±,u = 0430

431

and in the last expression we have two options: either e±,u is zero or the term within curly braces is432

zero. However, the expression in curly braces is the characteristic equation (A5) and then always433

vanishes identically. This means that e±,u = α ∈ R can be chosen arbitrarily. I plug in this result in434

the expression for e±,d and get that435

e±,u = α436

e±,d = −
µ∓+γ

′
d

εγ′
α437

438
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or as a vector in the temperature basis439

e± = e±,ueu + e±,ded440

e± = αeu −
µ∓+γ

′
d

εγ′
αed441

442

and since α is arbitrary this means we are in front of a subspace of vectors. I choose a basis by443

selecting α = 1.444

e± = eu −
µ∓+γ

′
d

εγ′
ed445

446

which is the same as the equation (A8).447

Now, I can derive the expressions of the temperature basis vectors in terms of the two eigenvectors.448

If one solves for eu in equation (A8)449

e±+
µ∓+γ

′
d

εγ′
ed = eu450

451

but we have here two expressions in a condensed way. Therefore,452

e−+
µ++γ

′
d

εγ′
ed = e++

µ−+γ
′
d

εγ′
ed453 (

µ++γ
′
d

εγ′
−
µ−+γ

′
d

εγ′

)
ed = e+− e−454

(µ++γ
′
d)− (µ−+γ

′
d)

εγ′
ed = e+− e−455

µ+− µ−
εγ′

ed = e+− e−456

ed =
εγ′

µ+− µ−
(e+− e−)457

458

Thus, I have expressed ed in terms of the eigenvectors.459
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Now, I substitute the last result on one of the expressions for eu.460

e++
µ−+γ

′
d

εγ′
ed = eu461

e++
µ−+γ

′
d

εγ′
εγ′

µ+− µ−
(e+− e−) = eu462

e++
µ−+γ

′
d

µ+− µ−
(e+− e−) = eu463 (

1+
µ−+γ

′
d

µ+− µ−

)
e+−

µ−+γ
′
d

µ+− µ−
e− = eu464

µ+− µ−+ µ−+γ
′
d

µ+− µ−
e+−

µ−+γ
′
d

µ+− µ−
e− = eu465

µ++γ
′
d

µ+− µ−
e+−

µ−+γ
′
d

µ+− µ−
e− = eu466

467

and the temperature basis vectors in the eigenvector representation are468

eu =
µ++γ

′
d

µ+− µ−
e+−

µ−+γ
′
d

µ+− µ−
e−

ed =
εγ′

µ+− µ−
(e+− e−)

(A9)469

470

Matrix in the eigenvector representation. Solutions471

With these results, I can write the matrix A (A3) in the eigenvector basis and it should be the472

following diagonal matrix473

B =
©«
µ+ 0

0 µ−

ª®®®¬ (A10)474

475

I show how to get to this result. Let subscripts represent rows and superscripts represent columns.476

I define that latin indices (i, j,k, . . . ) have the possible values u,d; and greek indices (α,β,ζ . . . )477

have possible values +,−. Also, repeated indices in expressions mean summation over the set of478

possible values. With these considerations, equation (A9) is479

ei = Λ
α
i eα480

481
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where the rows of matrix Λ contain the coordinates of each of the vectors of the temperature basis482

in the eigenvector representation. Analogously, equation (A8) is483

eα = Θi
αei484

485

where matrix Θ has in its rows the coordinates the eigenvector basis in the temperature represen-486

tation. This means that487

eα = Θi
αei = Θ

i
αΛ

β
i eβ488

489

which is only possible if the matrices Λ and Θ are inverse of each other490

eα = δβαeβ = eα491

492

Thus, we write Θ = Λ−1.493

Now, matrix A is the temperature representation of a linear operator f . If v = v je j is a vector in494

the temperature representation, then the action of the linear operator f should be f (v) = f (v je j) =495

v j f (e j). Then the action of f on a vector expressed in a given basis only depends on the action496

of the operator on the basis: f (v) = f (v je j) = v j f (e j) = v jAk
j ek . Thus, the matrix A has in its497

rows the coordinates in the temperature representation of the action of f over each basis vector.498

Once one understands what is happening under the hood, what we want is the matrix B, which499

is the representation of f in the eigenvector basis. Therefore, I begin with the basic relationship500

in the temperature representation and introduce the change of representation using the alternative501
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representation of equations (A8) and (A9)502

f (ei) = A j
iΛ

ζ
j eζ503

f (Λαi eα) = A j
iΛ

ζ
j eζ504

Λ
α
i f (eα) = A j

iΛ
ζ
j eζ505

(Λ−1)iβΛ
α
i f (eα) = (Λ−1)iβA j

iΛ
ζ
j eζ506

f (eβ) = (Λ−1)iβA j
iΛ

ζ
j eζ, f (eβ) := Bζ

βeζ507

Bζ
β = (Λ

−1)iβA j
iΛ

ζ
j508

509

or in matrix notation B = Λ−1AΛ. Then, I multiply the matrices510

Λ
−1 =

©«
1 − µ−+γ

′
d

εγ′

1 − µ++γ
′
d

εγ′

ª®®®¬,A =
©«
λ̂+γ′d γ′d

εγ′ −γ′d

ª®®®¬,Λ =
©«

µ++γ
′
d

µ+−µ−
−
µ−+γ

′
d

µ+−µ−

εγ′

µ+−µ−
−

εγ′

µ+−µ−

ª®®®¬511

512

First, note that µ+ − µ− = κ. One also looks at the following quantities that will help in the513

process: µ++ µ− = λ̂ and µ+µ− = 1
4 (λ̂

2− κ2) = 1
4 (λ̂

2− λ̂2−4λ′γ′d) = −λ
′γ′d . I proceed with the first514

product, Λ−1A.515

Λ
−1A =

©«
1 − µ−+γ

′
d

εγ′

1 − µ++γ
′
d

εγ′

ª®®®¬
©«
λ̂+γ′d γ′d

εγ′ −γ′d

ª®®®¬516

=
©«
λ̂+γ′d − µ−−γ

′
d

(
1+ µ−+γ

′
d

εγ′

)
γ′d

λ̂+γ′d − µ+−γ
′
d

(
1+ µ++γ

′
d

εγ′

)
γ′d

ª®®®¬517

=
©«
λ̂− µ−

εγ′+µ−+γ
′
d

εγ′ γ′d

λ̂− µ+
εγ′+µ++γ

′
d

εγ′ γ′d

ª®®®¬518

=
©«
µ+

εγ′+µ−+γ
′
d

εγ′ γ′d

µ−
εγ′+µ++γ

′
d

εγ′ γ′d

ª®®®¬519

520
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and multiply the result by Λ521

Λ
−1AΛ =

©«
µ+

εγ′+µ−+γ
′
d

εγ′ γ′d

µ−
εγ′+µ++γ

′
d

εγ′ γ′d

ª®®®¬
©«

µ++γ
′
d

µ+−µ−
−
µ−+γ

′
d

µ+−µ−

εγ′

µ+−µ−
−

εγ′

µ+−µ−

ª®®®¬522

=
1
κ

©«
µ2
++ µ+γ

′
d + εγ

′γ′d + µ−γ
′
d +γ

′2
d −µ+µ−− µ+γ

′
d − εγ

′γ′d − µ−γ
′
d −γ

′2
d

µ−µ++ µ−γ
′
d + εγ

′γ′d + µ+γ
′
d +γ

′2
d −µ2

−− µ−γ
′
d − εγ

′γ′d − µ+γ
′
d −γ

′2
d

ª®®®¬523

=
1
κ

©«
µ2
++ (λ̂+ εγ

′+γ′d)γ
′
d −µ+µ−−(λ̂+ εγ

′+γ′d)γ
′
d

µ−µ++ (λ̂+ εγ
′+γ′d)γ

′
d −µ2

−−(λ̂+ εγ
′+γ′d)γ

′
d

ª®®®¬524

=
1
κ

©«
µ2
+− µ+µ− λ′γ′d −λ

′γ′d

−λ′γ′d +λ
′γ′d −µ

2
−+ µ+µ−

ª®®®¬ =
1
κ

©«
µ+κ 0

0 µ−κ

ª®®®¬ =
©«
µ+ 0

0 µ−

ª®®®¬525

526

the last line is the result that we wanted to check.527

In the eigenvector representation the system (A4) has the following form528

ÛT = F′+TB (A11)529

530

and, therefore, is decoupled. Therefore, I can solve each equation separately. I only need to531

transform the forcing vector to the eigenvector representation.532

The equations are533

ÛT± = F′±+ µ±T±534

535

and the solutions of a generic initial value problem are536

T± =
(
T±,0+

∫ t

t0
F′±e−µ±(τ−t0)dτ

)
eµ±(t−t0) (A12)537

538

where the initial values in the eigenvector representation in terms of the initial values in the539

temperature representation are540

T±,0 = ±
1

µ+− µ−
[(µ±+γ

′
d)Tu,0+ εγ

′Td,0]541

542
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the forcing components are543

F′± = ±
µ±+γ

′
d

µ+− µ−
F′544

545

and the solutions in the temperature representation are546

Tu = T++T−

Td = −
µ−+γ

′
d

εγ′
T+−

µ++γ
′
d

εγ′
T−

547

548

If I further expand the Td solution, the form of the solutions is more elegant549

Tu = T++T−

Td = −
λ̂+2γ′d
2εγ′

(T++T−)+
κ

2εγ′
(T+−T−)

(A13)550

551

since it shows that the solutions in the temperature space are in a sort of symmetric and antisymmet-552

ric combinations of the solutions in the eigenvector representation. These are the normal modes.553

One thing to note is that the upper temperature is the symmetric mode and the deep temperature is554

a mixture of symmetric and antisymmetric modes.555

I show how I got the solutions (A13). Just expand the Td equation.556

Td = −
µ−+γ

′
d

εγ′
T+−

µ++γ
′
d

εγ′
T−557

= −
1
εγ′

[(
λ̂− κ

2
+γ′d

)
T++

(
λ̂+ κ

2
+γ′d

)
T−

]
558

= −
1
εγ′

[(
λ̂+2γ′d

2
−
κ

2

)
T++

(
λ̂+2γ′d

2
+
κ

2

)
T−

]
559

= −
1

2εγ′
[
(λ̂+2γ′d)(T++T−)− κ(T+−T−)

]
560

561

From now on, I write Ts := T++T− and Ta := T+−T−.562
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Planetary imbalance563

Now, I will find an expression for the planetary imbalance in terms of the equations (A13). The564

mathematical expression that I should expand is N = Nu+Nd = Cu ÛTu+Cd ÛTd565

Cu ÛTu = Cu ÛTs566

Cd ÛTd = −Cd
λ̂+2γ′d
2εγ′

ÛTs +Cd
κ

2εγ′
ÛTa ∴567

N = Cu ÛTs −Cd
λ̂+2γ′d
2εγ′

ÛTs +Cd
κ

2εγ′
ÛTa568

=

(
Cu−Cd

λ̂+2γ′d
2εγ′

)
ÛTs +Cd

κ

2εγ′
ÛTa569

= Cs ÛTs +Ca ÛTa570

571

Now, ÛT± = F′±+ µ±T±, then572

ÛTs = µ+T++ µ−T−+ (F′++F′−) = µ+T++ (µ+− κ)T−+ (F
′
++F′−)573

= µ+Ts − κT−+ (F′++F′−) = µ+Ts −
κ

2
(Ts −Ta)+ (F′++F′−)574

=
λ̂

2
Ts +

κ

2
Ta + (F′++F′−) =

λ̂

2
Ts +

κ

2
Ta +F′575

ÛTa = µ+T+− µ−T−+ (F′+−F′−) = µ+T+−(µ+− κ)T−+ (F
′
+−F′−)576

= µ+Ta + κT−+ (F′+−F′−) = µ+Ta +
κ

2
(Ts −Ta)+ (F′+−F′−)577

=
κ

2
Ts +

λ̂

2
Ta + (F′+−F′−) =

κ

2
Ts +

λ̂

2
Ta +

λ̂+2γ′d
κ

F′ ∴578

N =
1
2

(
λ̂Cs + κCa

)
Ts +

1
2

(
λ̂Ca + κCs

)
Ta +

(
Cs +Ca

λ̂+2γ′d
κ

)
F′579

580
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Further expanding the coefficients581

λ̂Cs + κCa = λ̂Cu−
Cd

2εγ′
(λ̂2+2γ′d λ̂− κ

2) = λ̂Cu−
Cd

2εγ′
(λ̂2+2γ′d λ̂− λ̂

2−4γ′dλ
′)582

= 2
Cu
ε

(
λ′+

ε−1
2

λ̂

)
583

λ̂Ca + κCs = κCu−
Cd

2εγ′
(κλ̂+2γ′dκ− κλ̂) = κCu−

Cu
ε
κ = κ

Cu
ε
(ε−1)584

Cs +Ca
λ̂+2γ′d

κ
= Cu−

Cd
2εγ′
(λ̂+2γ′d − λ̂−2γ′d) = Cu585

586

then the imbalance is587

N =
Cu
ε

[
εF′+

(
λ′+

ε−1
2

λ̂

)
Ts + κ

ε−1
2

Ta

]
(A14)588

589

From here, I derive the slope of a NT−diagram. In such a diagram, N is plotted versus Tu. If we590

naïvely take the partial derivative of equation (A14) with respect to Tu, we will arrive to a constant591

slope. This is contrary to the evidence that it will change with time. An NT−diagram is one592

projection of the phase space of the system. Then, the NT−diagram slope does not only depend on593

how N varies with Tu. It is a comparison of how the changes of Tu are expressed in changes of N .594

Then, the slope is the total derivative dN/dTu. By virtue of the chain rule, dN/dTu = ÛN(dt/dTu).595

In a neighborhood where Tu(t) is injective, dt/dTu = 1/ ÛTu. Therefore, the slope dN/dTu is the ratio596

of two total derivatives: ÛN and ÛTu.597

We know that Tu = Ts, then ÛTu = ÛTs. Therefore, the total derivative of the planetary imbalance is598

ÛN = (∂t N)+ (∂Ts N) ÛTs + (∂Ta N) ÛTa599

600

that is a change depending only on time, a second change depending only on changes of Ts and a601

third depending on changes of Ta. Therefore, the ratio of total derivative of planetary imbalance602

and total derivative of Tu is603

ÛN
ÛTu
= (∂t N)

1
ÛTs
+ (∂Ts N)+ (∂Ta N)

ÛTa

ÛTs
604

605
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As one can see in the above expression, the ratio includes the derivative of the imbalance with606

respect to Tu but is not the only contribution. One contribution comes from the explicit dependence607

on time of N and how it compares with the dependency of Tu. The other contribution comes608

from the antisymmetric mode and how it changes in relation to the symmetric one. From equation609

(A14), I can write the precise expression of the slope as a factor of λ.610

I multiply equation (A14) by λ/λ and reorganise.611

ÛN
ÛTu
=

Cu
ε

[
ε
ÛF′

ÛTs
+

(
λ′+

ε−1
2

λ̂

)
+ κ

ε−1
2
ÛTa

ÛTs

]
λ

λ
612

=

[
Cu
λ

ÛF′

ÛTs
+

(
λ′

ελ′
+
ε−1
2ε

λ̂

λ′

)
+
ε−1
2ε

κ

λ′

ÛTa

ÛTs

]
λ613

614

then we will expand the terms to separate the terms that vanish when ε = 1615

ÛN
ÛTu
=

{
Cu
λ

ÛF′

ÛTs
+

[
1
ε
+
ε−1
2ε

(
λ′− εγ′−γ′d

λ′

)]
+
ε−1
2ε

κ

λ′

ÛTa

ÛTs

}
λ616

=

{
Cu
λ

ÛF′

ÛTs
+

[
2
2ε
+
ε−1
2ε

(
1− ε

γ

λ
−

Cu
Cd

γ

λ

)]
+
ε−1
2ε

Cuκ

λ

ÛTa

ÛTs

}
λ617

=

[
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ε

(
ε+

Cu
Cd

)
γ

λ
+
ε−1
2ε

Cuκ

λ

ÛTa

ÛTs

]
λ618

=

[
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ε

(
ε+

Cu
Cd

)
γ

λ
+
ε−1
2ε

Cuκ

λ

ÛTa

ÛTs

]
λ619

=

{
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ελ

[(
ε+

Cu
Cd

)
γ−Cuκ

ÛTa

ÛTs

]}
λ620

=

{
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ελ

Cuκ

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

]}
λ621

=

{
Cu
λ

ÛF′

ÛTs
+
ε+1
2ε
−
ε−1
2ε

Cuκ

λ

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

]}
λ622

=

{
−

Cu
|λ |

ÛF′

ÛTs
+
ε+1
2ε
+
ε−1
2ε

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

]}
λ623

624
625

ÛN
ÛTu
=

{
−

Cu
|λ |

ÛF′

ÛTs
+
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
−
ÛTa

ÛTs

] )}
λ (A15)626

627

The term in square brackets in equation (A15) is the key term that provides a NT−diagram with628

evolving slope when the forcing is constant. The second part of this term provides the temporal629
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evolution, whereas the first part is a constant term that sets the base enhancement of the slope.630

Interestingly, this first part contains in particular the thermal capacities of the system.631

If I rewrite this first part of the square-brackets term, the terms are shown clearly632

ÛN
ÛTu
=

{
−

Cu
|λ |

ÛF′

ÛTs
+
ε+1
2ε
+
ε−1
2ε

Cuκ

|λ |

[(
ε

Cu
+

1
Cd

)
γ

κ
−
ÛTa

ÛTs

]}
λ (A16)633

634

Now in the first part it is the sum of the inverse of the thermal capacities as if we have an electrical635

circuit with capacitors in series. Having such a term in the equation for the slope favors the physical636

interpretation in terms of thermal capacities, instead of variable feedback mechanisms. The time-637

evolving ratio term in the second part, that represents the dynamics of the atmosphere-ocean638

coupling, only strengthens this interpretation.639

As a corollary, if the forcing is constant and ε→ 1, thenwe recover the classical linear dependence640

of the imbalance on Tu641

lim
ε→1

ÛN
ÛTu
= λ, F = const642

643

Symmetric and antisymmetric modes644

From equations (A13), we see that the symmetric and antisymmetric modes are the basis for645

the description of the solutions. Thus, let us give some explicit expression for the symmetric and646

antisymmetric modes.647
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From equation (A12) and the equations for the initial values and the forcing, I can write more648

explicitly the solution649

T± =
(
T±,0+

∫ t

t0
F′±e−µ±(τ−t0)dτ

)
eµ±(t−t0)

650

=

(
±

1
µ+− µ−

[(µ±+γ
′
d)Tu,0+ εγ

′Td,0]±
µ±+γ

′
d

µ+− µ−

∫ t

t0
F′e−µ±(τ−t0)dτ

)
eµ±(t−t0)

651

= ±
e(λ̂/2)(t−t0)

µ+− µ−

[
(µ±+γ

′
d)Tu,0+ εγ

′Td,0+ (µ±+γ
′
d)

∫ t

t0
F′e−µ±(τ−t0)dτ

]
e±(κ/2)(t−t0)

652

= ±
e(λ̂/2)(t−t0)

µ+− µ−

[
λ̂± κ+2γ′d

2
Tu,0+

2εγ′

2
Td,0+

λ̂± κ+2γ′d
2

∫ t

t0
F′e−µ±(τ−t0)dτ

]
e±(κ/2)(t−t0)

653

= ±
e(λ̂/2)(t−t0)

2(µ+− µ−)

[
(λ̂+2γ′d)Tu,0+2εγ′Td,0± κTu,0+ (λ̂+2γ′d ± κ)

∫ t

t0
F′e−µ±(τ−t0)dτ

]
e±(κ/2)(t−t0)

654

655

Now that I have a more explicit expression, I write the modes656

T+±T− =657

e(λ̂/2)(t−t0)

2(µ+− µ−)

[
(λ̂+2γ′d)Tu,0+2εγ′Td,0+ κTu,0+ (λ̂+2γ′d + κ)

∫ t

t0
F′e−µ+(τ−t0)dτ

]
e(κ/2)(t−t0)

658

∓
e(λ̂/2)(t−t0)

2(µ+− µ−)

[
(λ̂+2γ′d)Tu,0+2εγ′Td,0− κTu,0+ (λ̂+2γ′d − κ)

∫ t

t0
F′e−µ−(τ−t0)dτ

]
e−(κ/2)(t−t0)

659

=
e(λ̂/2)(t−t0)

µ+− µ−

{[
(λ̂+2γ′d)Tu,0+2εγ′Td,0

] e(κ/2)(t−t0)∓ e−(κ/2)(t−t0)

2
660

+κTu,0
e(κ/2)(t−t0)± e−(κ/2)(t−t0)

2
661

+
λ̂+2γ′d

2

[
e(κ/2)(t−t0)

∫ t

t0
F′e−µ+(τ−t0)dτ∓ e−(κ/2)(t−t0)

∫ t

t0
F′e−µ−(τ−t0)dτ

]
662

+
κ

2

[
e(κ/2)(t−t0)

∫ t

t0
F′e−µ+(τ−t0)dτ± e−(κ/2)(t−t0)

∫ t

t0
F′e−µ−(τ−t0)dτ

]}
663

664

The last two terms inside the curly brackets have a similar form as the combinations of exponential665

functions in the first two terms. These combinations of exponential functions are hyperbolic666

functions which can simplify the expressions of the solutions. I would want such a representation667

but a problem is there: the integrals are not the same, therefore I cannot factorise them together.668

Notwithstanding, from the definition of hyperbolic sine and cosine functions, I can write e±x =669
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cosh x ± sinh x. The factors within square brackets in the last two terms can be thought as ex I+±670

e−x I−, where I± are the corresponding integrals. Using the expression of the exponential function in671

terms of the hyperbolic functions, I expand ex I+±e−x I− = (cosh x+sinh x)I+±(cosh x−sinh x)I− =672

(I+± I−)cosh x+ (I+∓ I−)sinh x. Then, I overcome the limitation and now the two terms are written673

with hyperbolic functions. The coefficients of the hyperbolic functions are simple combinations674

of the integrals which can be also expanded easily. I do that now675

I++ I− =
∫ t

t0
F′e−µ+(τ−t0)dτ+

∫ t

t0
F′e−µ−(τ−t0)dτ =

∫ t

t0
F′[e−µ+(τ−t0)+ e−µ−(τ−t0)]dτ676

=

∫ t

t0
F′e−(λ̂/2)(τ−t0)[e−(κ/2)(τ−t0)+ e(κ/2)(τ−t0)]dτ677

= 2
∫ t

t0
F′e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ678

I+− I− =
∫ t

t0
F′e−µ+(τ−t0)dτ−

∫ t

t0
F′e−µ−(τ−t0)dτ =

∫ t

t0
F′[e−µ+(τ−t0)− e−µ−(τ−t0)]dτ679

=

∫ t

t0
F′e−(λ̂/2)(τ−t0)[e−(κ/2)(τ−t0)− e(κ/2)(τ−t0)]dτ680

= −2
∫ t

t0
F′e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ681

682

If one collects terms corresponding to each hyperbolic function in the former expressions for the683

normal modes, obtains the following684

Ts =
e(λ̂/2)(t−t0)

κ

{
C1 cosh

[ κ
2
(t − t0)

]
+C2 sinh

[ κ
2
(t − t0)

]}
(A17)685

Ta =
e(λ̂/2)(t−t0)

κ

{
C2 cosh

[ κ
2
(t − t0)

]
+C1 sinh

[ κ
2
(t − t0)

]}
(A18)686

687
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where688

C1 = κTu,0689

−(λ̂+2γ′d)
∫ t

t0
F′e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ+ κ

∫ t

t0
F′e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ690

C2 = (λ̂+2γ′d)Tu,0+2εγ′dTd,0691

+ (λ̂+2γ′d)
∫ t

t0
F′e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ− κ

∫ t

t0
F′e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ692

693

These expressions for the normal modes are quite elegant, and the coefficients Ci summarize694

all the information from the initial conditions and the forcing. The initial condition terms in the695

Ci correspond to the non-forced response of the system, while the part that is forcing-dependent696

corresponds to the forced response of the system.697

Forced response to constant forcing698

If F′ = F′c , 0 for t > t0 with F′c constant and Tu,0,Td,0 = 0 for t = t0, then699

C1 = F′c

{
−(λ̂+2γ′d)

∫ t

t0
e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ+ κ

∫ t

t0
e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ

}
700

C2 = F′c

{
(λ̂+2γ′d)

∫ t

t0
e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ− κ

∫ t

t0
e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ

}
701

702

where the integrals are easily computed703 ∫ t

t0
e−(λ̂/2)(τ−t0) sinh

[ κ
2
(τ− t0)

]
dτ =

e−(λ̂/2)(t−t0)

λ′γ′d

{
κ

2
cosh

[ κ
2
(t − t0)

]
+
λ̂

2
sinh

[ κ
2
(t − t0)

]}
−

κ

2λ′γ′d
704 ∫ t

t0
e−(λ̂/2)(τ−t0) cosh

[ κ
2
(τ− t0)

]
dτ =

e−(λ̂/2)(t−t0)

λ′γ′d

{
λ̂

2
cosh

[ κ
2
(t − t0)

]
+
κ

2
sinh

[ κ
2
(t − t0)

]}
−

λ̂

2λ′γ′d
705

706

and, upon reduction, the Ci are707

C1 =
F′c
λ′

e−(λ̂/2)(τ−t0)
{
−κ cosh

[ κ
2
(t − t0)

]
+ (2λ′− λ̂)sinh

[ κ
2
(t − t0)

]
+ κe(λ̂/2)(t−t0)

}
708

C2 =
F′c
λ′

e−(λ̂/2)(τ−t0)
{
−(2λ′− λ̂)cosh

[ κ
2
(t − t0)

]
+ κ sinh

[ κ
2
(t − t0)

]
+ (2λ′− λ̂)e(λ̂/2)(t−t0)

}
709

710
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with these expressions is easy to evaluate the terms inside the curly brackets in equations (A17)711

and (A18) and the symmetric and antisymmetric modes are (for t ≥ t0)712

Ts =
Fc

λ

{
e(λ̂/2)(t−t0)

(
cosh

[ κ
2
(t − t0)

]
+

2λ′− λ̂
κ

sinh
[ κ
2
(t − t0)

] )
−1

}
(A19)713

Ta =
Fc

λ

{
e(λ̂/2)(t−t0)

(
2λ′− λ̂
κ

cosh
[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

] )
−

2λ′− λ̂
κ

}
(A20)714

715

where F′c := Fc/Cu. I can also obtain the explicit time derivatives of both modes. We take the time716

derivative both equations (A19) and (A20)717

ÛTs =
Fc

λ
e(λ̂/2)(t−t0)

{
λ̂

2

(
cosh

[ κ
2
(t − t0)

]
+

2λ′− λ̂
κ

sinh
[ κ
2
(t − t0)

] )
718

+
κ

2

(
2λ′− λ̂
κ

cosh
[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

] )}
719

=
Fc

λ
e(λ̂/2)(t−t0)

{
λ′cosh

[ κ
2
(t − t0)

]
+
λ′λ̂+2γ′dλ

′

κ
sinh

[ κ
2
(t − t0)

]}
720

=
Fc

Cu
e(λ̂/2)(t−t0)

{
cosh

[ κ
2
(t − t0)

]
+
λ̂+2γ′d

κ
sinh

[ κ
2
(t − t0)

]}
721

ÛTa =
Fc

λ
e(λ̂/2)(t−t0)

{
λ̂

2

(
2λ′− λ̂
κ

cosh
[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

] )
722

+
κ

2

(
cosh

[ κ
2
(t − t0)

]
+

2λ′− λ̂
κ

sinh
[ κ
2
(t − t0)

] )}
723

=
Fc

λ
e(λ̂/2)(t−t0)

{
λ′λ̂+2γ′dλ

′

κ
cosh

[ κ
2
(t − t0)

]
+λ′ sinh

[ κ
2
(t − t0)

]}
724

=
Fc

Cu
e(λ̂/2)(t−t0)

{
λ̂+2γ′d

κ
cosh

[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

]}
725

726

I present both results jointly to show the simplicity of the derivatives727

ÛTs =
Fc

Cu
e(λ̂/2)(t−t0)

{
cosh

[ κ
2
(t − t0)

]
+
λ̂+2γ′d

κ
sinh

[ κ
2
(t − t0)

]}
728

ÛTa =
Fc

Cu
e(λ̂/2)(t−t0)

{
λ̂+2γ′d

κ
cosh

[ κ
2
(t − t0)

]
+ sinh

[ κ
2
(t − t0)

]}
729

730
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With these derivatives, I can calculate the ratio of the antisymmetric mode derivative to the731

symmetric one that appears in equation (A15)732

ÛTa

ÛTs
=

λ̂+2γ′
d

κ cosh
[
κ
2 (t − t0)

]
+ sinh

[
κ
2 (t − t0)

]
cosh

[
κ
2 (t − t0)

]
+
λ̂+2γ′

d

κ sinh
[
κ
2 (t − t0)

]733

=

λ̂+2γ′
d

κ + tanh
[
κ
2 (t − t0)

]
1+ λ̂+2γ′

d

κ tanh
[
κ
2 (t − t0)

]734

735

Formally, above result have the alternative form736

ÛTa

ÛTs
= tanh

[
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

)]
737

738

This is possible only if
��(λ̂+2γ′d)/κ

�� ≤ 1. Let us prove that in our case this follows739 ����� λ̂+2γ′d
κ

����� ≤ 1740

λ̂2+4γ′d λ̂+4γ ′2d
λ̂2+4γ′dλ′

≤ 1741

λ̂2+4γ′d λ̂+4γ
′2
d ≤ λ̂

2+4γ′dλ
′

742

λ̂+γ′d ≤ λ
′

743

−εγ′ ≤ 0744

745

the last inequality is always true, since ε,γ′ are positive constants. Thus,746

ÛTa

ÛTs
= tanh

[
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

)]
(A21)747

748

Equation (A21) is an hyperbolic tangent that grows from -1 to 1 in a sigmoidal fashion. It has a749

scaling factor that determines how fast it goes from -1 to 1. It also has a shift that sets where the750

hyperbolic tangent will cross zero. Both the scaling and shift depend on the thermal and radiative751

parameters of the system. Since the shift is negative, after the initial forcing the deep ocean (that752

depends on the antisymmetric mode) warms up slower than the upper ocean. At a latter time, the753

35
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ratio becomes positive and the contrary happens. The time at which the sign reverses is754

t1 = t0+
2
κ

arctanh

����� λ̂+2γ′d
κ

�����755

756

Variation of the climate feedback parameter757

With the solution shown before, the NT−diagram has a slope758

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
− tanh

(
κ

2
(t − t0)+ arctanh

(
λ̂+2γ′d

κ

))])
λ (A22)759

760

The factor is composed of terms that are positive except for the ratio term coming from equation761

(A21). The negative ratio for t ∈ [t0,t1) clearly generates a more negative slope, whereas for762

t ∈ (t1,∞) makes it less negative. At the start one can get the slope763

ÛN
ÛTu
=

(
1+ (ε−1)

γ

|λ |

)
λ, t = t0764

765

and at the time of sign reversal766

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

(
ε+

Cu
Cd

)
γ

|λ |

)
λ, t = t1767

768

After the sign reversal the factor of λ will only decrease up to769

lim
t→∞

ÛN
ÛTu
=
ε+1
2ε

(
1+

ε−1
ε+1

Cuκ

|λ |

[(
ε+

Cu
Cd

)
γ

Cuκ
−1

] )
λ770

771

Equation (A22) shows the importance of the ratio of the symmetric and antisymmetric modes. Its772

physical meaning, the relationship between the upper- and deep-ocean warming, sets the strength773

of the variation of the climate feedback, whereas the constant term sets a base enhancement around774

which the feedback evolves. The thermal capacities of the system determine this constant term.775

APPENDIX B776

Feedbacks and pattern effect in a non-linear planetary budget777
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I start with a planetary imbalance considering a variation of the planetary thermal capacity778

N = (1−α)S+G− εσ( f Tu)
4− ÛCTu (B1)779

780

where S is the incoming solar short-wave flux at the TOA, α is the planetary albedo, G are the781

remaining natural and anthropogenic energy fluxes, and the last two terms are the planetary long-782

wave response and the contribution to the radiative response of a varying thermal capacity. As said783

in the main text, the ocean circulation and the atmosphere-ocean coupling provide the dynamical784

component of the thermal capacity.785

If I compute the total derivative of N then786

ÛN =
[
(1−α) ÛS+ ÛG

]
− S Ûα−σ( f Tu)

4 Ûε −4εσ( f Tu)
3( Ûf Tu+ f ÛTu)− ÛC ÛTu−Tu ÜC787

=
[
(1−α) ÛS+ ÛG

]
−R788

789

Here we can see the first term is the change from a time-evolving forcing. The rest of the terms,790

R, are atmospheric feedbacks or the effects of ocean circulation and ocean-atmosphere interaction.791

The fourth term contains the Planck feedback. Let us compare all the terms of R in comparison to792

the Planck feedback term 4ε fσ( f Tu)
3 ÛTu793

R = S Ûα+σ( f Tu)
4 Ûε +4εσ( f Tu)

3( Ûf Tu+ f ÛTu)+ ÛC ÛTu+Tu ÜC794

= 4ε fσ( f Tu)
3 ÛTu

[
S

4ε fσ( f Tu)3
Ûα

ÛTu
+

Tu
4ε
Ûε

ÛTu
+

Tu
f

Ûf
ÛTu
+1+

ÛC
4ε fσ( f Tu)3

+
Tu

4ε fσ( f Tu)3

ÜC
ÛTu

]
795

796

By inserting former expression of R in the total derivative of the planetary imbalance, reordering797

and dividing by ÛTu, we get the analogous expression for the slope of the NT−diagrams798

ÛN
ÛTu
=

[
(1−α)

ÛS
ÛTu
+
ÛG
ÛTu

]
799

−

[
1+

S
4ε fσ( f Tu)3

Ûα

ÛTu
+

Tu
4ε
Ûε

ÛTu
+

Tu
f

Ûf
ÛTu
+

ÛC
4ε fσ( f Tu)3

+
Tu

4ε fσ( f Tu)3

ÜC
ÛTu

]
4ε fσ( f Tu)

3
800

801

The first contribution in the R/ ÛTu term is 1, representing the Planck feedback. The second802

contribution is the planetary albedo feedback. It includes the surface albedo feedback as well as803
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the short-wave cloud feedback. The third contribution is the emissivity feedback, to which mainly804

contributes the traditional water-vapor feedback. The fourth contribution is a representation of the805

lapse-rate feedback. The fifth and sixth contributions are not atmospheric feedbacks but the effect806

of the evolving planetary thermal capacity provided by the atmosphere-ocean interaction and the807

ocean circulation.808

Both the fifth and sixth contributions measure the effect of a changing planetary thermal capacity.809

The fifth term should be positive but reduces its contribution towards the equilibrium in view of810

the modified two-layer model results. In the same context, the sixth contribution should change811

sign, in analogy to the linearized model results.812
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Fig. 1. Schematic representation of an NT−diagram for constant forcing due to a doubling of the860

atmospheric carbon dioxide concentration (F2x). Magenta line represents the relationship861

between the TOA net radiatiave flux change with the surface temperature change if the862

feedback mechanisms on surface warming were constant (constant slope). Green line shows863

the case found inmostmodels, where the slope varies throughout the process. Given thatmost864

models are not run until equilibrium, the evolving slope introduces considerable uncertainty865
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Fig. 2. Evolution of the slope of an NT−diagram. Blue solid line, with the average parameters867

from CMIP5 models obtained by Geoffroy et al. (2013a). Red solid line, with the thermal868

capacities as calculated by Jiménez-de-la-Cuesta and Mauritsen (2019). Red dashed line,869

with Cd as in Jiménez-de-la-Cuesta and Mauritsen (2019). Red dash-dotted line, with Cu as870

in Jiménez-de-la-Cuesta and Mauritsen (2019). Dots represent the slope values when the871

ratio term ÛTa/ ÛTs has the sign reversal. Thin black line is the constant λ = −1.18Wm−2 K−1. . . 43872

Fig. 3. Evolution of the slope of the NT−diagram. CMIP5 model behaviour using the fitted pa-873

rameters presented by Geoffroy et al. (2013a). Dots indicate the time of the sign reversal.874

Note that three models (CNRM-CM5.1, BNU-ESM and INM-CM4) show a steepening slope875

instead of flattening. For these models, the fitted ε is lesser than one. . . . . . . . . 44876
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Fig. 1. Schematic representation of an NT−diagram for constant forcing due to a doubling of the atmospheric

carbon dioxide concentration (F2x). Magenta line represents the relationship between the TOA net radiatiave

flux change with the surface temperature change if the feedback mechanisms on surface warming were constant

(constant slope). Green line shows the case found in most models, where the slope varies throughout the process.
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Fig. 2. Evolution of the slope of an NT−diagram. Blue solid line, with the average parameters from CMIP5

models obtained by Geoffroy et al. (2013a). Red solid line, with the thermal capacities as calculated by Jiménez-

de-la-Cuesta and Mauritsen (2019). Red dashed line, with Cd as in Jiménez-de-la-Cuesta and Mauritsen (2019).

Red dash-dotted line, with Cu as in Jiménez-de-la-Cuesta and Mauritsen (2019). Dots represent the slope values

when the ratio term ÛTa/ ÛTs has the sign reversal. Thin black line is the constant λ = −1.18Wm−2 K−1.
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