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ABSTRACT: The vertical temperature structure in the tropics is primarily set by convection and therefore follows a moist

adiabat to first order. However, tropical upper-tropospheric temperatures differ among climatemodels and observations, as

atmospheric convection remains poorly understood. Here, we quantify the variations in tropical lapse rates in CMIP6

models and explore reasons for these variations.We find that differences in surface temperatures weighted by the regions of

strongest convection cannot explain these variations and, therefore, we hypothesize that the representation of convection

itself and associated small-scale processes are responsible. We reproduce these variations in perturbed physics experiments

with the global atmospheric model ICON-A, in which we vary autoconversion and entrainment parameters. For smaller

autoconversion values, additional freezing enthalpy from the cloud water that is not precipitated warms the upper tropo-

sphere. Smaller entrainment rates also lead to a warmer upper troposphere, as convection and thus latent heating reaches

higher. Furthermore, we show that according tomost radiosonde datasets all CMIP6AMIP simulations overestimate recent

upper-tropospheric warming. Additionally, all radiosonde datasets agree that climate models on average overestimate the

amount of upper-tropospheric warming for a given lower-tropospheric warming. We demonstrate that increased entrain-

ment rates reduce this overestimation, likely because of the reduction of latent heat release in the upper troposphere. Our

results suggest that imperfect convection parameterizations are responsible for a considerable part of the variations in

tropical lapse rates and also part of the overestimation of warming compared to the observations.

SIGNIFICANCE STATEMENT: A major criticism of climate model simulations has been their overestimation of

warming in the tropical upper troposphere, between 8- and 13-km altitude, compared to observations. We show that

climate models already disagree on the mean upper-tropospheric temperatures, even before warming. We demonstrate

that the process of how much a convective cloud mixes with its surroundings, so-called entrainment, significantly in-

fluences upper-tropospheric temperatures and their rate of warming. Increasing entrainment decreases the heat released

by condensation, which in turn reduces upper-tropospheric warming to resemble the observed warming. Improving the

representation of this process in climatemodels, as well as other aspects of convection, should therefore be beneficial for

the simulation of upper-tropospheric temperatures.

KEYWORDS: Atmosphere; Tropics; Atmospheric circulation; Clouds; Convection; Deep convection; Entrainment; Climate

change; Cumulus clouds; Latent heating/cooling; Radiosonde/rawinsonde observations; Convective parameterization;General

circulation models

1. Introduction

Air parcels undergoing deep convection change their tem-

perature during their ascent according to the moist adiabatic

lapse rate. In the tropics any horizontal temperature gradients

produced by deep convection are quickly reduced by gravity

waves (Bretherton and Smolarkiewicz 1989), resulting in a

fairly weak temperature gradient (WTG). Thus, the lapse rate

throughout the tropical troposphere is set by deep convection

and follows a moist adiabat closely (Stone and Carlson 1979).

However, this is a simplified picture, and neglects some

crucial details. For starters, the effect of entrainment is im-

portant, since undiluted ascent is very rare (Romps and Kuang

2010), and entrainment has been shown to influence upper-

tropospheric stratification by regulating latent heating in the

convecting plumes (Singh and O’Gorman 2013). Also, the

lapse rate is likely not set by the single warmest and deepest

convective plume, but rather a spectrum of entraining con-

vective plumes (Zhou and Xie 2019; Bao and Stevens 2021).

Further, it is not clear to what degree the ascent follows an

idealized moist pseudoadiabat, which assumes instant removal

of condensate (all cloud water precipitates), or a reversible

moist adiabat, which assumes no removal of condensate at all

(no precipitation), or something in between (Bao and Stevens

2021). Another aspect to be considered is the fusion enthalpy,

which is a source of cloud buoyancy (Romps and Kuang 2010).

Finally, at some level in the upper troposphere, the radiative–

convective equilibrium starts to transition to a purely radiative

equilibrium (Folkins 2002). Since the WTG approximation

holds reasonably well, and the mean tropical lapse rate is in-

deed primarily set by deep convection (Bao and Stevens 2021),

all of these processes should have an influence on the mean

observed lapse rate in the tropics. Due to deficient resolutions

climate models usually parameterize many of these processes,

and do so in a range of different ways (Plant and Yano 2016).Corresponding author: P. Keil, paul.keil@mpimet.mpg.de
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It should be noted that the WTG assumption applies to the

virtual temperature and thus drier regions of the tropical tro-

posphere should be slightly warmer.

Uncertainties have also been reported in relation to global

warming. Under greenhouse gas forcing, the tropical upper

troposphere is expected to warm more than the surface and

lower troposphere, since cloud base saturation vapor pressure

is a strongly increasing function of temperature, and this ad-

ditional vaporization enthalpy is realized by a disproportionate

warming with height (Santer et al. 2005). However, the ob-

served warming in the early twenty-first century is significantly

weaker than predicted by climate models and basic theory

(Santer et al. 2005; Thorne et al. 2007; Mitchell et al. 2013; Fu

et al. 2011; Santer et al. 2017b,a; Suárez-Gutiérrez et al. 2017),
although results depend on the exact time period (Thorne et al.

2007; Suárez-Gutiérrez et al. 2017), and observations also hold

uncertainties (Sherwood et al. 2005; Thorne et al. 2007, 2011;

Po-Chedley et al. 2015). It has been suggested that deficiencies

in the post-2000 forcing (Santer et al. 2017b), as well as a wrong

representation of SSTs and their coupling to deep convection

(Flannaghan et al. 2014; Fueglistaler et al. 2015; Tuel 2019)

might impact upper-tropospheric warming rates. Indeed, the

bias is smaller in atmospheric models that use observed SSTs,

compared to coupled atmosphere–ocean models (Mitchell

et al. 2013; Po-Chedley et al. 2021). Furthermore, entrainment

dampens the warming of the tropical troposphere by reducing

the additional vaporization enthalpy (Singh and O’Gorman

2013) which is likely one reason why the overestimation of

warming by climate models is not as drastic as expected from

the theoretical adiabats (Miyawaki et al. 2020).

Increasing the conceptual understanding of what processes

determine the tropical upper-tropospheric lapse rate and

reducing these uncertainties in climate models could be

beneficial for the representation of many other aspects of

global circulation and climate. For example, the strength of

the Walker circulation and its evolution under greenhouse

gas forcing (Sohn et al. 2016), the atmospheric moisture flux

into the Arctic (Lee et al. 2019) as well as tropical cyclone

intensity (Trabing et al. 2019) have been shown to depend on

the tropical upper-tropospheric stratification. Because trop-

ical mid- to upper-tropospheric temperature affects baro-

clinity in the midlatitudes it also impacts midlatitude eddies and

poleward heat transport (Lu and Cai 2010; Wu et al. 2011). In

addition, the response of tropical anvil clouds to greenhouse gas

warming likely depends on upper-tropospheric static stability

[proportionally higher anvil temperature hypothesis (PHAT);

Zelinka and Hartmann (2010)], and may result in a cloud feed-

back that impacts equilibrium climate sensitivity.

In this study we investigate the diverse representations of

tropical lapse rates across climate models. In section 3 we

document differences in the mean lapse rates and upper-

tropospheric temperatures among phase 6 of the Coupled

Model Intercomparison Project (CMIP6) models. We find that

precipitation weighted sea surface temperatures (PRSSTs;

Fueglistaler et al. 2015; Tuel 2019) do not explain the variation

of upper-tropospheric temperatures in the mean state better

than lower-tropospheric temperatures. Therefore, in section 4

we demonstrate how differences in the way climate models

parameterize precipitating deep convection itself has a large

influence on upper-tropospheric temperatures. We do this by

changing parameters in the convection and microphysics pa-

rameterizations in AMIP experiments with the atmospheric

component of the climate model ICON-ESM (hereafter,

ICON-A). Finally, in section 5 we examine recent upper-

tropospheric warming in our ICON-A experiments, CMIP6

models and radiosonde observations and investigate how the

warming from the lower troposphere is transferred to the up-

per troposphere.

2. Methods

a. CMIP6

To study variations in upper-tropospheric temperatures we

use the preindustrial control (piControl) and the Atmospheric

Model Intercomparison Project (AMIP) experiments of CMIP6

(Eyring et al. 2016). In section 3a we analyze tropical lapse rates

in the CMIP6 piControl and AMIP simulations. In sections

3b and 3cwe use theAMIP simulations to compare to the ICON

experiments and analyze historical warming rates, respectively.

In the piControl experiments the climate is equilibrated, which

is ideal to study the time mean properties of tropical lapse

rates. In contrast, theAMIP experiments are forced by observed

sea surface temperatures and therefore do not represent the

stationary state (i.e., the mean state), but provide a somewhat

realistic framework to analyze historical warming. Also, the

warming trend should be less conflated with uncertainties

arising from internal variability compared to a coupled sim-

ulation (e.g., a RCP scenario), in which SSTs vary substan-

tially (Mitchell et al. 2013).We use the first ensemble member

of every model (‘‘r1i1p1f1’’) and the entire available time-

span, which differs from model to model in the piControl

case, and the years 1979–2012 in the AMIP case, since some

radiosonde products do not extend beyond 2012. Fifty-one

models provide air temperature, and of those 50 provide

surface temperature and precipitation in the piControl case.

In the AMIP case 40 models provide air temperature, while

38 models provide air temperature, surface temperature and

precipitation.

b. Observations

Recent studies analyzing upper-tropospheric temperatures

have primarily made use of satellite data, which provides

spatially complete measurements in the tropics. Radiosonde

data have been used less frequently, perhaps because the

spatial coverage is sparse and they have been suggested to be

error prone (Sherwood et al. 2005; Thorne et al. 2011).

However temperatures inferred from satellites have also been

shown to underestimate tropical tropospheric warming rates

and have been continuously corrected (Po-Chedley et al.

2015). Radiosonde data have the advantage of higher vertical

resolution, and therefore we make use of various different

radiosonde products in this study to analyze tropical lapse

rates. As we will show, the radiosondes products are overall in

reasonable agreement among each other and with the ERA5,

which strengthens our confidence in the radiosonde data.
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For the analysis of the mean state in sections 3 and 4, we use

the IterativeUniversal Kriging version 2 (IUKv2; Sherwood and

Nishant 2015) radiosonde dataset to compare models with ob-

servations. The IUKv2 addressesmany of the issues identified as

limitations in the past, as it considers time-changing instrument

biases. Unlike the other radiosonde products, it provides

absolute temperatures, which makes it suitable to assess the

time mean tropical lapse rates. However, it provides no es-

timate of a tropical average, only data for individual stations.

We use data from 69 stations in the tropics (208N–208S) over
the 1979–2014 period. Tropical means that are shown refer to

simple averaging over all stations. When subsampling the

model data to the grid points of the radiosonde locations,

results in section 3a are very similar.

For the analysis of upper-tropospheric warming in section 5

we also include radiosonde data from various other sources,

namely, the HADAT (Thorne et al. 2005); RATPAC (Free

et al. 2005); Rich-obs, Rich-tau, and Raobcore (Haimberger

et al. 2012); and SUNY-Albany (Zhou et al. 2021) datasets.

These datasets provide temperature anomalies as a tropical

mean (208N–208S) or as gridded data, from which we calcu-

late the tropical mean. Homogenization over time, as in the

IUKv2 case, is also applied in different manners for all of

these products. We show perturbed parametric ensemble esti-

mates for Rich-obs and Rich-tau until the year 2012, which

indicate the range of uncertainty in these products.

In addition to the radiosondes we also use the ERA5

(Hersbach et al. 2020) as an estimate for the lapse rate and

upper-tropospheric warming. For air temperature in years

2000–06 we use ERA5.1 that showsmore realistic stratospheric

temperatures (Simmons et al. 2020).

c. ICON-A experiments and convection parameterization

We employ the atmospheric component of the ICON Earth

System Model ICON-A (Giorgetta et al. 2018) to investigate

the sensitivity of the tropical lapse rate to perturbations in the

convection scheme. We choose the R2B4 AMIP configuration

(160-km horizontal grid spacing and 47 vertical levels) for

various reasons: ICON-A produces a realistic climate in the

tropics in this configuration (Crueger et al. 2018), the resolu-

tion is representative of those in the CMIP6 ensemble and it is

computationally feasible to perform many experiments over

the AMIP time period (1979–2014) to investigate the role of

different parameters and also account for internal variability.

We simulate a reference climate with seven ensemblemembers

and experiments with perturbed autoconversion and turbulent

entrainment with five ensemble members for each parameter

value. The chosen parameter values are given in Table 1.

The convection parameterization in ICON-A is based on the

scheme proposed by Tiedtke (1989) with some adaptations by

Nordeng (1994). A comprehensive summary of the scheme as

implemented in ICON-A is given by Möbis and Stevens (2012).

It is based on the bulk equations that calculate the convective

mass fluxMu as a function of homogeneous entrainmentEu and

detrainment Du. The subscript u denotes the updraft variables:

›M
u

›z
5E

u
2D

u
. (1)

The convective fluxes of dry static energy, moisture, cloud

water and momentum are calculated in a similar manner, in-

cluding processes like condensation and precipitation. Besides

detrainment, the cloud water lu depends on the condensation

rate c of water vapor to cloud water and conversion of cloud

water to rain (or autoconversion) K. The overbar indicates the

resolved large-scale variables:

›(M
u
l
u
)

›z
52D

u
l
u
1 rc2 rl

u
K . (2)

Here r is the large-scale air density, and K will be one of

the parameters varied for the perturbed physics experiments. The

condensation heating includes fusion enthalpy. However, the

heat capacity does not consider the liquid or frozen condensate.

Entrainment and detrainment are assumed to consist of an

organized and turbulent part:

E
u
5E

u,turb
1E

u,org
, (3)

D
u
5D

u,turb
1D

u,org
. (4)

The organized entrainment and detrainment rates are calculated

from large-scale and updraft variables and are only applied at

certain levels. The turbulent entrainment and detrainment acts

on all levels and depends on the mass flux and the entrainment

rate parameter �u and detrainment rate parameter du:

E
u,turb

5 �
u
M

u
, (5)

D
u,turb

5 d
u
M

u
. (6)

Shallow and deep convection have different entrainment rates,

in this study we focus on the entrainment rate for deep (or

penetrative) convection. It is assumed that �u 5 du 5 L21 for

p. p* and �u 5 0, du 5 L21 otherwise, where L is the char-

acteristic length scale with the standard value L5 5 km, which

is also used for our reference experiments, and p* is either the

arithmetic center of the cloud base and cloud top pressure, or

the pressure of maximum updraft velocity (see Möbis and

Stevens (2012) for more information). It is usually situated

somewhere in the midtroposphere. Therefore the mass flux

decreases between p* and the level of the cloud top, at which

the organized detrainment is applied. In the following, we will

refer to both �u and du as the turbulent entrainment parameter.

d. Theoretical moist adiabats

We calculate some theoretical moist adiabats under differ-

ent assumptions: the pseudoadiabat, which assumes all con-

densate precipitates immediately, the reversible (or isentropic)

TABLE 1. Parameter variations in the ICON-A perturbed

physics experiments.

Entrainment �u Autoconversion K

Reference 2 3 1024 2.5 3 1024

Low 0.4 3 1024 0.5 3 1024

High 10 3 1024 12.5 3 1024

Very high 20 3 1024 —
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adiabat, which assumes that no condensate is removed, and

their respective ice versions that include the fusion enthalpy.

We follow the method of Stevens and Siebesma (2020)

[section 2b(2)] and start with the enthalpy form of the first law

of thermodynamics for an adiabatic process:

05dh2 ydp , (7)

where dh is the change in specific enthalpy, y is the specific

volume and dr is the change in pressure. The specific enthalpy

depends on temperatureT, saturation water vapor mixing ratio

qs, specific heat capacity cp and the phase change enthalpy l:

h5 c
p
T1 lq

s
, (8)

where l and qs in turn also depend on pressure and temper-

ature and the heat capacity can also change during the ascent.

Direct analytical calculation for some types of moist adiabats

is possible, but here we take a numerical approach for all.

We define

dX5dh2 ydp (9)

and determine ›X/›T and ›X/›p. With this we can compute the

lapse rate:

dT

dp
52

›X

›p
›X

›T

, (10)

which can be integrated along p to obtain a temperature pro-

file. The ›X/›T and ›X/›p terms are calculated according to the

chosen adiabat. For the pseudoadiabat the specific heat ca-

pacity is calculated from the specific heat capacity of dry air

and water vapor which decreases with ascent, while for the

isentropic adiabat the specific heat capacity of the condensate

is also used. The phase change enthalpy l is simply the con-

densation enthalpy for the pseudoadiabat and the isentropic

adiabat, whereas for their ice-counterparts the fusion enthalpy

is added at temperatures below the freezing level. Thus, in the

case of freezing we assume that all condensate freezes above

the freezing level (and then precipitates in the case of the

pseudoice adiabat). The saturation water vapor pressure is

calculated with respect to ice in these cases. We start the in-

tegration at a certain level in the lower troposphere (usually

700 hPa) where we assume saturation. For the isentropic

adiabats we need to specify the total water content in the

parcel, for which we chose 15 g kg21. This is larger than the

saturation specific humidity at this level since it is likely that

the parcel already contains condensate.

In addition, we calculate a lapse rate that considers en-

trainment using a zero-buoyancy entraining plume model

based on the calculation of Singh and O’Gorman (2013) with

reference to the pseudoadiabat. In this model, it is assumed

that cloud buoyancy is negligible, which in this case means

uniform horizontal temperature (virtual temperature effects

are not considered). The environmental air is entrained at a

rate � 5 �0/z and has uniform relative humidity r, where z is

height above ground. If not stated otherwise, we set �0 5 0.3

and r 5 0.8. The vertical profile of the temperature difference

to the pseudoadiabat is calculated as

DT(z)5
(12 r)

11
l2q*y

R
y
T2c

p

ðz
zb

�lq*y
c
p

dz0 , (11)

where q*y is the saturation specific humidity of the environment

and Ry is the gas constant for water vapor. The integration is

started from the cloud base height zb to some height z. We use

960 hPa as cloud base level (starting the integration at

700 hPa underestimates the effect of entrainment on the tem-

perature profile). In the following, the zero-buoyancy en-

training plume will be referred to as ‘‘entraining plume.’’

3. Differences in lapse rates and upper-tropospheric
temperatures in conventional climate models

First, we provide an overview of the relationship of lower-

tropospheric and upper-tropospheric temperatures in the tropics

(defined as 208N–208S, including both land and ocean). We use

the 700 hPa level as proxy to represent the lower free tropo-

sphere, since the horizontal temperature variations are small

around this level (Bao and Stevens 2021). The WTG approxi-

mation holds fairly well and we expect tropospheric tempera-

tures throughout the tropics at and above 700 hPa to be

primarily set by deep convection and thus follow a moist adia-

batic lapse rate. Consequently, we should be able to infer the

upper-tropospheric temperatures from their lower-tropospheric

values. In CMIP6 models, this is indeed the case (Fig. 1a), as a

model with a warmer lower troposphere tends to have a pro-

portionally warmer upper troposphere and the linear fit across

CMIP6models is at 1.19KK21. Overall, the models are close to

the line that would indicate a pseudoadiabatic relation (moist

adiabatic ascent where all condensate precipitates immediately)

between 700 and 250 hPa, but the upper-tropospheric temper-

atures in individual models deviate by up to 1.7K from the

theoretical line. Only very few models are closer to the line that

indicates reversible adiabatic relation (convective ascent with no

precipitation) than the pseudoadiabatic relation. Despite the

robust correlation, there is considerable variability of more than

3K in the upper-tropospheric temperatures of CMIP6 models

for the same lower-tropospheric temperatures. Similar behavior

is found in the AMIP simulations (Fig. 1b), which are forced by

observational SST datasets (Flannaghan et al. 2014) and,

therefore, show less spread in their lower-tropospheric temper-

atures. However, for a given lower-tropospheric temperature

the spread in the upper troposphere has approximately the same

magnitude as in the coupled case, resulting in a reduced corre-

lation of lower- and upper-tropospheric temperatures. As in the

piControl case, the AMIP experiments can deviate considerably

from the temperatures expected from a theoretical pseudoa-

diabat (up to 1.8K in the upper troposphere), and even more

from the reversible adiabat, while the IUK radiosondes and the

ERA5 are fairly close to a pseudoadiabatic relationship (this

does not hold for the whole troposphere, as wewill show below).

The slopes of the regression in both cases in Fig. 1 demonstrate

that the cross-model relationship of a proportionally warmer
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upper troposphere for models with a warmer lower troposphere

does not follow the moist adiabat, as the pseudoadiabatic and

the reversible relationships have larger slopes of 1.99 and

1.89KK21, respectively. Note that the slopes of the piControl

and the AMIP case are within one standard error of each other,

while the theoretical adiabats are clearly outside of the stan-

dard error range. Figure 1 demonstrates that lower-tropospheric

temperatures are useful for predicting upper- tropospheric tem-

peratures, but only to a certain degree. Pseudoadiabatic ascent

is a decent approximation for the tropical lapse rate in CMIP6

models but the variation in upper-tropospheric temperatures and

the cross-model regression suggests that it is influenced by ad-

ditional processes that will be discussed in this section.

Above, we have examined the tropical atmosphere in a

horizontal mean view. However, only the convective plumes

with strong enough buoyancy reach the upper troposphere,

which usually originate over warmer SSTs. This coupling of

SSTs and convection likely varies across models and has been

quantified with precipitation weighted SSTs (PRSST), which

show a relationship to upper-tropospheric warming in CMIP5

models (Fueglistaler et al. 2015; Tuel 2019). Here, we apply

this methodology to the CMIP6 piControl ensemble using

monthly means of SSTs and precipitation to investigate

whether this can explain the variations in upper-tropospheric

temperatures in the mean state. Additionally, we calculate

precipitation weighted 700 hPa temperature (PRTA) in a

similar manner, but also include grid points over land in

this case, to facilitate the comparison to Fig. 1. We find that

PRSSTs cannot explain differences in the mean state (Fig. 2a)

any better than plain tropical mean 700 hPa temperatures

(Fig. 1a). Instead, the correlation between PRSSTs and

upper-tropospheric temperatures is even slightly worse than in

Fig. 1a and the spread in upper-tropospheric temperatures also

remains similar at around 4K for a given value of PRSST. The

PRTA (Fig. 2b) shows a better correlation than the PRSST (0.75

vs 0.68), but worse than the unweighted 700 hPa temperatures

(0.79). Therefore, the temperatures in the convecting regions,

whether SSTs or 700 hPa air temperatures, do not seem to be a

better indicator of upper-tropospheric temperatures than the

simple tropical mean at 700 hPa. This is likely because the

700 hPa temperatures are homogenized quite effectively to

the convecting temperatures by gravity waves (Bao and Stevens

2021) and thus the spatial coupling is naturally included in the

tropical mean 700 hPa (or even to some extent in a single ra-

diosonde station). Consequently, we will focus on differences in

tropical mean lapse rate behavior above 700 hPa to explain the

spread in upper-tropospheric temperatures, given a certain

lower-tropospheric temperature.

To illustrate the diversity in tropical lapse rates we assume

the moist pseudoadiabat as the closest option to reality (Fig. 1)

and show how the tropical lapse rates deviate from the moist

pseudoadiabat in individual piControl simulations (AMIP

simulations yield similar results). We calculate the pseudoa-

diabat with the tropical mean 700 hPa temperature as basis and

assume saturation at this level. The same calculation was done

for radiosonde data from the IUKv2 dataset, as well as the

ERA5. CMIP6 models deviate both positively and negatively

from their idealized moist pseudoadiabat (Fig. 3). The maxi-

mum deviations increase with height, and reach a range from

approximately 3K colder to 2K warmer than predicted by the

moist pseudoadiabat in the upper troposphere. The observa-

tions lie within the model spread, but show stronger deviations

from the idealized pseudoadiabat than the ensemble mean,

especially in themiddle troposphere around 500 hPa. Although

the reanalysis does not match the observations perfectly, it

provides further indication that the real tropical lapse rate is

FIG. 1. Tropical (208N–208S) temperatures in CMIP6 models in the lower and upper troposphere. Shown are

(a) preindustrial control simulations and (b) AMIP simulations as well as IUKv2 radiosonde observations (red

cross) and ERA5 (blue cross) averaged over years 1979–2014. The black line represents the relationship of 700–

250 hPa temperatures under the assumption of a moist pseudoadiabatic ascent and the black dashed line is the

same, but for a reversible adiabat. The gray dashed line indicates an ordinary least squares linear regression, with

the slope and standard error given in gray text. The cross-model Pearson correlation coefficient is also given.
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colder than the pseudoadiabat for most of the troposphere.

Models and observations systematically become warmer than

their idealized pseudoadiabat above 250 hPa, indicating the

transition from the radiative–convective equilibrium to a

purely radiative equilibrium (Folkins 2002).

While the pseudoadiabatic ascent seems to reasonably ex-

plain the vertical temperature structure in the tropics at first

glance, the impact of subgrid-scale processes that alter the

diabatic response of the air parcel to the ascent is less clear. In

the following we will discuss how some of these processes im-

pact the tropical lapse rate and thereby attempt to explain the

spread in lapse rates in CMIP6 models. For example, an air

parcel following a reversible adiabat will end up being warmer

than one following a pseudoadiabat because of the additional

heat reservoir of the condensate contributing to the heat ca-

pacity. What happens in reality is somewhere in between these

two processes, although it has been suggested that the lapse

rate is closer to the pseudoadiabat in the middle and upper

troposphere (Bao and Stevens 2021). Figure 3 shows the de-

viation of the reversible adiabat from the pseudoadiabat (again

using the ensemble mean 700 hPa temperature of CMIP6

models) and reveals that the majority of models are closer to

the pseudoadiabat. Furthermore, fusion enthalpy causes ad-

ditional warming during the ascent, which we illustrate with the

pseudoice adiabat. Again, the standard pseudoadiabat seems a

better fit for most models, but not all. A further process to

consider is the entrainment of dry air from outside the cloud

that has a cooling effect (Singh and O’Gorman 2013), since it

decreases the available moisture and thereby reduces latent

heating. The entraining plume approximation, that takes this

process into account in a simplified manner (methods), agrees

fairly well with a considerable amount of models and the ob-

servations. Note that the exact values of the reversible adiabats

and the entraining plume are somewhat arbitrary, since they

depend on the specified total water content for the parcel and

the entrainment rate, respectively.

It is not clear whether the good agreement of the lapse rates to

the pseudoadiabat and the entraining plume means that these

processes dominate in tropical convection or whether the lapse

rates are determined by all of the discussed processes and as a

result are close to the moist pseudoadiabat because of compen-

sation. The latter option seems more likely since processes like

freezing and (partly) reversible ascent can be observed in reality.

In addition, tropospheric temperatures aremost likely not set by a

single plumewith a determined behavior, but rather a spectrumof

convecting plumes, that penetrate to different heights and vary in

their entrainment rate (Zhou and Xie 2019; Bao and Stevens

2021). We conclude that all of the discussed processes likely im-

pact the lapse rates in CMIP6 models and thereby explain a

considerable part of the spread. Since all of these processes

happen on subgrid scales, conventional climate models like those

in the CMIP6 ensemble parameterize them in a range of different

manners. And even if two models use the same convection pa-

rameterization, the parameters might be tuned to different values

to best compensate errors from other assumptions, which differ

acrossmodels (Mauritsen et al. 2012). Also, CMIP6modelsmight

contain a common bias related to assumptions made in the con-

vection parameterizations, especially considering the observed

lapse rate almost falls outside of theCMIP6 spread at 500 hPa. To

demonstrate the impact these subgrid-scale processes have on

lapse rates simulated in conventional climate models, we perform

experiments with perturbed convection parameterization, which

we present in the next section.

4. Processes influencing the tropical lapse rate in ICON-
A simulations

We use the atmosphere component ICON-A from the

ICON general circulation model in experiments where we

perturb the conversion of cloud water to rainfall (auto-

conversion) and the turbulent entrainment rate for penetrative

convection (the reasoning behind these choices are described

FIG. 2. Tropical (208N–208S) (a) PRSST and (b) PRTA vs upper-tropospheric temperatures. Both panels show

time averages of preindustrial control simulations over the whole available timespan. The cross-model Pearson

correlation coefficient is also given.
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in the respective subsections below). The values of the tuning

parameters are given in Table 1. In the model development

process these parameters are set so as to simulate the overall

climate as well as possible, hence changing them is generally

expected to degrade the climate, at least for those quantities

which the tuning process targeted. Nonetheless, by using a skill

score for climate models (Reichler and Kim 2008) we dem-

onstrate that all of our experiments but one lie within the skill

range of CMIP6 models, and one experiment just outside the

range (Fig. 4). The temperature response in both sets of ex-

periments is shown in Fig. 5. Temperatures deviate by more

than 2K from the reference experiment, especially in the upper

troposphere (Fig. 5a). With these experiments we can repro-

duce the spread in temperatures in CMIP6 AMIP simulations

(Fig. 5b). The temperature responses in individual experiments

and the reasons behind them will be discussed in the following

subsections. In this section we present ensemble mean values

for our ICON-A experiments, since the differences among

ensemble members of one type of experiment are small.

a. Conversion of cloud water to rain

First, we examine the experiments with perturbed auto-

conversion in comparison to the reference experiment. Increasing

autoconversion decreases temperatures in the upper tropo-

sphere (Fig. 5) and vice versa. Lower-tropospheric temperatures

are unchanged, which means that the lapse rate is different to

that of the reference experiment only above 700 hPa. In the case

of low autoconversion, the upper troposphere is more than 1K

warmer than the reference experiment.

We analyze the reason behind the temperature changes for

the case of low autoconversion: Fig. 6a shows the expected in-

crease of cloud water and cloud ice mixing ratio for decreased

autoconversion, as less condensate is precipitated. This increase

in condensate points toward two processes that could explain the

warming: 1) the condensate contributes to the heat capacity of

the air parcel and therefore the expansion cooling is reduced

(ascent which is closer to the reversible adiabat than the pseu-

doadiabat), and 2) the additional cloud water freezes, which

produces additional fusion enthalpy. Since the additional con-

densate heat capacity is not accounted for in the ICON-A con-

vection parameterization, the fusion enthalpy is responsible for

the warming. This is supported by the fact that the temperature

deviations occur only above 600 hPa level, which is approxi-

mately the freezing level (Fig. 5a). We further illustrate the ef-

fect of the fusion enthalpy by calculating the temperature

deviations from the theoretical pseudoadiabat above 600 hPa

(Fig. 6b), with the same method as in Fig. 3. For small values of

autoconversion, the lapse rate agrees with the pseudoice adiabat

between 600 and 500 hPa before becoming colder, but still re-

main substantially warmer than the pseudoadiabat. Above 250

hPa, the transition to the purely radiative equilibrium begins,

and the idealized moist adiabats become less relevant for un-

derstanding the lapse rate.Weobserve the opposite behavior for

increased autoconversion: Cloud condensate decreases, indi-

cating less freezing of condensate cloud water (Fig. 6a), which

cools upper-tropospheric temperatures (Fig. 6b).

We conclude that fusion enthalpy can have a considerable

impact on upper-tropospheric temperatures and thereby ex-

plain some of the spread in CMIP6 models. These experiments

demonstrate how the parameterization of autoconversion

controls the tropical lapse rate, while also showing a deficiency

of the convection parameterization used here, to not consider

the effect of the condensate on the heat capacity. In similar

experiments with parameterizations that include this effect,

even larger temperature deviations can be expected.

b. Turbulent entrainment

Changing the entrainment rate for deep convection has

substantial effects on the lapse rate and, therefore, upper-

tropospheric temperatures (Fig. 5). For increased entrain-

ment we observe a cooling throughout the troposphere with a

peak between 500 and 300 hPa. This cooling appears as a shift

along the pseudoadiabat at 700 and 250 hPa, (Fig. 5b), but is

stronger at around 500 hPa. In contrast, for the case of de-

creased entrainment, we can observe a warming that is con-

fined to the uppermost troposphere and the tropopause layer

(Fig. 5a), and does not change the lapse rate in the mid-

troposphere. The mechanisms behind these changes can be

illustrated by changes in cloud amount and the heating rates

from the convection parameterization (Fig. 7), which will be

referred to as convective heating rates.

FIG. 3. Deviations from idealized moist pseudoadiabats for all

CMIP6 piControl simulations and observations in the tropics

(208N–208S), as well as some idealized cases. First, for every model

(and the observations) an idealized moist pseudoadiabat is calcu-

lated based on the tropical mean temperature at 700 hPa assuming

saturation. The deviations of the actually simulated (and mea-

sured) temperatures from each idealized moist pseudoadiabat are

illustrated here. In addition, the deviations of the reversible adia-

bat, freezing pseudoadiabat (assuming fusion above the freezing

level), the freezing reversible adiabat, and the entraining plume

with respect to the pseudoadiabat are shown.
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For small turbulent entrainment rates, the lower tropo-

sphere becomes drier, while the upper troposphere moistens,

since less moisture from within the convective plumes is mixed

with the surroundings. This is reflected in the cloud fraction

changes (Fig. 7a): the lack of entrainment reduces the cloud

amount drastically throughout the troposphere and only the

anvil cloud amount increases. Weakening entrainment shifts

the level of neutral buoyancy higher (Zhou andXie 2019) since

the ascent is closer to a moist adiabat and, therefore, the con-

vective heating rates (Fig. 7b) increase in the upper tropo-

sphere and in the tropopause layer, causing the warming there.

Note that at 250 hPa and higher levels, convective heating rates

are at least tripled with respect to the reference experiment.

Another aspect here could be that reduced entrainment de-

creases the degree of convective organization (Becker et al.

2017), which also happens in these experiments (not shown)

FIG. 5. Changes in atmospheric temperatures in ICON-A perturbed physics experiments. Darker shading rep-

resents increased autoconversion (red) and entrainment (purple). (a) Differences in tropical mean (208N–208S)
temperatures to the reference experiment. (b) Lower- vs upper-tropospheric tropical mean temperatures for all

AMIP experiments as well as CMIP6 AMIP simulations. The line represents the relationship expected from a

pseudoadiabat.

FIG. 4. Skill score of ICON perturbed physics experiments and CMIP6 models in the tropics (308N–308S). Gray

dots represent CMIP6 AMIP simulations, dots with red shading represent autoconversion experiments, and dots

with purple shading represent entrainment experiments. Darker shading indicates stronger autoconversion/en-

trainment. A skill score of 1 indicates the average CMIP6 AMIP skill score. Variable abbreviations are as follows:

pr: precipitation; ps: surface pressure; TOA_net_LW: top of the atmosphere net longwave flux; TOA_net_SW: top

of the atmosphere net shortwave flux; tas: surface temperature; ta: zonal mean temperature; ua: zonal mean zonal

wind; and va: zonal mean meridional wind.
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and thereby the upper troposphere, where the WTG approxi-

mation holds less well (Bao and Stevens 2021), is more uni-

formly heated by deep convection. Additional fusion enthalpy

might also contribute to the warming, sincemore cloudwater is

available to freeze in the convective plume, and indeed there

is a small positive temperature deviation at around 600 hPa

(approximately the freezing level). The cooling in the bound-

ary layer is likely because for reduced entrainment, deep

convection can occur at lower temperatures. For large en-

trainment rates, cloud fraction increases in the lower tropo-

sphere and decreases in the upper troposphere, since moisture

is detrained to the environment earlier during the ascent. As

a result, less condensation heating occurs during the ascent

(Singh and O’Gorman 2013). The reduced convective heating

rates are balanced by increased heating rates from the cloud

parameterization (not shown), which means that mechanisms

outside the convective parameterization, like large scale as-

cent, control a substantial part of the tropical energy balance in

this case. The resulting temperature profile is colder likely

because of the reduced latent heating and increased evapora-

tion of detrained cloud water (Mauritsen et al. 2012). This

difference in behavior by the parameterizations explains why

the vertical temperature response is structured asymmetrically

for low and high entrainment rates (Fig. 5a).

We conclude that the entrainment rate also has a sub-

stantial impact on tropical lapse rates, demonstrating that the

FIG. 7. (a) Tropical (208N–208S) mean cloud fraction and (b) convective heating rates in the turbulent entrainment

experiments. Darker shading represents increased entrainment and gray represents the reference experiments.

FIG. 6. (a) Cloud water and ice mixing ratio, as well as (b) temperature deviations from the pseudoadiabat in the

autoconversion experiments. Darker shading represents increased autoconversion and gray represents the refer-

ence experiments. (a) An average over the convecting regions (grid points above the 90th percentile of precipitable

water) and (b) the tropical mean (208N–208S). Deviations from the pseudoadiabat were calculated as in Fig. 3.
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representation of entrainment in convection parameterizations

is likely one reason behind the spread in upper-tropospheric

temperatures in CMIP6 models. The shift of the level of neu-

tral buoyancy illustrates how the levels at which the transition

from a convective–radiative equilibrium to a purely radiative

equilibrium takes place might be different across models, which

has important implications for mid- and upper-tropospheric

temperatures. Moreover, increasing entrainment results in

temperature anomalies in the middle troposphere that resem-

ble the observed temperature profile (Fig. 3), suggesting that

CMIP6 models underestimate the effect of entrainment as

suspected by Romps (2010).

5. Upper-tropospheric warming

Above, we have demonstrated how the mean tropical lapse

rate is influenced by small scale processes like autoconversion

and entrainment. Here, we investigate whether these processes

could also impact the rate at which the upper troposphere

warms under greenhouse gas forcing. In a warmer climate the

temperature profile is expected to change to a warmer moist

adiabat, thereby amplifying the warming in the upper tropo-

sphere with respect to the surface warming. A peak amplifi-

cation is expected in the upper troposphere around 200 hPa

(Santer et al. 2005). However, as for the mean tropical lapse

rates investigated in the previous sections, the response to

global warming varies across climate models (Santer et al.

2005). More importantly, observations show a substantially

weaker warming in the upper troposphere compared to what is

simulated by climate models (Santer et al. 2005; Fu et al. 2011;

Santer et al. 2017a,b). Here, we assess how coupling of con-

vection and SSTs (Fueglistaler et al. 2015; Tuel 2019; Po-Chedley

et al. 2021), and the representation of autoconversion and es-

pecially entrainment (Singh and O’Gorman 2013; Zhou and Xie

2019; Miyawaki et al. 2020) impact upper-tropospheric warming

in CMIP6AMIP simulations and our ICON-A experiments. We

show results for the 250 hPa level and the time period of 1979–

2012 in this section, because some radiosonde products are only

available until 2012.Results are similar for 300 hPa and the 1979–

2014 period. There is a considerable influence of internal vari-

ability on temperature trends and therefore, unlike in the

previous section, we present individual ensemble members for

the reference case as well as the autoconversion and entrainment

experiments.

Following Fueglistaler et al. (2015) we examine whether the

trend in PRSST, which incorporates the coupling of SSTs to

convection, explains the different trends in upper-tropospheric

warming in CMIP6 models, our ICON-A experiments, and

ERA5 (Fig. 8a). We find a large spread in upper-tropospheric

temperature and PRSST trends in CMIP6 AMIP simulations

but only a weak relationship with a correlation coefficient of

0.403. For our ICON experiments, the relationship is more

robust, independent of the parameter experiments. However,

the ERA5 upper-tropospheric warming is clearly outside the

CMIP6 range, while the PRSST are very similar between

ERA5 and CMIP6. Therefore, we conclude that PRSSTs are

of limited usefulness in explaining differences in upper-

tropospheric warming rates in single realizations of CMIP6

AMIP simulations and cannot explain the difference to the

observed upper-tropospheric warming (although the obser-

vations also show considerable uncertainty, which will be

discussed below). Nevertheless, stronger differences of spa-

tial SST–convection coupling that occur in coupled ocean–

atmosphere simulations, are important for explaining even

stronger upper-tropospheric warming in these simulations

(Tuel 2019; Po-Chedley et al. 2021).

In CMIP6 simulations and our ICON experiments the upper-

tropospheric warming is strongly connected to the warming in

the lower troposphere (Fig. 8b). As in the case of the mean state

(Figs. 1 and 2) lower-tropospheric temperature trends have a

stronger correlation to upper-tropospheric temperatures than

the PRSST trend has (0.79 vs 0.40). This relationship also seems

FIG. 8. Tropical (208N–208S) trends in (a) PRSSTand (b) 700 hPa vs trends in 250 hPa temperatures for ICONperturbed

physics experiments andCMIP6AMIP simulations.Darker shading indicates increased autoconversionor entrainment as in

Fig. 5. Cross-model correlation is given for CMIP6 models. Trends are calculated over the 1979–2012 period.
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to roughly hold for all ICON-A experiments in general and

the reference experiments in particular, indicating that vari-

ations of trends due to internal variability are vertically

consistent throughout the troposphere.

The warming in the upper troposphere shown throughout the

models in Fig. 8b is weaker than expected from the theoretical

moist adiabats. For stronger entrainment rates (�0 ’ 0.8) the

entraining plume is able to predict the same relationship as the

CMIP6 regression suggests (not shown). Most radiosonde esti-

mates show weaker warming trends than the models at both

levels, 700 and 250 hPa, with some notable exceptions. The

SUNY dataset agrees remarkably well with CMIP6 models and

suggests that there is no real discrepancy at all, and the IUK

dataset at least shows the sameupper-tropospheric warming, but

stronger than predicted by the theoretical adiabats. While the

other datasets provide gridded data or tropical means, the value

for IUK radiosondes shown here is simply the mean over all

IUK stations in the tropics (methods). This is a minor issue at

700 hPa (if at all), but apparently produces unrealistically strong

upper-tropospheric warming, where theWTG assumption holds

less well (Bao and Stevens 2021). In contrast, the HADAT data

shows very weak warming, which is also unrealistic, and there-

fore we will not analyze the IUK and HADAT datasets further.

The remaining datasets agree that the upper-tropospheric

warming is weaker than simulated by the CMIP6 models, even

considering the uncertainties illustrated for the Rich-Obs and

Rich-Tau products. However, the radiosondes disagree sub-

stantially on the lower-tropospheric warming. For example, the

RAOBCORE data suggests that models overestimate the

warming in the whole troposphere, suggesting the discrepancy in

the upper troposphere is due to the bias at lower altitudes. This

contrasts with the Rich-Obs ensemble, according to which

CMIP6 models simulate lower-tropospheric warming reason-

ably well, but the amplification of warming in the upper tropo-

sphere is overestimated. It is unclear which radiosonde product

is the most trustworthy, but most datasets indicate that the

models overestimate recent upper-tropospheric warming. This

could be due to a misrepresentation of lower-tropospheric

warming, or due to how the warming is amplified from lower

to upper troposphere.

Consequently, to quantify the relation of warming in the

upper and lower troposphere we calculate an amplification

factor, which is the slope of a linear regression of yearly mean,

tropical mean temperatures at 700 hPa versus those at 250 hPa.

We assess the CMIP6 AMIP ensemble, our ICON-A experi-

ments, observations, the ERA5, and the amplification ex-

pected from theoretical adiabats (Fig. 9). For CMIP6 AMIP

experiments, lower-tropospheric temperature increases (700

hPa) are amplified by a factor of approximately 1.5–1.8KK21

in the upper troposphere (250 hPa). The RATPAC, Rich-Obs,

Rich-Tau, and SUNY radiosonde estimates fall outside of the

CMIP6 range, except for one model, with amplification factors

between 1.35 and 1.55KK21. The Raobcore radiosondes

show a larger amplification of 1.6KK21, and amplification in

the ERA is even larger, consistent with the CMIP6 ensemble.

While the CMIP6 AMIP ensemble on average overesti-

mates the amplification seen in the radiosonde observations,

the prediction by the theoretical adiabats is even stronger and

outside of the model range. For the pseudoadiabat and the

pseudoice adiabat the amplification is stronger than 2KK21.

We also show the amplification based on the entraining plume

model for a range of entrainment rates from �0’ 0.1 to �0’ 0.9.

This illustrates how entrainment tends to decrease the ampli-

fication due to the regulation of latent heating.

As indicated before, our ICON-A reference experiments

show that the amplification is impacted substantially by nat-

ural variability. The spread in the reference experiments

demonstrates how internal variability, that is purely driven by

the atmosphere in these experiments, covers approximately a

third of the CMIP6 spread and is therefore important to

consider over the fairly short AMIP observational period.

While Suárez-Gutiérrez et al. (2017) have excluded internal

variability as sole cause of the lack of upper-tropospheric

warming in radiosonde data, Po-Chedley et al. (2021) showed

that natural variability can explain a large part of the differ-

ence between coupled simulations and satellite data. For our

experiments, internal variability alone is unlikely to be the

reason for the gap to the weak observed amplification, al-

though the variability is surprisingly strong, considering SSTs

are identical across the experiments.

The behavior of the theoretical adiabats is mirrored to some

extent by our ICON-A experiments. We can reproduce the

spread in the CMIP6 models and close the gap to the observa-

tions in our experiments with increased turbulent entrainment

rates. The experiments with high entrainment fall just outside

the range of the reference experiments. To obtain an even

clearer signal, we present experiments with further increased

entrainment rates (by a factor of 10, called ‘‘very high entrain-

ment,’’ Table 1), which clearly fall outside of the reference ex-

periment spread and agree well with the Raobcore and SUNY

radiosonde datasets, while still producing a climate that is ap-

proximately as realistic as the CMIP6 average (Fig. 4). Thus, the

entrainment experiments cover almost the complete range of

amplification factors in the CMIP6 ensemble and a substantial

range of the theoretical entraining plume. The behavior in the

autoconversion experiments is less clear. The additional fusion

enthalpy should increase amplification slightly, illustrated by the

idealized pseudo-ice adiabat. However, the low autoconversion

experiments, in which more condensate freezes, show a slightly

weaker amplification than the high-autoconversion case (al-

though they both largely fall within the spread of the reference

experiments). Overall, changes in autoconversion do not seem

to have a substantial effect on the amplification of the historical

warming.

The behavior of the entrainment experiments can be under-

stood in a broader context of other recent studies: It has been

shown that the entraining plume model gives a more realistic

picture of tropical lapse rates and cloud buoyancy for strong

warming in idealized radiative-convective equilibrium simu-

lations because it considers reduction in condensation heat-

ing through entrainment (Singh and O’Gorman 2013). In

addition, Miyawaki et al. (2020) suggest that one reason for

weaker warming than predicted by the theoretical moist

adiabat in CMIP5 experiments with a quadrupling of CO2 is

the presence of entrainment, and stronger entrainment weakens

upper-tropospheric warming. Our results show that this effect
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is already relevant for the historically observed (lack of)

warming. Recently, Zhou and Xie (2019) developed a spectral

plume model, in which a plume’s entrainment rate depends

level of neutral buoyancy the plume reaches. This conceptual

model reproduces the tropical lapse rate for colder (last glacial

maximum) and warmer (RCP 8.5) simulations of general cir-

culation models even more realistically than the single en-

training plume. This emphasizes the need to understand the

structure of tropical temperatures through convection as a

spectrum of entraining plumes with varying characteristics

(Bao and Stevens 2021; Becker and Hohenegger 2021).

6. Summary and discussion

Conventional climate models, represented here through

the CMIP6 ensemble, show a range of tropical lapse rates

and, therefore, models with the same lower-tropospheric

temperature can have a spread in their upper-tropospheric

temperatures of more than 3K. Models with similar PRSSTs,

that incorporate the spatial coupling of SSTs (or lower-

tropospheric temperatures) with convection, show a similar

spread in upper-tropospheric temperatures, with a slightly

worse correlation than for lower-tropospheric temperatures.

Therefore, we focus on explaining the variations in upper-

tropospheric temperatures with differences in lapse rates es-

pecially between 700 and 250 hPa. While the pseudoadiabatic

ascent and the entraining plume provide the best fit to the

multimodel mean, individual models can deviate up to 3K

from the latter in the upper troposphere. Since entrainment,

freezing and heat capacity effects all likely play a role, some of

these effects could compensate each other to produce a lapse

rate close to the pseudoadiabat. In our ICON perturbed

physics experiments we demonstrate how the freezing en-

thalpy, modified here via the precipitation efficiency or auto-

conversion, and entrainment substantially alter tropical lapse

rates. As these processes are typically used for tuning climate

models it suggests that they contribute to the spread in

CMIP6 models.

Unlike the mean state, the pseudoadiabat (or any of the

other theoretical adiabats) does not predict the recent upper-

tropospheric warming well in models or observations, further

indicating that tropical lapse rates are influenced by a mul-

titude of processes. The coupling of convection and SSTs does

not explain intermodel differences in upper-tropospheric

temperature trends in the AMIP setup, nor the difference to

the ERA5 dataset in upper-tropospheric warming. In the

CMIP6 ensemble upper-tropospheric warming is closely related

to lower-tropospheric warming, but overestimated compared

to almost all radiosonde datasets. Furthermore, we can show

that most CMIP6 AMIP models fall outside of the observed

range of lower to upper-tropospheric amplification, meaning

that the upper tropospherewarms too strongly for a given lower-

tropospheric warming. By increasing entrainment in the con-

vection scheme the amplification falls within the range of

observed values, and with varying entrainment rates almost the

entire range of amplification factors simulated by CMIP6

models can be covered, which shows that an inadequate repre-

sentation of entrainment in CMIP6 models likely contributes to

the bias between simulated and observed upper-tropospheric

warming. However, since the radiosondes disagree among

themselves it is not entirely clear whether (i) upper-tropo-

spheric warming is overestimated mainly because the models

too strongly amplify a correctly simulated lower-tropospheric

warming (as the Rich-Obs dataset indicates), whether (ii) in

addition to the overestimation of amplification, the overall

warming throughout the troposphere is overestimated (Mitchell

et al. 2013) and the bias already appears at 700 hPa, or (iii) the

CMIP6 AMIP ensemble actually simulates lower- and upper-

tropospheric warming well, as the SUNY dataset [and to some

extent the most recent analysis of satellite data, Po-Chedley

et al. (2021)] suggests. If the warming is indeed already too weak

in the lower troposphere, the question remains what causes this

bias. In a nutshell, according to most radiosonde products,

CMIP6 models overestimate upper-tropospheric warming, and

according to all radiosonde products on average overestimate

the amplification from lower to upper troposphere, which de-

pends on the representation of convective entrainment.

Our results suggest that various small scale processes that

occur in moist convection impact tropical lapse rates, but

the exact contribution of each process remains unclear.

Consequently, climate models not capturing the weak

upper-tropospheric warming is no surprise considering our

lack of understanding in what determines the tropical lapse

rate. With the results presented here, that emphasize the

important role of entrainment, we connect the theoretical,

more idealized work by Singh and O’Gorman (2013) and

FIG. 9. Amplification factor of tropical mean 250 vs 700 hPa

warming for years 1979–2012. Circles showCMIP6AMIP simulations

and ICON perturbed physics experiments, darker color shading indi-

cates stronger entrainment/autoconversion. Black squares show trop-

ical mean radiosonde data. The cross represents the ERA5 and the

triangles show the amplification expected from theoretical moist

adiabats. In the case of the entraining plume, the amplification is cal-

culated for entrainment rates �0 from 0.1 to 0.9 in steps of 0.1.
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Zhou and Xie (2019) to studies analyzing the weak observed

warming (Santer et al. 2005; Fu et al. 2011; Santer et al.

2017a,b) and show that entrainment dampens the recent

warming in a realistic AMIP setup. While comparing turbulent

entrainment used here and in other parameterizations to real

observed entrainment is difficult, it has been suggested that

entrainment in models is often underestimated (Romps 2010).

We can only speculate that CMIP6 models have not been

tuned with higher entrainment rates, because that leads to a

worse representation of the overall climate (the energy

balance in the tropics changes substantially in our high en-

trainment experiments; see section 4b). A more realistic

representation of convection and entrainment could be

achieved by applying a more sophisticated spectral cumulus

parameterization, in which the entrainment rate depends cloud

characteristics (Zhou and Xie 2019), as in Baba and Giorgetta

(2019). The deficiencies of convection parameterizations are

also highlighted in the autoconversion experiments, in which

the variation of cloud water and cloud ice should affect the

heat capacity and therefore temperatures, but this process

is simply not included in the parameterization used in the

ICON-A model.

While the relationshipbetweenPRSSTsandupper-tropospheric

warming is seemingly weak in our results, unlike for Fueglistaler

et al. (2015), we only present individual ensemble members, and

use CMIP6 instead of CMIP5. The relationship for individual

ensemble members is more robust in CMIP5, likely because

CMIP5 uses two different SST datasets which increases the

spread in PRSST [see Fig. 1 in Fueglistaler et al. (2015)]. Also,

we omit any analysis of ensemble means, and therefore would

argue that our results are not directly comparable to those of

Fueglistaler et al. (2015). Especially for stronger variations in

PRSSTs that occur in coupled atmosphere–ocean models, the

coupling of convection and SSTs is an important factor to

explain differences in upper-tropospheric warming among

models (Mitchell et al. 2013; Tuel 2019; Po-Chedley et al.

2021). CMIP6 AMIP models seem to simulate a realistic

trend in PRSSTs, which should be more reliably observed

than upper-tropospheric warming. Therefore, if there is a bias

in upper-tropospheric warming in CMIP6 AMIP models, as

most radiosonde products suggest, then this bias originates

from other misrepresented processes, of which entrainment is

likely one.

A large part of the presented analysis was also done for

CMIP5models, but overall did not differ much from the CMIP6

results presented here. While CMIP5 models include some

stronger outliers for tropical mean lapse rates, the spread in the

amplification factor is virtually identical, suggesting that con-

ventional climate models have not significantly improved in this

regard over the past decade, even though our understanding of

the problem with regards to the role of entrainment (Singh and

O’Gorman 2013;Miyawaki et al. 2020), and the coupling of SSTs

and convection (Fueglistaler et al. 2015; Tuel 2019; Po-Chedley

et al. 2021) has increased and errors in satellite as well as ra-

diosonde observations have reduced. Therefore, we propose to

tackle this problem in the future with high-resolution storm re-

solving models, that do not rely on parameterized convection

(Stevens et al. 2019). While cloud microphysical properties will

always have to be parameterized, at least an improvement in the

representation of entrainment and overall tropical circulation

can be expected (Stevens et al. 2020). Nevertheless, long term

or large ensemble simulations will likely rely on convection

parameterizations for the near future, and therefore further

development in this area (Baba and Giorgetta 2019) should

be beneficial for the representation of global circulation in

climate models.
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