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Abstract. We examine the influence of increased resolu-
tion on four long-standing biases using five different climate
models developed within the PRIMAVERA project. The bi-
ases are the warm eastern tropical oceans, the double In-
tertropical Convergence Zone (ITCZ), the warm Southern
Ocean, and the cold North Atlantic. Atmosphere resolution
increases from ∼ 100–200 to ∼ 25–50 km, and ocean reso-
lution increases from ∼ 1◦ (eddy-parametrized) to ∼ 0.25◦

(eddy-present). For one model, ocean resolution also reaches
1/12◦ (eddy-rich). The ensemble mean and individual fully
coupled general circulation models and their atmosphere-
only versions are compared with satellite observations and
the ERA5 reanalysis over the period 1980–2014. The four
studied biases appear in all the low-resolution coupled mod-
els to some extent, although the Southern Ocean warm bias
is the least persistent across individual models. In the en-
semble mean, increased resolution reduces the surface warm
bias and the associated cloud cover and precipitation biases
over the eastern tropical oceans, particularly over the tropical
South Atlantic. Linked to this and to the improvement in the
precipitation distribution over the western tropical Pacific,
the double-ITCZ bias is also reduced with increased reso-
lution. The Southern Ocean warm bias increases or remains
unchanged at higher resolution, with small reductions in the

regional cloud cover and net cloud radiative effect biases.
The North Atlantic cold bias is also reduced at higher resolu-
tion, albeit at the expense of a new warm bias that emerges in
the Labrador Sea related to excessive ocean deep mixing in
the region, especially in the ORCA025 ocean model. Over-
all, the impact of increased resolution on the surface tem-
perature biases is model-dependent in the coupled models.
In the atmosphere-only models, increased resolution leads to
very modest or no reduction in the studied biases. Thus, both
the coupled and atmosphere-only models still show large bi-
ases in tropical precipitation and cloud cover, and in mid-
latitude zonal winds at higher resolutions, with little change
in their global biases for temperature, precipitation, cloud
cover, and net cloud radiative effect. Our analysis finds no
clear reductions in the studied biases due to the increase in
atmosphere resolution up to 25–50 km, in ocean resolution
up to 0.25◦, or in both. Our study thus adds to evidence that
further improved model physics, tuning, and even finer reso-
lutions might be necessary.

Published by Copernicus Publications on behalf of the European Geosciences Union.



270 E. Moreno-Chamarro et al.: Biases in HighResMIP climate models

1 Introduction

Climate models have biases with respect to observations,
some of which have persisted over model generations with
little or no improvement (e.g., Wang et al., 2014; Tian et
al., 2020). These biases can undermine the credibility of cli-
mate models, contributing to uncertainties in regional climate
projections (Boberg and Christensen, 2012; Maraun, 2016)
and limiting their skill in predicting the climate of coming
seasons and decades (e.g., Meehl et al., 2014; Exarchou et
al., 2021). Assessing and reducing common model biases are
therefore key topics for the climate community to address.

Increased model resolution is frequently seen as a way
to improve model realism and hence reduce climate biases.
Most of the global climate models taking part in the CMIP
activities have a nominal resolution of about 150 km in the
atmosphere and 1◦ in the ocean (e.g., IPCC, 2013), which
ensures a reasonable trade-off between computing time and
model complexity. Higher-resolution models have shown im-
provements in simulating the Gulf Stream position (e.g.,
Kirtman et al., 2012; Moreno-Chamarro et al., 2021), the In-
tertropical Convergence Zone (ITCZ; e.g., Doi et al., 2012;
Tian et al., 2020), and the storm tracks (e.g., Hodges et al.,
2011), just to mention a few examples. Haarsma et al. (2016),
Hewitt et al. (2017), and M. J. Roberts et al. (2018) have ex-
tensively reviewed the benefit of high-resolution modeling.

On this basis, the Horizon2020 PRIMAVERA project
(https://www.primavera-h2020.eu/, last access: 28 Decem-
ber 2021) was conceived to “develop a new generation of
advanced and well-evaluated high-resolution global climate
models, capable of simulating and predicting regional cli-
mate with unprecedented fidelity, for the benefit of gov-
ernments, business and society”. Such new models have
shown improvements in the representation of various as-
pects of weather and climate variability, including block-
ing frequency over the Pacific and Atlantic (Schiemann et
al., 2020), the distribution of precipitation over Europe (De-
mory et al., 2020), tropical cyclones (M. J. Roberts et al.,
2020a; Vannière et al., 2020; Vidale et al., 2021; Zhang et al.,
2021), air–sea interactions over the Gulf Stream (Bellucci et
al., 2021), and Atlantic Ocean heat transports (M. J. Roberts
et al., 2020b). In this study, we provide a systematic as-
sessment of the impact of ocean and atmospheric resolu-
tion on mean climate (Sect. 3), focusing on the following
long-standing biases: (i) the warm bias in the eastern tropical
oceans, (ii) the double ITCZ, (iii) the warm Southern Ocean
(SO), and (iv) the cold North Atlantic (Sects. 4 and 5). We
provide a brief introduction to each bias immediately below.
The models, experimental design, and observational datasets
are described in Sect. 2, while the main conclusions and the
discussion of the results are in Sect. 6.

1.1 Biases in the tropics

1.1.1 Upwelling regions

The first long-standing bias examined is the warm bias in
the eastern tropical oceans, which affects many state-of-
the-art and previous-generation climate models (Li and Xie,
2012; Xu et al., 2014a; Richter, 2015; Richter and Tokinaga,
2020). The eastern tropical oceans are characterized by in-
tense coastal upwelling driven by the trade winds, which
bring cold, nutrient-rich waters from the deep ocean to the
surface and transport them several thousand kilometers off-
shore. Cold surface waters contrast with warmer atmospheric
temperature aloft, which generates stable atmospheric con-
ditions that favor the formation of large-scale shallow stra-
tocumulus decks. These reflect a large fraction of the solar
radiation and thereby help sustain the cold ocean surface be-
low. This system is misrepresented in many climate models,
which fail to reproduce the cold tongue of surface waters and
hence exhibit a warm bias extending offshore (see, for ex-
ample, bottom left panel in Fig. 1b). This bias has long been
related to the underestimation of the cloud cover, which leads
to warming because of excessive shortwave radiation reach-
ing the surface (e.g., Huang et al., 2007; Hu et al., 2008).
The warm bias, in turn, weakens the lower-tropospheric sta-
bility and thus hinders the formation of the stratocumulus
deck, which contributes to sustaining the surface warm bias.
Other mechanisms have been proposed to explain this bias,
including too weak equatorial and alongshore winds weaken-
ing upwelling (e.g., Richter et al., 2012; Koseki et al., 2018;
Goubanova et al., 2019; Voldoire et al., 2019a), biases in re-
gional atmospheric moisture (Hourdin et al., 2015), too weak
offshore transport by ocean mesoscale eddies, and the mis-
representation of the coastal current system (Xu et al., 2014b)
or vertical mixing in the upper ocean (e.g., Hazeleger and
Haarsma, 2005; Exarchou et al., 2018; Deppenmeier et al.,
2020). Richer (2015) extensively reviewed all these mecha-
nisms.

Increased horizontal (typically beyond ∼ 25–50 km) and
vertical resolution in the atmosphere can reduce the warm
bias due to an improved representation of coast-parallel
winds and better-resolved orography, especially along the
coast of west Africa (Gent et al., 2010; Milinski et al., 2016;
Harlaß et al., 2018). A mesoscale-resolving oceanic resolu-
tion can also mitigate the warm bias by improving the rep-
resentation of the complex coastal current system as well
as the mesoscale eddy contribution to the upper-ocean heat
budget and offshore transport from the upwelling regions in
the Atlantic (Seo et al., 2006; Xu et al., 2014b; Small et al.,
2015). However, the bias persists in some models and ocean
basins, even after increasing their resolution (Jochum et al.,
2005; Doi et al., 2012; Delworth et al., 2012; Milinski et al.,
2016; Goubanova et al., 2019), which suggests that a refine-
ment of model physics might still be necessary to remove
it (Patricola et al., 2012; Harlaß et al., 2018). A reduction
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Figure 1. (a) ERA5 near-surface (2 m) air temperature (SAT; in ◦C). (b) Left and middle: multi-model ensemble mean bias in SAT (in
◦C) in the atmosphere-only (top) and coupled (bottom) simulations at low (left) and high (middle) resolutions. Biases are with respect to
ERA5 (shown in a). Stippling masks where at least four out of the five models agree on the anomaly sign. Right: difference between the two
resolutions. In all panels non-significant anomalies at the 5 % level (based on a two-tailed Student’s t test) are masked white. The Equator is
a dashed line in all the panels.

in the temperature and cloud biases in the eastern tropical
oceans might reduce current uncertainty about climate sensi-
tivity (Andrews et al., 2019), impact precipitation biases for
example over the equatorial North Atlantic (e.g., Hazeleger
and Haarsma, 2005; Huang et al., 2007; Siongco et al., 2016),
and enhance models’ predictive skill over the tropics (Exar-
chou et al., 2021).

1.1.2 The double ITCZ

Another long-standing bias in the tropical climate in GCMs
affects the representation of the ITCZ, referred to as the dou-
ble ITCZ. This bias takes the form of a tropical precipitation
distribution with two distinct maxima – to the north and south
of the Equator – instead of a single one north of the Equator,
as in observations (Fig. 2a and black line in Fig. 3; Schneider
et al., 2014). The double-ITCZ problem has persisted over
climate model generations (e.g., Lin, 2007; Li and Xie, 2014;
Oueslati and Bellon, 2015; Zhang et al., 2015; Samanta et
al., 2019; Tian and Dong, 2020); it has been related to de-
ficiencies in the tropical or global energy budget (Hwang
and Frierson, 2013; Bischoff and Schneider, 2016; Adam et
al., 2016, 2018), in atmospheric deep convection (Zhang and
Wang, 2006; Oueslati and Bellon, 2015; Song and Zhang,

2019), in land temperature (Zhou and Xie, 2017), and in the
atmosphere–ocean coupling due to sea-surface temperature
(SST) biases amplified by the wind-evaporation-surface tem-
perature and the Bjerkness feedbacks (Lin, 2007; Li and Xie,
2014; Qin and Lin, 2018; Samanta et al., 2019). The double
ITCZ commonly develops together with a cold surface bias
and too weak easterlies over the equatorial western Pacific,
which together lead to reduced convective precipitation aloft
(Lin, 2007; Li and Xie, 2014; Oueslati and Bellon, 2015;
Zhang et al., 2015; Samanta et al., 2019). The double-ITCZ
bias can present distinct seasonal characteristics (Lin, 2007;
Li and Xie, 2014; Oueslati and Bellon, 2015; Adam et al.,
2018) – although we will focus on the annual mean in our
analysis for the sake of simplicity.

Increased model resolution can alleviate the double-ITCZ
bias, especially over the Atlantic when the eastern tropical
warm bias is reduced (Seo et al., 2006; Delworth et al., 2012;
Doi et al., 2012; Harlaß et al., 2018; Song and Zhang, 2020)
and orography or mesoscale systems are better resolved in
models (de Souza Custodio et al., 2017; Vannière et al., 2019;
Monerie et al., 2020) and over the Pacific when tropical in-
stability waves are explicitly resolved and extratropical, Pa-
cific temperatures are more accurately simulated (Wengel et
al., 2021). Nonetheless, strong biases in the ITCZ and trop-
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Figure 2. (a) GPCP precipitation rate (in mmd−1). (b) Multi-model ensemble mean bias in precipitation rate (in mmd−1) with respect to
the GPCP precipitation at low and high resolution (left and middle) and differences between the two resolutions (right), as in Fig. 1.

ical precipitation still develop in higher-resolution models
(Gent et al., 2010; McClean et al., 2011; Raj et al., 2019),
which might further be reduced through improved convec-
tive parametrizations (Zhang et al., 2019) or the use of atmo-
spheric convection-permitting (i.e., storm-resolving) climate
models (Klocke et al., 2017).

1.2 Biases in middle and high latitudes

Besides biases in the tropics, climate models also present
substantial biases at higher latitudes, which have also per-
sisted across model generations. Here, we will discuss two
of the best-known: the SO surface warm bias and the cold
bias in the subpolar North Atlantic.

1.2.1 Southern Ocean

Both past and state-of-the-art climate models show a surface
warm bias over extensive areas at midlatitudes and higher lat-
itudes of the SO (see, for example, the bottom left panel in
Fig. 1b; Schneider and Reusch, 2016; Beadling et al., 2020).
This bias has been attributed to an excessive shortwave radi-
ation reaching and warming the surface ocean because of the
underestimation of the cloud cover (especially mixed-phase
clouds) and errors in the cloud forcing (Hwang and Frierson,
2013; Bodas-Salcedo et al., 2012, 2014; Kay et al., 2016;
Schneider and Reusch, 2016; Hyder et al., 2018). The ex-

tent and magnitude of these biases affects important aspects
of the climate, not only over the SO but globally. Thus, for
example, too warm surface temperatures result in a gross un-
derestimation of the Antarctic sea ice by models (Beadling et
al., 2020). Similarly, the associated misrepresentation of the
low-level temperature gradient has been linked to an equa-
torward shift bias in the Southern Hemisphere (SH) upper-
troposphere jet (Ceppi et al., 2012). Biases in clouds over
the SO are an important uncertainty source for climate sen-
sitivity (McCoy et al., 2015; Tan et al., 2016). The biggest
reduction in the SO warm bias has recently been achieved
through a more realistic representation of cloud properties
over the region (Bodas-Salcedo et al., 2014; Seiki and Roh,
2020; Varma et al., 2020), which might be better character-
ized in higher-resolution models (Furtado and Field, 2017).

1.2.2 The North Atlantic

The bias in the North Atlantic surface temperature, associ-
ated with a misrepresentation of the northward turn of the
Gulf Stream, is frequently reported in coupled as well as
ocean-only climate models (Bryan et al., 2007; IPCC, 2013;
Wang et al., 2014; Marzocchi et al., 2015). The bias is char-
acterized by a warm anomaly off the eastern North American
coast, due to a Gulf Stream separation that is too far north
and a cold anomaly to the east in the central subpolar region,
due to too zonal a North Atlantic Current (see, for example,
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Figure 3. Zonally averaged precipitation rate (in mmd−1) in the
tropics for the period 1980–2014 in the atmosphere-only (a, b) and
coupled (c, d) models at low (a, c) and high (b, d) resolutions. In
all the panels, the individual models are the colored, thin lines, the
ensemble mean is the gray, thick line, and the GPCP dataset is the
black, thick line. The HadGEM3-GC31-HH (orange line) is shown
in (d) only.

bottom left panel in Fig. 1b). Improving the representation of
the Gulf Stream and North Atlantic paths, as found in studies
using ocean models at eddy-rich resolutions (∼ 0.1–0.05◦;
Smith et al., 2000; Bryan et al., 2007; Mertens et al., 2014),
may therefore reduce the bias in North Atlantic temperatures
(M. J. Roberts et al., 2019). However, ocean models at rela-
tively high (∼ 0.25–0.1◦) resolutions can still have substan-
tial biases in subpolar North Atlantic temperature and salinity
compared to 1◦- or lower-resolution models (Delworth et al.,
2012; Menary et al., 2015). Instead of increased resolution,
ad hoc corrections to the North Atlantic circulation and sur-
face fluxes can also reduce the North Atlantic bias (Drews et
al., 2015). The North Atlantic bias can lead to further biases
in the atmospheric circulation over the entire North Atlantic
and Europe (Scaife et al., 2011; Keeley et al., 2012; Lee et
al., 2018) and influence the characteristics of the North At-
lantic decadal variability (Menary et al., 2015); an unrealistic
Gulf Stream separation can similarly affect its response to fu-
ture increases in greenhouse gases (Moreno-Chamarro et al.,
2021).

2 Experimental setup

2.1 Models and simulations

We compare simulations generated with five different cli-
mate models participating in the PRIMAVERA project and
for which all the necessary data were publicly available on
the CEDA-JASMIN platform at the time of the analysis (Ta-
ble 1): CNRM-CM6-1 (Voldoire et al., 2019b), EC-Earth3P
(Haarsma et al., 2020), ECMWF-IFS (C. D. Roberts et al.,
2018), HadGEM3-GC31 (M. J. Roberts et al., 2019), and
MPI-ESM1-2 (Gutjahr et al., 2019). Two resolutions for
each model are compared (details provided in Table 1): a
lower one, which in most cases features a standard ∼ 100–
200 km atmosphere and an eddy-parametrized, 1◦ ocean; and
a higher-resolution version with a ∼ 50 km atmosphere and
an eddy-present, 0.25◦ ocean. For simplicity, the lower- and
higher-resolution versions of each model are referred to as
LR and HR, respectively. In all the models except for MPI-
ESM1-2 resolution increases in both the ocean and atmo-
sphere from LR to HR (Table 1). For the MPI-ESM1-2 only
the atmosphere resolution increases, from a nominal reso-
lution of 134 to 67 km, both coupled to a 0.4◦ ocean. To
extend the analysis and explore the benefit of an eddy-rich
ocean model, we also analyze the HH coupled version of
the HadGEM3-GC31 (M. J. Roberts et al., 2019), which has
the same atmospheric resolution as its here-referenced HR
version (41 km) but coupled to an eddy-rich, 1/12◦ ocean
(Table 1). However, the results of the HadGEM3-GC31-HH
model are simply discussed whenever they are relevant and
are not included to compute the ensemble means, since this
model has a different eddy regime compared to the other HR
models.

Following the CMIP6 HighResMIP protocol, no addi-
tional tuning was applied to the HR model versions, except
for a short list of parameters that explicitly change with res-
olution (especially for oceanic diffusion and viscosity; see,
for example, Table 1 in M. J. Roberts et al., 2020b). Spe-
cific details about each model can be found in the references
in Table 1. In contrast to the other models, the HR version
of the ECMWF-IFS model was based on an existing config-
uration used operationally at ECMWF and then adapted to
run at a lower resolution (C. D. Roberts et al., 2018b). We
note that four of five coupled models share an ocean com-
ponent based on NEMO (Nucleus for European Models of
the Ocean; Madec et al., 2017): CNRM-CM6-1, EC-Earth3P,
HadGEM3-GC31 use NEMO v.3.6, and ECMWF-IFS uses
NEMO v.3.4, although all differ in their atmospheric and sea
ice components and ocean tuning parameters (more details
in the references in Table 1). Similarly, two of five mod-
els share an atmosphere component derived from the IFS
(Integrated Forecasting System) of the European Centre for
Medium-Range Weather Forecasts (ECMWF). Specifically,
EC-Earth3P uses IFS cycle 36r4 and ECMWF-IFS uses IFS
cycle 43r1. This similarity in the heritage of model configu-
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rations might lead to similar biases across the ensemble, and
thus our results on the impact of resolution may not general-
ize to all coupled modeling systems.

All simulations follow the HighResMIP experimental de-
sign (Haarsma et al., 2016). The experiments consist of (i)
atmosphere-only simulations (highresSST-present), which
are forced by daily, 0.25◦ SST, and sea ice concentration
from the Hadley Center Global Ice and Sea Surface Temper-
ature (HadISST.2.2.0; Kennedy et al., 2017), and (ii) coupled
historical runs (hist-1950), which are forced by time-varying
external forcing starting from a 50-year control spin-up that
uses fixed 1950s forcing. Both the atmosphere-only and cou-
pled experiments cover the period 1950–2014 – although
here we focus mainly on the 1980–2014 period (see be-
low). Comparing atmosphere-only and fully coupled climate
models allows isolating the biases arising from atmosphere–
ocean interactions.

Model simulation output is obtained from the Earth
System Grid Federation (ESGF) nodes: CNRM-CM6-
1 (Voldoire, 2019a, b), EC-Earth3P (EC-Earth, 2018,
2019), ECMWF-IFS (C. D. Roberts et al., 2017, 2018a),
HadGEM3-GC31 (M. J. Roberts, 2017; Coward and Roberts,
2018; Schiemann et al., 2019), and MPI-ESM1-2 (von Storch
et al., 2018a, b).

2.2 Observations and reanalysis

The climate models are compared against a suite of obser-
vational and reanalysis products. These include near-surface
air temperature (SAT) and tropospheric zonal winds from
the ERA5 reanalysis (Hersbach et al., 2020), precipitation
rate from the version-2 GPCP dataset (Adler et al., 2003),
cloud cover from the version-3 ESA Cloud_cci dataset
(ESA CCI-CLOUD; Stengel et al., 2020), and net cloud
radiative effect computed from the CERES-EBAF dataset
(Kato et al., 2018; Loeb et al., 2018). The net cloud radiative
effect is computed as the difference between the top-of-the-
atmosphere upward net flux and the clear-sky component; it
represents the net effect of clouds on the radiation budget
at the top of the atmosphere, with negative mean values
for cloud-induced cooling, and vice versa (Fig. 5a). Biases
in SAT and zonal winds with respect to the ERA-Interim
reanalysis (Dee et al., 2011) are very similar to those with
respect to ERA5 (not shown). Similarly, biases in SST (not
shown) are very similar to those in SAT, which suggests SAT
biases are dominated by the SST ones over the ocean. The
periods of comparison between models and observations are
adapted to maximize observations’ availability until the last
simulated year (i.e., 2014). These periods are 1980–2014
for ERA5 and GPCP, 1982–2014 for ESA CCI-CLOUD,
and 2001–2014 for CERES-EBAF. Biases are computed
by adapting the ESMValTool (Eyring et al., 2020) recipe
“recipe_perfmetrics_CMIP5.yml” (https://docs.esmvaltool.
org/en/latest/recipes/recipe_perfmetrics.html, last access:
20 October 2020; Gleckler et al., 2008) to analyze the

Geosci. Model Dev., 15, 269–289, 2022 https://doi.org/10.5194/gmd-15-269-2022

https://docs.esmvaltool.org/en/latest/recipes/recipe_perfmetrics.html
https://docs.esmvaltool.org/en/latest/recipes/recipe_perfmetrics.html


E. Moreno-Chamarro et al.: Biases in HighResMIP climate models 275

PRIMAVERA models. The statistical significance of the
differences between models or the ensemble means and
the observations is calculated for each variable based on a
two-tailed Student’s t test at the 5 % level, in which the null
hypothesis is that the two samples (model and observations)
have the same mean over the above-mentioned periods,
assuming the two samples have different variances (von
Storch and Zweirs, 1999). The associated non-significant
values are masked in white in Figs. 1, 2, 4, 5, 6, and all the
figures in the Supplement. An additional test is applied in
Figs. 1, 2, 4, 5, and 6 (shows as stippling) to measure the
agreement in the difference’s sign of the ensemble members
with respect to observations.

For the global biases and each regional bias (upwelling
regions, double ITCZ, SO, and North Atlantic) we compute
the mean bias and the root-mean squared deviation (RMSD;
Tables 2 and S1–S4 in the Supplement). The areas where
these metrics are computed are shown in Fig. S1 in the Sup-
plement and, for the tropical upwelling regions over the SH
Pacific and Atlantic, are between 105–70◦ W for the Pacific
and 30◦ W–15◦ E for the Atlantic, both between 0–30◦ S, be-
tween 100–150◦ W and 0–30◦ S for the Pacific ITCZ (as in
Tian and Dong, 2020), between 0–360◦ E and 50–70◦ S for
the SO, and between 80–10◦ W and 35–65◦ N for the North
Atlantic.

3 Global biases

Table 2 summarizes the values of the global RMSD and bias
of four key variables: SAT, precipitation, cloud cover, and net
cloud radiative effect. These variables are chosen to assess
the different regional biases discussed in Sects. 4 and 5. On
average, the ensemble presents a too cold, wet, and slightly
cloudy climate, with excessive radiative cooling from clouds
compared to observations. The coupled and atmosphere-only
model versions present similar global biases at both resolu-
tions for all variables except for SAT, for which biases are
smaller in the atmosphere-only runs – consistent with these
being forced by observed SSTs. In terms of RMSD, the en-
semble mean presents some of the smallest values, likely be-
cause of error compensation among members.

In contrast to the ensemble mean, the EC-Earth3P and
MPI-ESM1-2 coupled models are globally warmer com-
pared to observations, mostly due to excessively warm
SO/Antarctica and tropics, respectively (Table 2 and Fig. S3).
Similarly, only the MPI-ESM1-2 models are insufficiently
cloudy compared to observations (Table 1), which is con-
nected to their strong biases over the tropics and subtrop-
ics (Figs. S6 and S7). The EC-Earth models are the only
ones that consistently show a positive radiative forcing bias
due to clouds, related to a widespread cloud overestimation
over the SO (Figs. S8 and S9). Across the ensemble, the
atmosphere-only and coupled CNRM-CM6-1 models show
the largest RMSD values, particularly in cloud cover and net Ta
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Figure 4. (a) ESA CCI-CLOUD cover (in %). (b) Multi-model ensemble mean bias in net cloud cover (in %) with respect to ESA CCI-
CLOUD at low and high resolution (left and middle) and differences between the two resolutions (right), as in Fig. 1.

Figure 5. (a) CERES-EBAF net cloud radiative effect (in Wm−2). (b) Multi-model ensemble mean bias in net cloud radiative effect (in
Wm−2) with respect to CERES-EBAF at low and high resolution (left and middle) and differences between the two resolutions (right), as in
Fig. 1.
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Figure 6. Multi-model ensemble mean bias in the zonally averaged zonal wind (in ms−1) with respect to ERA5 at low and high resolution
(a, d and b, e) and differences between the two resolutions (c, f), as in Fig. 1. Contours represent the ERA5 climatology (every 5 ms−1;
negative values, for easterlies, are dashed lines, and positive values, for westerlies, are solid lines).

cloud radiative effect (Table 2), whose biases are dominated
by those over the tropics and high latitudes (Figs. S6–S9).
This contrasts with their relatively low global mean biases, a
clear sign of large error compensation between regions. The
HadGEM3-GC31 and MPI-ESM1-2 models both have large
global mean biases in cloud cover (respectively, excessively
cloudy especially in the tropics and deficiently cloudy espe-
cially in the subtropics and midlatitudes; Fig. S7); however,
these models have the smallest biases in net cloud radiative
effect. These results highlight important differences across
models within the ensemble. Compared to previous gener-
ation CMIP5 models, the global bias in net cloud radiative
effect is lower in all the coupled models (Table 2; cf. Table 1
in Calisto et al., 2014).

The increase in resolution from LR to HR has, on average,
a mixed effect on the global biases (Table 2). The tempera-
ture and net cloud radiative effect biases are reduced partic-
ularly in the coupled models, related to improvements in the
eastern tropical oceans (Sect. 4) and North Atlantic (Sect. 5)
mostly in the coupled versions of the HadGEM3-GC31 and
ECMWF-IFS models. The precipitation and cloud cover bi-
ases increase with increased resolution, especially the cloud
excess in the CNRM-CM6-1 and HadGEM3-GC31 models.
This increase in global precipitation biases at higher reso-
lution is consistent with previous literature (Vannière et al.,
2020). In most cases, nonetheless, increased resolution has a
small impact on the global biases. Since the study of global
biases hides large regional differences, we discuss these in
the following sections.

4 Biases in the tropics

4.1 Upwelling regions

Only the coupled configurations show a distinct warm bias
in the eastern tropical oceans of a magnitude of up to 2–3 ◦C
(Fig. 1) and of about 0.5 ◦C on average (Table S1). This bias
is absent in the atmosphere-only models, as these are forced
by observed SSTs (Fig. 1). At LR, the bias extends over
the eastern tropical South Atlantic and South Pacific from
the coast equatorward. In the Northern Hemisphere (NH)
the warm bias is less evident in the models: off the Califor-
nian coast, only the CNRM-CM6-1, EC-Earth3P, and MPI-
ESM1-2 models show a distinct warm bias (Fig. S3), whereas
off the northwest Africa, most models present a cold bias in-
stead – likely the result of the strong cold bias over the sub-
polar region (discussed in Sect. 5.2).

Increased resolution leads to a reduction in the bias over
the SH ocean basins of up to about 1 ◦C (Fig. 1) and of about
0.3 ◦C on average in the ensemble mean (Table S1). The
warm bias is largely reduced in both HadGEM3-GC31 HR
models, although using an eddy-rich ocean model (HH) leads
to no further reduction compared to the eddy-present ocean
(HM) for the same ∼ 50 km atmosphere resolution (Fig. S3).
For this model and bias in particular, the increase in atmo-
sphere resolution from a ∼ 200 to a ∼ 50 km model seems to
be more beneficial than the increase in the ocean from ∼ 100
to ∼ 8 km (M. J. Roberts et al., 2019).

As with many previous-generation GCMs, the surface
warm bias is associated with an underestimation of the cloud
cover of up to 10 %–20 % (Fig. 4) and of about 7 % on av-
erage (Table S1) over the eastern subtropical ocean in the
LR ensemble. The shape and magnitude of the cloud cover
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bias are similar in the atmosphere-only and coupled models,
which points to deficiencies in the atmosphere models as the
root cause. The CNRM-CM6-1 LR model shows the largest
amplitude in the cloud cover bias of about 20 % on average
(Table S1) and locally above 30 % (Figs. S6 and S7), fol-
lowed by the MPI-ESM1-2 LR model, with a mean bias of
about 17 % (Table S2); cloud cover biases over the upwelling
regions show nearly half the amplitude in the EC-Earth3P,
ECMWF-IFS, and HadGEM3-GC31 LR models (Table S2
and Figs. S6 and S7). Although the cloud cover bias persists
into the atmosphere-only and coupled HR models, it is re-
duced by about 10 % right along the South American western
coast (Fig. 4). Increased resolution reduces the cloud cover
bias over the eastern South Pacific and Atlantic in the MPI-
ESM1-2 and HadGEM3-GC31 coupled models compared to
their atmosphere-only versions (Figs. S6 and S7). This high-
lights the importance of reducing the surface warm bias un-
derneath and an improved atmosphere–ocean coupling.

The temperature and cloud biases can be connected
through the bias in the net cloud radiative effect (Fig. 5),
which is positive (10–20 Wm−2) along the western coasts
of the subtropical South Atlantic and North and South Pa-
cific in the ensemble mean. The bias, which is dominated by
the shortwave component (not shown), points to an exces-
sive radiative surface warming linked to cloud cover deficit
(Fig. 4). Increased resolution reduces the bias in the net cloud
radiative effect by about 3 Wm−2 on average (Table S1)
and by up to 10–15 Wm−2 locally in the ensemble mean
(Fig. 5). This is largely because of the contributions of the
HadGEM3-GC31 and MPI-ESM1-2 models, especially in
their coupled configuration and, to a smaller degree, in the
EC-Earth3P and ECMWF-IFS models, with local reductions
of about 5 Wm−2 (Figs. S8 and S9) as a result of the reduc-
tion in the surface warm and cloud cover biases discussed
above. Contrasting with the other ensemble member, both the
atmosphere-only versions and the HR coupled version of the
MPI-ESM1-2 model show a negative bias in the net cloud
radiative effect right along the African and South American
coasts over the upwelling areas (Figs. S8 and S9), linked to a
slight cloud overestimation (Figs. S6 and S7).

4.2 The double ITCZ

The LR models suffer from large biases in tropical precipi-
tation (Fig. 2). These biases are similar in extent and magni-
tude to previous and contemporary models (CMIP3/5/6; cf.
Fig. 2 in Tian and Dong, 2020). On average, the double ITCZ
emerges over the Pacific basin in the coupled models (Fig. 2),
where the bias presents the characteristic pattern with pre-
cipitation deficit over the Equator and excess on the northern
and southern flanks by about ∓2 mmd−1 on average, respec-
tively. This pattern can be identified in all the LR coupled
models, except for CNRM-CM6-1, in which the precipitation
excess is predominantly on the southern flank. Associated
with the equatorial dry bias, a cold bias of up to 1–2 ◦C also

affects the LR coupled models over the central equatorial Pa-
cific (Fig. 1). In contrast to the Pacific, the precipitation bias
over the tropical Atlantic points to a southward-shifted ITCZ,
with dry and wet biases to the north and south of the Equator,
respectively, while over the Indian Ocean a wet precipitation
bias extends over the western part of the basin and a dry one
over the Indian subcontinent (Fig. 2). Such differences be-
tween ocean basins suggest that either different mechanisms
are responsible for their biases or that each basin responds
differently to the same large-scale/global biases. Together,
the tropical precipitation biases lead to a precipitation ex-
cess mainly over the SH in the LR coupled models (Fig. 3).
All the areas with precipitation excess show positive bias in
cloud cover of up to about 10 %–20 % (Fig. 4).

In contrast to the LR coupled models, their atmosphere-
only configurations show no clear double-ITCZ pattern
(Figs. 2 and 3). In the zonal mean, in fact, the excess in pre-
cipitation is relatively constant across all the tropics in the
atmosphere-only models (Fig. 3). This result suggests that
the double ITCZ arises from misrepresented atmosphere–
ocean coupling, consistent with previous literature pointing
to simulated air–sea interactions and SST as key players in its
development (Lin, 2007; Li and Xie, 2014; Oueslati and Bel-
lon, 2015). The LR atmosphere-only models, instead, present
excessively wet (∼ 1.5–3 mmd−1; Fig. 2) and cloudy tropics
(∼ 10 %–20 %; Fig. 4), particularly over the western parts of
all the ocean basins. These regions are where the ocean sur-
face temperature is the warmest, pointing to an excessively
strong precipitation response to the imposed SST field. It is
interesting to note that despite the different pattern in pre-
cipitation biases over the tropics between the atmosphere-
only and the coupled models, their cloud biases are very
similar (compare top and bottom panels in Fig. 4b and be-
tween Figs. S6 and S7). Areas with precipitation excess do
not systematically present positive cloud cover biases and
vice versa. This suggests that, first, errors compensate across
cloud levels or types – convective cloud excess might result,
for example, in a deficit in low-level, stratiform clouds – and,
second, the atmosphere–ocean coupling has a subsidiary im-
pact on the cloud bias, which most likely arises from defi-
ciencies in the atmosphere model.

Increased model resolution reduces the tropical precipita-
tion biases in the coupled models (Figs. 2 and 3), in agree-
ment with previous literature (Vannière et al., 2020). In par-
ticular, the double-ITCZ bias is especially reduced over the
Pacific in the ECMWF-IFS, MPI-ESM1-2, and HadGEM3-
GC31 models and the southward-shifted ITCZ over the At-
lantic in the HadGEM3-GC31 model (Fig. S5 and Table S2).
Over these two basins, however, the bias reduction is larger
for the eddy-present HadGEM3-GC31 model than for the
eddy-rich one (Fig. S5 and Table S2). Over both the Pacific
and Atlantic, the reduction in the tropical precipitation bias
develops together with a reduction in the central equatorial
Pacific cold bias of up to about 1 ◦C and in the eastern tropi-
cal South Atlantic warm bias (Fig. 1), in agreement with pre-
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vious literature (Huang et al., 2007; Xu et al., 2014a; Siongco
et al., 2015; Song and Zhang, 2019). By contrast, cloud bi-
ases over these regions increase by about 3 % on average in
the ensemble mean and locally by up to 5 %–10 % with in-
creased resolution in the coupled models (Fig. 4) and espe-
cially in the CNRM-CM6-1, MPI-ESM1-2, and HadGEM3-
GC31 models (Figs. S7 and Table S2). In most of the cou-
pled models, increased resolution leads to modest bias reduc-
tions (overall smaller than the magnitude of the bias itself),
and thus the models still exhibit large biases in precipitation
and cloud cover over the tropical Pacific and Indian oceans
(Figs. 2 and 4) and a clear excess in tropical precipitation
(Fig. 3).

In the atmosphere-only models, bias reduction due to reso-
lution in precipitation and clouds in the tropics is mostly neg-
ligible in the ensemble mean, and only the HadGEM3-GC31
and CNRM-CM6-1 models show a slight reduction over the
western tropical North Pacific and tropical North Pacific, re-
spectively (Figs. 2 and S4). This points to issues with the
atmospheric model physics, which remained unchanged be-
tween LR and HR (Sect. 2), as the root of the precipitation
and cloud cover biases over the tropics. Improvements seen
in the HR coupled models therefore arise from increased res-
olution/improvements in the ocean, better represented cou-
pling, or both.

5 Biases in middle and high latitudes

5.1 Southern Ocean

The SO warm bias does not appear in all the LR coupled
models (Figs. 1 and S3). The EC-Earth3P and ECMWF-IFS
models, which both use a combination of an IFS model and
a NEMO model – albeit different versions (Sect. 2) – show a
mean SAT bias of about 1 ◦C over the entire SO (Table S3)
with local values of up to 2–3 ◦C (Fig. S3). By contrast, the
CNRM-CM6-1, MPI-ESM1-2, and HadGEM3-GC31 mod-
els show a mean SO bias of about −1 ◦C, but the patterns
are more mixed, with successive regional warm and cold bi-
ases that might result from a different spatial distribution in
sea ice. Together with the SO warm bias, the LR coupled en-
semble (and especially the CNRM-CM6-1, EC-Earth3P, and
ECMWF-IFS models; Fig. S7) shows a mean underestima-
tion of the midlatitude cloud cover by 5 %–10 % (Figs. 4, S7,
and Table S3) and a positive mean bias in the net cloud radia-
tive effect of 5–15 Wm−2 (Figs. 5, S9, and Table S3), which
is dominated by the shortwave component (not shown). The
MPI-ESM1-2 model shows the smallest (1 Wm−2 on aver-
age; Table S3) and least widespread bias in its net cloud
radiative effect over the SO (Fig. S9), which might explain
its smaller surface temperature biases (Fig. S3). In contrast
to the other models, the HadGEM3-GC31 model shows a
positive bias in cloud cover over the SO (Fig. S7; related
to a recently introduced mixed-phase cloud parametrization;

Bodas-Salcedo et al., 2019) and an overly strong net cloud
radiative effect (Fig. S9); these biases contrast with its weak
SO warm bias (Fig. S3) and point to some form of com-
pensating errors (potentially due to the air–sea heat fluxes;
Hyder et al., 2018; Williams et al., 2017) leading to reason-
able surface temperatures. These results agree with previous
studies relating the SO warm bias to the underestimation of
the albedo of clouds (Bodas-Salcedo et al., 2012, 2014). The
LR coupled models also present a dry bias at midlatitudes
(Fig. 2). Similarly, they exhibit an equatorward shift in the
upper-level jet, even in models with a relatively small SO
warm bias, with too weak a zonal wind between the surface
and the tropopause at around 60◦ S and too strong a zonal
wind at upper levels (∼ 200–300 hPa) to the Equator (Fig. 6),
in agreement with previous studies (Ceppi et al., 2012).

Increased resolution has a mixed effect on the SO warm
bias and, although it seems to increase in the ensemble mean
(Fig. 1), this varies substantially across models (Fig. S3 and
Table S3): the CNRM-CM6-1 model experiences a reduc-
tion in a cold bias over the Weddell Sea of up to about
4 ◦C; the EC-Earth3P warms along the Antarctic coast and
its widespread SO warm bias persists at HR; the ECMWF-
IFS model shows an increase in its temperature bias by about
1.5 ◦C on average and very strongly locally in the Weddell
Sea by over 5 ◦C; the MPI-ESM1-2 shows a mean cool-
ing over the SO of about 0.5 ◦C and becomes cold biased
especially to the west of the Antarctic Peninsula; and the
HadGEM3-GC31 model shows a reduction in its coastal cold
bias, developing instead a more widespread warm bias with
local values of up to about 1–2 ◦C – although the cold bias
over the Weddell Sea persists in the HadGEM3-GC31 eddy-
rich model. In contrast to temperature, biases in cloud cover
and net cloud radiative effect remain relatively unchanged
between LR and HR (Figs. 4 and 5). The CNRM-CM6-1
shows a 1 % reduction in its mean cloud cover bias over
the SO, while the ECMWF-IFS and MPI-ESM1-2 models
show a 1 %–3 % increase over the SO (Table S3). Similarly,
the ECMWF-IFS model shows a 1.5 Wm−2 mean reduction,
while the MPI-ESM1-2 model shows a 4 Wm−2 mean in-
crease in their net cloud radiative effect biases over the SO
(Figs. S6–S9). Given the small reduction in the cloud cover
and net cloud radiative effect biases with increased resolu-
tion, the change in the temperature bias over the SO might
be related to a change in the sensitivity of the HR coupled
models to the similar cloud and radiation biases or to devel-
opment of further biases, for example, in the sea ice, mixed
layer depth, air–sea heat fluxes, or the strength of the Antarc-
tic Circumpolar Current (e.g., C. D. Roberts et al., 2018b).
Some of these biases might, in turn, be linked to the dis-
abling or not of the mesoscale eddy mixing at higher reso-
lution (C. D. Roberts et al., 2018b), as discussed in Sect. 6.
The dry bias over the SO remains unchanged (mean changes
overall below 0.1 mmd−1) with increased resolution (Fig. 2).
In agreement with previous studies, there is no obvious link-
age between the magnitude of the SO bias and the double-
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ITCZ bias in the LR and HR coupled models (Hawcroft et
al., 2017). Increased resolution deepens the magnitude of the
zonal wind bias over the SH in all the models, although it has
little impact on the overall pattern (Fig. 6).

As for the atmosphere-only models, temperature biases
over most of the SO are negligible both at LR and HR
(Fig. 1). The LR versions of the CNRM-CM6-1, EC-Earth3P,
ECMWF-IFS, and MPI-ESM1-2 models show a cold bias
of up to 2–4 ◦C off the Antarctic coast, bias that is reduced
only in the CNRM-CM6-1 by 1–2 ◦C at HR (Fig. S2); this
coastal cold bias might reflect an issue in the response of the
lower atmosphere to the imposed sea ice field, perhaps re-
lated to assumed ice/snow thickness used in the land-surface
scheme to calculate skin temperature over ice. Biases in pre-
cipitation, cloud cover, and cloud radiative effect are com-
paratively similar to those in the coupled models and show
negligible improvements with resolution as well (Figs. 2–5).
It is interesting to note that all the atmosphere-only models
show a rather zonally uniform positive bias in the net cloud
radiative effect of 5–15 Wm−2 on average (Fig. S8 and Ta-
ble S3). Biases in the SH jet in atmosphere-only models are
similar but of smaller amplitude compared to those in the
coupled models (Fig. 6).

5.2 The North Atlantic

All the LR coupled models show a cold bias over the cen-
tral subpolar North Atlantic and a warm one off the North
American east coast, with local values of up to −5 and 2 ◦C,
respectively, in the ensemble mean (Figs. 1 and S3). These
temperature biases are absent in the atmosphere-only mod-
els, which supports the notion that these are the result of the
misrepresentation of the Gulf Stream separation and path by
the ocean model. The cold bias is especially strong in the
ECMWF-IFS model, where anomalies colder than −5 ◦C
cover the large areas of the subpolar North Atlantic and
Nordic Seas (Fig. S3); this strong cold bias results from an
unrealistically weak Atlantic meridional overturning circula-
tion (AMOC) and related heat transport, potentially related
to the lack of re-tuning compared to its HR version (see
Sect. 2 and C. D. Roberts et al., 2018b). The cold bias also
extends northward into Arctic latitudes in the CNRM-CM6-
1 and HadGEM3-GC31 models, which points to a misrepre-
sentation of the Arctic sea ice in addition to the Gulf Stream
path and the poleward oceanic heat transport. The cold bias
over the subpolar North Atlantic is accompanied by a dry
bias of up to about 1 mmd−1 (Fig. 2) and, in most cases,
by a reduced cloud cover of up to about 10 % (Fig. 4). The
cold bias might also be related to the southward-shifted jet
in the NH in some models (Fig. 6) due to a southward shift
in the maximum of the horizontal temperature gradient (not
shown); however, the bias in the NH jet might also be related
to a southward shift in the ITCZ/Hadley Circulation (espe-
cially in the Atlantic Basin; Fig. 2) and the associated inten-
sification of the subtropical jet.

Increased model resolution reduces the magnitude of the
cold bias by about 1 ◦C on average (Table S4) and locally
by up to 2–3 ◦C in the ensemble mean (Fig. 1). There are,
however, important differences across the ensemble mem-
bers (Fig. S2). The EC-Earth and CNRM-CM6-1 HR mod-
els show relatively small local reductions in the cold bias by
about 0.5–1 ◦C over the central subpolar North Atlantic. The
lack of a clear improvement in these two HR models might
be related to the unchanged ocean physics between the low
and high resolutions (Sect. 2). The MPI-ESM1-2 shows no
changes in the biases between resolutions over the subpo-
lar North Atlantic but a strong cooling of up to about 4 ◦C
over the Nordic Seas, likely related to misrepresented local
sea ice. The lack of changes in the subpolar North Atlantic
biases might be because both the LR and HR MPI-ESM1-
2 models use the same ocean resolution (0.4◦; Table 2) and
both present too zonal a North Atlantic Current (Müller et
al., 2018). Especially remarkable are the ECMWF-IFS and
HadGEM3-GC31 models, for which the cold bias is strongly
reduced (Fig. S3). In the ECMWF-IFS model, this results
from a much more realistic AMOC heat transport and sea
ice extent in the North Atlantic compared to the LR ver-
sion (C. D. Roberts et al., 2018b). In the HadGEM3-GC31,
the bias is reduced thanks to the improvement in the Gulf
Stream/North Atlantic path and in the northward oceanic
heat transport with increased resolution (M. J. Roberts et al.,
2019; Grist et al., 2021). The increase in ocean resolution
from an eddy-present to an eddy-rich model leads to a more
accurate Gulf Stream representation (Moreno-Chamarro et
al., 2021) and a reduced warm bias near the coast (Fig. S2;
M. J. Roberts et al., 2019).

On average at HR, the cold bias over the subpolar North
Atlantic is replaced by a warm bias of up to about 2–3 ◦C
over the Labrador Sea (Fig. 1). The warming of the en-
tire subpolar North Atlantic is, in fact, one of the most re-
markable differences at increased resolution in the ensem-
ble mean. The warming is especially prevalent in the NEMO
models at the 0.25◦ resolution, in which the warm bias is
likely related to a stronger oceanic heat transport in the
North Atlantic and reduced sea ice than at lower resolutions
(M. J. Roberts et al., 2020b), linked to too strong an ocean
deep mixing in the Labrador Sea (Koenigk et al., 2021). In
the MPI-ESM1-2 models, by contrast, a warm bias is already
present at LR and, together with the cold bias in the central
North Atlantic bias, remains unchanged at HR (Fig. S3). It
is interesting to note that these two model versions share the
same ocean resolution (Table 1). These results highlight the
importance of ocean resolution for the North Atlantic bias.

Changes in other biases due to resolution include a reduc-
tion in the dry bias over the subpolar North Atlantic (Fig. 2),
likely related to the surface warming, and a deepening of the
bias in the NH upper-troposphere jet (Fig. 6), which might
be related to an intensification in eddy momentum transfer
to the jet due to resolution (Willison et al., 2013) and/or to
the changes in the vertical structure of the temperature bias
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across models. The change in the cloud cover bias in the en-
semble means is relatively small – of about ±5% over the
entire North Atlantic – with no clear changes in the pattern
(Figs. 3).

6 Discussion and conclusions

This paper examines whether increased horizontal resolu-
tion alone reduces four well-known, long-standing climate
biases in five global models developed within the PRIMAV-
ERA project. These biases are the warm eastern tropical
oceans, the double ITCZ, the warm Southern Ocean (SO),
and the cold North Atlantic. The analysis also considers
changes in global biases. We compare atmosphere-only and
fully coupled models to separate biases arising from poorly
resolved atmospheric and oceanic processes alone or from
atmosphere–ocean coupling. The increase in resolution in
the atmosphere and ocean goes from the traditional 200–
100 km grid to a 25–50 km one. The analysis also includes
an eddy-rich global coupled model at an 1/12◦ ocean reso-
lution. Models are compared to observations and the ERA5
reanalysis over the period 1980–2014.

All the LR coupled models suffer from the above-
mentioned four key biases, as in previous and contempo-
rary generations (CMIP3/5/6; IPCC, 2013; Wang et al., 2014;
Tian and Dong, 2020). Although increased resolution con-
tributes to reducing some of these biases, both globally
and regionally, this is only in a few models and is model-
dependent, for example, for surface temperature biases. In
the ensemble mean, the warm eastern tropical ocean, the dou-
ble ITCZ, and the cold North Atlantic biases are reduced in
the coupled models at higher resolutions; by contrast, the SO
warm bias increases or persists in some models, with small
changes in the cloud cover and net cloud radiative effect bi-
ases aloft; finally, a new warm bias emerges in the Labrador
Sea that might be related to excessive oceanic deep mixing
in the coupled models using the NEMO ocean model at 1/4–
1/12◦ resolution (Koenigk et al., 2021). Despite some im-
provements, large biases remain at higher resolutions, espe-
cially in precipitation and cloud cover over the tropics and in
the midlatitude upper-tropospheric zonal wind, for which the
benefit from resolution is rather modest. Our results are in
line with previous modeling work that suggests reductions in
biases due to increased resolution (e.g., Mertens et al., 2014;
Harlaß et al., 2018; Monerie et al., 2020; Vannière et al.,
2020) or not at all, depending on the model and region (e.g.,
Delworth et al., 2012; Menary et al., 2015; Raj et al., 2019;
Bador et al., 2020). The emergence of a consistent warm bias
in the Labrador Sea at a high resolution poses the question of
what new other biases might appear at increased resolution
and highlights the difficult task of removing all the model
biases.

The ensemble means hide important differences across the
individual models. Compared to their respective LR versions,

the CNRM-CM6-1 HR model shows a modest reduction in
most of its biases, although it still exhibits some of the largest
biases in precipitation, cloud cover, net cloud radiative effect
over the tropics, and zonal winds at SH midlatitudes among
the ensemble. The EC-Earth3P HR model improves slightly
in the upwelling and subpolar North Atlantic regions but still
shows large biases in tropical precipitation and a widespread
SO warm bias. The ECMWF-IFS HR model, the one with the
finest atmospheric nominal resolution (∼ 40 km; Table 1),
shows a big reduction in the North Atlantic cold bias be-
cause of a much more realistic Atlantic Ocean heat transport
compared to LR and a modest bias reduction in the tropical
precipitation and the eastern tropics; however, it also shows
an increase in the SO warm bias and no major changes in its
global cloud cover biases. The HadGEM3-GC31 HR models
improve the most among the ensemble because all its biases,
except for the warm SO, are reduced with increased reso-
lution. This includes notable gains in the tropical South At-
lantic upwelling region, with a bias reduction in surface tem-
perature, cloud cover, and precipitation over the upwelling
region, and in the North Atlantic. Last, the MPI-ESM1-2 HR
model improves in all the regions except for the North At-
lantic, where the LR and HR, both with the same ocean res-
olution, suffer from similar biases in the Gulf Stream path
and North Atlantic temperatures. These results illustrate how
strongly model-dependent the impact on the studied biases
due to increased resolution can be.

When additional model configurations are available, the
benefit of bias reduction from increasing ocean resolution
alone can be assessed. For the ECMWF-IFS model, in-
creased ocean resolution from 1 to 0.25◦ reduces the North
Atlantic, Arctic, and equatorial Pacific temperature biases
but increases the SO warm biases (C. D. Roberts et al.,
2018b). For the HadGEM3-GC31 model, increased ocean
resolution of up to an eddy-rich one (0.08◦) improves the
Gulf Stream separation (M. J. Roberts et al., 2019) and rep-
resentation (Moreno-Chamarro et al., 2021), although the
eddy-rich resolution by itself has a modest impact on reduc-
ing surface temperature biases compared to the eddy-present
(0.25◦; Fig. S3 and M. J. Roberts et al., 2019). For the MPI-
ESM1-2 model, the North Atlantic temperature and the Gulf
Stream separation are also more realistic in an eddy-rich
ocean (∼ 0.1◦) compared to the LR and HR versions used
in our study (Gutjahr et al., 2019). These results thus suggest
that an eddy-rich ocean resolution might be key to reduc-
ing North Atlantic and Southern Ocean temperature biases,
which is consistent with previous studies (e.g., Mertens et
al., 2014; Xu et al., 2014b). Particularly important for such
biases might be the treatment of the mesoscale eddy mixing
at the eddy-present resolution because mesoscale eddies be-
come smaller at higher latitudes and are therefore not fully
resolved at the eddy-present resolution (0.25◦). Thus, for ex-
ample, while the CNRM-CM6-1 (Voldoire et al., 2019b),
EC-Earth3P (Haarsma et al., 2020), and MPI-ESM1-2 (Gut-
jahr et al., 2019) HR models, respectively, use a Smagorinsky
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scheme and the Gent and Mcwilliams (1990) and K-profile
parameterizations (KPP), the ECMWF-IFS (C. D. Roberts et
al., 2018b) and HadGEM3-GC31 (M. J. Roberts et al., 2019)
HR models switched off the Gent and Mcwilliams (1990)
parametrization. Subtle differences in the model physics due
to increased resolution might therefore exert a strong influ-
ence on model biases.

As for the increase in atmosphere resolution alone, it con-
tributes to reducing the warm bias over the eastern tropical
oceans in the ECMWF-IFS (C. D. Roberts et al., 2018b),
HadGEM3-GC31 (M. J. Roberts et al., 2019), and MPI-
ESM1-2 (this study) coupled models. Previous studies have
linked a similar bias reduction to a more realistic coastal
wind system (Small et al., 2015; Milinski et al., 2016). The
reduction in the surface warm bias, in turn, reduces the re-
gional precipitation and cloud cover biases aloft. However,
increased atmosphere resolution alone leads to very mod-
est bias reductions over most regions in the atmosphere-only
models, which still show strong biases in tropical precipita-
tion over the western ocean basins at HR. The atmosphere-
only models also show biases in cloud cover and net cloud
radiative effect over the whole tropics and in the zonal winds
at midlatitudes very similar to those in the coupled models
both at LR and HR.

Even though we acknowledge that our conclusions might
be both model and region dependent, taken together, our
analysis suggests that to remove model biases (i) a refinement
of the atmosphere resolution of up to ∼ 50 km alone might
not always be sufficient and (ii) reaching eddy-rich ocean
resolutions (1/12◦ or fine) might be needed. The increase
in ocean resolution from eddy-parametrized (∼ 100 km) to
eddy-rich (∼ 10 km) allows models to represent the first
baroclinic Rossby radius and might therefore improve the
representation of small-scale dynamical processes and then
biases. In contrast, equivalent phenomena in the atmosphere
are already well resolved (the first Rossby radius at mid-
latitude is about 1000 km, which corresponds to the synop-
tic scale). Many of the challenges of reducing atmospheric
model biases are related to interactions between dynamics,
radiation, and parameterized (moist) physics (clouds, con-
vection, radiation). These errors are much more difficult
to address with increasing resolution as they are not obvi-
ously related to errors in grid-scale dynamics but in model
physics (Kay et al., 2016; Varma et al., 2020). Increased at-
mospheric resolution improves the representation of weather
or extremes, as found, for example, for tropical cyclones
(M. J. Roberts et al., 2020a; Vannière et al., 2020; Vidale et
al., 2021; Zhang et al., 2021) and blocking frequency (Schie-
mann et al., 2020) in PRIMAVERA models and in numerical
weather prediction systems (e.g., Lean et al., 2008).

Besides increased resolution, improvements in model
parametrizations and process representations, specific cor-
rections applied to models, additional tuning, and longer
spin-ups might all be essential to minimize model biases.
More realistic cloud physics based on observational con-

straints, for example, can reduce the SO biases in the net
cloud radiative effect by about 4 Wm−2 and in the surface
temperature by about 1 ◦C (Kay et al., 2016; Varma et al.,
2020). Corrections to the North Atlantic Current flow and
North Atlantic surface freshwater budget can suppress the
cold North Atlantic bias entirely (Drews et al., 2015). Fur-
ther model tuning and longer spin-ups are still to be ex-
plored. For the PRIMAVERA models considered here, no
additional tuning was performed with the change in resolu-
tion, in agreement with the HighResMIP protocol (Haarsma
et al., 2016). For the ECMWF-IFS model in particular, the
LR version may have benefited from further tuning of the
ocean component to reduce biases in the AMOC and North
Atlantic SST in multi-decadal climate simulations (Fig. S2;
C. D. Roberts et al., 2020a). However, in this case, it was an
explicit decision to keep the ocean vertical physics as consis-
tent as possible across configurations to ensure the LR ocean
was a good proxy for the HR ocean in coupled projections at
daily to seasonal timescales (C. D. Roberts et al., 2020a, b).
Regarding longer spin-ups, the PRIMAVERA models con-
sidered here also followed the HighResMIP protocol, which
recommended a relatively short 50-year spin-up (Haarsma et
al., 2016). In the HadGEM3-GC31 LR coupled model, such
a spin-up was found insufficient to stabilize its large-scale
circulation and could therefore have contributed to accentu-
ating some of its biases (M. J. Roberts et al., 2019). Testing
the benefit of model re-tuning and longer spin-ups would,
however, be extremely time and resource consuming if per-
formed following traditional approaches at the highest reso-
lutions. Further bias reduction might be gained by using new
convection-permitting climate models, as computing power
increases with every new model generation (Klocke et al.,
2017).

To summarize, our study finds limited benefit from in-
creased resolution alone between the traditional ∼ 100 km
models and the ∼ 25 km ones to reduce long-standing bi-
ases, based on an ensemble of high-resolution models devel-
oped for the PRIMAVERA project. At this resolution range,
increased resolution in both the atmosphere and ocean can,
to some extent, reduce biases in the eastern tropical oceans,
ITCZ, and North Atlantic, with further gains at an eddy-
rich ocean resolution. Reductions in surface temperature bi-
ases are strongly model-dependent in the coupled models and
might be subject to differences in model physics between
them. In addition to further increases in resolution, we there-
fore propose that future efforts should also be directed to-
ward improving model physics, for example in cloud repre-
sentation, and developing innovative high-resolution model
tuning approaches at higher resolutions.

Code and data availability. The model data used in this
work are available from ESGF (https://esgf-index1.ceda.
ac.uk/search/cmip6-ceda/, last access: 1 June 2021) via
the references provided in Sect. 2.1: CNRM-CM6-1
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(https://doi.org/10.22033/ESGF/CMIP6.4039, Voldoire, 2019a;
https://doi.org/10.22033/ESGF/CMIP6.4040, Voldoire, 2019b),
EC-Earth3P (https://doi.org/10.22033/ESGF/CMIP6.4683,
EC-Earth, 2018; https://doi.org/10.22033/ESGF/CMIP6.4682,
EC-Earth, 2019), ECMWF-IFS
(https://doi.org/10.22033/ESGF/CMIP6.4981, Roberts et
al., 2017; https://doi.org/10.22033/ESGF/CMIP6.4982,
Roberts et al., 2018a), HadGEM3-GC31
(https://doi.org/10.22033/ESGF/CMIP6.6042, Roberts, 2017;
https://doi.org/10.22033/ESGF/CMIP6.6039, Coward and
Roberts, 2018; https://doi.org/10.22033/ESGF/CMIP6.446,
Schiemann et al., 2019), and MPI-ESM1-2
(https://doi.org/10.22033/ESGF/CMIP6.6586, von Storch et
al., 2018a; https://doi.org/10.22033/ESGF/CMIP6.10307,
Storch et al., 2018b). Data of ERA-5 are freely available at
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
(Hersbach et al., 2020; https://doi.org/10.24381/cds.6860a573,
Hersbach et al., 2019), those of GPCP at https://psl.noaa.gov/
data/gridded/data.gpcp.html (Adler et al., 2003), those of ESA
cloud cover at https://climate.esa.int/en/projects/cloud/data/
(Stengel et al., 2020), and those of CERES-EBAF at
https://ceres.larc.nasa.gov/data/ (Kato et al., 2018; Loeb et
al., 2018). Data and scripts to reproduce the figures can be obtained
from https://doi.org/10.5281/zenodo.5006136 (Moreno-Chamarro,
2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-269-2022-supplement.
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