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Abstract. High-resolution soil maps are urgently needed by land managers and researchers for a variety of ap-
plications. Digital soil mapping (DSM) allows us to regionalize soil properties by relating them to environmental
covariates with the help of an empirical model. In this study, a legacy soil dataset was used to train a machine
learning algorithm in order to predict the particle size distribution within the catchment of the Bode River in
Saxony-Anhalt (Germany). The random forest ensemble learning method was used to predict soil texture based
on environmental covariates originating from a digital elevation model, land cover data and geologic maps. We
studied the usefulness of clustering applications in addressing various aspects of the DSM procedure. To improve
areal representativity of the legacy soil data in terms of spatial variability, the environmental covariates were used
to cluster the landscape of the study area into spatial units for stratified random sampling. Different sampling
strategies were used to create balanced training data and were evaluated on their ability to improve model perfor-
mance. Clustering applications were also involved in feature selection and stratified cross-validation. Under the
best-performing sampling strategy, the resulting models achieved an R2 of 0.29 to 0.50 in topsoils and 0.16–0.32
in deeper soil layers. Overall, clustering applications appear to be a versatile tool to be employed at various steps
of the DSM procedure. Beyond their successful application, further application fields in DSM were identified.
One of them is to find adequate means to include expert knowledge.

1 Introduction

In order to sustain soil resources, land managers and re-
searchers are in need of information on the continuous
landscape-scale distribution of soil properties. One of the im-
portant soil properties which governs most physical, chemi-
cal, and biological soil processes is soil texture. Soil texture
maps can be used for the assessment of erosion risk, wa-
ter deficit, or pesticide and nutrient storage and percolation
(Blume et al., 2016).

Conventional soil maps are usually created by a qualita-
tive analysis of the landscape based on a conceptual model
which subdivides the area into spatially assigned units with
all soil properties set to uniform values within the units. The

categories of these units do not necessarily represent soil sys-
tematic units and do not allow for the representation of small-
scale, continuous variability. Overall, these soil maps were
never meant to be used as input to landscape-scale process
models that strive to simulate gas, matter and water flows.
From this demand and an advance in information technol-
ogy, the domain of digital soil mapping (DSM) has quickly
advanced (Grunwald et al., 2011).

DSM strives to capture and quantify the influence of
the soil-forming factors, which are represented by continu-
ous gridded geoinformation from remote sensing and other
sources (Scull et al., 2003). Laboratory and field observations
are coupled with spatial environmental covariates covering
the study area and are used to build an empirical model to
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predict the surveyed target variable based on the quantitative
relationship between soil properties and environmental co-
variates (McBratney et al., 2003; Grunwald, 2009; Minasny
and McBratney, 2016). The key technological advantages
that allowed DSM are the increase in computational power
which facilitates model development and the widespread
availability of satellite systems (Rossiter, 2018). The latter
are used for accurate georeferencing and as platforms for a
variety of sensors which provide spatially continuous mea-
surements which can be used as environmental covariates.

The algorithms used for DSM applications are of different
degrees of complexity, ranging from linear regression (Gobin
et al., 2001; Park and Vlek, 2002; de Carvalho Junior et al.,
2014) to artificial neural networks (Park and Vlek, 2002;
Zhao et al., 2009). Most of these studies used continuous co-
variates based on a digital elevation model (DEM) as predic-
tors, but certain applications also included categorical covari-
ates, such as information based on geologic maps (Adhikari
et al., 2013; Vaysse and Lagacherie, 2017). The machine
learning algorithm most frequently used in DSM approaches
is the random forest (RF) ensemble learning method (Padar-
ian et al., 2019). A key characteristic of RF is its adaptive
nature which allows it to explore complex, nonlinear, and
high-dimensional relationships without a prior understanding
of the problem to be solved (Evans et al., 2011). Compared
to decision tree methods, RF is less prone to overfitting and
is less sensitive to irrelevant predictors and outliers (Heung
et al., 2014). Nevertheless, many RF and other modelling ap-
plications use feature selection preceding the model-building
procedure to detect and exclude predictors with little infor-
mation content with regards to the response variable. Feature
selection can be achieved though filter methods, which in-
vestigate the predictor–response relationship of each predic-
tor individually without considering the model algorithm, or
alternatively by using wrapper methods that evaluate the per-
formance of the model using a variety of predictor subsets.

The essential foundation of creating soil maps is the avail-
ability of a soil dataset of sufficient size and adequate distri-
bution, but the soil surveys providing these data are associ-
ated with high cost and labour (Grunwald et al., 2011). To
forego this effort, DSM uses legacy soil data whenever avail-
able. However, sampling in traditional soil surveys usually
did not follow statistical sampling theory, which can lead to
a bias in the data and the models derived from it (Carré et al.,
2007; Ließ, 2020). Because soil-forming factors operate on
different scales, it is important that the spatial distribution
of the data is suitable for capturing the large- and small-
scale variation of soil. In order to construct a model that
can effectively predict throughout the landscape, it is impor-
tant to have a statistically representative sample of training
and validation data that allows for the generalization from
the data to the spatial landscape context (Ließ, 2020). The
most common approaches in dealing with this issue involve
(a) creating a more balanced training set by sampling from
the entirety of observations and (b) cost-sensitive learning

frameworks, in which the learning algorithm penalizes the
prediction error of underrepresented samples (He and Gar-
cia, 2008). Many DSM applications tackle the problem of
data imbalance with the subsampling approach (Moran and
Bui, 2002; Subburayalu and Slater, 2013; Heung et al., 2016;
Sharififar et al., 2019). This can be achieved by clustering the
study area into homogeneous subareas with regards to the co-
variates and drawing a certain number of samples from each
of these clusters.

Another hurdle of modelling applications lies in training
and tuning. Model building and performance evaluation can
be sensitive to the data splitting into training and testing sets.
Although resampling techniques like cross-validation (CV)
reduce the influence of data splitting, the model outcome can
still be compromised by an uneven distribution of sample
characteristics between training and testing datasets.

Many of these challenges in the DSM procedure are re-
lated to identifying structures and similarities in the data.
Therefore, here we want to investigate the usefulness of
data-clustering applications in tackling some of the above-
mentioned challenges in DSM. Specifically, we want to ex-
amine the benefits of using clustering applications for fea-
ture selection, for landscape stratification to conduct data
subsampling, and for stratified cross-validation to build ro-
bust models. This will be done on the basis of training an
RF model to predict soil texture within the catchment of
the Bode River in Saxony-Anhalt, Germany. The model is
trained and validated using a soil legacy dataset containing
soil survey data. Environmental covariates related to soil-
forming factors are obtained and used as predictors.

2 Material and methods

2.1 Study area and data

2.1.1 Study area

The study area of approximately 3300 km3 is part of
the TERENO network for environmental observations
(Zacharias et al., 2011) and covers the water catchment of
the Bode River in central Germany (Fig. 1). It corresponds
to three federal German states: Saxony-Anhalt, Lower Sax-
ony, and Thuringia. The elevation ranges between 1 and
1141 m a.s.l. with the Harz Mountains in the south-west, the
north-eastern Harz foreland, and the Magdeburg Börde of the
North German Plain covering the rest of the area. The climate
is subarctic to humid continental (Peel et al., 2007), with
the mean annual precipitation ranging from 433 to 1771 mm
(Deutscher Wetterdienst, 2020). The geologic material in the
area consists mostly of Triassic limestone and Carbonifer-
ous shale and granite (BGR, 2007). Dominating soils ac-
cording to the German soil classification (Finnern and Kühn,
1994) are Braunerde, Parabraunerde, Gley, and Pararendzina
(BGR, 2012).
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Figure 1. Study area (a) location in Germany, (b) location of the survey sites, (c) and cross-sectional elevation profile (black line on the
map).

2.1.2 Soil legacy data

The soil samples used for model training and validation are
from a legacy dataset provided by the regional geological
survey of the German federal state of Saxony-Anhalt – Lan-
desamt für Geologie und Bergwesen (LAGB, 2018). The data
were recorded by various soil surveyors between 1963 and
2006 and consist of soil profile data from 574 sites. For ev-
ery site, a soil diagnostic survey was conducted. Soil horizon
boundaries were recorded according to either the TGL (TGL,
1985) or KA4 (Finnern and Kühn, 1994) soil systematic sys-
tem. For every soil horizon, the particle size distribution was
measured in the laboratory using DIN ISO 11277:2002-08.
The fractions of three particle sizes were measured accord-
ing to the German soil separates (sand [2 to 0.063 mm], silt
[0.063 to 0.002 mm], and clay [< 0.002 mm]). Sand, silt, and
clay contents were extracted from the horizon data at two
discrete soil depths (10 and 70 cm) and used as the response
variables of the models. The two depths were chosen to in-
vestigate whether different soil-forming factors dominated
soil-landscape development in the topsoil and subsoil, re-
spectively. Because the maximum depth of the surveyed soil
profiles is not uniform, a depth of 70 cm was chosen as a
trade-off between maximum soil depth (closeness to parent
material) while not compromising the sample size. One sam-
ple is located in a Quaternary sand dune of less than 2 km2

(BGR, 2007) near the town of Blankenburg and has a sand
content of 96 %. The sample was removed because one sam-
ple alone would not be sufficient for model training and val-
idation. The soil texture of the soil legacy dataset used for
model training and evaluation is shown in Fig. 2a and b. A
cluster analysis targeting three equally sized subgroups was
applied to differentiate clayey samples from silty and sandy

samples; please refer to the “Cluster analysis” section for de-
tails. Figure 2c and d show the spatial distribution of these
three clusters within the study area.

2.1.3 Model predictors

Spatially continuous geodata of the study area corresponding
to the soil-forming factors parent material, topography, and
land cover were gathered. They comprise geologic maps of
1 : 200 000 (GUEK 200) and 1 : 1 000 000 (GUEK 1000) map
scale (BGR, 2007, 2006), a DEM of 10 m resolution (BKG,
2012), and CORINE Land Cover data from 1990, 2000, and
2012 (Büttner et al., 2004). The local river network was gen-
erated from the OpenStreetMap dataset by querying rivers
and streams with the Overpass API service (OpenStreetMap
contributors, 2018). Some of the geodata were used without
further modification, like the land cover data and the eleva-
tion from the DEM. Additionally, further predictors were de-
rived from these data and have been resampled to the 10 m
resolution of the DEM.

In the digital vector information underlying the geologic
maps, a variety of attributes is contained, including age, ma-
terial, and origin. The “petrography” layer was used from
both geologic maps, and the “genesis” layer was used from
the 1 : 200 000 map. As the information contained in the pet-
rography layer is descriptive, it was categorized into binary
information on the occurrence of particle size classes in ad-
dition to its inclusion as an unmodified layer. Three new pre-
dictors (Sandbin, Siltbin, and Claybin) were created for ev-
ery landscape unit based on the occurrence of the words sand
or sandstone, silt or siltstone, and clay or claystone, respec-
tively.
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Figure 2. Soil legacy dataset used for model development. Particle size distribution and cluster affiliation of the soil data at (a) 10 and
(b) 70 cm depth, respectively. Panels (c) and (d) show the spatial distribution of the three clusters at 10 and 70 cm depth (geographic
coordinate system: UTM zone 32◦ N).

Several topographic predictors were derived from the
DEM, since relief is often considered the main driver of
soil formation (McBratney et al., 2003; Scull et al., 2003;
Behrens et al., 2010). Topographic predictors were calcu-
lated with the SAGA GIS software Version 6.4.0 (Conrad
et al., 2015). The used topographic predictors were selected
according to their appearance in similar digital soil mapping
applications (Bulmer et al., 2016; Vaysse and Lagacherie,
2017; Blanco et al., 2018; Kalambukattu et al., 2018; Zhou
et al., 2019; Table 1). Sink removal by Wang and Liu (2006)
was applied prior to the calculation of the hydrological ter-
rain parameters (minimal slope= 0.01). For the calculation
of the vertical distance to the channel network, the layer of
waterways acquired from OpenStreetMap was used. Indices
for terrain convexity and terrain surface texture were calcu-
lated by using a flat area threshold of 0.08 in order to mini-
mize the impact of inaccuracies and insignificantly small de-
pressions and mounds (Conrad et al., 2015).

Since soil-forming factors can take effect on different spa-
tial scales, it is advised to take multiscale approaches into ac-
count (Behrens et al., 2010). Accordingly, convergence index
(Köthe and Lehmeier, 1996), terrain ruggedness index (Ri-
ley, 1999), convexity, and terrain surface texture were calcu-

lated with a search radius of 10, 50, 100, and 200 m in order
to express local to regional landscape attributes. The annulus-
based topographic position index (Guisan et al., 1999) was
calculated on two scales, one ranging from 0 to 100 m and
one from 100 to 200 m.

2.2 Modelling procedure

2.2.1 Random forest

RF models are based on regression trees (RTs), which use
selected values of predictor variables to repeatedly split the
data in a way that maximizes the homogeneity of the subsets
regarding the response variable (Kuhn and Johnson, 2013).
Instead of building a single tree as is the case in RTs, RF
uses the bagging ensemble method which constructs sev-
eral trees based on bootstrapped samples of the data. The
resulting averaged prediction has a lower variance and thus
increased model stability compared to RTs. Although ran-
domness is added to the procedure through resampling of the
data, the underlying predictor–response relationship is not al-
tered by bagging. As a consequence, many of the trees share
similar structures. This correlation between trees can lead
to a decrease in the predictive performance of the ensemble
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Table 1. Topographic predictors derived from the digital elevation model. Indices that have been calculated with varying window sizes are
denoted by multiscale.

Domain Predictor Reference

Morphometry Slope Zevenbergen and Thorne (1987)
Convergence index (multiscale) Köthe and Lehmeier (1996)
Mass balance index Friedrich (1996)
Slope height Böhner and Selige (2006)
Normalized height Böhner and Selige (2006)
Standardized height Böhner and Selige (2006)
Valley depth Böhner and Selige (2006)
Mid-slope position Böhner and Selige (2006)
Terrain ruggedness index (multiscale) Riley (1999)
Convexity (multiscale) Conrad et al. (2015)
Terrain surface texture (multiscale) Conrad et al. (2015)
Multiscale topographic position index (multiscale) Guisan et al. (1999)

Lighting Positive openness Yokoyama et al. (2002)
Negative openness Yokoyama et al. (2002)
Diffuse insolation Böhner and Antonić (2009)
Direct insolation Böhner and Antonić (2009)

Hydrology Terrain classification index for lowlands Bock et al. (2007)
LS factor Böhner and Selige (2006)
Stream power index Moore et al. (1991)
Topographic wetness index Beven and Kirkby (1979)
Upslope contributing catchment area Marchi and Dalla Fontana (2005)

Channels Vertical distance to the channel network Conrad et al. (2015)

Location Latitude
Longitude

(Breiman, 2001). To introduce diversity to the ensemble and
decorrelate the trees, RF is extended by a random feature se-
lection. Instead of using the entire set of predictors to build a
tree, a random subset of the predictors is used for each tree.
This reduction of predictors leads to a trade-off between the
strength of individual trees (high number of predictors) and
more diversity between trees (low number of predictors). The
respective tuning parameter, which controls this trade-off,
is “mtry”, the size of the predictor subset. Further parame-
ters include “ntree”, the number of trees, and “nodesize”, the
minimum number of samples to be kept in a terminal node of
the trees (Were et al., 2015).

For the interpretation of the RF models, the model func-
tion calculates a variable importance measure. This is done
by building models which use permutations of a predictor
variable. The accuracy of the permuted model is then com-
pared to a model built from the original data. The returned
value indicates the decrease in prediction accuracy after per-
mutation.

2.2.2 Cluster analysis

A cluster analysis (CA) was conducted for several purposes.

– CA-1: feature selection and process understanding

– CA-2: landscape stratification into subareas for subsam-
pling

– CA-3: data stratification in the CV approach

In CA-1, k-means clustering was used to split the soil tex-
ture data of both depth levels into three clusters to distin-
guish between sandy, silty, and clayey soils (Fig. 2). The dis-
tribution of every predictor value among the three clusters is
analysed to (a) determine whether the predictor has any in-
fluence on soil texture (feature selection in Sect. 2.2.3) and
(b) gain process understanding by analysing the relationship
between predictors and soil texture. The clustering was per-
formed with the k-means function using 40 initializations for
each of the 30 iterations on the centre-scaled sand, silt, and
clay contents. The resulting clusters’ predictor ranges at the
assigned soil survey sites were retrieved.

CA-2 was applied for landscape stratification into homo-
geneous subareas on behalf of the gridded continuous mul-
tivariate predictor data. These data, however, have certain
traits which provide a challenge to cluster analysis. These
traits are the high dimensionality of the data, correlation be-
tween predictor variables, and its consistency of numerical
as well as categorical predictors. These issues were tackled
by applying a factor analysis of mixed data (FAMD) from
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the FactoMineR package (Lê et al., 2008) to the dataset. Be-
cause of the high resource demand of conducting an FAMD
on the whole dataset (33 million grid cells), the function was
applied to a random data subset of 100 000 samples first, and
then the resulting FAMD model was applied to the whole
dataset. In order to allow for the application of the function
for FAMD transformation trained on the data subset to the
complete dataset, the minimum and maximum values of all
numerical predictors and all classes of the categorical pre-
dictors were additionally included. The FAMD returns n fac-
tors, with the percentage of explained variance decreasing
with every factor. A reliable method to determine the num-
ber of dimensions to retain from the FAMD is the “elbow”
approach (Linting et al., 2007). The contribution of each re-
tained dimension to the percentage of explained variance de-
creases strongly with the first dimensions until it reaches a
nearly constant value. The “elbow” approach suggests using
all dimensions before the stagnation of the explained vari-
ance. The resulting FAMD-transformed data were clustered
using k-means in CA-2.

The number of clusters was determined by the use of clus-
ter validation indices calculated with the NbClust function
from the NbClust package (Charrad et al., 2014). The func-
tion calculates 27 clustering indices for each clustering solu-
tion in a given range of number of clusters. All of the cluster-
ing indices cast their vote for their favoured number of clus-
ters. Because of the high computational cost, the function
was repeatedly applied (2000 times) to random data subsets
of size 2000 of the data resulting from the FAMD. Prelim-
inary test runs have shown that a sample of size 2000 pro-
duced stable clustering results. A number of 2 to 17 clusters
was tested.

CA-3 was conducted in order to perform a stratified CV.
Stratification was conducted on behalf of the response vari-
able. In a first step, the legacy dataset including sand, silt,
and clay content was clustered into five equally sized sub-
groups. From each of the subgroups, the profiles were then
in a second step equally assigned to the k folds in order to
obtain a similar data distribution in each of the k folds. The
clustering was achieved by using a same-size k-means algo-
rithm (Schubert and Zimek, 2019) to divide the profiles of
both depth levels into five clusters based on the soil texture.

2.2.3 Feature selection

The RF algorithm is relatively robust against uninforma-
tive predictors by only selecting the strongest predictors as
a splitting criterion (Hamza and Larocque, 2005; Kuhn and
Johnson, 2013), and even though the reduction of the pre-
dictor set may not necessarily improve model performance,
it can still benefit model interpretability and reduce com-
putational time (Chandrashekar and Sahin, 2014). However,
the feature selection based on CA-1 was not only conducted
to remove uninformative predictors, but also to study the
predictor–response relation.

The clustered profiles were paired with the correspond-
ing predictor values. The Kruskal–Wallis test was used to
compare the distributions of predictor values between the
three clusters. The resulting p values were adjusted for multi-
ple comparison by controlling the false discovery rate (Ben-
jamini and Yekutieli, 2001). All predictors with significant
differences in means between the three clusters (α = 0.05)
were used as predictors for the RF models of the respec-
tive depth levels. To gain further insight into the predictor–
response relationship, Dunn’s test was performed on these
predictors as a post hoc analysis. This allows us to determine
which clusters show significant differences concerning the
particular predictors.

Preliminary results have shown that categorical predictors
and the usage of the Cartesian coordinate space can lead to
artefacts in the maps of predicted soil texture. Two more
models were built in addition to the model using the full pre-
dictor set (full) in order to tackle this problem. One model
leaves out the petrography and genesis layers as predictors
(no geo), and the other leaves out petrography, genesis, lon-
gitude, and latitude (no geo+ coords).

2.2.4 Strategies for unbalanced data

Statistical sampling from the soil dataset was used in or-
der to create training and validation data better balanced in
regard to landscape characteristics corresponding to the in-
teraction of the soil-forming factors. Please compare Ließ
(2015, 2020) concerning a detailed discussion of this aspect.
This was done by applying four subsampling approaches to
the model training data based on the landscape clusters ob-
tained from CA-2. Performance of the models trained on the
thereby adapted data was compared to that of models built
with the legacy dataset in its original distribution. Subsam-
pling was conducted to match the spatial coverage of the
landscape clusters (area-weighted method: AW) or in order
to provide a sample that represents each landscape cluster
with the same amount of data (equal number approach: EN)
(similar to Heung et al., 2016). The subsampled dataset is
obtained either by oversampling or undersampling (He and
Garcia, 2008). Oversampling obtains the dataset by includ-
ing all samples from all clusters and then replicating certain
randomly selected samples until the desired sample size for
each cluster is reached. Undersampling includes all samples
from the minority cluster and then randomly draws samples
from all other clusters until the desired sample size is ob-
tained. The four applied sampling approaches are displayed
in Fig. 3.

2.2.5 Model training, tuning, and evaluation

Model tuning and evaluation for the RF models was con-
ducted by a nested approach of repeated stratified 5-fold CV
(5 repetitions). The detailed procedure is shown in Fig. 4a. As
a performance measure, the root-mean-square error (RMSE)
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Figure 3. Applied sampling approaches. Parentheses show the number of samples in the training set (10 and 70 cm depth, respectively).
Abbreviations of the sampling methods as used in the results are shown in italic.

was derived. In order to make the model performance values
comparable for all models, the respective test set was kept the
same, while data subsampling was only applied to the respec-
tive training sets (Fig. 4b). Furthermore, response data were
centred and scaled (SD= 1) to allow for the comparability
of model performance between models targeting sand, silt,
and clay content. The k folds of the nested approach were
derived by stratified sampling regarding the response data.
In order to stratify the dataset regarding all three response
variables at once, response strata were formed by applying
CA-3. Tuning takes place in the inner CV, where the model
is evaluated for mtry parameter values within the range of 5
to 25, while ntree was set to 1000 and nodesize to 5. Overall,
the model-building procedure was applied six times in order
to create individual RF models for each of the three particle
sizes for the two soil depths.

For the data analysis and modelling, R version 3.5.1 was
used (R Core Team, 2018). All computation was performed
on a machine running Windows Server 2016 Standard with
four Intel® Xeon® Processor E7-8867 v4 and 6.00 TB of
memory.

3 Results and discussion

3.1 Exploratory data analysis

3.1.1 Feature selection

The soil profiles used for model building were split into three
groups based on their soil texture with CA-1. A clayey cluster
was, thereby, distinguished from a silty cluster and a sandy
cluster. Primarily, this was done in order to understand which
predictors are best at separating these three groups and there-
fore are expected to have a high explanatory power in the
models to predict spatial soil texture distribution within the
investigation area. The soil texture of the profiles at 10 and
70 cm depth and their cluster affiliation is shown in Fig. 2a
and b. The spatial distribution of the clusters is shown in
Fig. 2c and d. The distribution of cluster affiliation within
the study area shows that most of the profiles in the lowlands
belong to the silty cluster. This is typical for the soils of this
area, which are influenced by loess deposits.

The predictor data at each sampling site were assigned to
the soil profile data. The data distribution of the predictors
between the three soil texture clusters was then compared by
applying a Kruskal–Wallis test. Out of 39 numeric predictors,
27 predictors showed a significant difference of the mean at
either 10 or 70 cm depth (Table 2). The predictors display-
ing significant differences between any two of the soil tex-
ture clusters were included in the random forest models. The
trends in differences between the clusters are predominantly
in agreement across the two depth levels (Fig. 5). For many of
the predictor values with significant differences in the means,
it was the silty cluster that was the most distinguishable from
the other two clusters. From the 54 statistical tests (27 signif-
icant predictors for two soil depths), 51 showed differences
between the sandy and silty clusters and 28 showed differ-
ences between the clayey and silty clusters, while only 19
tests showed differences between the sandy and clayey clus-
ters.

Since the clustering application used here for feature se-
lection is a filter method, it is unable to take interactions
between different predictors into account. This could com-
promise the efficacy of the feature selection if there are
predictor–response relationships which are only revealed in
combination with other predictors. The advantage of the clus-
tering method is to create meaningful categories in the data
and investigate their relationship with the predictor values,
which cannot be provided by a wrapper method.

3.1.2 Landscape stratification for subsampling
approaches

CA-2 was conducted in order to subsample from the legacy
soil dataset and create a balanced model training set. The
FAMD data transformation showed an increased drop of ex-
plained variance with the sixth factor, resulting in the first
five factors being used as input for CA-2. The NbClust appli-
cation resulted in 29 % of the votes being appointed to find-
ing two clusters in the data, while the second-largest vote
was 13 % in favour of three clusters. Hence, the environmen-
tal data of the study area were divided into two clusters us-
ing k-means. The resulting clusters broadly divided the study
area into the mountainous region and the lowlands (compare
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Figure 4. Nested k-fold CV approach for model tuning and evaluation. General approach without data subsampling (a). Incorporation of the
subsampling strategies in the CV approach (b).

Table 2. Predictors included in the random forest model for 10 and 70 cm depth, denoted by “×”.

Predictor
Depth

Predictor
Depth

10 cm 70 cm 10 cm 70 cm

Aspect Petrography (GUEK 1000) ×

Contributing area × Petrography (GUEK 200) × ×

Convergence index (10 m radius) Positive openness × ×

Convergence index (100 m radius) × Sandbin (GUEK 200) ×

Convergence index (200 m radius) Siltbin (GUEK 200) × ×

Convergence index (500 m radius) × Claybin (GUEK 200) ×

Convexity (10 m radius) × Slope × ×

Convexity (100 m radius) × × Slope height
Convexity (200 m radius) × × Standardized height × ×

Convexity (50 m radius) × Stream power index
Diffuse insolation × × Terrain classification index × ×

Direct insolation Terrain surface texture (10 m radius)
Elevation × × Terrain surface texture (100 m radius) × ×

Genesis (GUEK 1000) × × Terrain surface texture (200 m radius) × ×

Land cover 1990 × × Terrain surface texture (50 m radius) ×

Land cover 2000 × × Topographic position index (0–100 m) ×

Land cover 2018 × × Topographic position index (100–200 m) ×

Latitude × × Topographic ruggedness index (10 m radius) × ×

Longitude × × Topographic ruggedness index (100 m radius) × ×

LS factor × × Topographic ruggedness index (200 m radius) × ×

Mass balance index Topographic ruggedness index (50 m radius) × ×

Mid-slope position Topographic wetness index × ×

Negative openness × × Valley depth
Normalized height Vertical distance to the channel network
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Figure 5. Data distribution of selected predictors per soil texture cluster and soil depth. Letters above boxplots denote significance groups
within one depth level. The y axes are cropped to highlight the interquartile range.

Fig. 1). This way of stratifying the landscape is an apparent
choice, since the relatively low number of training samples
suggests taking a small number of clusters to have sufficient
samples per cluster. Further, the heuristic approach of divid-
ing the landscape, which is often superior to automated clas-
sification (MacMillan et al., 2004), also suggests the separa-
tion between the highlands and lowlands due to the relatively
sharp divide.

3.2 Model development

3.2.1 Model performance

The predictive performance of the RF models was investi-
gated under different subsampling approaches, a range of
mtry tuning parameter values, and three predictor sets. Since
the RMSE values for model evaluation were calculated for
the modeled response variables scaled to an SD of 1 to pro-
vide a comparable metric, the RMSE values can be inter-
preted as zero being perfect predictability and values over
one meaning a worse performance than using the observed

mean as the predicted value. The RMSE values of all sub-
sampling approaches for the full predictor set are shown in
Fig. 6. The median RMSE is between 0.67 and 0.94, with the
silt and sand models clearly outperforming the clay models.
For all particle size classes, model performance is better for
10 cm compared to 70 cm depth, with an average difference
in the RMSE of 0.08 for clay and silt and 0.12 for sand. This
decrease in performance may be due to a decrease in sample
size with soil depth. Studies where sample size have been
consistent along profile depth have shown that the predictive
performance does not necessarily decrease with soil depth
(Adhikari et al., 2013; Vaysse and Lagacherie, 2015).

There is no consistently better-performing subsampling
method. However, both undersampling approaches seem to
have higher median RMSE values than the two oversampling
methods. It seems likely that the decline in model perfor-
mance was due to the reduction of the sample size. Using
the RMSEs of the whole study area as the selection crite-
ria for the subsampling approach also has its limitations be-
cause it does not provide information on the spatial distri-
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Figure 6. Model performance as boxplots of RMSEs of the five repetitions for three particle size contents for (a, d) clay, (b, e) silt, and
(c, f) sand and five subsampling methods. The models (a), (b) and (c) are for 10 cm depth, while (d), (e), and (f) are 70 cm depth. The
subsampling method with the lowest median RMSE is highlighted. The black horizontal lines stand for an RMSE of one, which equals the
RMSE of predicting the observed mean.

bution of the prediction accuracy. Adding more weight to
samples of a certain cluster can lead to increased accuracy
in the respective area, while this gain is not necessarily cov-
ered by the validation data. The role of subsampling in the
distribution of prediction accuracy is exemplarily displayed
in Fig. 7. Although there are strong differences in the over-
all accuracy between clusters, neither of them profits explic-
itly from a certain subsampling method. The right choice
of the subsampling method most likely depends on the un-
derlying data, since other DSM studies have not revealed a
distinctly better-performing method. While the EN approach
increased model accuracy for the minority class in Heung
et al. (2014), Schmidt et al. (2008) found the contrary ef-
fect in their study and Moran and Bui (2002) found AW to
be the best-performing model. Sharififar et al. (2019) used
a combination of oversampling and undersampling to create
a balanced dataset which significantly improved model per-
formance, while oversampling and undersampling decreased
model performance in Taghizadeh-Mehrjardi et al. (2019).

In order to prevent the occurrence of artefacts, predictors
have been retained from model building. This led to a de-
crease in model performance across all particle sizes and
depth layers (Fig. 8). The no geo+ coords models showed
an average increase in scaled RMSE of 3 %, 7 % and 12 %

Figure 7. Landscape cluster-specific model performance of the silt
model at 10 cm depth with panel (a) showing the R2 of the sam-
ples from the lowlands cluster and panel (b) the samples from the
mountainous cluster.
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Table 3. Model performance in R2 for three texture classes at two
depth levels and for two predictor subsets.

Particle size

Predictor set Depth Clay Silt Sand

Full
10 cm 0.29 0.48 0.50
70 cm 0.16 0.36 0.32

no geo+ coords
10 cm 0.25 0.40 0.37
70 cm 0.11 0.30 0.27

for sand silt and clay at 10 cm depth when compared to the
full model.

The R2 values for model performance of the full and no
geo+ coords models are shown in Table 3. Model perfor-
mance of the silt and sand models at 10 cm depth are com-
parable to the results of Vaysse and Lagacherie (2015) and
de Carvalho Junior et al. (2014), while other publications
have shown that R2 values above 0.5 are achievable (Moore
et al., 1993; Gobin et al., 2001; Adhikari et al., 2013). Moore
et al. (1993) argue that R2 values above 0.7 are not to be ex-
pected due to the underlying random variability of soil and
limitations in the accuracy of measurements. Differences in
model performance are most likely to be related to the size
and the heterogeneity of the study area and the quality of
soil samples. This is illustrated well in Fig. 7, which demon-
strates the variability of predictive performance across land-
scape types.

3.2.2 Model specification

The mtry values for the full predictor model are shown in
Fig. 9. There is no clear trend of optimal mtry value with
model performance, and many models have a relatively large
range of selected mtry values. It is worthwhile mentioning,
though, that for certain models the selected mtry value is
right at the lower boundary of the tested mtry parameter
range, which is the case for the silt model at 10 cm. Ac-
cordingly, an extension of this lower boundary and the corre-
sponding lower model complexity would likely have resulted
in even better model performance.

Predictor importance is shown in Fig. 10a and b. The bet-
ter model performance at 10 cm depth is reflected in the over-
all higher importance values. Altogether, petrography has the
highest explanatory power. It should be noted, though, that
GUEK 200 petrography was included for both depths, and
GUEK 1000 petrography was only included in the model to
predict soil texture at 10 cm depth (Table 2). There are few
remaining predictors with notably increased predictive abil-
ity. These are latitude for silt and sand, positive openness, and
the topographic ruggedness index (100 and 200 m radius) for
sand and terrain surface texture (200 m radius) for clay.

Omitting the geologic information and coordinates leads
to an overall increase in importance values for the remain-
ing predictors (Fig. 10c). The importance value of elevation
increased strongly. The same applies for many other topo-
graphical predictors, although in a less pronounced manner
(positive and negative openness, diffuse insulation, terrain
surface texture, 200 m radius).

3.3 Spatial prediction

Model output was generated by taking the median of all 25
models (CV procedure with five folds and five repetitions).
The predicted, spatially continuous values of the sand, silt,
and clay content at 10 cm depth corresponding to the mod-
els with the best median predictive performance (Fig. 6) are
shown in Fig. 11. It needs to be noted that the maps of pre-
dicted values show the results of independent models for dif-
ferent soil texture classes, and the results do not add up to
100 %. The method to scale the data to 100 % should be
selected with the purpose of the specific data utilization in
mind. Different approaches could include leaving one of the
texture classes out and summing up to 100 %, weighted scal-
ing by texture class, or weighted scaling by the regional ac-
curacy of the texture classes.

In the predicted spatial distribution of the sand and silt
content, there is a strong regional difference between the low-
lands and the mountainous region in the south-west. Sand
content generally increases with elevation and is very high in
riparian regions and valley bottoms. High silt contents can be
expected in the lowlands outside riparian regions. The spa-
tial variability of all three response variables is dominated
by categorical predictor traits (petrography) that draw clear
boundaries and even transfer artefacts present in the geologi-
cal map products. However, it is more evident in the sand and
clay model output. A limitation of the geologic maps, which
is the lack of unity in the naming of geologic units between
different geographic regions, but also at federal state bound-
aries for the GUEK 200, is also reproduced in the results.
While the GUEK 1000 was generated by the German Federal
Institute for Geosciences and Natural Resources (BGR), the
GUEK 200 is a joint product between BGR and the regional
geological survey institutions. Although the unit boundaries
align across the map tiles, their description may differ be-
cause GUEK 200 harmonization at national level is not yet
completed. This leads to an abrupt change in predicted sand
and silt values in an otherwise homogeneous region (Fig. 11,
areal zoom).

These model outputs clearly show the limitation in pre-
dictive capacity due to the limitations in the available data
to represent the parent material. The prediction of soil tex-
ture is predominantly based on parent material, which al-
lows us to distinguish the observed variability of soil tex-
ture between the lowlands and the mountains. Once parent
material and coordinates are removed, the models increase
the importance of those topographic predictors, which can
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Figure 8. Model performance as RMSE for three particle size contents for (a, d) clay, (b, e) silt, and (c, f) sand. The models (a), (b), and (c)
are for 10 cm depth, while (d), (e), and (f) are for 70 cm depth. Models were built using either all predictors (full), leaving out the geologic
predictors (no geo) or leaving out geology, latitude, and longitude (no geo+ coords). The black horizontal lines stand for an RMSE of one,
which equals the RMSE of predicting the observed mean.

Figure 9. Results of the model tuning procedure to find the best-performing mtry values (mtryselect) under different subsampling approaches.
Panels (a), (b), and (c) show the results of the clay, silt, and sand models at 10 cm depth, while panels (d), (e), and (f) show the same texture
classes at 70 cm depth. Grey lines correspond to the tested mtry parameter range.
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Figure 10. Mean importance of the 20 strongest predictors of the model using the full predictor set (a, b) and the model leaving out the
geologic maps and coordinates as predictors (c, d). Panels (a) and (c) show importance values for the models at 10 cm depth and panels
(b) and (d) at 70 cm. Predictors are sorted by decreasing mean importance value. The importance metric is calculated as the decrease in
prediction accuracy after the permutation of the predictor values.

Figure 11. Median of all predictions for sand, silt, and clay content at 10 cm depth. The maps show the output of the models built with the
predictor set specified in Table 2. The scale bar shows distance in metres.
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be used to distinguish between these broad geographic re-
gions (elevation, positive openness, diffuse insulation). Pe-
dogenetic processes related to topography like the lateral re-
distribution of particles along slopes can only play a minor
role, as the low importance values of predictors based on
the immediate pixel neighbourhood have low importance val-
ues. However, other DSM approaches have successfully cap-
tured relief-based variability of soil texture on the scale of
hillslopes using only topographical predictors (Moore et al.,
1991; De Bruin and Stein, 1998; McBratney et al., 2000).

The inclusion of expert knowledge such as geological map
products in machine learning models for the spatial contin-
uous soil prediction at high resolution still requires further
investigation. While the geologic maps have strong predic-
tive power, they consist of too many geologic units. This
leads to some units not having a sufficient number of soil
samples to be able to generalize for that unit. However, our
approach of reducing the number of geologic units by creat-
ing the particle size class bins was not able to produce useful
predictors. One approach could be to use expert knowledge
to merge geologic units that have parent material with simi-
lar soil texture classes. This merging should happen under the
restriction that the resulting units should be as homogeneous
as possible while providing enough samples for training and
validation. Solving the issue of abrupt change in predicted
values across geologic units could possibly be addressed by a
fuzzy approach. Additionally, knowledge of the level of cer-
tainty of boundary demarcation between geologic units could
be used to create fuzzy geologic maps as predictors.

In order to tackle the issue of artefacts present in the model
output, two more models with a reduced set of predictors
were built. The models using all predictors as specified in
Table 2 (full) were compared to models leaving out the geo-
logic predictors (no geo) or leaving out geology, latitude, and
longitude (no geo+ coords). Although the dominance of the
categorical predictors on the model output was lifted in the
“no geo” model version, an artefact due to the predictors lon-
gitude and latitude emerged. This new phenomenon appeared
as a horizontal or vertical abrupt change in the predicted val-
ues across major parts of the study area (not shown). This
aspect has already been observed in other DSM applica-
tions employing recursive partitioning algorithms (Behrens
et al., 2018; Hengl et al., 2018; Nussbaum et al., 2018).
Møller et al. (2020) addressed this problem with oblique ge-
ographic coordinates and provide an overview of ready ap-
plied approaches. Accordingly, we tested the usage of three
Euclidean distance fields instead of Cartesian coordinates.
However, the use of this alternative coordinate system led
to the emergence of radial artefacts (results not shown).

The additional omission of latitude and longitude from the
predictors leads to smoother maps, where only minor abrupt
boundaries exist due to land cover, which is also a categor-
ical predictor (Fig. 12). However, this aspect has to be dif-
ferentiated from that of the geologic predictors. CORINE
land cover classes were classified in remote sensing data

products. Hence, spatial class boundaries do not reflect ex-
pert knowledge. Abrupt changes might in fact be due to land
cover changes. The large agricultural fields of the lowlands
are heavily impacted by wind erosion of the loess material
during bare soil conditions. These “no geo+ coords” predic-
tions reproduce the spatial variability of the “full” model,
even on relatively small scales. Strong deviations between
the two model versions are in the eastern Harz region and in
the riparian zones of the southern lowlands.

The differences in sand and silt content between the Harz
and the lowlands were most likely derived from the predic-
tors’ elevation and positive openness. These predictors are
strongly correlated (−0.95), have high importance values in
both predictor sets, and show strong significant differences
between the texture clusters (Fig. 5). The other predictors of
Fig. 5 have lower values of absolute correlation with eleva-
tion (0.27–0.37) while still having a significant effect on the
texture clusters. These predictors were more likely related to
the variability within the two large-scale regions. The output
of the “no geo+ coords” models shows much more variabil-
ity on smaller scales than the “full” models.

4 Conclusions

Our DSM approach has shown that RF is an appropriate
method to model the variability of soil texture in the study
area. The predictive performance of the silt and sand models
is within the range of similar studies, while the prediction of
the clay content did not seem feasible.

Clustering applications appear to be a versatile tool to be
employed at various steps of the DSM procedure. Using a
clustering application for feature selection offers additional
insight into the predictor–response relationship, while clus-
tering to conduct a stratified CV allowed for a robust model
evaluation. Overall, stratified k-fold CV is common in DSM.
To use the described cluster application allows for a simul-
taneous stratification regarding multiple response variables.
However, to truly evaluate the power of this filter method, it
would have to be compared to other feature selection meth-
ods which would have exceeded the workload for this study.
We intend to do so in future studies.

The biggest area of application for data clustering in DSM
appears to be in landscape stratification to divide the land-
scape into homogeneous subareas. Beyond their usage for
stratified sampling and subsampling, the resulting stratifica-
tion of the study area has further potential, like the use of
landscape strata as predictors, the construction of individ-
ual models per landscape stratum, or the interpretation of
the predictor–response relationship in different landscapes.
A remaining difficulty in clustering applications is the deter-
mination of the number of clusters. Here, the combinations
of clustering indices and heuristic methods have proven to be
useful tools.
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Figure 12. Median of all predictions for sand, silt, and clay content at 10 cm depth. The maps show the output of the models built without
using the geologic maps, longitude, and latitude as predictors. The scale bar shows distance in metres.

Finally, clustering applications could also provide solu-
tions to the problems encountered during the model-building
procedure, like the replacement of the Cartesian coordinates,
the inclusion of expert knowledge, pooling of geologic units,
and blurring of the transitions between geologic units.
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