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[1] A statistical extreme value analysis is applied to very high-resolution climate model
results and observations encompassing the area of Germany. Two control runs
representing the current climate, as well as three scenario simulations of the regional
climate model REMO, are investigated. The control runs were compared against high-
resolution observations. The analysis is divided into two main parts: first trends in
extreme quantiles of daily precipitation totals are estimated in a station-by-station analysis.
In the second part, the spatial characteristics of the estimated trends in heavy rainfall
are investigated over the area of Germany by fitting a parametric geostatistical model to
these trends. The rule of thumb of estimating trends in extreme quantiles of heavy
precipitation based on the Clausius-Clapeyron relation, about 6.5% per 1�C temperature
increase, has been roughly confirmed for Germany by our study with respect to the
observations, but the climate model computes weaker trends. In the control simulations,
the climate model tends to underestimate trends in heavy rainfall compared to
observations. In the scenario simulations, positive trends prevail (as in the observations).
They are, however, relatively small when set in relation to the uncertainties. The trends
become significantly positive to a larger spatial extent only in the A2 scenario
simulation. The estimated shape of the extreme value distributions does not change
significantly in the scenario simulations compared to the climate model control runs. The
parameter estimates for the geostatistical model for the trends in extreme quantiles of daily
precipitation sums are rather uncertain. The most striking feature of the analysis is a
reduction of the spatial variance of the trends over the considered area of Germany in the
scenario simulations compared to observations and, in particular, the climate model
control runs.

Citation: Tomassini, L., and D. Jacob (2009), Spatial analysis of trends in extreme precipitation events in high-resolution climate

model results and observations for Germany, J. Geophys. Res., 114, D12113, doi:10.1029/2008JD010652.

1. Introduction

[2] Many parts of the world can cope with a moderate
change in mean climate or even benefit from altered
climatic conditions. This is true in particular for economi-
cally strong regions like Central Europe or North America.
The most damaging effects of a warming atmosphere
however emanate from extreme climatic conditions that
could possibly become more prominent in the future.
Extreme precipitation events causing floods or landslides,
heat waves or long dry periods can implicate large losses in
terms of infrastructure and other goods, constitute a danger
to human lives and have manifold impacts on ecosystems,
agriculture and other industries and even cultural heritage.
[3] It is therefore important to understand the relations

and mechanisms that relate a general warming of the world

due to increased levels of greenhouse gases in the atmo-
sphere to extreme events that can arise on a local scale.
[4] General theoretical considerations based on theClausius-

Clapeyron relation predict that upper quantiles in precipita-
tion will increase more pronouncedly than mean precipita-
tion [Frei et al., 1998; Pall et al., 2007]. According to this
reasoning, heavy precipitation is estimated to increase by
about 6.5% per degree increase in mean temperature [Allen
and Ingram, 2002]. Such a relation has been verified for
global climate model simulations mainly in the midlatitudes
and regions in which the nature of the ambient flow changes
little [Kharin et al., 2007]. Regions with strong advection
of moist maritime air by southwesterly low-level flow
toward topographically structured terrain, like encountered
in Western Europe, are particularly affected.
[5] In general, dynamical studies show that regional

climate models (RCMs) are able to reproduce the conditions
and physical mechanisms that lead to extreme precipitation
events [Frei et al., 1998; Semmler and Jacob, 2004;
Boroneant et al., 2006]. Broad statistical investigations of
the performance of RCMs with respect to extreme events
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have been performed in the context of the MERCURE and
PRUDENCE projects [Frei et al., 2003; Frei et al., 2006;
Beniston et al., 2007]. Despite some biases, the RCMs were
found to reproduce the prominent mesoscale features of
heavy precipitation, and biases in extremes were compara-
ble or even smaller than the ones for wet day intensity and
mean precipitation. It should be noted that the resolution of
the models in these studies was thereby considerably
coarser than in the present paper (about 50 km compared
to 10 km), and the time series of observations shorter.
[6] With respect to extreme precipitation events the scale

of the analysis is important, especially regarding topo-
graphically induced precipitation [Kunz and Kottmeier,
2006; Zängl, 2007]. Although even global climate models,
despite their coarse resolution, show some apparent skill in
reproducing extreme event characteristics on large scales
[Sillmann and Röckner, 2008; Randall et al., 2007;
Tebaldi et al., 2006], heavy rainfall events are often
characterized by their local nature and cannot be resolved
by global climate models with typical resolutions of 100
to 250 kilometers. In our study we concentrate on a
relatively small geographic area, Germany, and investigate
very high-resolution regional climate model results as well
as quality-checked high-resolution observation data from
the German Weather Service.
[7] Considering the relatively short time period covered

by the observational record, the method employed in the
extreme value analysis is of utter importance [Frei and
Schär, 2001]. In our study we do not only investigate
extreme event statistics on the basis of time series related
to separate locations, but also compare the spatial character-
istics of trends in heavy rainfall events in observations and
climate model simulations, and identify changes of these
spatial patterns in scenario simulations. For this purpose,
techniques of extreme value statistics are combined with
methods of geostatistical data analysis. Special care is
dedicated to the estimation of uncertainties in the derived
results. For this purpose estimates based on asymptotic
theory as well as a Bayesian approach (using Markov chain
Monte Carlo sampling) are considered.
[8] We do not develop spatial models of extreme events

themselves [Schlather and Tawn, 2003; de Haan and
Pereira, 2006; Mendes et al., 2009; Cooley et al., 2008;
Sang and Gelfand, 2009], but estimate trends in a station-
by-station analysis and formulate geostatistical models of
these trends. This methodological procedure has been
proposed by Smith (Trends in rainfall extremes, unpub-
lished manuscript, 1999) (see also the studies by Smith
[2003] and Meier [2004] for an exploratory study). It is
appropriate for the focus of our analysis and has some
distinct advantages. It allows for dealing with large data
sets, as in our situation, considering threshold exceedances
of century-long time series for more than 4000 locations.
[9] We turn to a more detailed description of the content

of the present paper. Section 2 is on model and methods. In
section 2.1 the analyzed observations and climate model
simulations are introduced. Section 2.2 describes the statis-
tical extreme value analysis as carried out in the present
work. It proceeds in twomain steps: first the stations (gridded
observations as well as climate model results) are analyzed
separately in a station-by-station analysis (section 2.2.1).
Trends in extreme precipitation events are estimated for

each such station. In a second step (section 2.2.2) geo-
statistical models are introduced to investigate the spatial
characteristics of the estimated trends.
[10] Section 3 presents the results of the analysis. Again,

there are two parts: the results of the station-by-station
analysis (section 3.1) and the spatial modeling of estimated
trends in heavy precipitation events (section 3.2). In the first
part maximum likelihood parameter estimation is applied
(section 3.1.1) as well as Bayesian parameter estimation
using Markov chain Monte Carlo sampling (section 3.1.2).
[11] A discussion section, section 4, concludes the paper.

2. Data and Methods

2.1. Climate Model Simulations and Observations

[12] We analyze climate model simulations performed
with the three-dimensional hydrostatic mesoscale model
REMO [Jacob, 2001; Jacob et al., 2007] at a horizontal
grid spacing of 10 km. This resolution is at the high end of
current regional long-term climate simulations.
[13] Figure 1a shows the whole climate model domain of

the 10 km simulations (colored area), Figure 1b depicts
Germany, the focus area of the present study, with selected
cities.
[14] In the model, the simulation of precipitation is

divided into a large-scale cloud scheme accounting for
clouds developing on scales that can be described directly
by the prognostic variables of the model, and in a subgrid
scale scheme (also called convection scheme) for clouds on
smaller scales. The stratiform cloud scheme in REMO is
taken from the global climate model ECHAM4 and based
on the approach of Sundqvist [Sundqvist, 1978], cumulus
convection is parameterized by a mass flux scheme follow-
ing Tiedtke [Tiedtke, 1989] with some modifications.
[15] For penetrative convection, unlike in the procedure

recommended by Tiedtke, the mass flux at cloud base is
specified following an adjustment closure proposed by
Nordeng [Nordeng, 1994], linking the cloud base mass flux
to the available convective potential energy (CAPE), which
should be removed by convection in a characteristic time t.
This characteristic time depends on the horizontal resolution
of the model and was set to 15 minutes for the considered
simulations. For shallow and midlevel convection a mois-
ture closure is used.
[16] The convection scheme is coupled to the large-scale

cloud scheme by handing over the convective cloud liquid
water detrained in the updrafts to the large-scale cloud
scheme. The formulation of the convection scheme restricts
convective activity to one single time step and thus includes
no memory in the convection scheme, which would allow
convective clouds to develop on a longer timescale.
[17] For the present study, five simulations are analyzed.

In two so-called control simulations spanning the years
1961 to 2004, the regional climate model REMO at a
resolution of 10 km is nested in two different REMO
simulations with a resolution of 50 km. The REMO 50
km resolution simulations in turn were forced at the lateral
boundaries by different runs of the global atmosphere-ocean
general circulation model ECHAM5/MPI-OM. The coupled
ECHAM5/MPI-OM simulations use observed anthropogen-
ic concentrations for CO2, CH4, N2O, CFCs, O3, and
sulphate, and were initialized by a preindustrial control
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run at two different initial times (resulting in different initial
conditions). These simulations were performed for the
Intergovernmental Panel on Climate Change (IPCC) Fourth
Assessment Report [IPCC, 2007].
[18] Moreover, analogously produced scenario simula-

tions for the period 2001 to 2100 according to the three
SRES emission scenarios B1, A1B, and A2 are considered.
All the REMO 10 km simulations were commissioned by the
German Federal Environmental Agency [Jacob et al., 2008].
[19] For the control period 1961 to 2004, the results of the

regional climate model simulations are compared to daily
rainfall observations provided by the German Weather
Service (DWD). The observations consist of a gridded data
set, which was constructed according to the REGNIE
procedure developed by the DWD.
[20] More than 4000 rain gauge stations were used to

derive a gridded precipitation data set for Germany with a
resolution of 1 km by 1 km. The procedure goes in three
steps: First, monthly means of station data are transferred to
the 1 km grid by linear regression taking into account
height, longitude, latitude, exposure (direction of the slope),
and the amount of exposure (angle of the slope) as cova-
riates. In the second step, these monthly fields are used as
background fields for the construction of daily fields.
Station values are attributed to the nearest grid point, while
missing values are interpolated based on the deviation of
station values from the monthly background fields using
distance weighting. Finally, the daily time series are cor-
rected for well-known systematic observation errors in
rainfall measurements.
[21] To make the data comparable to the climate model

output (which does not represent single stations, but area
means corresponding to the model resolution), the 1 km by
1 km observation data set was aggregated to the 10 km to 10
km climate model grid by a simple averaging procedure.

[22] Of course, the considered data are affected by these
steps of interpolation and aggregation. On the other hand, as
already mentioned, the results of a climate model at a
specific grid location cannot be interpreted as representing
an observation made at that particular geographic location.
The gridded data set used in the present study is the most
comprehensive available precipitation data set in Germany
and is at the same time suitable for being compared to
regional climate model simulations.

2.2. Statistical Methods

[23] In the following, the term ‘‘station’’ will refer to
locations of (gridded) observations as well as model grid
points, that is, we do not distinguish between observations
and model simulations because the statistical analysis was
applied to all time series in the same way.
[24] The statistical extreme value analysis of the data

proceeds in two main steps. First the daily time series of the
stations are examined independently. We estimate trends of
extreme precipitation events over the different periods. For
the estimation of uncertainties, estimates based on asymp-
totic theory as well as a Bayesian approach (using Markov
chain Monte Carlo sampling) are considered. In a second
step, the spatial dependence of these trends is analyzed and
the adequacy of different geostatistical models investigated.
[25] The main advantages of this approach are that it is

focused on trends in rainfall extremes, which are the main
interest in climate change studies. Moreover, since we
proceed in two steps (and do not try to make at the same
time inference for the geostatistical model of trends and the
extreme value model used to estimate the trends) the
statistical inference becomes more tractable computationally
and reliable when dealing with large data sets. These
technical aspects will be touched upon in the discussion
section at the end of the paper.

Figure 1. Colored area in Figure 1a shows the whole climate model domain. The orographic elevation as
represented in the model is depicted. Figure 1b shows the focus area Germany with selected cities.
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[26] The statistical analysis is implemented using the
statistics software R [R Development Core Team, 2008].
2.2.1. Station-by-Station Analysis
2.2.1.1. Statistical Model of Threshold Exceedances
[27] The daily time series of the stations are first analyzed

separately. Exceedances of a (station-dependent) threshold u
are modeled by a nonhomogenous Poisson point process.
[28] A Poisson point process on A � R with intensity

L(A) is represented by a random variable N(A), the number
of points in A, with the following two properties: (1) for all
B � A, N(B) � Pois(L(B)), (2) the random variables N(B)
and N(C) are independent for disjoint subsets B and C.
[29] Figure 2 illustrates the point process representation

of exceedances y over the threshold u. Only exceedances
of the threshold u are modeled by the point process.
The distribution of the number of points N(A) in A implies
a probabilistic measure of intensity and frequency of
threshold exceedances (i.e., heavy rainfall events in the
context of the present paper). More precisely, the expecta-
tion E[N(A)] = L(A).
[30] The connection to traditional extreme value statistics

[Leadbetter et al., 1983; Davison and Smith, 1990;
Embrechts et al., 1997; Coles, 2001] is as follows. We first
review the main theorem in this context, the Extremal Types
Theorem I, following Coles [2001]. Let X1, X2, . . . � F
identically and independently, and let Mn = max{X1, . . .,
Xn}. If there exist sequences of constants {an > 0} and {bn}
such that

Pr
Mn � bn

an
� z

� �
! GðzÞ as n ! 1 ð1Þ

for a nondegenerate distribution function G, then G is a
member of the generalized extreme value (GEV) family

GðzÞ ¼ exp � 1þ x
z� m
s

� �h i�1
x

� �
; ð2Þ

defined on {z j 1 + x(z� m)/s > 0}, where�1 <m <1, s > 0,
and �1 < x < 1.
[31] This means that even if the (arbitrary) distribution F

of the original data (in our case, the rainfall data) is not
known, according to the above theorem the maxima of long

sequences (i.e., the extreme values) are distributed accord-
ing to the family of distribution functions (2).
[32] By this asymptotic result, the GEV family of distri-

bution is suitable for modeling the distribution of maxima of
long sequences (e.g., yearly maxima of daily rainfall
amounts). The family has three parameters: the location
parameter m, the scale parameter s, and the shape parameter
x, which determines the tail of the distribution. Commonly,
three cases are distinguished: x > 0 (Fréchet), x = 0
(Gumbel), and x < 0 (Weibull). The Weibull distributions
are short tailed, the densities of Fréchet and Gumbel
distributions show polynomial and exponential decay,
respectively.
[33] A similar, ‘‘Central-Limit-Theorem’’-like proposi-

tion exists for threshold exceedances: the Extremal Types
Theorem II. Under the same assumptions of the Extremal
Type Theorem I and for large enough threshold u, the
distribution function of (X � u), conditional on X > u, is
approximately

HðyÞ ¼ 1� 1þ xy
~s

� ��1
x

ð3Þ

defined on {y j y > 0 and (1 + xy/~s) > 0}, where ~s = s +
x(u � m) and X is any term in the sequence Xi. The
distributions defined by (3) are called Generalized Pareto
distributions (GPD).
[34] The statement can be made more precise [Leadbetter

et al., 1983; Embrechts et al., 1997], justifying (3) as a
limiting distribution as u increases. Again, the theorem
states that extreme values, in the sense of exceedances over
a high threshold, are distributed according to the family of
distribution functions (3), independently of the (perhaps
unknown) distribution function F of the original data.
[35] We now return to the nonhomogenous Poisson

process representation of threshold exceedances, and its
connection to the Extremal Types Theorems. Under the
same assumptions of the Extremal Type Theorem I, the
sequence of point processes

Nn ¼
i

nþ 1
;
Xi � bn

an

� �
j i ¼ 1; . . . ; n

� �
ð4Þ

Figure 2. Illustration of the point process representation. The points on the graph represent times t and
values y of exceedances over the threshold u.
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converges on regions of the form (0, 1) � (u, 1), for any u
> z�, to a Poisson process, with intensity measure on A = [t1,
t2] � (z, z+) given by

LðAÞ ¼ ðt2 � t1Þ 1þ x
z� m
s

� �h i�1
x
; ð5Þ

where z� and z+ are the lower and upper endpoints of the
distribution function G. In particular, the parameters in
equation (5) are the same as the parameters of the GEV
family of distributions (2).
[36] In other words, if we just consider the exceedances

over the (large enough) threshold u, these exceedances can
be modeled by a Poisson point process with intensity
measure (5).
[37] It can be shown that the likelihood function of the

described Poisson point process differs from the likelihood
of the Extremal Types Theorem II only by a constant. Thus
parameter estimates for the two models are the same.
However, the point process representation allows for a
conceptually more satisfactory formulation of nonstationary
models as used in the present paper, since the parameters of
the Poisson point process do not depend on the threshold u,
contrary to the parameters of the Extremal Types Theorem
II. Moreover, the likelihood function in the point process
representation is very easily adapted to handle missing
values.
2.2.1.2. Declustering
[38] The Poisson point process model introduced in

section 2.2.1.1 assumes the threshold exceedances to be
independent. We assume that dependent extreme precipita-
tion events (belonging to the same precipitation front) are
separated by at most one day, and that two events are
independent if a day with no rainfall is in between them.
Accordingly, declustering is applied as follows. Two thresh-
old exceedances are considered to belong to the same
cluster if no more than one day lies in between them, except
if at this day between no precipitation has occurred. We then
treat each one of these clusters as one extreme precipitation
event and consider the maximum of the exceedances within
each cluster as the corresponding rainfall amount [Davison
and Smith, 1990].
[39] Inspection of rainfall observations and simulations

reveals that clusters are composed rarely of more than three
days.
2.2.1.3. Threshold Selection
[40] If the random variable Y is distributed according to

(3) with x < 1, then

E½Y � ¼ ~s
1� x

:

[41] Thus, if the conditional exceedances Y = X � u were
distributed exactly according to (3), then

E½Xi � u j Xi > u� ¼ s þ xðu� mÞ
1� x

:

[42] In particular, this expectation is linear in u. This
motivates the so-called mean excess plot, defined as

u;

Pn
i¼1 ðXi � uÞ1fXi>ugPn

i¼1 1fXi>ug

� �� �
; ð6Þ

depicting the averaged exceedances as a function of the
threshold u. The threshold u is then selected at the value,
from where on the graph (6) approximately represents a
straight line.
[43] However, other considerations have to be taken into

account as well. First, the common bias-variance dilemma:
the higher the threshold, the better approximation (3), but
the less data are available for parameter estimation. Second,
in the present study we want to investigate spatial depen-
dencies of trends in heavy precipitation events over Ger-
many. The higher the threshold, the less spatial dependence
is visible in the data. We therefore need to make a
reasonable threshold selection considering these two aspects
as well.
[44] For the present work we defined the threshold to be

the 95% quantile of the time series of daily precipitation
totals for each station. This is a reasonable choice for our
purposes considering the findings of Smith (unpublished
manuscript, 1999) as well as the mean excess plots (see
section 3.1.1). Since in the computation of the quantile we
include all days (not just days with rainfall), the 95%
quantile is not an extremely high threshold. Our analysis
does therefore not concentrate on the most extreme events
only, but on incidents with high daily precipitation totals.
[45] Other ways of dealing with temporal dependence in

the data exist like the approach to declustering by Ferro and
Segers [2003] or other methods which avoid the need for
declustering altogether [Smith et al., 1997; Fawcett and
Walshaw, 2006, 2007].
2.2.1.4. Likelihood Function and Time Dependence
[46] For each station, we now only consider the declus-

tered exceedences and disregard the rest of the data. Let Tj
be the time of the jth exceedance and ~X j > u the value of the
jth exceedance of the threshold u, j = 1, . . ., nu. Denote the
whole time period by the interval [0, T].
[47] (Tj, ~X j) is modeled as a two-dimensional Poisson

point process (section 2.2.1.1). It can be shown that the
likelihood function (for each station separately) is given by

L ¼ exp �
Z T

0

1þ x
u� mt

st

� �� ��1
x

þ
dt

( )Ynu
j¼1

1

sTj

� 1þ x
~Xj � mTj

sTj

 !" #�1
x �1

þ

ð7Þ

where a+ = a if a > 0 and zero otherwise.
[48] As in Smith (unpublished manuscript, 1999), the

temporal dependence of the parameters mt and st is modeled
as

mt ¼ m0e
gðtÞþsðtÞ; st ¼ s0e

gðtÞþsðtÞ; ð8Þ

where m0 and s0 are constants. Note that the same time
dependence is assumed for mt as well as st. This is due to
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our desire to limit the number of parameters in the model.
Estimating trend parameters for mt and st separately would
be an option, however this would increase the dimension-
ality of the problem. The shape parameter x is assumed to be
constant in time.
[49] The function g(t) = b1t models a linear trend, while

sðtÞ ¼
XP
p¼1

b2p cos ðwptÞ þ b2pþ1 sin ðwptÞ ð9Þ

accounts for seasonal effects. In the present study we choose
P = 2, but will use P = 1 as an intermediate step in
parameter estimation (see section 3.1.1).
[50] The linear trend parameter b1 will be the main focus

of the present work. Primarily b1 is the coefficient of a
linear trend in the parameters of the family of distributions
(2) (or, equivalently, (3)) of extreme values (i.e., heavy
precipitation events in our case). Unfortunately, these
parameters do not have a simple interpretation. They do
not relate directly to the mean or standard deviation of the
corresponding extreme value distributions, for instance.
However, let qTini be the probability that the value y will
not be exceeded during the period [Tini, Tini + 1]. An
easy calculation shows that under the above assumptions
qTini+1(y) = qTini (

y

eb1
). In other words, if yTini denotes the q

quantile in the period [Tini, Tini + 1], then

yT endðqÞ ¼ eb1ðT end�T iniÞyT iniðqÞ; ð10Þ

that is, b1 can be understood as an inflation factor of the
quantiles of the extreme value distributions (i.e., the
distributions of the threshold exceedances, or, put differ-
ently, the heavy rainfall events). Since this provides a
straightforward interpretation of b1, we will, in the
presentation of our results, sometimes refer to this view
on b1.
2.2.1.5. Parameter Estimation
[51] Parameter estimation is based on the negative log

likelihood

� log L ¼
Xnu
j¼1

log ðsTjÞ þ
1

x
þ 1

� �
log 1þ x

~Xj � mTj

sTj

 !" #
þ

 !( )

þ
Z T

0

1þ x
u� mt

st

� �� ��1
x

þ
dt ð11Þ

[52] The integral in (11) has to be approximated
numerically:

Z T

0

1þ x
u� mt

st

� �� ��1
x

þ
dt � h

X
t

1þ x
u� mt

st

� �� ��1
x

þ
ð12Þ

where h = 1
365:25, the number of days per year.

[53] We mostly rely on maximum likelihood parameter
estimation by minimizing the negative log likelihood (11).
Uncertainty estimates are obtained by using the following
result in asymptotic theory: Let X1, . . ., Xn be iid distributed
random variables with density f(x; q). Let q̂MLE 2 R

d denote

the maximum likelihood estimate of the parameter vector q
2 R

d. Then under certain regularity conditions for f(x; q)

q̂MLE � N q; n�1J ðqÞ�1
� �

for large n. Here J(q) denotes the Fisher information matrix
given by

JðqÞij ¼ E � @2

@qi@qj
log ðf ðX1; qÞÞ

� �
:

[54] In practical applications (since f(X1; q) is not known),
for nJ(q) the approximation

IðqÞ ¼ � @2

@qi@qj
log ðLðX1; qÞÞ

is used. The estimated standard errors of the components of
q̂MLE are then given by

bseðq̂i;MLEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIðq̂MLEÞ�1Þi;i

q
ð13Þ

[55] In one case of our analysis, investigating the REMO
simulations according to the SRES scenario A1B, we will
compare the results of the parameter estimates based on
maximum likelihood theory with Bayesian parameter esti-
mates (section 3.1.2). In the Bayesian approach, parameters
are considered to be random variables. A priori assumptions
on the distribution of the parameter vector q are made. This
a priori distribution p(q) is then updated, taking the data y
into account, according to Bayes’ theorem, resulting in a
posterior distribution p(q j y):

pðq j yÞ / Lðy; qÞ � pðqÞ ð14Þ

where L(y; q) is the likelihood function (the conditional
probability density of the observations y given the
parameters q).
[56] Posterior distributions for the parameters are derived

using a random-walk Metropolis-Hastings Markov chain
Monte Carlo algorithm [Gelfand and Smith, 1990; Smith
and Roberts, 1993]. Maximum likelihood estimates are
compared to the mean of the marginal posterior distribu-
tions, and the standard errors bse(q̂i,MLE) are checked against
the standard deviations of the marginal posterior distribu-
tions. More details are given in section 3.1.2. In the present
work we will essentially assume uniform prior distributions,
which implies that the posterior distribution is equal to the
likelihood function. This allows for comparing the uncer-
tainty estimates resulting form asymptotic maximum likeli-
hood theory with the standard deviations estimated by the
Markov chain algorithm. Of course also, the Bayesian
approach implies an approximation (due to the finite sample
size), but in principle the full likelihood function is sampled.
[57] For the maximum likelihood estimation as well as

the Bayesian parameter estimation, the choice of appropri-
ate start values for the numerical estimation procedure is
crucial. In the present paper we fitted the distribution (2) to
the yearly maxima of daily precipitation amounts, assuming
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constant values for the parameters. The R package ismev
was taken advantage of for this purpose [Coles and
Stephenson, 2006]. The resulting estimates for m, s, and x
were then used as start values for m0, s0, and x as defined in
(7) and (8).
2.2.1.6. Model Validation
[58] Suppose the random variable Yt is distributed accord-

ing to (3), then the so-called W statistics can be calculated:

Wt ¼
1

xt
log 1þ xt

Yt

~st

� �
: ð15Þ

[59] We have

P½Wt � x� ¼ P Yt �
~s
xt
ðext x � 1Þ

� �
¼ 1� e�x:

Thus Wt � Exp(1), that is, Wt is exponentially distributed
with rate parameter equal to 1. For validating the statistical
model of extreme precipitation events, we can insert the
parameter estimates in (15) and plot the empirical quantiles
against the quantiles of the standard exponential distribution
as follows:

� log 1� i

nu þ 1

� �
;wðiÞ

� �
; i ¼ 1; . . . ; nu

� �
; ð16Þ

where w(i) denote the ordered realizations of Wtk
. If the

statistical model is appropriate, the points in the plot will be
arranged along the diagonal.
[60] The W statistics also allows for testing the indepen-

dence of the declustered threshold exceedances by investi-
gating the autocorrelation of the transformed sample
(wi)i=1,. . .,nu.
2.2.2. Spatial Analysis of Trends
[61] In the second step of the present work, we inves-

tigate the spatial dependence of trends in extreme precip-
itation events. These linear trends b1(s) (see section
2.2.1.4) are first estimated in the station-by-station analysis
as outlined in section 2.2.1. Now we would like to
formulate a spatial statistical model to capture the spatial
dependence in the trends of the different stations. This
two-step procedure was proposed by Smith (unpublished
manuscript, 1999).
[62] The aim of this analysis is twofold. We would like to

compare the climate model simulations with observations,
and to contrast the present state of the climate with the
future state in order to learn about the behavior of the
climate system under changing greenhouse gas concentra-
tions. The estimated parameters of the spatial statistical
model will provide information on spatial dependence both
in the climate model data and the observations. Since we
already work with very high-resolution data, our goal is not
to predict rainfall at missing locations, the more traditional
application of geostatistical modeling.
2.2.2.1. Spatial Statistical Model for the Trends
[63] We model the (true) trends b1(s) in extreme rainfall

events as realizations of a stationary Gaussian random field.
Here s indicates the spatial location. In our example, s varies
over the geographic area of Germany. The covariance
matrix of b1(s) is denoted by S(sj � s0j).

[64] The assumption of stationarity in space is acceptable
since we did not detect any dependence of the trends
on longitude, latitude, elevation, or monthly rainfall amount
in our trend estimates (see section 3.1.1). Note that although
we are modeling trends in extreme events, the
trends themselves are not expected to show extreme value
behavior.
[65] Let b̂1(s) denote the estimate of the trend at the

location s resulting from the analysis described in
section 2.2.1. This estimate is assumed to be the true trend
b(s) plus an error term:

b̂1ðsjÞ ¼ b1ðsjÞ þ eðsjÞ; j ¼ 1; . . . ; n ð17Þ

[66] We assume (e(s1),. . ., e(sn)) to be independently
normally distributed with zero expectation and equal vari-
ance t2. This is a simplifying assumption, but it is difficult
to establish a covariance model for the climate variability
that affects the true trends due to the high dimensionality
of the problem. A model formulation that takes the spatial
correlation of the noise term into account would be desirable.
[67] Thus, with the assumption of independent climate

noise, we have

b̂ðsjÞj¼1; ...; n � Nðm;Sðsj � s0jÞ þ Diagðt2ÞÞ; ð18Þ

where m is supposed to be a constant, and Diag(t2) is a n �
n matrix with t2 in the diagonal, and zero in all other
entries.
[68] For the covariance matrix S we consider a flexible

parametric isotropic model, the Matérn family of covariances:

Covðb1ðsiÞ � b1ðsjÞÞ ¼ s2 1

2n�1GðnÞ

� 2
ffiffiffi
n

p jsi � sjj
r

� �n

Kn 2
ffiffiffi
n

p jsi � sjj
r

� �
:

ð19Þ

[69] Here G(�) is the Gamma function and K(�) the
modified Bessel function of the third kind of order v, s2

(the partial sill) and r (the range) are form parameters, v is a
shape parameter which determines the behavior of the
covariance for jsi � sjj small.
[70] For the random field of trends b1(s) we can define

the function

gb1
ðhÞ ¼ 1

2
Varðb1ðsþ hÞ � b1ðsÞÞ; ð20Þ

the so-called semivariogram. The isotropic property of the
Matérn family of covariances implies gb1

(h) = gb1
(jhj).

[71] Since the true trends b1 are not known, we have to
relate gb1

(h) to the empirical semivariogram gb̂1
(h). Because

of the independence of e(�) and b1(�) it follows

1

2
Varðb̂1ðsþ hÞ � b̂1ðsÞÞ ¼

1

2
Varðb1ðsþ hÞ � b1ðsÞÞ

þ 1

2
VarðeðsiÞÞ þ

1

2
VarðeðsjÞÞ

¼ 1

2
Varðb1ðsþ hÞ � b1ðsÞÞ þ t2 ð21Þ

D12113 TOMASSINI AND JACOB: SPATIAL ANALYSIS OF TRENDS IN HEAVY PRECIPITATION EVENTS

7 of 20

D12113

 21562202d, 2009, D
12, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2008JD
010652 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [17/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



[72] Or in other words,

gb̂1
ðhÞ ¼ gb1

ðhÞ þ t2 ð22Þ

[73] In order to analyze the empirical semivariogram of
the trend estimates, we can plot 1

2
(b̂1(s) � b̂1(s

0))2 against
js � s0j. However, such a diagram would contain n(n � 1)/2
points, where n is the number of locations. It is therefore
common to introduce classes T(h) which contain pairs of
observations (in our case, pairs of estimated trends) with
similar distances in between them. The mean of 1

2
(b̂1(s) �

b̂1(s
0))2 for js � s0j 2 T(h) is then plotted against jhj.

2.2.2.2. Parameter Estimation for the Spatial Model
[74] In order to estimate the parameters s2, r and v of the

covariance model (19), as well as the ‘‘nugget effect’’ t2,
the variance of the error term in (17), two different methods
are applied: parameter estimation by ordinary least squares
fitting of the theoretical model to the empirical semivario-
gram, and by maximum-likelihood estimation. In principle
also a Bayesian parameter estimation would be possible at
this stage. However, this proved not to be feasible compu-
tationally considering the high dimensionality of the prob-
lem. The sample size of the posterior distributions would be
too small to allow for reliable parameter estimation.

3. Results

3.1. Station-by-Station Analysis

3.1.1. Maximum Likelihood Estimates
[75] As already mentioned in section 2.2.1.5, starting

values for the maximum likelihood parameter estimation
were obtained by fitting the distribution (2) to the yearly
maxima of daily precipitation amounts, assuming constant
values for the parameters. The resulting estimates for m, s,
and x were then used as start values for m0, s0, and x as
defined in (7) and (8).
[76] The parameter estimation then proceeded in two

further steps. First parameter estimation was performed
for the reduced model with P = 1 in equation (9). In a
second step the resulting estimates were used as starting
values for the parameter estimation of the full model with
P = 2. The quasi-Newtonian Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm was applied for the minimiza-
tion of the negative log likelihood.
[77] Figure 3 shows the estimated linear trends b̂1 in

terms of increase [%] in extreme quantiles (compare section
2.2.1.4) over the considered time periods for observations,
the two REMO control runs and the different scenario
simulations.
[78] The observations show positive trends mainly in the

southern part of Germany and at some sites in Western
Germany, and no clear trends in the northeastern part. This
is consistent with results of Trömel and Schönwiese [2007]
derived for trends in monthly mean precipitation.
[79] The first REMO control simulation (Figure 3b) also

shows positive trends for the South and no trends or even
negative values for b̂1 in the eastern parts of Germany. The
(spatial) mean of b̂1 * 1000 is �0.14, which implies a
change of �0.6% over the 44 years (observations: 1.02,
implying an increase of 4.6%), and the variance is 3.4
(observations: 2.6). That is, there are more negative trends

than positive ones in the control run (vice versa in the
observations), and the variability is larger.
[80] It has to be stressed that the control simulation does

not necessarily reflect the historical climate of the time
period 1961 to 2004, but represents just one possible
realization of a similar climate (with the same greenhouse
gas concentration). Because of natural variability the control
climate is expected to differ from the observations and such
differences do not necessarily imply model deficiencies.
[81] To investigate this aspect, a second REMO control

run for the same time period was analyzed (Figure 3c). Here
the trends are even more negative (the mean value of b̂1 *
1000 is �0.94, implying a change of �4.1%), positive
trends show up mainly in Southern Germany. This indicates
that the climate model tends to underestimate the trends.
Negative values dominate in both control simulations, while
in the observations trends are mostly positive. The reason
for this underestimation is unclear and will need further
investigation.
[82] In the moderate B1 scenario positive trends start to

dominate also in the climate model simulation, especially in
Southern Germany. This becomes more pronounced in the
A1B scenario (the mean of b̂1 * 1000 amounts to 0.51,
implying a change of 5.25% over the 100 year period), and
in the A2 scenario positive values prevail in all regions with
strongest trends in the South and in central parts of
Germany. Note that the trends are relatively small, mostly
below 15%. The increase in extreme quantiles in the
medium range A1B emission scenario, over the time span
of 100 years, is similar in magnitude to the increase
estimated for the observations (which cover a time period
of 44 years). The temperature increase in the case of the
A1B scenario is 2.5 to 4�C with 4�C in Southern Germany,
3 to 3.5�C in Central Germany including the eastern state of
Brandenburg, and 2.5 to 3�C in the North. Thus the spatial
pattern of the increase in rainfall extremes is consistent with
the Clausius-Clapeyron relation, but the magnitude estimated
by this thermodynamic consideration is, in the case of the
scenario simulations, larger than the one predicted by the
regional climate model. In the case of the observations,
however, it agrees rather well with the data record.
[83] Figure 4 shows the estimated shape parameter x̂

(for the GPD family of distributions, see (3)) for observa-
tions, REMO control and scenario simulations. A value x <
0 implies that the distribution has an upper bound, the case
x = 0 corresponds to the exponential distribution, a value
x > 0 means that the distribution has no upper bound and
is long tailed.
[84] In all panels, long-tailed distributions dominate.

From the observations distributions with upper bounds are
also inferred at some grid locations. It is remarkable that in
the REMO results there are no major differences between
the control runs and the various scenario simulations.
[85] Figure 5 depicts the t statistics for observations,

REMO control and scenario simulations. Red areas have a
t value larger than 1.96 and the corresponding trends can be
considered to be significantly positive.
[86] There are no large regions which show a significantly

positive trend neither in the observations nor in the REMO
control simulations. The picture changes in the scenario
runs. However, only in the scenario A2, which assumes
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Figure 3. Trends in heavy rainfall in terms of increase [%] in extreme quantiles over the considered
time periods: (a) Observations (1961–2004); (b) REMO first control run (1961–2004); (c) REMO
second control run (1961–2004); (d) REMO B1 scenario (2001–2100); (e) REMO A1B scenario (2001–
2100); (f) REMO A2 scenario (2001–2100).
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Figure 4. Estimated value of the shape parameter x: (a) Observations (1961–2004); (b) REMO first
control run (1961–2004); (c) REMO second control run (1961–2004); (d) REMO B1 scenario (2001–
2100); (e) REMO A1B scenario (2001–2100); (f) REMO A2 scenario (2001–2100).
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Figure 5. Values of the t statistics for the trend estimates are shown. Red areas have a t value larger than
1.96 and the corresponding trends can be considered to be significantly non zero. (a) Observations
(1961–2004); (b) REMO first control run (1961–2004); (c) REMO second control run (1961–2004);
(d) REMO B1 scenario (2001–2100); (e) REMO A1B scenario (2001–2100); (f) REMO A2 scenario
(2001–2100). The headers indicate the percentage of significant grid boxes.
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strong increase in greenhouse gas concentrations, trends
become significant in wide areas throughout Germany.
[87] Whether the significant trends at the North Sea coast

in the A1B scenario is a robust feature which is reflected in
reality cannot be decided with certainty. It might also be due
to model deficiencies in representing characteristic features
of the coastal atmospheric boundary layer and convective
activity caused by the land-sea thermal contrast.
[88] For validating the statistical extreme value model we

produced quantile-quantile plots (Figure 6) of the W statis-
tics for the REMO A1B scenario simulation and different
locations in Germany (see section 2.2.1.6 for explanations
on the W statistics and Figure 1b for the location of the
German cities).
[89] The statistical extreme value model fits the distribu-

tion of heavy precipitation events very well except for some

very extreme incidents at the far end of the tails; they are
generally underestimated by the statistical model. Plots for
other grid locations and scenarios are similar. Also, the
assumption of independence of declustered heavy precipi-
tation events was checked on the basis of the W statistics.
Plots of the empirical autocorrelations (not shown) confirm
the independence assumption.
[90] Moreover, in order to check the selection of the

thresholds u, mean excess plots (see section 2.2.1.3) were
produced for the A1B scenario simulation and selected grid
boxes (Figure 7). The plots generally look reasonable and
there is no indication that the chosen thresholds (shown as
dashed vertical lines in Figure 7) were too low. As discussed
in section 2.2.1.3, the focus of our analysis is on estimating
trends in days with large precipitation amounts and not on
predicting very extreme events and their return times. Our

Figure 6. Quantile-quantile plots for the W statistics for the REMO A1B scenario simulation and
different locations in Germany (calculated according to equation (16)).
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model’s underestimation of a few days with very heavy
rainfall as indicated in Figure 7 is therefore not of major
concern.
[91] Figure 8 shows smoothed trend estimates (b̂1 times

1000) for the first control run (upper left), the B1 scenario
(upper right), the A1B scenario (lower left) and the A2
scenario (lower right).
[92] The large (spatial) variance in the estimated trends

for the control run is reflected by the bumpy surface: overall
aggregated trends for larger areas can hardly be inferred.
For the REMO scenarios the picture is quite consistent.
Positive trends in the South and along the North Sea
coastline, and for the A2 scenario also a clear prevalence
of positive trends in the western parts of Germany.

[93] In order to investigate the dependence of the trend
estimates on other covariates, scatterplots (Figure 9) of trend
estimates (again b̂1 times 1000) against elevation (left
column) and monthly mean precipitation (right column)
for the observations, REMO first control run, REMO B1
scenario, REMO A1B scenario, and REMO A2 scenario
have been produced. In the REMO scenario runs a slight
(negative) dependence of the trends on the monthly mean
precipitation is visible, otherwise no correlation is present. It
cannot be concluded that a negative dependence of the
estimated trends on monthly mean precipitation (visible
mainly in the A1B scenario simulation) is a robust feature.
3.1.2. Bayesian Estimation
[94] Results shown in this section only refer to the REMO

A1B scenario simulation. In this case, a Bayesian parameter

Figure 7. Mean excess plots for the REMO A1B scenario simulation and selected model grid locations.
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estimation was carried out using Markov chain Monte Carlo
sampling. Markov chain Monte Carlo in a Bayesian context
refers to algorithms for sampling from the posterior distri-
bution based on constructing a Markov chain that converges
to the desired distribution. More specifically, a random-walk
Metropolis-Hastings algorithm was applied to derive a
posterior sample of the parameters. The sample size was
chosen to be 26,000, the first 1000 points were disregarded
for the parameter estimation. Uniform prior distributions
were chosen for all parameters except for the scale param-
eter s0 (see (8)); here a flat lognormal prior with mean equal
to 50 and standard deviation equal to 50 was applied in
order to exclude negative values. In practice, however, this
proved not to be a problem.
[95] Figure 10 shows the traces of the Markov chains and

the estimated probability densities for selected grid boxes of
the model domain and the trend parameter b1 (see again

Figure 1b for the location of the sites). The traces are
stationary and burn-in times are short, if present at all.
The probability distributions of the trend estimates are
generally quite symmetric and do not show a heavy tail
behavior.
[96] Figure 11 shows the result of the Bayesian estimation

using MCMC for the estimated linear trend b̂1 * 1000. The
means and the standard deviations of the posterior samples
were compared to the maximum likelihood estimates and
the estimated standard errors (using asymptotic theory, see
section 2.2.1.5), respectively, presented in section 3.1.1.
[97] The differences in estimated changes of extreme

quantiles are shown in relative terms, with the maximum
likelihood estimates as references (positive values in the
plot imply larger values of the MCMC estimates). The
relative differences in the parameter estimates, although
small in absolute values, can exceed 100%. The cause for

Figure 8. Smoothed and scaled trend estimates (b̂1 times 1000) for (a) first REMO control run; (b) B1
scenario; (c) A1B scenario; and (d) A2 scenario.
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this probably lies in the fact that the likelihood function can
have several local maxima. The numerical optimization
algorithm used in the maximum likelihood estimation might
not be able to find the global maxima in all cases. However,

also the fact that we use the mean of the posterior sample as
parameter estimate (and not the sample point with the
maximum value of the posterior density) plays a certain
role. Rather surprisingly, the uncertainty estimates are much

Figure 9. Scatterplots of trend estimates (b̂1 times 1000) against (left) height and (right) monthly mean
precipitation. (a) Observations; (b) REMO first control run; (c) REMO B1 scenario; (d) REMO A1B
scenario; and (e) REMO A2 scenario.
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more consistent and only differ within a range of �20% to
20%.
[98] The right panel of Figure 11 shows area of signifi-

cantly positive trends (red colored) as determined by the t

test based on the Bayesian estimates. This should be
compared to Figure 5e. Although the Bayesian estimates
result in slightly more extended areas of significant trends,
the spatial pattern is similar overall.

Figure 10. (left) Trace of the Markov chain samples of trends for selected grid boxes. (right) Estimated
probability densities from the posterior sample.
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3.2. Spatial Model for the Trends

[99] In the following paragraph the spatial dependence of
the trends in both the observations and the climate model
runs is investigated. As discussed in section 2.2.2, the goal
of the analysis is to validate the climate model against
observations, and to examine a possible change in spatial
dependence of the trends in the scenario simulations of the
regional climate model.
[100] Figure 12 shows empirical semivariograms of

scaled trends (b̂1 times 1000) for the observations, second
REMO control run, REMO B1 scenario, REMO A1B
scenario, and the REMO A2 scenario. Pairs of stations
were thereby pooled in clusters of size 10000. The results
for the two REMO control simulations are similar, we
therefore restrict the presentation to the analysis of one of
them.
[101] The red lines show the estimated Matérn model

using ordinary least squares fitting of the theoretical covari-
ance function to the empirical semivariogram, the blue lines
indicate the results of the maximum likelihood parameter
estimation.
[102] For the variogram fitting the maximum considered

distance between points (clusters) was set to 600 km, except
for the control simulation where the maximum distance was
chosen to be 500 km. In the maximum likelihood estimation
no such threshold was included.
[103] The most striking feature is the difference in the

semivariance. While the observations lie at around a value
of 1.0, the semivariance of the REMO control run is
considerably larger. The semivariance of the scenarios,
including the B1 scenario, however, are consistently smaller
and show a value of around 0.4. This is supported by the
variance of the trend estimates (column five in Table 1).
This means that the trends not only become predominantly
positive in the scenario simulations, but also more consis-
tent and less variable across Germany. However, the phe-
nomenon of reduced semivariance can partly be explained
by the fact that for the control simulation only a time span

of 44 years was considered, while the scenario simulations
extend over a period of 100 years. To estimate the magni-
tude of this effect we selected 44 years of the A1B scenario
simulation, the years 2057 to 2100, and repeated the
analysis. The result (not shown) exhibits an almost tripled
semivariance compared to Figure 12d, but still only about
have the semivariance of the control simulation.
[104] The general shapes of the semivariograms of the

observations and the REMO control run agree well and this
form remains essentially unchanged in the scenario simu-
lations. There is no clear sign that the climate model
exhibits much more or less spatial correlation in the
estimated trends than the observations.
[105] In Table 1 the parameter estimates related to the

spatial model for the trends using the two different estima-
tion techniques are summarized.
[106] Recall that the resolution of the climate model

results as well as of the observations is 10 km. From the
data we can therefore not infer the spatial covariance
structure of the trends at smaller scales. The shape param-
eter v determines the behavior of the covariance function
around zero: a shape parameter close to 0.5 implies an
exponential covariance model, a large value of the shape
parameter leads to a Gaussian form of the covariance
function.
[107] In the case of the observations and the REMO

control simulation there is a difference in the results of
the parameter estimation using variogram fitting and max-
imum likelihood estimation. While the variogram method
gives a more Gaussian covariance function, the maximum
likelihood estimation leads to a exponential type of covari-
ance function. This implies different estimates for the other
parameters of the covariance model, too.
[108] For the scenario simulations the resulting covari-

ance functions are of exponential type for both estimation
methods. The uncertainty in the parameter estimates is
however large. The value of the likelihood function proved
to be close for very different combinations of parameters. It

Figure 11. Results of the Bayesian estimation using MCMC. (a) Means and (b) standard deviations of
the posterior samples were compared to the maximum likelihood estimates and the estimated standard
errors for the REMO A1B simulation. Relative differences in estimated changes of extreme quantiles are
shown, with the maximum likelihood estimates as references. (c) Area of significant trends (red colored)
as determined by the t test based on the posterior sample.
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seems therefore problematic to attach a direct physical
meaning to the estimated parameter values. This relates in
particular to the typical correlation length r. The uncertainty
is too large to conclude that typical distances of correlation
in the data are equal to the estimated value of r. However,
also the estimates for the nugget effect depend heavily on
the inferred behavior of the correlation function around zero
(i.e., the value of v) and should be interpreted with care.
[109] This implies that it would be problematic to use the

parameter estimates for kriging in order to statistically
downscale the observations or climate model results. Krig-
ing at scales comparable to the resolution of the data would
however hardly be affected by these uncertainties in the
parameter estimates and could be used, for instance, to
produce a gridded data product from station data.

4. Discussion

[110] In the present paper a statistical extreme value
analysis is applied to very high-resolution climate model
results and observations encompassing the area of Germany.
The gridded observational data set is quality checked and
corrected for well-known systematic observational errors
(i.e., precipitation undercatch of the measurement devices).
The study is divided into two main parts: first trends in
extreme quantiles of daily precipitation totals are estimated
in a station-by-station analysis. In the second part, the
spatial characteristics of the estimated trends in heavy
rainfall are investigated over the area of Germany by fitting
a parametric geostatistical model to these trends.
[111] In the control simulations the climate model tends to

underestimate trends in heavy rainfall compared to obser-
vations. In the scenario simulations positive trends prevail
(as in the observations). They are however relatively small
when set in relation to the uncertainties. The trends become
significantly positive to a larger spatial extent only in the A2
scenario simulation.
[112] This does of course not necessarily imply that

increasing frequencies and intensities of extreme precipita-
tion events do not pose a threat to Germany. In our study we
only considered long-term trends in extreme quantiles in
precipitation. It would be necessary to couple the climate
model to hydrological discharge models in order to estimate
the consequences of climate change in terms of frequency
and intensity of floods. This would lead to a more appro-

Figure 12. Empirical semivariograms of trends for (a)
observations; (b) REMO second control run; (c) REMO B1
scenario; (d) REMO A1B scenario; and (e) REMO A2
scenario. The red lines show the fitted Matérn model using
ordinary least squares variogram fitting, the blue lines
depict the results of the maximum likelihood estimation.

Table 1. Parameter Estimates Related to the Spatial Model for the Trends Using Least Squares Variogram

Fitting and Maximum Likelihood Parameter Estimation (See Equation (19) for the Definition of the Parameters)

Data s2 r v t2 Var(b̂1 * 1000)

Least squares variogram fitting
Observations (1961–2004) 0.398 52.49 60.20 0.943 1.012
REMO Control II (1961–2004) 1.286 38.175 50.02 2.366 2.840
REMO B1 (2001–2100) 0.155 215.0 0.718 0.267 0.364
REMO A1B (2001–2100) 0.4076 351.45 0.0693 0.01 0.390
REMO A2 (2001–2100) 0.369 149.398 0.119 0.01 0.350

Maximum likelihood
Observations (1961–2004) 0.3438 53.78 0.278 0.6714 1.012
REMO Control II (1961–2004) 2.546 155.91 0.164 0.617 2.840
REMO B1 (2001–2100) 0.3699 73.9 0.1163 0.0033 0.364
REMO A1B (2001–2100) 0.2826 71.75 0.3486 0.1392 0.390
REMO A2 (2001–2100) 0.2379 67.6 0.3479 0.1156 0.350
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priate measure of potential damages to the society caused by
heavy rainfall events.
[113] The Bayesian estimation essentially confirmed the

uncertainty estimates resulting from the asymptotic theory.
Nevertheless, the advantage of the Bayesian approach lies in
the fact that it leads to probability distributions of trends,
which can be used further in impact studies and risk
assessments. Moreover, it allows for including prior infor-
mation on the parameters in the estimation procedure [see,
e.g., Frei et al., 2006].
[114] The estimated shape of the extreme value distribu-

tions does not change significantly in the scenario simu-
lations compared to the climate model control runs, that is,
the distributions of the heavy rainfall events are not pro-
jected to become pronouncedly more heavy tailed. The
variances of these distributions nevertheless increase (be-
cause of the trend in the scale parameter s, see (8)).
[115] The fitting of the geostatistical Matérn model to the

trend estimates proves to be a useful method to compare the
spatial characteristics of the observations and the climate
model results. However, the parameter estimates are uncer-
tain. In our situation this was due mainly to the finite
resolution of the gridded observations and the climate
model results: data is not available on a resolution finer
than the mesh size of the grid (i.e., 10 km). Therefore the
model should be applied with care. The most striking result
is a reduction of the spatial variance of the trends for the
scenario simulations which can only partly be explained by
the fact that the considered time series are shorter in the
control simulations: trends become considerably more con-
sistent and homogeneous over the considered area of
Germany in the scenario runs.
[116] Bayesian hierarchical models [Cooley et al., 2008;

Sang and Gelfand, 2009] are very appropriate when ana-
lyzing spatial correlation in extreme event characteristics.
They allow for borrowing strength across locations in the
procedure of parameter estimation. However, in the case of
very large data sets, the computational costs limit the
applicability of these methods. In our situation we analyze
threshold exceedances of the 95% quantiles of long daily
time series for more than 4000 grid points which amounts to
a substantial quantity of data. Here the two-step procedure
of first estimating trends in a station-by-station analysis, and
then fitting the spatial model separately, proves to be an
advantageous approach. The point process model of thresh-
old exceedances can be fitted with care, even Bayesian
parameter estimation is feasible and leads to a good fit of
the statistical model and reliable uncertainty estimates. In
principle, a Bayesian approach would also be possible in the
second step, the parameter estimation for the geostatistical
Matérn model. However, in our situation we considered the
dimensionality of the problem (and, consequently, the
computational cost) to be too high for generating enough
samples of the posterior distribution.
[117] With regard to the rule of thumb of estimating trends

in extreme quantiles of heavy precipitation based on the
Clausius-Clapeyron relation, about 6.5% per 1� temperature
increase (see section 1), no unequivocal conclusion can be
drawn from our study. The simple thermodynamic equation
tends to predict stronger trends than the regional climate
model, but agrees rather well with the observational record.
It would be useful to conduct a similar study for other parts

of the world using high-resolution data. A more thorough
investigation of the reasons and physical processes causing
positive trends in extreme precipitation events is planned in
a future work. Apart from the increased moisture content of
a warmer atmosphere, general changes in the circulation
pattern and increased blocking frequencies (J. Sillmann and
M. Croci-Maspoli, Atmospheric blocking and extreme
events in the present and future climate, submitted to
Geophysical Research Letters, 2009) may be responsible
for more extreme heavy rainfall events in the future.

[118] Acknowledgments. The authors would like to thank three
anonymous reviewers for insightful comments and suggestions that greatly
helped to improve the article.
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Frei, C., C. Schär, D. Lüthi, and H. C. Davies (1998), Heavy precipitation
processes in a warmer climate, Geophys. Res. Lett., 25(9), 1431–1434.

Frei, C., J. H. Christensen, M. Déqué, D. Jacob, R. G. Jones, and P. L.
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